Partner: Iman K. Yazdi |
|
Ostatnie publikacje
1. | Fallahi A.♦, Yazdi I.♦, Serex L.♦, Lasha E.♦, Faramarzi N.♦, Tarlan F.♦, Avci H.♦, Almeida R.♦, Sharifi F.♦, Rinoldi C.♦, Gomes M.E.♦, Shin S.R.♦, Khademhosseini A.♦, Akbari M.♦, Tamayol A.♦, Customizable composite fibers for engineering skeletal muscle models, ACS BIOMATERIALS SCIENCE & ENGINEERING, ISSN: 2373-9878, DOI: 10.1021/acsbiomaterials.9b00992, Vol.6, No.2, pp.1112-1123, 2020 Streszczenie: Engineering tissue-like scaffolds that can mimic the microstructure, architecture, topology, and mechanical properties of native tissues while offering an excellent environment for cellular growth has remained an unmet need. To address these challenges, multi-compartment composite fibers are fabricated. These fibers can be assembled through textile processes to tailor tissue-level mechanical and electrical properties independent of cellular level components. Textile technologies also allow controlling the distribution of different cell types and microstructure of fabricated constructs and directing cellular growth within 3D microenvironment. Here, we engineered composite fibers from biocompatible cores and biologically relevant hydrogel sheaths. The fibers are mechanically robust to be assembled using textile processes and could support adhesion, proliferation and maturation of cell populations important for engineering of skeletal muscles. We also demonstrated that the changes in the electrical conductivity of the multi-compartment fibers could significantly enhance myogenesis in vitro. Słowa kluczowe: reinforced fibers, biotextiles, tissue engineering, organ weaving, interpenetrating network hydrogels, skeletal muscles Afiliacje autorów:
| 140p. | ||||||||||||||||||||||||||||||||||||||||||||||
2. | Rinoldi C.♦, Fallahi A.♦, Yazdi I.K.♦, Paras J.C.♦, Kijeńska-Gawrońska E.♦, Trujillo-de Santiago G.♦, Tuoheti A.♦, Demarchi D.♦, Annabi N.♦, Khademhosseini A.♦, Święszkowski W.♦, Tamayol A.♦, Mechanical and biochemical stimulation of 3D multilayered scaffolds for tendon tissue engineering, ACS BIOMATERIALS SCIENCE & ENGINEERING, ISSN: 2373-9878, DOI: 10.1021/acsbiomaterials.8b01647, Vol.5, No.6, pp.2953-2964, 2019 Streszczenie: Tendon injuries are frequent and occur in the elderly, young, and athletic populations. The inadequate number of donors combined with many challenges associated with autografts, allografts, xenografts, and prosthetic devices have added to the value of engineering biological substitutes, which can be implanted to repair the damaged tendons. Electrospun scaffolds have the potential to mimic the native tissue structure along with desired mechanical properties and, thus, have attracted noticeable attention. In order to improve the biological responses of these fibrous structures, we designed and fabricated 3D multilayered composite scaffolds, where an electrospun nanofibrous substrate was coated with a thin layer of cell-laden hydrogel. The whole construct composition was optimized to achieve adequate mechanical and physical properties as well as cell viability and proliferation. Mesenchymal stem cells (MSCs) were differentiated by the addition of bone morphogenetic protein 12 (BMP-12). To mimic the natural function of tendons, the cell-laden scaffolds were mechanically stimulated using a custom-built bioreactor. The synergistic effect of mechanical and biochemical stimulation was observed in terms of enhanced cell viability, proliferation, alignment, and tenogenic differentiation. The results suggested that the proposed constructs can be used for engineering functional tendons. Słowa kluczowe: tendon tissue engineering, composite scaffolds, nanofibrous materials, mechanical stimulation, stem cell differentiation Afiliacje autorów:
| 140p. |