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Summary

The prediction of macroscopic coefficients A, of composites, if properties A; and A\ and
microstructures ©; and O, of their constituents are known, is one of the most important
problems of mechanics of inhomogeneous media. Due to the difficulty of calculating A.
exactly, there has been much of interest in obtaining bounds on ..

The main objective of this contribution is to establish in a coherent and unified form
new S- and 7- Multipoint Continued Fraction Methods (SMCFM and TMCFM) of an
estimation of effective transport coefficients \.(z)/A; of two-phase media for the cases,
where the truncated power expansions of A\.(2)/A1, z = (A2/A;) — 1 at a number of real
points (SMCFM) and infinity (TMCFM) are known.

The SMCFM and TMCFM established in this work are the first methods of the theory
of inhomogeneous media that incorporate into the bounds on A.(z)/A; unlimited numbers
of terms of the power series (A.(2)/A1) expanded at several real points (SMCFM ) and
infinity (TMCFM). Especially the incorporation of the power expansion of (A.(2)/A1)
at infinity into the complex estimates of (A.(2)/A;1) is a very interesting and practically
useful result, cf. [27, 58, 59, 44]. The SMCFM and TMCFM bounds on (A.(z)/A1) are
optimal over the given coefficients of the truncated power series A.(z)/A;.

Many nontrivial examples of applications of SMCFM and TMCFM are provided in
the present work (cf. Section 4.3) and also in our earlier papers dealing with natural and
man-made two-phase media. In the articles [52, 69] the influence of marrow on a complex
rigidity of a long human bone is investigated. The papers [61, 63] deal with the complex
dielectric constants of regular lattices of spheres, while [3, 37, 58, 60, 62, 64, 66, 68] and
[21, 22, 51, 56, 57] explore the multipoint Padé bounds on the real effective conductivities
of linear and quasilinear regular composites. A special Padé approximant techniques for
an investigation of a macroscopic behavior of two-phase media are presented in [1, 2, 4, 5].

Wiener [73] gave optimal bounds on the effective coefficients of a multicomponent
materials with fixed volume fractions of inclusions and real component parameters. Hashin
and Shtrikman [30] improved Wiener’s bounds using variational principles. Bergman
[11, 13] introduced a method for obtaining bounds on complex effective parameters which
does not rely on variational principles. Instead it exploited the properties of the effective
parameters as analytic functions of the component parameters. The method of Bergman
has been elaborated upon in detail and applied to several problems by Milton [41, 43],
see also Felderhof [20].

A mathematical formulation for the Bergman’s method was given by Golden and
Papanicolaou [29]. The special continued fraction techniques for an investigation of a
macroscopic behavior of two-phase media have been proposed by Bergman [14], Clark
and Milton [17], Tokarzewski [53, 55] and Tokarzewski et al. [58, 67].

The SMCFM and TMCFM established here reduce in particular cases to the earlier
continued fraction methods developed by Bergman [14], Clark and Milton [17], Tokarzewski
[54, 55], Tokarzewski and Telega [66, 67], Gilewicz et al. [27], Tokarzewski et al.[71, T2]
and Milton [44].

It is commonly known [44, Chap.18, pp.422] that on the trajectories depending on one
parameter the eigenvalues of the effective coefficients of linear composites have Stieltjes
integral representations with a positive-semidefinite Stieltjes measures, cf. (1.51). Hence
the SMCFM and TMCFM established in this work can also be applied to any linear
inhomogeneous materials, for example to viscous suspensions, porous materials, elastic
and viscoelastic composites and also to media conducting heat and electrical current.
How to do it in practise, it is a goal of our future work.
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AIMS AND SCOPE OF HABILITATION THESIS

Composites are prevalent in both nature and amongst engineered materials. Com-
mon metals, reinforced concretes, fiber glasses, colloidal suspensions, ceramics, bones et
cetera are examples of natural and man-made composite media. Hence, the prediction
of a macroscopic behavior of composites, if properties and microstructures of their con-
stituents are known, is one of the most important problems of classical physics. There are
three reasons of the study of composite materials distinguished by Milton in his excellent
monograph [44].

The first one is to understand and then design nontrivial mechanical responses of
inhomogeneous media to external forces acting on them. For example, suppose one is
given two isotropic conducting materials: a metal with high conductivity, and a plastic
which is electrically insulating. If one places these two materials in alternating layers in a
laminate one obtains a highly anisotropic composite, which has the conducting properties
of the metal in directions parallel to the layers and the insulating properties of the plastic
normal to the layers. Concrete is cheap and relatively light, but breaks apart easily under
tension. By contrast, steel is strong but expensive and heavy. By pouring the concrete
around prestressed metal bars one obtains a composite, namely reinforced concrete, which
is cheap, relatively light, and strong. Wood is an example of a material which is strong
in the fiber direction but the fibers pull apart easily. By alternating layers of wood which
are strong in the x; direction with layers of wood which are strong in he x5 direction one
obtains a plywood which is strong in two directions, i. e. (x1, z3) plane.

A second equally important reason is that what we learn from the field of composites
could have far reaching implications in many fields of science. Significant progress in im-
proving our understanding of how microscopic behavior influences macroscopic behavior
could impact our understanding of turbulence, of phase transitions involving many length
scales, of how quantum behavior influences behavior on classical length scales, or at more
extreme level of how behavior on the Planck length scale, 10~33cm, influences behavior on
the atomic scale, 10~8cm. While that may seem unlikely, its hard to deny the impact our
understanding of classical physics had on the development of quantum mechanics. There-
fore its conceivable that a better understanding of classical questions involving multiple
length scales could have large reverberations.

A third compelling reason for studying composites is simply that there are many
beautiful mathematical questions waiting for answers. The solution of some questions
has already led to the development of new mathematical tools, and one can expect that
the solution of the more challenging outstanding questions will open new mathematical
frontiers.

The study of composites is a subject with a long history, which has attracted the
interest of some of the greatest scientists. For example, Poisson [47] constructed a theory of
induced magnetism, in which the body was assumed to be composed of conducting spheres
embedded in a non-conducting material. Faraday [19] proposed a model for dielectric
materials, consisting of metallic globules separated by insulating material. Maxwell [36]
solved for the conductivity of a dilute suspension of conducting spheres in a conducting
matrix. Rayleigh [48] found a system of linear equations, which when solved would give the
effective conductivity of non-dilute square arrays of cylinders or cubic lattices of spheres.
Einstein [18] calculated the effective shear viscosity of a suspension of rigid spheres in a
fluid. The main historical developments of investigations of the composite materials are
summarized in the articles [33] and [35].

Very efficient numerical algorithms are currently available for calculating the effective
tensors of quite complicated two-dimensional microgeometries. The numerical evaluation
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of the effective tensors for three-dimensional microgeometries is also progressing rapidly.
In light of these advances one might ask: Why is there a need for developing bounds on
effective tensors. One reason is that they often provide quick and simple estimates of the
effective tensors.

Another reason for favoring bounds is that in most experiment situations we do not
have a complete knowledge of the composite geometry. Even when an accurate deter-
mination of the three- dimensional composite microgeometry is possible, obtaining this
information and numerically parameterizing it can be a very time-consuming process.

Bounds are also important in problems of structural optimization, where one needs to
characterize the set of possible macroscopic responses of a composite as local properties
vary over the set of admissible tensor fields, and to identify such fields that produce
extreme responses.

It has been proved by Milton [44, Chap.18, Sec.18.6] that on trajectories depending
on one parameter the eigenvalues of the effective coefficients of multicomponent materials
have Stieltjes integral representations. Hence an evaluation of the bounds on the effective
constants of linear and quasilinear composites reduces to a computation of the estimates of
an effective transport coefficient of a two-phase medium or more precisely to a computation
of the bounds on a Stieltjes function from its truncated power series.

In the theory of inhomogeneous media there are two continued fraction methods of
an estimation of the effective transport coefficients of two-phase composite materials pro-
posed by Bergman [14] ( J-transformation method) and by Milton [44] (Y -transformation
method). The methods mentioned can incorporate into the bounds on A.(z)/A; the val-
ues Ae(z;)/M, j = 1,2,...,N, z; € R and several terms of the power series \.(2)/\
constructed at z = 0.

In this work by starting from the mathematical results reported in [6, 9] we developed
new S-transformation method of an estimation of the effective transport coefficients that
deals with unlimited numbers of coefficients of the power expansions of A\.(z)/A\; at N
real points. We called it the S-Multipoint Continued Fraction Method (SMCFM) of
an estimation of A.(z)/\;. However, the SMCFM derived by us possesses a significant
disadvantage. It does not incorporate into the bounds on A.(z)/A; the power series
Ae(2)/A1 expanded at infinity.

The main objective of this work is to overcome this disadvantage by establishing in
a coherent and unified form new T-transformation method of an estimation of effective
transport coefficients A.(z)/A\; of two-phase media called the T-Multipoint Continued
Fraction Method (TMCFM). If the power expansion of A\.(z)/A; at infinity is not known
the TMCFM reduces first to the SMCFM and next to J-, Y- transformation methods
reported in literature, cf. [14] and [44].

The remainder of this work is organized as follows. In Chapter 1 the problem of
effective coefficients of two-phase media leading to a Stieltjes integral is explored. In
Chapters 2 the S- Multipoint Continued Fraction Method of an estimation of a Stieltjes
function fi(z) from the truncated power series is derived. In Chapter 3 we establish
the T-Multipoint Continued Fraction Method valid for the incomplete series expanded
at both real points and infinity. In Chapter 4 the TMCFM is adapted to evaluate the
T-continued fraction bounds on the effective constants A\.(z)/A\; of two-phase composite.
Many numerical examples computing T'—bounds are provided. The list of conclusions
together with the final remarks finish this work.



