Partner: E. Jensen |
|
Ostatnie publikacje
1. | Edgecock T.R.♦, Caretta O.♦, Davenne T.♦, Densam C.♦, Fitton M.♦, Kelliher D.♦, Loveridge P.♦, Machida S.♦, Prior C.♦, Rogers C.♦, Rooney M.♦, Thomason J.♦, Wilcox D.♦, Wildner E.♦, Efthymiopoulos I.♦, Garoby R.♦, Gilardoni S.♦, Hansen C.♦, Benedetto E.♦, Jensen E.♦, Kosmicki A.♦, Martini M.♦, Osborne J.♦, Prior G.♦, Stora T.♦, Melo Mendonca T.♦, Vlachoudis V.♦, Waaijer C.♦, Cupial P.♦, Chancé A.♦, Longhin A.♦, Payet J.♦, Zito M.♦, Baussan E.♦, Bobeth C.♦, Bouquerel E.♦, Dracos M.♦, Gaudiot G.♦, Lepers B.♦, Osswald F.♦, Poussot P.♦, Vassilopoulos N.♦, Wurtz J.♦, Zeter V.♦, Bielski J.♦, Kozien M.♦, Lacny L.♦, Skoczeń B.♦, Szybinski B.♦, Ustrzycka A.♦, et al., High intensity neutrino oscillation facilities in Europe, PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, ISSN: 1098-4402, DOI: 10.1103/PhysRevSTAB.16.021002, Vol.16, No.2, pp.021002-1-18, 2013 Streszczenie: The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ− beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He6 and Ne18, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive Afiliacje autorów:
| 25p. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2. | Dudkiewicz A.♦, Tiede K.♦, Loeschner K.♦, Jensen L.H.S.♦, Jensen E.♦, Wierzbicki R.♦, Boxall A.B.A.♦, Molhave K.♦, Characterization of nanomaterials in food by electron microscopy, TRAC-TRENDS IN ANALYTICAL CHEMISTRY, ISSN: 0165-9936, DOI: 10.1016/j.trac.2010.10.007, Vol.30, No.1, pp.28-43, 2011 Streszczenie: Engineered nanomaterials (ENMs) are increasingly being used in the food industry. In order to assess the efficacy and the risks of these materials, it is essential to have access to methods that not only detect the nanomaterials, but also provide information on the characteristics of the materials (e.g., size and shape). Słowa kluczowe: Cryo-electron microscopy, Detection, Environmental electron microscopy, Foodstuff, Imaging, Liquid electron microscopy, Nanoparticle, Sample preparation, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) Afiliacje autorów:
| 32p. |