Partner: C.T. Chin


Ostatnie publikacje
1.Postema M., Bouakaz A., Chin C.T., de Jong N., Simulations and Measurements of Optical Images of Insonified Ultrasound Contrast Microbubbles, IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, ISSN: 0885-3010, DOI: 10.1109/TUFFC.2003.1201465, Vol.50, No.5, pp.523-536, 2003

Streszczenie:

Ultrasound contrast agents (UCAs) are used in a clinical setting to enhance the backscattered signal from the blood pool to estimate perfusion and blood flow. The UCAs consist of encapsulated microbubbles, measuring 1–10 m in diameter. Acoustic characterization of UCAs is generally carried out from an ensemble of bubbles. The measured signal is a complicated summation of all signals from the individual microbubbles. Hence, characterization of a single bubble from acoustic measurements is complex.
In this study, 583 optical observations of freely flowing, oscillating, individual microbubbles from an experimental UCA were analyzed. The excursions during ultra- sound exposure were observed through a microscope. Images were recorded with a high frame rate camera operating at 3 MHz. Microbubbles on these images were measured off-line, and maximal excursions were determined. A technique is described to determine the diameters of the bubbles observed. We compared the maximal excursions of microbubbles of the same initial size in an ultrasound field with a 500 kHz center frequency at acoustic amplitudes ranging from 0.06 MPa to 0.85 MPa.
It was concluded that maximal excursions of identical bubbles can differ by 150% at low acoustic pressures (mechanical index or MI 0.2). At a high acoustic pressure (MI = 1.2) an image sequence was recorded on which a bubble collapsed, but an apparently identical bubble survived.

Afiliacje autorów:

Postema M.-other affiliation
Bouakaz A.-Université François Rabelais (FR)
Chin C.T.-other affiliation
de Jong N.-other affiliation
2.Postema M., Bouakaz A., Chin C.T., de Jong N., Optical observations of ultrasound contrast agent destruction, ACTA ACUSTICA UNITED WITH ACUSTICA, ISSN: 1610-1928, Vol.89, pp.728, 2003

Prace konferencyjne
1.Postema M., Bouakaz A., Chin C.T., de Jong N., Optically observed microbubble coalescence and collapse, IUS 2002, IEEE Ultrasonics Symposium, 2002-10-08/10-11, Monachium (DE), DOI: 10.1109/ULTSYM.2002.1192681, Vol.2, pp.1900-1903, 2002

Streszczenie:

Understanding the mechanisms of microbubble destruction is needed for the development of ultrasound guided drug and gene delivery methods and for the improvement of diagnostic ultrasonic contrast agent (UCA) detection methods. We performed 482 experiments on the coalescence and collapse mechanisms of a soft- shelled and a hard-shelled contrast agent, by subjecting an experimental lipid-shelled UCA and the hard-shelled UCA QuantisonTM to 500 kHz, high- pressured ultrasound (MI≈1.0), and recording microscopic images of these events with a fast- framing camera. Results showed that bubble fragmentation into smaller bubbles is the primary mechanism for lipid-shelled contrast microbubble destruction during the first cycles after ultrasound arrival. In 28% of our experimental events with a lipid-shelled UCA, we observed bubble coalescence. The coalescence mechanism was observed to be analog to the process desribed for larger gas bubbles. Repetitive coalescence and fragmentation was clearly recorded with a fast-framing camera. We also demonstrated the formation and collapse of large lipid-shelled bubbles and bubble clusters. Furthermore we showed that sonic cracking is feasible for the hard-shelled contrast agent QuantisonTM.

Afiliacje autorów:

Postema M.-other affiliation
Bouakaz A.-Université François Rabelais (FR)
Chin C.T.-other affiliation
de Jong N.-other affiliation
2.Postema M., Bouakaz A., Chin C.T., de Jong N., Real-time optical imaging of individual microbubbles in an ultrasound field, IUS 2001, IEEE International Ultrasonics Symposium, 2001-10-07/10-10, Atlanta (US), DOI: 10.1109/ULTSYM.2001.992044, Vol.2, pp.1679-1682, 2001

Streszczenie:

In this study we analyze the behavior of individual experimental ultrasonic contrast bubbles, insonofied by 500 kHz ultrasound, at acoustic pressures between 0.06 and 0.66 MPa. The oscillations were observed under a microscope with a fast framing camera.
It is concluded that apparently identical bubbles can expand to different maximal diameters.

Afiliacje autorów:

Postema M.-other affiliation
Bouakaz A.-Université François Rabelais (FR)
Chin C.T.-other affiliation
de Jong N.-other affiliation