14



Chapter 1

PREDICTION OF EFFECTIVE TRANSPORT
COEFFICIENTS IN TERMS OF STIELTJES FUNCTIONS

In this chapter the macroscopic thermal behavior of a composite consisting of two
isotropic components is investigated. We prove that the nondimensional effective conduc-
tivity (A(z) —1)/z, A(2) = Ae(2)/A1, 2 = (A2/A1) — 1 has an anisotropic Stieltjes integral
representation with a positive-semidefinite Stieltjes measure. Here A, and A\;, Ay denote
the effective coefficient of a composite and the material constants of its constituents. The
method of proving used by us differs from the procedures presented by Bergman [11],
Golden Papanicolaou [29] and Milton [44, pp. 376].

The rigorous definition of a Stieltjes function f;(z) is introduced and compared with
the corresponding one reported by Baker and Graves-Morris [9, Chap. 5]. We also explore
the mathematical properties of Stieltjes functions fi(z) and f2(2) interrelated by S and
T linear fractional transformations.

The results of this chapter are applied in the next ones to develop S- and T-Multipoint
Continued Fraction Methods of an estimation of a Stieltjes function fi(z) = (A(z) —1)/z
expanded at a number of real points and infinity.

1.1 Thermal conductivity coefficient by the homogenization procedure

We consider an infinite anisotropic medium. Let w(X), f(X), and a;;(X) denote the tem-
perature field, the internal heat source density and the conductivity tensor, respectively,
at a spatial point X € R3. The temperature distribution u(X) is then governed by the
linear conductivity equation

o (255 ) = 100 (1.1

Now and in the sequel we assume that the phase geometry of a composite is periodic in
the following sense:

aii(y +Y) = ai;(y) Vy. (1.2)

Relations (1.2) means that

(i) We have subdivision of R? in identical cells.

(ii) The material is described by a Y-periodic conductivity tensor a;;(y), y € R*, where
Y-periodicity means that a;;(y1) = a;;(y2) whenever y; and y, have the same position
in the corresponding cells Y; and Y5. In particular we note that in a cell Y, Y -periodic
functions take the same boundary values twice, but with opposite outer normal on the
opposite faces of Y. Thus, for a Y-periodic vector field f;(y),

dfi(y) _ () nedS =
[ ZBay = | pwmads =0 (1.3

by Gauss theorem, where dS denotes two-dimensional area element of the unit cell walls
oY.

(iii) We have scale factor € > 0 such that the conductivity tensor for the body is defined as
as;(X) = a;;(X/e). The variable y = X /e describing the Y-cell is called a local variable.

ij
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Let the parameter € vary. Thereby we obtain a whole class of homothetically equiv-
alent materials, where ¢ measures the fineness of the material. We also obtain a class of
linear conductivity equations:

0 X, 0uf(X)
e (“”(_) X,

) = f(X), Einstein summation convention. (1.4)

For our purposes the temperature distribution ug(X) defined by

U (X)emo = up(X) (1.5)
is of interest only. Further on from the Eqgs (1.4) and (1.5) it will be derived the equivalent
equation

_ . — (X 1.6
o (@) = 1) (16)

determining uo(X) called the homogenized equation for a linear composite materials (1.6).
Here @ and wuy(X) are the effective conductivity coefficient and the homogenized temper-
ature field, respectively.

We assume that u®(X) appearing in (1.4) can be represented by the asymptotic ex-
pansions of the form

uE(X) = wO(X7 y) + €w1(X, y) + €2w2(X7 y) T Y= X/€7 (17)
where the terms w;(X,y), j = 0,1,2,...are Y —periodic. Now we define the operator A*
by
. 0 R oV
By setting ¥(X) = ®(X,y), y = X/e we can represent A° as
AU = <6_2A0 + 6_1A1 + AQ)CI), (19)
where 5 5
A = - i y
0 ayz ( J(y) 8y]>
0 0 0 0
A= —— | a;; —— | a;i(y)=— 1.1
1 ayz (am (y) aX]) 8Xz (alj (y) ay]) ) ( 0)

Eq. (1.4) can be rewritten as follows
(e72Ag + e Ay + Ag) (wo + ewy + 2wy +...) = f. (1.11)

By identifying the coefficients of the same powers of £ we obtain the following three

lowest order equations
Ao'wo = 0, (112)

A0w1 + A1w0 = 0, (113)
Agws + Aywy + Aswy = f,
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We can now use Egs (1.12), (1.13) and Y -periodicity of wy to conclude, that wy does not
depend on y. On account of that we have at once

w0<X7 y) - wO(X) - UO(X>7 (115)
w1 (X, y) = —x*(y) ag(}(é() + uy (X), (1.16)

where uo(X) and u;(X) are arbitrary twice differentiable functions of X, while x?(y) is a
solution of the cell problem

— Ao (y) = a%aiuy), Vi(y) Y — periodic (see page 11). (1.17)
Furthermore we conclude that (1.14) possesses a stationary Y-periodic solution if
/(f — Aywy — Aswp)dy = 0. (1.18)
Y

By inserting the expressions (1.15) and (1.16) for wy and w;y, respectively, into (1.18) we

obtain 5 Puo(X)  Day, duy(X)
_ 9 gy L a; O

0 IX* Oup(X) 0 Oug(X) B
"X, (“” oy, ox, ) T ax, \"*Tax; dy = 0.

The functions a;; and X’ are Y-periodic, while the functions ug(X) and u;(X) are inde-
pendent of y. Therefore the second and the third terms of the integral (1.19) vanish by
the Gauss theorem and Eq.(1.19) simplifies to Eq. (1.6), where components Q);; are equal

to
ax(’“) (y))
Qi i ij dy, 1.20

while the auxiliary functions x (y) satisty (1.17)

(1.19)

0 M)\ _ 2 ) L
o <aij(y) 0, )—ayiaik(y), X" (y) Y — periodic. (1.21)

By substituting x*)(yy) = v, — T" into (1.20) and (1.21) we obtain

8T<k
Q= / TIW,, (122)

g T™® (y)
oy () 0,

For isotropic case (a;; = ad;;) the relations (1.22) and (1.23) reduce to

Qir = V] / (9T (1.24)

d T (y)
— — f— p— (k) p— ] 3
n (a(y) 0 ) =0, (yp—T") Y — periodic. (1.25)

=0, (yr—T%) Y — periodic. (1.23)
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In the sequel we consider the two-phase material only with a thermal conductivity coef-
ficient a(y) given by

a(y) Ao A2

@1( )+—@2(y):1+z@2(y), Z:h—l, h:—, (126)
Al )\1 )\1

where O1(y) and O»(y) are the characteristic functions of inclusions 04 (y)+ O(y) = 1.
By substituting (1.26) in (1.24)-(1.25) and taking into account the Eq. (1.6) one obtains
a homogenized equation valid for macroscopically anisotropic two-phase medium (see also

(1.6))

0 Qug(X)
WQM(Z) X, f(X), (1.27a)
Qir(2) _ 3T Y(y)
a(z) = =3 — = \Y\/ o5 W (1.28)
0 (1+205(y ))L =0, (y; —TY) Y — periodic. (1.29)

ayk Oy,

Note that ();;(z) does not depend on the spatial variable X. In the next chapter we will
prove that the diagonals of the homogenized coefficient (g;i(2) — 0;;)/2 resulting from
(1.28) and (1.29) have a Stieltjes integral representation.

1.2 Stieltjes integral representation for a homogenized thermal conductivity

On the basis of the Y —periodicity of the functions (y, — T™) the Eqs (1.28) and (1.29)
can be rewritten as follows

Gk(2) =0k _ 6T G)( )
2 Y] / dy, (1.30)
0_ T (y) 0 aT (y) |
Y - T\ YV — periodic. 131
Oy Oy ZakaQ(y) Oy ) (yj ) periodic ( 3)

With the help of a periodic Green function G(y,y')

o0 0
0y; 0y;

Cly.y) = (53@ ) - |§|> Gly.y) Y —periodic  (1.32)

the boundary value problem (1.31) can now be recast as an integral equation

TW =y, — 2TTH (1.33)
equivalent to (1.31). Here
rT® = / Ou(y) G5,y ) T (o )y (1.34)
: dy; 7 Oy,

is a linear operator mapping the continuous functions 7' (/) defined in Y’ into the

Y —periodic ones defined in Y. This operator is selfadjont, if the scalar product of poten-
tials a(y) and S(y) is defined by

8) = [ ezl -5)d (1)
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Hence the equation (1.30) takes the form

¢r(2) = djk 1 (k)
RN IR = . T
2 7 e T =

Dl/! {y;, (L+21) ). (1.36)

Here we substituted the solution of (1.33), i.e. T®) = (1 + 2I') " y. Since I is selfadjont,
it has a complete set of eigenfunctions ¢, with real eigenvalues U,

I'¢, = Upg,. (1.37)
Let us introduce a periodic function
Fi@) =D W5 6n@) Suly), n=1,2,... (1.38)

From (1.38), it follows that

{fi(¥): or () = (W3 (¥)) - (1.39)
Relations (1.34) and (1.39) yield immediately
[i(y) =y, for y satisfying O, (y) = 1. (1.40)
Since the characteristic functions ©4(y) appear in (1.35) the following identities hold
(i fr) = Wi ) Tfe =T (1.41)

and on account of (1.36) we have

qie(2) — Ok 1 1
= yi, (1+20)7" yi, (L4207 fi). (1.42)
= L ) = )
Let us expand (1 + zI‘)f1 in the formal power series
1+2D)7" = (—2 (1.43)
m=0
By (1.43) to (1.38) one obtains
L oD) o= S (el g = 5 e On) 1.44
(1+20)" fi gz)fk;lﬂm (1.44)
Due to (1.44) the relation (1.36) takes the form
QJk jlc
= 1.45
Z 1+ zU (1.45)
where the symmetrical tensor A%) is equal to
A = (U5 0a) s 61) (1.46)

The eigenvalues of A (U,,) given by (1.46) are non-negative. Hence A™ (U, ) is a positive
semi-definite tensor
AM(U,) > 0. (1.47)
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Y, Y, Y,
o -
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o o
— g2 /2

Fig. 1.1 The unit cell of a periodic, one-dimensional two-phase material occupaying the
regions Y] and Y5, &-volume fraction.

