Partner: Izabela Sabała

Mossakowski Medical Research Centre, Polish Academy of Sciences (PL)

Ostatnie publikacje
1.Ziai Y., Petronella F., Rinoldi C., Nakielski P., Zakrzewska A., Kowalewski T.A., Augustyniak W., Li X., Calogero A., Sabała I., Ding B., De Sio L., Pierini F., Chameleon-inspired multifunctional plasmonic nanoplatforms for biosensing applications, NPG Asia Materials, ISSN: 1884-4049, DOI: 10.1038/s41427-022-00365-9, Vol.14, pp.18-1-17, 2022

Streszczenie:

One of the most fascinating areas in the field of smart biopolymers is biomolecule sensing. Accordingly, multifunctional biomimetic, biocompatible, and stimuli-responsive materials based on hydrogels have attracted much interest. Within this framework, the design of nanostructured materials that do not require any external energy source is beneficial for developing a platform for sensing glucose in body fluids. In this article, we report the realization and application of an innovative platform consisting of two outer layers of a nanocomposite plasmonic hydrogel plus one inner layer of electrospun mat fabricated by electrospinning, where the outer layers exploit photoinitiated free radical polymerization, obtaining a compact and stable device. Inspired by the exceptional features of chameleon skin, plasmonic silver nanocubes are embedded into a poly(N-isopropylacrylamide)-based hydrogel network to obtain enhanced thermoresponsive and antibacterial properties. The introduction of an electrospun mat creates a compatible environment for the homogeneous hydrogel coating while imparting excellent mechanical and structural properties to the final system. Chemical, morphological, and optical characterizations were performed to investigate the structure of the layers and the multifunctional platform. The synergetic effect of the nanostructured system’s photothermal responsivity and antibacterial properties was evaluated. The sensing features associated with the optical properties of silver nanocubes revealed that the proposed multifunctional system is a promising candidate for glucose-sensing applications.

Afiliacje autorów:

Ziai Y.-IPPT PAN
Petronella F.-other affiliation
Rinoldi C.-IPPT PAN
Nakielski P.-IPPT PAN
Zakrzewska A.-IPPT PAN
Kowalewski T.A.-IPPT PAN
Augustyniak W.-Mossakowski Medical Research Centre, Polish Academy of Sciences (PL)
Li X.-Donghua University (CN)
Calogero A.-Sapienza University of Rome (IT)
Sabała I.-Mossakowski Medical Research Centre, Polish Academy of Sciences (PL)
Ding B.-Donghua University (CN)
De Sio L.-Sapienza University of Rome (IT)
Pierini F.-IPPT PAN
140p.
2.Urbanek O., Wysocka A., Nakielski P., Pierini F., Jagielska E., Sabała I., Staphylococcus aureus specific electrospun wound dressings: influence of immobilization technique on antibacterial efficiency of novel enzybiotic, Pharmaceutics, ISSN: 1999-4923, DOI: 10.3390/pharmaceutics13050711, Vol.13, No.5, pp.711-1-17, 2021

Streszczenie:

The spread of antimicrobial resistance requires the development of novel strategies to combat superbugs. Bacteriolytic enzymes (enzybiotics) that selectively eliminate pathogenic bacteria, including resistant strains and biofilms, are attractive alternatives to antibiotics, also as a component of a new generation of antimicrobial wound dressings. AuresinePlus is a novel, engineered enzybiotic effective against Staphylococcus aureus—one of the most common pathogenic bacteria, found in infected wounds with a very high prevalence of antibiotic resistance. We took advantage of its potent lytic activity, selectivity, and safety to prepare a set of biodegradable PLGA/chitosan fibers generated by electrospinning. Our aim was to produce antimicrobial nonwovens to deliver enzybiotics directly to the infected wound and better control its release and activity. Three different methods of enzyme immobilization were tested: physical adsorption on the previously hydrolyzed surface, and covalent bonding formation using N-hydroxysuccinimide/N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide (NHS/EDC) or glutaraldehyde (GA). The supramolecular structure and functional properties analysis revealed that the selected methods resulted in significant development of nanofibers surface topography resulting in an efficient enzybiotic attachment. Both physically adsorbed and covalently bound enzymes (by NHS/EDC method) exhibited prominent antibacterial activity. Here, we present the extensive comparison between methods for the effective attachment of the enzybiotic to the electrospun nonwovens to generate biomaterials effective against antibiotic-resistant strains. Our intention was to present a comprehensive proof-of-concept study for future antimicrobial wound dressing development.

Słowa kluczowe:

antibacterial wound dressings, enzybiotic, fibers functionalization, electrospun wound dressings, Staphylococcus aureus

Afiliacje autorów:

Urbanek O.-IPPT PAN
Wysocka A.-other affiliation
Nakielski P.-IPPT PAN
Pierini F.-IPPT PAN
Jagielska E.-other affiliation
Sabała I.-Mossakowski Medical Research Centre, Polish Academy of Sciences (PL)
100p.