Partner: Bo-Yi Lee |
|
Ostatnie publikacje
1. | Lee B.Y.♦, Krajewski M., Huang M.K.♦, Hasin P.♦, Lin J.Y.♦, Spinel LiNi0.5Mn1.5O4 with ultra-thin Al2O3 coating for Li-ion batteries: investigation of improved cycling performance at elevated temperature, Journal of Solid State Electrochemistry, ISSN: 1432-8488, DOI: 10.1007/s10008-021-05047-0, Vol.25, pp.2665-2674, 2021 Streszczenie: In this study, spinel LiNi0.5Mn1.5O4 (LNMO) was successfully decorated with Al2O3 thin film by using atomic layer deposition (ALD) approach and evaluated as a cathode material for high-temperature applications in lithium ion batteries (LIBs). To optimize the LNMO-Al2O3 electrodes operated at elevated temperature (55 °C), the effects of Al2O3 thicknesses adjusted by controlling the ALD deposition cycle were systemically investigated. According to the series of electrochemical results, the LNMO coated with the Al2O3 thin layer in the thickness of ca. 2 nm was achieved by using one-cycle ALD and the LNMO-Al2O3 electrode exhibited superior electrochemical stability (capacity retention up to 93.7% after consecutive 150 charge/discharge cycles at 0.5 C to the pristine LNMO electrode at elevated temperature. This can be attributed to two factors: (i) the decoration of Al2O3 thin layer could not contribute remarkably to extra resistance for charge transfer; (ii) Al2O3 thin film deposition could efficiently stabilize the growth of cathode electrolyte interface (CEI) and suppress the dissolution of transition metals. Therefore, these results verify that the LNMO-Al2O3 electrode could be regarded as a promising cathode material for high-voltage LIBs, especially at elevated temperature operation. Słowa kluczowe: atomic layer deposition, Al2O3 coating, lithium nickel manganese oxide, lithium-ion battery, elevated temperature Afiliacje autorów:
| 70p. | ||||||||||||||||
2. | Lee B.Y.♦, Chu C.T.♦, Krajewski M., Michalska M.♦, Lin J.Y.♦, Temperature-controlled synthesis of spinel lithium nickel manganese oxide cathode materials for lithium-ion batteries, CERAMICS INTERNATIONAL, ISSN: 0272-8842, DOI: 10.1016/j.ceramint.2020.05.124, Vol.46, No.13, pp.20856-20864, 2020 Streszczenie: In this work, we successfully synthesized series of LiNi0.5Mn1.5O4 (LNMO) cathode materials with spinel structure by using a facile sol-gel method and then calcined at various temperature ranging from 600 to 1000 °C. The application of different calcination temperatures significantly influenced the surface morphology, stoichiometry and crystalline nature of the as-synthesized LNMO material. According to the results of physical characterizations, the LNMO materials calcined at various temperatures mainly revealed the stoichiometric disordered Fd-3m structure with a small amount of well-ordered P4332 phase. The structural analysis also exhibited that the control of the calcination temperature contributed to the higher crystalline nature. Moreover, the morphological investigations indicated that the increasing calcination temperatures caused the formation of large micron-sized LNMO material. In turn, the electrochemical evaluations revealed the impact of the calcination temperatures on enhancing the electrochemical performances of the LNMO electrode materials up to 900 °C. The LNMO electrode calcined at 900 °C exhibited an impressive initial discharge specific capacity of ca. 142 mAh g^−1 between 3.5 and 4.9 V vs. Li/Li+, and remarkably improved capacity retention of 97% over 50 cycles. Those excellent electrochemical properties were associated with the presence of the dominant Fd-3m phase over the P4332 phase. Additionally, the results of the corrosion and dissolution tests which were performed for all calcined LNMO materials in order to estimate the amount of manganese and nickel ions leached from them, proved that the micro-sized LNMO calcined at 900 °C was the most stable. Słowa kluczowe: spinel LiNi0.5Mn1.5O4, sol-gel synthesis, calcination temperature, cathode material, lithium-ion batteries Afiliacje autorów:
| 100p. |