For physical realistic values of z € (—1, 00) the diagonal components of an effective tensor
(1.45) take finite values only (cf. [14])

(n)
Gi(z) =1 _ Aii
pO1-y

1+ 20,

n

<oofor —1<z<o0,1=1,2,3. (1.48)

On account of that the positions of the poles z, of % , if they are, satisfy the relation

((cf. (1.48))
—0 <z, < —1. (1.49)

The inequality (1.49) applied to (1.48) yields at once the range of admissible values of U,,.
0<U, <1. (1.50)

Now it is convenient to rewrite (1.45), (1.47) and (1.50) as follows

1
qf”“(z)z_ it _ / C?fi? dy;(u) > 0, (1.51)
0
where
0 ifu<0,
V() =D AU H(u—U,), n=1,2,..., Hu) = { Lituso (1.52)

The Stieltjes integral representation of the effective coefficients given by (1.51)-(1.52) was
derived by Bergman [11], next by Golden and Papanicolaou [29] and very recently by
Milton [44, pp. 376, Eq. 18.15]. The derivation procedures used by them differ from that
one presented in this section.

1.3 One dimensional composite material.

In order to illustrate the results of Section 1.2 we will investigate the periodic composite
consisting of two-phase unit cells depicted in Fig.1.1. Under the assumption |Y'| = 1 the
Egs (1.30)-(1.31) reduce to

)\(z)z— 1 /}/@2@)82_;@/)@7 (1.53)
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Fig. 1.2 Periodic Green function G(y,y') for the one- dimensional Laplace equation, cf. (
1.55).

’PT(y) 0 T (y) -
o0 —za—y@g(y)Ty, (y—T) Y — periodic, (1.54)
while the relation (1.32) to
2 /
%y%y) =—(6(y—y)—1), Gly,y) Y — periodic. (1.55)

The solution of (1.55) is given by

! 1 ! ]' /
G(y,y)=§(y—y)2—§|y—y|~ (1.56)

The periodic one-dimensional Green function (1.56) is shown in Fig. 1.2. A complete set
of Uy, ¢,, satisfying (1.37)

¢/2
0 0
| 326w Wi = Uionto) (157
—¢/2
and (cf. (1.38)-(1.41))
(v, 1) =, &1 (¥)) (y, 21 (y)) = (w, v) (1.58)
reduces to the one positive eigenvalue U; associated with the eigenfunction ¢,
B cy- 12 fory e (1/2.-¢/2),
i=0-0. 60) =] \Jzv forye (/202 (1.59)

5

N C(—y—l— 1/2) for y € ((/2,1/2).
[ 1-

Here ¢ denotes the volume fraction of inclusions, see Fig. 1.1. Due to (1.28), (1.45) and
(1.59) the effective transport coefficient (A—1)/z of a periodic one-dimensional composite

is given by
)‘_1_ <y7¢1> <y7¢1> _ C
1422, 1+(1-0)z% (1.60)
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Fig. 1.3 The effective transport coefficients (A — 1)/z of a periodic one-dimensional two-
phase medium, cf. ( 1.60).

The coefficient (A — 1)/z is shown in Fig. 1.3 versus z and (. Note that for a fixed ¢ the
modulus (A —1)/z (1.60) has a Stieltjes integral representation

1

A—=1 [ dB(u) B o
— = [ 8w = CHw—(1-0)). (1.61)
0
By substituting z = Ay/A; — 1 and A\(z) = A¢/\; into (1.60) one arrives at
_ ¢ 1
Ae_l+z1+z(1—<)_1—c+£' (1.62)
A A2

Formula (1.62) obtained by means of a homogenization procedure (see (1.53)-(1.54)) co-
incides with the classical lower bound on A, established by Wiener via the variational
method, cf. [73].

1.4 Effective transport coefficients of two-phase media represented by Stielt-
jes functions

Now our investigations will be limited to the composite materials possessing the isotropic
symmetry only (cf.(1.51))

Q1= G2 =@E3=AX q12= q3 =q3=0. (1.63)
For such a case the anisotropic transport coefficient (1.51) reduces to (cf. (1.63))

1

fi(2) = Alz) =1 _ / dy () dy,(u) > 0. (1.64)

z 1420’

0
For further purposes the mathematical definition of a Stieltjes function is required:
Definition 1.1 The Stieltjes integral

1/p

fi(z) = / M 50, dy(w) >0 (1.65)

1+ 2u’
0
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we call the Stieltjes function, provided the real-valued moments pi; of v, (u)
1/p

;= /ujdvl(u), j=0,1,2,.... (1.66)
0
are finite

According to (1.65).and (1.66) the effective transport coefficient (A —1)/z given by (1.64)
is a Stieltjes function.

Now we start discussing of the basic properties of the Stieltjes function fi(z), cf.
Definition 1.1. From (1.65), it follows that fi(z) is a real symmetric function, defined in
the complex z-plane with the cut [—oo, —p| on the negative real axis. A function fi(z) is
real symmetric, if it satisfies the relation fi(z*) = [f1(z)]*, where z* denotes the complex
conjugate of z.

The power series expansion of fi(2) at z = 0 is called the series of Stieltjes (cf. (1.65),

(1.66))

S f(0) ;
fi(2) =) ei(0)27, ¢;(0) = T = (—=1)7p;. (1.67a)
— !
It is convergent on the complex plane in the disk
|z| <p, p>0. (1.68)
Moreover, from (1.65) follows that the power expansions
00 ()
, x
fl(z) :ch(xk)(z_xk)j7 C](xk) = fl ](| 1)7 k= 1727"'7N (169)
Jj=0 '

are convergent in the disks
|z — x| <p+mx, k=1,2,..., N. (1.70)

The coefficients c;(zy), j = 0,1,2, ... are real if and only if f;(z) is real symmetric. In
many practical situations it is convenient to approximate the Stieltjes functions fi(z) by

the sums of simple fractions of the type €n.s _ To this end we formulate the following

T
lemma:
Lemma 1.2 Forn=20,1,2,....,J and
0<Chy<o0,0<Upy<Uy<..Ujy<00, J=1, 2, ... (1.71)
the relations
% J
fi(2) :/0 Cll’:i(:i = 2#’&%], dy,(u) >0, J— o0 (1.72)
are satisfied, provided that
N1 (Un,g) = 11(Un-1,5) = C .- (1.73)
Proof. From (1.713), it follows that
max {(U,j—U,_145); n=0,1,2,...,J} —» 0if J — oc. (1.74)
Due to the relations (1.74) and Eqs [49, Egs 1 and 2, pp. 97] the relation (1.72) is satisfied.

|
In the next section the Lemma (1.2) will be used to investigate the properties of the
Stieltjes functions interrelated by S— and 7T'— linear fractional transformations.
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1.5 Linear fractional transformation of Stieltjes functions

In this section the properties of Stieltjes functions interrelated by linear fractional trans-
formations of type S

fi(a)

fl(z):1+(z—a)f2(z)’ aeR, zeC (1.75)
and type T’
fi(z) = f1{(11()a) . pp(00) = Zli)rglo z2fi1(z), z€C (1.76)
14+ (z—a) + (2 —a)fa(2)

p1(0)
are investigated.
Lemma 1.3 For z satisfying the inequality
1+ (z—a)f2(2)] >0, 2#a€cR, z€C
(1.77)

([1+ -0 2 4 =0 ne)] 0w = i 21i02))

the S— linear fractional transformation (T — linear fractional transformations) of fa(2)
to f1(z) and inversely of fi(z) to fa(z) are continuous operations, cf. (1.75)-(1.76).

