Partner: Luisa Paganin |
|
Ostatnie publikacje
1. | Lanzi M.♦, Paganin L.♦, Pierini F.♦, Errani F.♦, Di-Nicola F.P.♦, Use of poly(3-methylthio)thiophene blends for direct laser tracing and bulck heterojunction solar cells, REACTIVE AND FUNCTIONAL POLYMERS, ISSN: 1381-5148, DOI: 10.1016/j.reactfunctpolym.2014.07.007, Vol.83, pp.33-41, 2014 Streszczenie: In this article we demonstrate the use of a blend made of two regioregular polythiophenic derivatives, namely poly(3-methylthio)thiophene and poly(3-hexyl)thiophene, to obtain conductive traces by the simple laser exposure of their thin films to a suitable laser source. The polymeric blend was also tested as a photoactive layer for BHJ solar cells, showing an improved surface morphology and a wider absorption spectrum, thus resulting in an enhanced photovoltaic performance. In the standard condition normally used for the cell preparation, we obtained a 3.16% power conversion efficiency. The device showed good reproducibility and stability over time. Słowa kluczowe: Electrical conductivity, Laser tracing, Bulk heterojunction polymeric solar cells, Regioregular polyalkylthiophenes, Polymer blends Afiliacje autorów:
| 35p. | |||||||||||||||||||
2. | Lanzi M.♦, Di-Nicola F.P.♦, Livi M.♦, Paganin L.♦, Cappelli F.♦, Pierini F.♦, Synthesis and characterization of conjugated polymers for the obtainment of conductive patterns through laser tracing, JOURNAL OF MATERIALS SCIENCE, ISSN: 0022-2461, DOI: 10.1007/s10853-013-7204-1, Vol.48, pp.3877-3893, 2013 Streszczenie: This article describes the preparation of thin films of conjugated polymers which can enhance their specific electrical conductivity by several orders of magnitude by changing their state from insulating to conducting materials. The examined polymers, i.e., a polyacetylenic and a polythiophenic derivative, are functionalized with thioalkylic side chains and are soluble in common organic solvents from which they lead to thick homogeneous films. The films can be deposited on different substrates, either rigid or flexible, and can be easily exposed to laser radiation to make them conductive. The process is irreversible, and the final conductivity is stable over time, even in the presence of high temperatures (up to 180°C), moisture, and air. The high stability of treated samples, easy polymer synthesis and quick and inexpensive suitably tailored laser tracing procedure make these materials very promising for applications in organic electronics and in the development of new electronic circuitry. Afiliacje autorów:
| 30p. |