Partner: Federico del Rio-Portilla |
Ostatnie publikacje
1. | Medrano-Cerano Jorge L.♦, Cofas Vargas Luis F.F., Leyva E.♦, Rauda-Ceja Jesús A.♦, Calderón-Vargas M.♦, Cano-Sánchez P.♦, Titaux-Delgado G.♦, Melchor-Meneses Carolina M.♦, Hernández-Arana A.♦, del Rio-Portilla F.♦, García-Hernandez E.♦, Decoding the mechanism governing the structural stability of wheat germ agglutinin and its isolated domains: A combined calorimetric, NMR, and MD simulation study, Protein Science, ISSN: 0961-8368, DOI: 10.1002/pro.5020, Vol.33, No.6, pp.e5020-1-15, 2024 Streszczenie: Wheat germ agglutinin (WGA) demonstrates potential as an oral delivery agent owing to its selective binding to carbohydrates and its capacity to traverse biological membranes. In this study, we employed differential scanning calorimetry and molecular dynamics simulations to comprehensively characterize the thermal unfolding process of both the complete lectin and its four isolated domains. Furthermore, we present the nuclear magnetic resonance structures of three domains that were previously lacking experimental structures in their isolated forms. Our results provide a collective understanding of the energetic and structural factors governing the intricate unfolding mechanism of the complete agglutinin, shedding light on the specific role played by each domain in this process. The analysis revealed negligible interdomain cooperativity, highlighting instead significant coupling between dimer dissociation and the unfolding of the more labile domains. By comparing the dominant interactions, we rationalized the stability differences among the domains. Understanding the structural stability of WGA opens avenues for enhanced drug delivery strategies, underscoring its potential as a promising carrier throughout the gastrointestinal environment. Słowa kluczowe: homodimer,hydrogen bonding,lectin,multidomain protein,structural stability,thermal unfolding Afiliacje autorów:
| 100p. | ||||||||||||||||||||||||||||||||||
2. | Titaux-Delgado G.♦, Lopez-Giraldo Andrea E.♦, Carrillo E.♦, Cofas-Vargas Luis F.♦, Carranza Luis E.♦, Lopez-Vera E.♦, García-Hernandez E.♦, del Rio-Portilla F.♦, Beta-KTx14.3, a scorpion toxin, blocks the human potassium channel KCNQ1, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, ISSN: 1570-9639, DOI: 10.1016/j.bbapap.2023.140906, Vol.1871, No.4, pp.140906-1-11, 2023 Streszczenie: Potassium channels play a key role in regulating many physiological processes, thus, alterations in their proper functioning can lead to the development of several diseases. Hence, the search for compounds capable of regulating the activity of these channels constitutes an intense field of investigation. Potassium scorpion toxins are grouped into six subfamilies (α, β, γ, κ, δ, and λ). However, experimental structures and functional analyses of the long chain β-KTx subfamily are lacking. In this study, we recombinantly produced the toxins TcoKIK and beta-KTx14.3 present in the venom of Tityus costatus and Lychas mucronatus scorpions, respectively. The 3D structures of these β-KTx toxins were determined by nuclear magnetic resonance. In both toxins, the N-terminal region is unstructured, while the C-terminal possesses the classic CSα/β motif. TcoKIK did not show any clear activity against frog Shaker and human KCNQ1 potassium channels; however, beta-KTx14.3 was able to block the KCNQ1 channel. The toxin-channel interaction mode was investigated using molecular dynamics simulations. The results showed that this toxin could form a stable network of polar-to-polar and hydrophobic interactions with KCNQ1, involving key conserved residues in both molecular partners. The discovery and characterization of a toxin capable of inhibiting KCNQ1 pave the way for the future development of novel drugs for the treatment of human diseases caused by the malfunction of this potassium channel. Słowa kluczowe: β-KTx, Scorpion toxins, Cysteine-stabilized α/β motif, TcoKIK, Beta-KTx14.3, KCNQ1 Afiliacje autorów:
| 100p. |