Proof. Consider the Stieltjes functions fi(2), f71(2) and fa(2), f”2(2) interrelating

by (1.75)
fi(a) f71(a)

A B T AE) EEENTAE
From (1.78), it follows

e A@ = P10 + = ) (A@F5(E) - F@h(E)
@) = ) 0+ GCaht) 0t G-arey &

Hence for f71(z) — fi(z) we have

, f7(z) =

(1.78)

i " ()=  lim (z —a)fila)(f"2(2) — fo(2)
f”l(ggfl(d filz) = (=) = f”l(i)"fl(z) (1+(z—a)fa(2) A+ (z—a)f"2(z)) (1.80)

while for f”5(z) — f2(z) one obtains

i — — : (z —a)fi(a)(["2(2) — fa(2)
f”2(gglf2(z) fl(Z) / 1(2) B f”z(gglfz(z) (1 + (Z _ Cl)f2<z))2 ‘ (1‘81)

For z satisfying (1.77;) and z # a the relations (1.79) and (1.80) yield at once

if lim =0 then lim = 0. (1.82)
|f1(2)=f"1(2)|-0 |f2(2)—f"2(2)| -0
and
if lim =0 then lim =0. (1.83)
|f2(2)=f72(2)| =0 1f1(2)=f"1(2)| =0

Thus for the case of S— transformation the proof is complete. For T'—transformation it
will be proceeded analogously. m

Lemma 1.3 jointly with Lemma 1.2 allow us to represent Stieltjes functions fi(z) and
f2(2) as a sums of simple fractions and next interrelate those sums by the linear fractional
transformations of type S and T, see (1.75) and (1.76).
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1.5.1 Linear fractional transformation of f;(z) to f2(z)
Let us consider two rational Stieltjes functions fi ;(2) and f2 s(2) given by

J C’(l)
fra(z) = 3 —05 in 2 € (—o0, 00),
n=0 1 —+ ZUnJ
1.84
0<CY, n=0,1,2,..J (1.84)
U =0U >0, 0<0? ,<UY) <oo, n=23,...J
and
J 0(2)
fou(z) = Z — 5y in z € (—00,00),
=01+ 20,7
(1.85)

0<C%, n=1,2.,J
U =00 (U =0), 0< U, <UD, <U® <UY n=23,..J

where J is a positive integer, while Cll} and U; ?, k = 1,2 are the real numbers. The

notations Ué}} =0 (Uél} = 00) and UOJ >0 (Ué} = 0) appearing in (1.84) and (1.85)
mean that
if U§') = 0 then U = 0o and if U} > 0 then US") = 0. (1.86)

We denote the real, negative roots of f j(z) =0 by Z,gl}

3 C(l?’ (1) (1) (1)
ZW:O, —00 < Zyy<Zy;<..<Z;;<0, (1.87)
n=0 k,J“'n,J

while the first derivatives of fi j(z) at Z,gl} by f1 J(Z,il})

J
HAZe) ==Y

3
n=0 (1 + Zk Rk ?I)

(1)
On JUn J

=0,1,....J. (1.88)

If the inequalities (1.8453) are satisfied the negative roots Z,(:L)], kE=0,1,....J (1.87) and
negative first derivatives f] J(Z,il}) (1.88) exist only.

Lemma 1.4 If the functions (1.84) and (1.85) are interrelated by S—linear fractional
transformation
fr.(a) 1

Sra(2) = 1 T (z-a)fas(z) " - (_@’ ) (159
then U,(L’ZL),, C’ﬁ)} depend on C’ » U (IL), as follows
(2)
1 a)U,
U = , O = f”( . cn=1,2..,J (1.90)

1
-z

n

flJ( )(Z(1L)1 a)

Moreover, the inequalities (1.8533) are immediate consequence of the relations (1.90) and

(1.8423).
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Proof. By substituting (1.84)-(1.85) into (1.89) one obtains

f{J(Z) = f{,J<3)7 (1.91)
where
(1) Cr , f12(a)
fl J( C’OJ—{_Z 1 —|—ZU(1) ) 1,J(Z) = 7 C(Q) : (192)
n=1 n,J n,J
’ 1 + (Z — a) Z —7(2)
n=11 -+ ZUH,J
The equations
flJ( )_0 f{J(ZIE:,lL)I)_O?k:]-727 7J7
dfi ;(2) _ dfi 4 (z) E—19 7 (1.93)
dz ZIE:%) dz Zl(cl)J

yield the relations (1.90) at once. The inequalities (1.8523) are consequence of (1.8453)
and (1.87)-(1.88). The proof is complete. m

Example 1.5 Consider the rational function

0.1667 n 0.25 n 0.3334 L 0.5
1403334z 1405z 14075z 1+2’ (1.94)

f1,3(Z) =

a=1, U >0, fis(1) =0.7321.

From (1.87), (1.90) and (1.94), it follows

75 = —o0, 2\ = —2.6467, Z) = —1.6876, Z{) = —1.1514, (1.95)
1
Usy) = (1}1111 —i7 =0, U = 0.3778, Us) = 0.5925, Uiy = 0.8685, (1.96)
T 43
C§3 = 0.3765, CF) = 0.0134, C3) = 0.0161, CF3 = 0.0082. (1.97)

By substituting (1.95)-(1.97) into (1.85) one obtains

0.3765+ 0.0134 n 0.0161 n 0.0082
1 140.37782  1+0.59252 1+ 0.8685z

fa3(2) = (1.98)

The inequalities (1.8423) and (1.8523) are satisfied, cf. (1.94) and (1.98).
Now on the basis of Lemma 1.4 we can state:

Lemma 1.6 If the Stieltjes function f1;(z) is defined by the Stieltjes measure v, ;(u)
containing a point mass (i.e. v, ;(04) —v,,;,(0-) > 0) at the origin

[ dyy () d yOy o
— ’ , E C , Uy; =0,
f1,7(2) 0/ o V1,0 (u 2 Upn.1)s Up. (1.99)

0<Cs0<c o<W 0<UY,  <UY <00, n=2,3,..,J
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then fo j(2) satisfying

_ f1.4(a) R
fra(2) =9 e A M <_ U}}}’OO> (1.100)

is determined by v, ;(u) containing no point mass (i.e. vy ;(04) — 79 ;(0-) = 0) at the
orgin
dryy, 1 (w) 4 ) @)\ 77(2)
fou(2) = | ———, 72,J(U) = ZCn,JH<u - Un,J)7 UO,J >0,
n=1

) Lt zu (1.101)

0<C? L 0<c®, 0<U? , <UP ,<UZ <UY, n=2, .., J

Proof. The relations (1.99) coincide with (1.84), while (1.101) with (1.85). m
For the case J — oo Lemmas 1.2, 1.3 and Theorem 1.6 yield immediately:

Theorem 1.7 Let Av;(0) = v;(04) —v;(0-), j = 1,2 denotes the jumps of v,;(u) at
u=0. If fi(z) is a Stieltjes function

fi(z) = bf%(:g, dy,(u) >0, (resp. Ay,(0) > 0), (resp. Avy,(0) =0) (1.102)

then fo(2) satisfying

fi(2) = hla) ac (—i oo> (1.103)

L+ (2 —a)fa(z)’

1s a Stieltjes function as well

folz) = / f”jfi, dyy(u) >0, (resp. Av,(0) =0), (resp. Av,(0)>0).  (1.104)

Proof. For J — oo the relations (1.99) converge to (1.102), while (1.101) to
(1.104). m

Conclusion 1.8 From (1.1023) and (1.10423), it follows:

If Av,(0)>0 then fi(co)>0 and A7y4(0)=0 and fy(c0) =0,
1.105
If Av,(0)=0 then fi(co) =0 and Avy,(0) >0 and fa(co)> 0. ( )

The relations (1.105) obtained in [54] and rigorously proved in [27] justify the existence of
S- continued fraction expansions of Stieltjes functions. Now we can state the following:

Theorem 1.9 Let Av;(0) = v;(04) —v,;(0_), j = 1,2 denotes the jumps of v,;(u) at
u=0. If fi(2) is a Stieltjes function

fi(z) = Td%(u)

o 1+ zu

, dyy(u) =0, Avy,(0) =0 (1.106)
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then fo(2) satisfying

fi(z) = , a€(0,00) (1.107)

(o) = [ P2 o) 2 0. 29,00) =0, (1.108)
0
where
p1(00) = lim 2 f1(2). (1.109)

Proof. The proof of Theorem 1.9 can be proceeded analogously to the proof of
Theorem 1.7. m

Conclusion 1.10 From (1.10653) and (1.108:3), it follows:
If Av,(0)=0 then fi(c0)=0 and Av,(0)=0 and f3(c0)=0. (1.110)

The results (1.110) justify the existence of the so called T'—expansions of Stieltjes functions
investigated in Chapter 3. The case a = 0 has been investigated earlier by Tokarzewski
[54, 55] and Gilewicz et al. [27, 28]. Tt is worth noting that for ¢,(c0) = oo Theorem 1.9
reduces to Theorem (1.7).

1.5.2  Linear fractional transformation of f»(z) to fi(z)

Now we assume that the Stieltjes function f> ;(z) and the value f; ;(a) € (0,00) are
known.

Lemma 1.11 If the functions (1.84) and (1.85) are interrelated by S—linear fractional

transformation
_ f1.(a) R
hG) =T = o hoy (@ >0 el 0 ) (1.111)

then U,(:L)], C’S}, depend on Ufi),, C,(f} as follows

1
Un,lt)]: _W> TL:O,I,...,J, (1112)
n,J
f1.(a) (2)
g,y Vs =0
(1) 0,J 2( OJ) 1) flJ(a)
Cog = fi(a) OV = M =120, (1.113)

Z28:2,%)

The inequalities (1.8423) are immediate consequence of the relations (1.113) and (1.8523).
Here 35(2) is determined by

By(z) =

;G S L

_ I (2 —q) I nd (1.114)
n=01 4 Ur(z2)2 ano (1 i UTE?L)]Z)2
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while Z J satisfies: if Ué} =0 then
o J @
+ (4 —a)) ”j = =0, —00<Zyy<Z1y<..<Zy;<0  (1115)
err(2)
and if Uy = oo then

J C,(i)]

Z%) = —oc0, 14+ (2% - )Z—m —0, —00<Zyy<..<Zy;<0. (1.116)
1+ U} JZkJ

Proof. With the help of (1.84)-(1.85) let us rewrite (1.111) as follows

J C(2)J N 0(1} -1
Bos(2)=1+(2—a)y —=—=f;(a) — | . (1.117)
Z’J( ) ( ; 1+ Ug}z ! nz_% 1+ Uél}z
By differentiating both sides of (1.117) one obtains

(2) (2) 77(2)
J C.5 J C, U5

Bos() =) e (ema))

n=01 U"g )Z n=0 (1 4 Ur(i)],2>

(1.118)

N 1) 77(1) N (1) -2

Cn JUn J Cn J

=f1(a)g — 2(5: 71 > 0.
n=0 (1 + U,%z) n=o 1+ Ué}z

The analytical function 3, ;(z) = 1 + (2 — a) f2,7(2) includes the Stieltjes one f5 ;(2), cf.

