Partner: H.J. Lee |
|
Ostatnie publikacje
1. | Ruterana P.♦, Singh P.♦, Kret S.♦, Jurczak G., Maciejewski G., Dłużewski P., Cho H.K.♦, Choi R.J.♦, Lee H.J.♦, Suh E.K.♦, Quantitative evolution of the atomic structure of defects and composition fluctuations at the nanometer scale inside InGaN/GaN heterostructures, PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, ISSN: 0370-1972, Vol.241, No.12, pp.2643-2648, 2004 Streszczenie: The cover picture of this issue depicts indium composition fluctuations in InGaN/GaN multi quantum wells. The coded color strain distribution (left) was derived from finite element method calculations of the strain relaxation process and high‐resolution transmission electron microscopy (HRTEM) image simulations, superimposed on the HRTEM image of the quantum wells. The possible corresponding shape and εxx strain profiles in the indium rich clusters (right) hint at a concentration close to pure InN in their core. The paper by Pierre Ruterana et al. [1] was presented at the 5th International Symposium on Blue Laser and Light Emitting Diodes (ISBLLED‐2004), held in Gyeongju, Korea, 15–19 March 2004. Słowa kluczowe: HRTEM, quantum well, composition fluctuation, strain distribution Afiliacje autorów:
|
Prace konferencyjne
1. | Ruterana P.♦, Singh P.♦, Kret S.♦, Cho H.K.♦, Lee H.J.♦, Suh E.K.♦, Jurczak G., Maciejewski G., Dłużewski P., Size and shape of In rich clusters and InGaN QWs at the nanometer scale, IWN 2004, International Workshop on Nitrides Semiconductors, 2004-06-19/06-23, Pittsburgh (US), DOI: 10.1002/pssc.200461463, Vol.2, No.7, pp.2381-2384, 2005 Streszczenie: Following the need to accurately understand the In composition fluctuations and their role on the optical properties of the GaN based heterostructures, an investigation of MOCVD InGaN/GaN quantum wells is carried out. To this end, quantitative High Resolution Transmission Electron Microscopy (HRTEM) is coupled with image simulation and Finite Element Method (FEM) for the thin foil relaxation modelling. The results show that the indium content can reach x = 1 in the clusters inside the core. In these MOCVD QWs, we attempt to connect the Quantum dot density, composition, and shape to the growth conditions, in order to help the engineering process of highly efficient devices. Afiliacje autorów:
|