
Partner: Krysiak Zuzanna Joanna |
Ostatnie publikacje
1. | Haghighat Bayan M., Kosik-Kozioł A., Zuzanna Joanna K.♦, Zakrzewska A., Lanzi M.♦, Nakielski P., Pierini F., Gold Nanostar-Decorated Electrospun Nanofibers Enable On-Demand Drug Delivery, Macromolecular Rapid Communications, ISSN: 1022-1336, DOI: 10.1002/marc.202500033, pp.2500033-1-10, 2025![]() Streszczenie: This study explores the development of a photo-responsive bicomponent electrospun platform and its drug delivery capabilities. This platform is composed of two polymers of poly(lactide-co-glycolide) (PLGA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Then, the platform is decorated with plasmonic gold nanostars (Au NSs) that are capable of on-demand drug release. Using Rhodamine-B (RhB) as a model drug, the drug release behavior of the bi-polymer system is compared versus homopolymer fibers. The RhB is incorporated in the PHBV part of the platform, which provides a more sustained drug release, both in the absence and presence of near-infrared (NIR) irradiation. Under NIR exposure, thermal imaging reveals a notable increase in surface temperature, facilitating enhanced drug release. Furthermore, the platform demonstrates on-demand drug release upon multiple NIR irradiation cycles. This platform offers a promising approach for stimuli-responsive drug delivery, making it a strong candidate for on-demand therapy applications. Afiliacje autorów:
| ![]() | 100p. | |||||||||||||||||||||
2. | Korszun‑Karbowniczak J.♦, Zuzanna Joanna K.♦, Saluk J.♦, Niemcewicz M.♦, Zdanowski R.♦, The Progress in Molecular Transport and Therapeutic Development in Human Blood–Brain Barrier Models in Neurological Disorders, Cellular and Molecular Neurobiology, ISSN: 0272-4340, DOI: 10.1007/s10571-024-01473-6, Vol.44, pp.34-1-15, 2024![]() Streszczenie: The blood–brain barrier (BBB) is responsible for maintaining homeostasis within the central nervous system (CNS). Depending on its permeability, certain substances can penetrate the brain, while others are restricted in their passage. Therefore, the knowledge about BBB structure and function is essential for understanding physiological and pathological brain processes. Consequently, the functional models can serve as a key to help reveal this unknown. There are many in vitro models available to study molecular mechanisms that occur in the barrier. Brain endothelial cells grown in culture are commonly used to modeling the BBB. Current BBB platforms include: monolayer platforms, transwell, matrigel, spheroidal, and tissue-on-chip models. In this paper, the BBB structure, molecular characteristic, as well as its dysfunctions as a consequence of aging, neurodegeneration, or under hypoxia and neurotoxic conditions are presented. Furthermore, the current modelling strategies that can be used to study BBB for the purpose of further drugs development that may reach CNS are also described. Słowa kluczowe: Blood-brain barrier (BBB), Hypoxia, BBB permeability, Tight junctions Afiliacje autorów:
| ![]() |