(1.117) and (1.85). On account of that the roots Z,E?L), of the equations (1.115)-(1.116)
are negative. Moreover, from the same reason (3 ;(Z ) take positive values (cf. (1.85)
and (1.117)). Hence the relations (1.112) follow from (1.115), (1.116) and (1.117), while
(1.113) is a consequence of (1.117) and (1.118). The proof is complete. =

Example 1.12 Consider the rational function

0.3765 0.0134 0.0161 0.0082

J282) = =+ T 037m: T 13059252 T 14036855 (1119)
a=1, US) =0, fis(1) =0.7321.
From (1.95)-(1.115), it follows

753 = —3.0000, Z%) = —2.0000, Zy3 = —1.3333, Zy3 = —1.0000, (1.120)
Uy = 0.3330, U{Y = 0.5000, U§} = 0.7500, Us43 = 1.0000, (1.121)
Cil = 0.1667, CY = 0.2500, CFY = 0.3334, C5 = 0.5000. (1.122)

By substituting (1.95)-(1.97) into (1.85) one obtains
fra(2) = 1 f()l?’g;lz * 1 23552 * 1(3}-3(;337452 + 10%5,2' (1.123)

The inequalities (1.8423) and (1.853) are satisfied.
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Now on account of Lemma (1.11) we can state (cf. Theorem 1.7):

Theorem 1.13 Let Av;(0) = 7,(04) — 7;(0), j = 1,2 denotes the jumps of v,;(u) at
u=0. If f2(z) is a Stieltjes function

fa(2) = :fol o dyy(u) >0, (resp. Av,(0) > 0), (resp. Av,4(0) =0) (1.124)

then f1(z) satisfying

fil2) = 17 (ﬂ?}f?(z)’ fila) € (0,00), a €R (1.125)
15 a Stieltjes function as well
A6 = [P ) 20, (resp A (0) =0, (resp. 89,(0) > 0). (1.126)

0

Proof. To prove Theorem (1.13) it suffices to represent f5(z) and fi(z) appearing
in (1.124)-(1.126) by means of sums of simple fractions (1.72) and uses Lemma 1.3 to
justify the relations (1.126). m

Conclusion 1.14 From (1.1023) and (1.10423), it follows:
If Av,(0) =0 and fa(c0) =0 and Av,(0) >0 then fi(c0) >0,
(1.127)
If Av,(0) >0 and fa(c0) >0 and Av,(0) =0 then fi(c0)=0.

Now we can state the following:

Theorem 1.15 Let Av;(0) = v;(0;) —7;(0-), j = 1,2 denotes the jumps of v;(u) at
u=0. If fo(2) is a Stieltjes function

Al = [ P2, s 2 0, 29y(0) =0 (1.128)
then f1(z) satisfying
filz) = f1{61t<)a) , fila) € (0,00), a € R (1.129)
14+ (z—a) + (2 — a) fa(2)

¢1(00)

18 a Stieltjes function as well

[d
A = [P ) 2 0. 80,00 =0, (1.130)
0
where
1(00) = lim zf1(2) < o0. (1.131)

Proof. The proof of Theorem 1.15 is analogous to the proof of Theorem 1.9 . m
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1.5.8 Properties of Stieltjes functions undergoing S— and T— linear fractional transfor-
mations

Let us introduce the sets of Stieltjes functions f containing:
I'— all Stieltjes functions (cf. Definition 1.1))

oo

r=3r - [ nwzogs (1.132)

0

I'! —the Stieltjes functions satisfying f(a) =g € R

M= f0) = [ f@ =g difa) 20y (1.133)

'L —the Stieltjes functions taking values f(a) = g € R and f(oco) =d < g

Tose =3 [ f(2) :/%, fila) =g, fi(oo) =d, dy,(u) >0} . (1.134)
0

Now we state the most important property of the two Stieltjes functions f; and f5 inter-
relating by S— or T'—fractional transformations, cf. (1.75) and (1.76).

Theorem 1.16 There is one to one correspondence between Stieltjes functions

fiell and f €T (fy €Tt}

a,00

and f, € T) (1.135)
satisfying the S—fractional transformation (1.75) (I'— fractional transformation (1.76)).

Proof. It suffices to proceed the proof for S—fractional transformation only, cf.

(1.75). For T—transformation (1.76) the proof is analogous. Let introduce the sets of
J

J
rational Stieltjes functions I' and '} | J =0,1,2, ...

J J

I'={f2y; fos(z) defined by (1.85)}, It = {f1s; frs(2) defined by (1.84)}. (1.136)

J
On account of Lemma 1.2 the sets ' (1.132) and T'} (1.133) include the sets T' (1.136;)
J
and T! (1.136,), i.e.

0 1 J 0 1 J
=TUlU..Ul and T}=T:UT:U..UT} J— oo (1.137)

Theorem 1.16 is valid for any fixed J (cf. Lemmas 1.4 and 1.11)

J J
fieTliand fbel, J=0,1,2,3.... (1.138)

Thus it is valid for f, € T and f; € T'} as well, cf. (1.137). The proof is complete. ®
Theorem 1.16 is new. It will be used to prove that the rational estimations of a
Stieltjes function obtained in the present work are the best.
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1.6 Elementary estimates of a Stieltjes function

At first we prove the following lemma useful for estimating of Stieltjes functions from the
incomplete power series.

Lemma 1.17 A Stieltjes function f(z) defined by

1/pd (w)
TolU
= 1.1
o) = [ o (1.139)
0
has the Stieltjes integral representation
1/(p+w) d (1)
Vw U
= —_ — 1.14
0
where
dy,,(u) = (1 —uw)dy, [u/(1 — uw)]. (1.141)

Proof. By making in (1.139) the change of variables

e (1.142)
we obtain (cf. [6, Lemma 17.1])
7 a0 vw)dye (01— o))
B Yolu B —vw)dyy (v/(1 —vw
flz+w) = / = (Z“+ o= / - i = . (1.143)

From (1.143) the Stieltjes integral representation (1.140)-(1.141) follows at once. m

Definition 1.18 The Stieltjes function f(z)

f(z) = / fi(zzﬂ da(u) > 0, z € C\[—o0, 0] (1.144)

0

we call the normalized one if

F(0)=1. (1.145)

Note that the Stieltjes integral (1.144) is a particular case of (1.140, w = 0 and p = 0).
According to Definition (1.18) the ratio f(z+ )/ f(r) is the normalized Stieltjes function
f(2) (see Fig. 1.4)

flz+x)
f(x)
We now turn our attention to the problem of computing the range of possible complex

values of f(z) subject to (1.145). By using (1.140) we can rewrite (1.144) as the following
equality

f(z) = , 2 € C\[-00,0], —p<u. (1.146)

f(z) = /J& dy(u) = (1 —u)dau/(1 —u)], 0<z2< o0, (1.147)
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Fig. 1.4 The normalized Stieltjes functions f;(z) = (f(z + x;)/f(z;),j = 1,2,3, where
fx)=(1+25(In((1+0.12)/(1 + 0.52)))/x)/x.

where for z = 0 we have
1

£(0) = /il%(ug =1 (1.148)
By the equation (1.148) )
do(u) = ‘1”_(“3 (1.149)

is also an allowable measure in a Stieltjes integral with the constraint

1

/dw(u) ~1 (1.150)

0

Thus for a fixed z we can write

1
- 1—u
Faet) = [ et (1.151)
0

where dw is an arbitrary, nonnegative-definite, normalized measure. From (1.151), it
follows at once, that if H; and H, are the possible values of f(z,@(u)), then aH; + (1 —
a)Hs, 0 < a < 1 are too. On account of that if @w; and @, are allowed measures in
(1.151), then so, too, is aw; + (1 — a)w,. Consequently, the range of f(z) is a convex
region bounded by the curve consisting of the arc of the circle

1—u
Cow=——0<u<l 1.152
foeciv- it 0cusa) (1152
and of the segment lying on the real axis
{reR:z=14u, —1<u<0}. (1.153)

Lines (1.152) and (1.153) are drawn in Fig. 1.5. The ends of the arc (1.152) and of the
segment (1.153) are denoted by AB, respectively.

Definition 1.19 For a fized z € C\[—00,0] we call in turn: 1)

1+u if —1<u<0,

F = _ 1.154
1(2,u) 1—u if 0<u<1, ( )
1+ (z—1)u
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Fig. 1.5 The elementary boundaries ¢,(z;), the elementary inclusion regions ®(z;),
the values of the normalized Stieltjes functions f(z;) = fetn) 5 — 193, f(z)

fz;)
%(1+%ln}igiéj),x1:0, To=2, 23=0,21=—141 20=—-341, 23=—641.

the elementary bounding function; 2)

Pi(z) ={weC:w=vF(zu); —1<u<l 0<v<1}, (1.155)
the elementary inclusion region; 3)
$1(z) ={w e C:w=Fi(z,u); =1 <u<1}, (1.156)
the elementary complex boundary; 4)
For =155 e, a e (-o00) (1.157)

the elementary inclusion relation.

Corollary 1.20 The elementary estimations of f(2) given by (1.154), (1.155) and (1.156)
are the best.

Proof. The bounding function Fi(z,u) (1.154) consists of the parametric Stieltjes
functions

[ (1+u)dH

1+u:/( +u)d (T),—1<u<0,

1427
0
Fi(z,u) = (1.158)
. % dH(r — —)
1—u :/ 1-— 0<u<1
1+ (z—1)u 1+ 27
\ 0

Since expression (1.158) defines via (1.156) the complex boundary ¢, (z) then the S—estimations
(1.158), (1.154)-(1.156) evaluated from the input data f(0) = 1 are the best. m

By way of illustration of the Definition 1.19 the elementary inclusion regions ®;(z;), the
complex boundaries ¢;(z;) and the values of f(z;) = f(z; + z;)/f(x;), j = 1,2,3 are
evaluated and depicted in Fig. 1.5.
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1.7 First order estimates of a Stieltjes function

By starting from the inclusion relation given by (1.157) we arrive first at

;18 €y (z— 1) (1.159)
and next at
fi(z) € filx)P1(z—2) ={w e C:w=Zf(x); Z € Di(z—1)}. (1.160)

Now we introduce the definitions of F11(z,u), ®11(2) and ¢, ,(2) estimating fi(z) from
the given values fi(x), cf. (1.154)-(1.157) and (1.159)-(1.160).

Definition 1.21 For a fized z € C\[—00, —g| we call in turn: 1)
Fii(z,u) = fi(2)Fi(z —x,u), v € R, (1.161)
the first order bounding function; 2)
D11(2)={weC:w=vF;(zu); - 1<u<l 0<v<1}, (1.162)
the first order inclusion region; 3)
$11(2) ={w € C:w = Fi1(z,u); =1 <u <1}, (1.163)
the first order boundary; 4)
fi(z) € ®11(2), z € C\[—o0, 2], (1.164)
the first order inclusion relation.
Corollary 1.22 The first order estimations of f(z) given by (1.154), (1.155) and (1.156)
are the best.
Proof. Let us substitute in (1.161)-(1.163) new variable z = y + x. We obtain
Fia(y, u) = 1(0)Fi(y, u). (1.165)

From Corollary 1.20 and the relations (1.161)-(1.163), it follows Corollary 1.22 at once =

Im (¢, 4(2))
01l ) A;';J’,‘,—,
0.3 @'!! '
.05 -‘“-\4\- __________ "/./f/l
0.7 I‘ ----- ‘—""‘"/I Re(9; 1(2))

-0.3 -0.1 0.1 0.3

Fig. 1.6 The first order complex boundaries ¢{ (), ¢3,(2) and ¢;,(2) for the Stieltjes

function fi(z) = £ (1 +12.5In {#322) , where z = —1 +.
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As an illustrative examples of (1.161)-(1.163) let us consider the input data

z=—1+14; x; =0, f1(0) = 0.30;

(1.166)
computed from the Stieltjes function f;(z)
1 1 1+0.1z
=—(1+-251 . 1.167
fiz) z ( +z n1+0.5z) ( )

For fi(z) (1.167), due to (1.163) and (1.161) the first order boundaries ¢7%(2), j =1,2,3
are equal to

¢ 1(2) ={w=030(1+u); -1 <u<0}U {w _ 0301 —w) 0<u< 1} , (1.168)

1+ (21’

~0.18(1 — u)
~ T (3
B 1(z) = fw=0.12(1 + u); —1<u<0}U {w= m;__éﬁ)

For z = —1 + i the bounds ¢ ,(z), ¢1,(2), ¢7,(z) and fi(z) (1.167) are evaluated and
depicted in Fig. 1.6. Note that the following inclusion relations

(/bil(z) ={w=0181+u); -1 <u<0}U {w 0<u< 1}7 (1.169)

0<u< 1}. (1.170)

fi(=1414) € B}, (—1+414), fi(-1414) € ¥ (—1+1), fi(-1+414) € ®7,(—1+1) (1.171)

are satisfied.

1.8 Low order estimates of a Stieltjes function

Let us denote the given values of fi(z) as follows

fi€) =n, filr) =91, &Emz, g €R, (<o, i< (1.172)

The first order bounding functions Fj;(z,u) computed from (1.172) take the form (see
(1.161) and (1.172))

Fl,l('z?u) = fl(g)Fl(Z - gau) = 77F1(Z - €>u) (1173)
Consider a linear fractional transformation of fi(z) to fa(2)
fi(2) hw) _ hiz) - fil@) (1.174)

L+ (2= 2) () fal2) 1+ (2 = 2)wafo(2)’

where fo(2) is a normalized Stieltjes function, cf. Definition 1.18 and Theorem (1.7).
Hence on account Definition (1.21) the first order bounding function Fj »(z, u) estimating
f2(2) is equal to (cf.(1.174))

Fio(z,u) = Fi(z — & u) f2(8) = Fi(z — &, u)ws, (1.175)

T 1+ (- 2)felz)

where we introduced

ws = fo(€). (1.176)
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Fig. 1.7 The inclusion regions ®;,(z) and the complex boundaries ¢;,(z), j = 1,2 for the
Stieltjes function fi(z) evaluated from the values fi(£) = n and fi(z) = ¢1, & < x. Note
that the inclusion relation ®51(z) C ®;1(z) predicted by (1.185) is satisfied.

1.8.1 Inclusion regions depending on P.

By replacing in (1.174) f5(z) by its estimation F} »(z, u) one obtains the bounding function
of the second order Fy;(z,u)

9
i ) ' 1.177
2.1(2,u) 1+ (2 — 2)F12(2, u) ( |

On account of (1.174) and (1.172) we have

_ 25 B g1 .
Fou(6,0) = L+ (E—2)F12(6,0) 1+ (€ —2)wsFy(0,0) " (L.178)

Since F1(0,0) = 1 the relations (1.178) yield

_ (n—g1)
Wy = —77(95 ~ o) (1.179)

Thus the second order bounding function Fs;(z,u) takes the explicit form (cf. (1.177))

F271(Z, U) = 91 . (1180)
1+ (2 — x)MFl(z — &, u)
(e —=¢§)
By equaling (1.173) with (1.180) one obtains the relation
Fii(z,u) = Fy1(2,v), —1<wu,v<1 (1.181)

determining the points lying on the curves F ;(z,u) and Fy;(z,v) simultaneously. Let us
rewrite (1.181) as follows

nF(z — € u) = Z ., u,vER. (1.182)

Two solutions of (1.182) exist

n—0

U = — , v1 = land wuy = vy = 0. (1.183)
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Lemma 1.23 For z € C \[—o00,¢], z € R\[-00,¢], £ < z < 00 and g1 <1 we have:
The second order bounding function Fy1(z,u) touches the first order one Fy1(z, u) at two
points (see (1.183))

-4 -5
Fiy(z,— — Fyy(2,1) and Fiq | 2, — Fyy(2,0). (1184
T2 = Py 1) and By (5 ) — (0. (1180

The lens-shaped inclusion regions ®21(z) and ®11(z) satisfy the relations
fl(Z) € (13271<Z) C @1’1(2). (1185)

Proof. Let us consider the sets Fé, I'l and Fglcé of Stieltjes functions f; defined by

Tt =13 fi; fil2) :/fﬁi’g, FE) =10, dyy(u) >0, (1.186)
0
and
L, =3fi; fi(z) =/il7_¢<2, fi(@) = g1, dy,(u) >0, (1.187)
0
and

(1.188)

The first and second order inclusion regions ®; ;(z) and ®,;(z) are the best with respect

to the given values n and ¢g;. Hence on account of Definition 1.21 and due to relation
(1.180) we have

P41(2) = Ti(2), (=) = Tyg() (1.189)
From (1.189) and
Iye C T, (1.190)
it follows
HORSEHO! (1.191)

The proof is complete, cf. (1.185) and (1.191). m

To illustrate Lemma 1.23 the numerical evaluations of @g’f(z) (1.173) and <I>§717(z)
(1.180) are carried out. The results are depicted in Fig. 1.7.

1.8.2  Inclusion regions depending on &
Consider now the sequences of the first @ﬁfim (z) and the second <I>§{1”“ (2) order inclusion

regions of the Stieltjes functions ffj ’nl(z), Jj = 1,2, respectively, cf. (1.189). We assume
that both £ (z) and f52"(z) satisfy the assumptions (1.172).

Lemma 1.24 For z € C \[—00,&,] the inclusion relations
ST (I)'fl:’h q)fzﬂh ST @51:771 q)§2’771 1.192
1V (z) € @7 (2) C R (2) , fiVM(2) € B (2) C D (2) (1.192)
are satisfied, provided the parameters £, and &, obey the inequalities

& <&, (1.193)
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Fig. 1.8 The first ®{'7(2) (1.173) and the second ®57(z) (1.180) order inclusion regions
constructed from the truncated power expansions fi(z) = n+O0(z—¢) and fi(z) = g1 +0(z),
where g; = 0.1807. Note that @%717(,2) and @g’f(z) satisfy the inclusion relations (1.192).

Proof. Let us rewrite the bounding function Ffln(x — & + 1y,u) in the polar
coordinates R, © (cf. (1.173))

n(l+u), -1 <u<0,
Fyi(x— €& +iy, u) = (1.194)
Rexp(i®), 0 <u <1,

where

n(l —u) uy
R = © = —arct . 1.195
(14 vz — u€ — u)? + u2y?’ arcan(l—l—uw—uf—u) ( )

The formulae Rexp(i©(£)), 0 < u < 1 describe the class of arcs of circles possessing
common points at

R=0,©6=0and R=1n, © =0. (1.196)
By substituting « = 1 into (1.195) we obtain

R =0, O(¢) = — arctan ( ) . (1.197)

y
r—¢

From the derivative

90(¢) y
__ , 1.198
R T (119)
it follows the monotonicity of O(§) , namely
©(&) increases if y < 0 and decreases if y > 0. (1.199)

Formulae (1.196) and (1.199) lead to the relation (1.192;) at once. Similarly, on account
of (1.175) one can derive the inclusion relation

DM (2) € B (2). (1.200)

On account of that from (1.200) and (1.180), it follows (1.192;). =

1.8.3 Inclusion regions depending on 1)

Let us explore the inclusion regions <I>§’11’nj (z) and <I>§j1’”j (2), j = 1,2 estimating the Stieltjes
functions fi"(z) and fi"2(z), respectively, cf. (1.189). As in the previous subsection

the functions fo"(z) and fo1"2(z) meet the requirements (1.172).
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Fig. 1.9 The first <I>§’17(z) and second @g?(z) order inclusion regions for £ = —2, n = 0.2,
0.3, 0.6. Note that @f?(z) and @g:?(z) confirme the inclusion relations (1.192).

Lemma 1.25 If the parameters n, and n, satisfy the inequality
M < 1, (1.201)
then for z € C \[—o00,£] the inclusion relations are satisfied
fit7(z) € DY (2) C BT (2) and fi7(2) € D5 (2) C BE™(2). (1.202)

Proof. From (1.195), it follows that for v = 0 and v = 1 we have

R =0, © = —arctan < > and R=1n, © =0. (1.203)

)
r—§
For a fixed x,y, £ the input data (1.203) uniquely determine the arc of circle (1.194;) and
the segment (1.194,) as a function of 7. From (1.203), it follows that for any fixed values

of &,y
R(n) increases if 1 increases. (1.204)

The relation (1.202;) is a simple consequence of the conclusion (1.204) and the relations
(1.203). Similarly one obtains

7" (2) C B1™(2). (1.205)

Hence the relation (1.2025) is a consequence of (1.205), cf. (1.180). m
1.8.4 Inclusion regions depending on P, &, n
Now we are prepared to summarize the results obtained above stating the following lemma:

Lemma 1.26 For fized z € C \[—00,&,] and 1 € R the inclusion regions @%’Zl(z) and

@%}’221(2) computed from the truncated Stieltjes series

[ = +0(E=&), 7V (E) =g+ 0 —w), j=1,2 (1.206)
satisfy the following relations
f1517771 (Z) c (I)%Iﬁl (Z) C @%72%(2)7 (1.207)

provided that
§ <&, m <mny Pr<Pr (1.208)
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Fig. .10 The complex boundaries for the Stieltjes function f1(z) = 5 (14 12.5In 255),

z = —6+1 evaluated from the truncated, one term series fi(z) = 0.11527+ O(z) possessing
a radius of convergence p > 5.

Proof. From Lemmas 1.23, 1.24 and 1.25 the relations (1.207)-(1.208) follow at
once. m
As an illustration of Lemma 1.26 we consider the truncated power series fi(z) with a
radius of convergence p not less then 5

fi(2) = 0.11527 + O(2), p > 5, (1.209)
where 1 1 1.5+ 0.1
o+ 0.1z

- 1 250 =) 1.210

fi2) z+5( T n3.5—|—0.5z> (1.210)

It is convenient to rewrite the input data (1.209)

fi7(z) = g1+ 0(2), fi"™(2) =m +O0(z = &),

& =—p, ny =00, g =0.11527

(1.211)

and ¢ 3
[i27(0) = g1+ O0(2), f1>"(2) =n, +O0(2 = &),

£, =—5, ny =00, g1 = 0.11527.

(1.212)

The bounding functions Fl_’f”oo(z,u) and Fgff”oo(z,u) evaluated from (1.211) and (1.212)
take the forms

£(0)

B3 () = BTG = hORGE ), BP0 = rggporaa (219
For z = —6+i the complex boundaries gb;“;”(’o(z), 2. (%), the inclusions regions @;i”w(z),

@;’?’W(Z) and the exact value of fi(z) (1.210) are computed and depicted in Fig. 1.10.
The Theorems 1.7, 1.9 and Lemmas 1.23, 1.24, 1.25, 1.26 proved in this chapter are
the starting point for developing new S- and T-Multipoint Continued Fraction Methods

of an estimation of a Stieltjes function f;(z) from the power series expanded at real points
(SMCFM) and in infinity (TMCFM).
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Chapter 2

THE BEST ESTIMATES OF A STIELTJES FUNCTION
EXPANDED AT A NUMBER OF REAL POINTS

This chapter provides a mathematical background for a S-Multipoint Continued Fraction
Method (SMCFM) of an estimation of a Stieltjes function f;(z) from the truncated power
series f1(z) expanded at real points 1, xs, ..., xy and &, where £ < min(xy, z, ..., xy) and
fi(§) =

The definitions of: S-continued fraction expansions, S-bounding functions, S-complex
boundaries, S-inclusion regions and S-Padé bounds are introduced and used to developed
the S-Multipoint Continued Fraction Method.

The main SMCFM tools, i.e. a recurrence S-algorithm, S- inclusion relations and S-
inequalities are derived as functions of the real parameters ¢ and 7. For some limit values
of £ and 7 the S-estimates of f(2) become the best with respect to the given input data.

The SMCFM is a first method of the theory of an approximation of Stieltjes functions
that incorporates into the estimates of fi(z) the unlimited number of coefficients of the
power series fi(z) expanded at several real points, cf. [6, 8, 9, 7].

In the sequel the SMCFM will be adapted for estimating of the effective transport
coefficients of two-phase media.

2.1 The S-multipoint continued fraction expansions of analytical functions
Consider the truncated power expansions of an analytical function f;(z)
fl(z) = fl(z)];;7 L € Ra ] - 1727 7Na
fi(2) = fi(2), € €R; € <min(zy, j =1,2,...,N),

(2.1)

where the abbreviations
A =30 iz —2) + O((z — 2)P); fi(2)i =n+0(z =€) (2:2)

are introduced. The coefficients ¢;; and 1 appearing in (2.2) are equal to

@, ‘ i
O =, i = eilxy) = Ji .m), O () = 411(2) ,i=0,1... (2.3)

7!

For the sake of simplicity the notations

hE@E = At = {h AR, o iR, A2} i€ (2.4)

representing the relations (2.1)-(2.3) will also be used.

Remark 2.1 The components (p1 P2y:-DN, ) of( ) denote the numbers of coefficients (p1, pa, ...,

T1,T2,..,TN,E
pn, 1) of power expansions of fi(z) available at points (xy1,za, ...,xN, &), cf. (2.4).

Now we introduce the Lp(x)-characteristic function associated with the incomplete
power expansions fi(z)2.
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Fig. 2.1 The Lyo(z)-characteristic function generated by the truncated power expansions

f(8 €)= GTizat):

Definition 2.2 The truncated power series

A5 () = C) (25)
generate the non-decreasing step function Lp(x) : R? — R!
N N
Lp(x) =35 piH(z =), P= ) i, (2.6)

called the Lp(x)-characteristic function. H(x) is the Heaviside step function, see (1.52).

Remark 2.3 For a fized s € [1,2,...,N — 1] and fized x € [v4,2511) the characteristic
function Lp(z) defined by the power series f1(z)® determines the sum py +p2+...ps of the
coefficients of the truncated power expansions of fi1(z) at the points xy, za, ...,zs < T,
respectively.

In the sequel the non-decreasing sequences of the truncated power expansions fl(z)g(P)
will be exploited. To this end we introduce:

Definition 2.4 For fixed x and P = 1,2, 3, ... the truncated power expansions
N

REEP, (A0) = (00 p o5 () 27)
we call the non-decreasing ones, if the inequalities
pi(P) =pi(P=1) >0, ..., py(P) —pn(P —k) >0 (2.8)
abbreviated by
p(P)—p(P—-1)>0, P=1,2,3,... (2.9)
are true.
For example the sequence
P 2 1,1,0 3\ _ (11,1 4\ _ (21,1
f(2)2P, (7)) = (1,37—1)7 (") = (1,37—1)7 (") = (1,3,—1) (2.10)
is non-decreasing, since
p(4) —p(3) =(1,0,0) = 0, p(3) — p(2) = (0,0,1) > 0, (2.11)

where the notation (2.11;) means that

p1(4) =p1(3) =1 >0, pa(4) —p2(3) =0 >0, ps(4) —ps(3) =0>0. (2.12)
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2.1.1 Recurrence formulae for S-multipoint continued fraction expansion of a Stieltjes
function

Definition 2.5 The following recurrence formula interrelating fi(z) and fp(z)

B Jro1(r1) _ fro2(71)
fP0+1(Z) - 1+ (Z _ xl)fP0+2(Z)’ fPo+2(Z) - 1+ (Z . xl)fP0+3(Z)

g ey

_ fp (z1) _ fpyy1(z2)
In(2) = mmmmaey rnd) = s aey

(2.13)
. fpy+2(x2) . Ipy (x2)
fria(z) = 1+(Z*;2)fpl+3(2)’ v fra(2) = 1+(Z*Iz)fp2+1(z)’
................ _ fPN7+1(xN)_fP(mN),
fPN,ﬁl(Z) o 1+(Z71N—11)fPN71+2,(Z)7 e fPN (Z) — 1+(z7]\;N)fP(z)’
where

fi(2) = fu2)8, (B) = (D22t [o(2) = fol2)f = w, + (2 = 6), o
2.14

Wp = fp(é.)a PO 207 P] = Zgzlpia j = 172a"'7N; P = PN+1
we call the S—multipoint continued fraction expansion of fi(z) to fp(z).

In the mathematical literature the function fp(z) appearing in (2.13)-(2.14) is named the
S—continued fraction tail, cf. [34, pp. 56].

Now we introduce a new notation for the S-continued fractions more convenient for
estimating of the Stieltjes function fi(z) from the power expansions fi(z)?

N
by \/ by b (2.15)
" zby Y l+z 1—i—z><1+z>< x 1
14—
ZbN
1 -
T

Note that the convergents of (2.15) are rational functions with the numerators, denomi-
nators of orders k, k and k — 1, k, respectively. By substituting in (2.13)

j: 17“'7P1 : gj = fj(x1>7 .] = Pl +17"’7P2 : gj = fj<x2)7

(2.16)
v J=Pyvoi+ 1., Py og= fi(an); wpysr = wp = fp(E);
we obtain
f (2) _ gpPy+1 gpry+2. gp, fP1+1(Z)
o+t I+ (z—x) X14+(z—x) X X1+ (z—m)x 1
f (Z’) _ gpi+1 gp;+2 ap, fP2+1 (2)
. I+ (z—z3) X1+ (z—23) x x14+(z—mz3)x 1 (2.17)
fPNfﬁ-l (Z) 9Py_1+1 9Py_1+2 gpry fp(Z)

:1+(z—a:N)><1+(z—xN)><”'><1—|—(z—xN)>< 1
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On account of (2.15) the formulae (2.17) take the form

fi(z) = \7 S S \7 9 fr(z) (2.18)

j=Pyt1 T4+ (z—x)x X P 1+ (z—zn)x 1

Finally we obtain (see (2.14) and (2.16))

k=1j=P,_1+1

The alternative notations for the continued fraction expansion (2.19), namely

VoV b I st - vspk lp(2) (2.20)

kel j=Py 141 1+ (Z — ZL’k) X

and

\/ \/ gj fP(Z) _ fl (Z, Z, fP(Z)),

P I+ (z—mx) x 1

2500y 71
file B fe() = i (2 Bmemel fo(z))
will also be used. For an illustration of the formula (2.19) we evaluate the continued
fraction expansion of exp(z) from the truncated power series

(2.21)

exp(2)g = 1+0(2—0), exp(z)] = 2.718 +O(z — 1), exp(z)] = 0.368 + O(z+1). (2.22)

We obtain
1 —0.632  f3(2)
= =0.316+0O 1). 2.23
exp() T+ox1t(z—1)x 1 ° fs(2) +0l+1) (2.23)
According to (2.21), we also have
1
exp(z) = exp (2, 4171, fol2)) = T (2.24)

1+ (-1 f()
2.1.2 Main properties of S-multipoint continued fraction expansions of a Stieltjes
function

Now we prove a few theorems stating the most important properties of the S—multipoint
continued fraction expansions of fi(z) to fp(z). We start from:

Theorem 2.6 Let Av;(0) = ~,(0-)—7;(04) be the jumps of the Stieltjes measures dry;(u),
j=1,P atu=0.If fi(z) is a Stieltjes function

A = [P a0 =0 (49,0 > 0 (2.25)

then the tail fp(z) appearing in

\/k 1 \/3 =P+l 1+ ( zj— Ty) X fpl(Z)’ Jp(§) = wp (2:26)
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1s also a Stieltjes function

T dvolu Ayp(0) >0 (Ayp(0) =0) if P is odd,
fp<z):/dyp() v()>0(7() )

1+ 20 T Avp(0) =0 (Avp(0) > 0) if P is even. (2.27)

0

Proof. By applying the linear fractional transformation (1.103) P —1 times to
the function fi(z) we arrive at the tail fp(z), see (2.26). The Stieltjes integral (2.27;)
and the relations (2.27;) and (2.273) result directly from Theorem (1.7). m
The next Theorem is closely connected with Theorem 2.6. It states.

Theorem 2.7 Let Av;(0) = 7,(0-)—7;(04) be the jumps of the Stieltjes measures dry;(u),
j=1,P atu=0. If fp(z) is a Stieltjes function

(2.28)

[ dyp(u) Avp(0) >0 (Ayp(0) =0) if P is odd,
0/ 1+ 2u’ Avp(0) =0 (Ayp(0) > 0) if P is even

then f1(z) appearing in

95 fr(2)
\/k: 1\/3 =P+l 14 (2 — a) X Plz . fr(§) =wp (2.29)

18 also a Stieltjes function

(0) =0 (Ay,(0) > 0). (2.30)

0

Proof. Theorem 2.7 is a direct consequence of Theorem 1.13 m

Theorem 2.8 Let the continued fraction expansion of a Stieltjes functions fi(z) to fp(2)

_ P1,P2,.-,PN,1 _ v ¥ g; fP(Z)
1@ = £ (2 mmeml @) =\ . 1 (2.31)

k=1j=Po_1+1 &= xg) X
be given, where
fr(z) =wp +0O(z +&). (2.32)
The derivatives of (2.31) with respect to z
dfi(z)|  d°fi(?) d" fi(2) d” ! f1(2)
y ——— kE=1,2,...N 2.33
N P R N A S (2.33)

do not depend on the tail fp(z) satisfying (2.32).

Proof. By substituting the truncated power series of Stieltjes (2.1)-(2.2) to the
recurrence relations (2.13) we obtain the formula (2.31) with the coefficients g;, j =
1,2, ..., P — 1 uniquely depending on ¢,,, as follows (see (2.1)-(2.2))

g1 = 91(001) g2 = 92(001,011) wey g = §JP1(0017011, ~--yc(p171)1>;
(2.34)

gpi+1 = 9P1+1(001» Ci1y -y C(p1—1)1> 002);
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and inversely

co1 = Co1(91), c11 = ¢11(91,92); -y Cpr—1)1 = Cpi—1)1(91, -, 9P, );

(2.35)
Co2 = 602<9117g217 -"7gp17gpl+1); (RN
where L dmi(e)
m 1z
m!  dzm ( )

From (2.35) and (2.36), it results immediately, that (2.33) do not depend on fp(z) given
by (2.32). m

Theorem 2.9 There is an one to one correspondence between the Stieltjes functions
freTPrbztN and fp €T, (2.37)

T1,T2,., TN ,E
satisfying the S—linear fractional transformation (2.26), where

o0

dy,(u)
1,020, N, . _ 1 1,025+ N1
romend =8 ae = [P penmet w0y @
0
and
P = d o gole) = [ D20 oy i 0G0, dpw =0 Y. (239)
&€= P, JP - ].‘I—ZU, ¢ — WP » AYp - : :

0

Proof. Theorem 2.9 is a direct consequence of Theorems 1.16 and 2.8. m
Now we state the last theorem presenting the properties of S—multipoint continued
fractions to a Stieltjes function:

Theorem 2.10 Assume that (aq,an, ..., ayn) and (6y, By, ..., Bx) are two different per-

mutations of natural numbers (1,2, ..., N). Let the continued fraction expansions of f1(z)
f@) = fi (2 e ) = Az et o fR). (240)
where
7€) = ws, and 7€) = uf, (2.41)
be given. For any permutations of (aq, aa, ..., an) and (B, By, - .., By) the following iden-
tities

-----

P25 71 _ D25y 7]_ 5 o
fils e wp) =5 (= 20 o) = e /or)(2),

ap+ a1z + -+ A 2T
14+biz+- -+ by 2"

[mp/np|(2) = ,

N (2.42)
mp:P—l—np, TLPZE<P/2), P:Zlep]+1’

if P =2k then [mp/np] = [k — 1/K];

if P =2k +1 then [mp/np| = [k/k]
are satisfied. Here E(x) denotes the greatest integer not exceeding x.
Proof. The continued fraction expansions fi (z, £, f&(z)) and fi(zE,, f5(2))
are evaluated for the Stieltjes function fi(z), see (2.31). Hence the rational functions
fi(z, B, wg) and fi (=2, %, wﬁ) are continued fractions to each other, cf. (2.40)-(2.41).

On account of that the equations (2.42) are satisfied. ®
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2.2 Fundamental inclusion relations for S-inclusion regions
In the sequel the Stieltjes functions fi(z) defined by
1/ dry;(u)

fl(z) = { 1+ 20 Ar}/l(o) =0, z¢€ (C\[_OO7_p]7 p=0 (243)

will be investigated only. From the relation (2.43) and Theorem 2.6, it follows that
fi(z), 7 =2,3,... appearing in (2.13) are also Stieltjes functions

d’yj(u) .
; = > ; = .
fj(z) / T+ o0 p >0, d%(u) >0,7=2,3,.., (2 44)

0
where the jumps of v;(u) at u = 0 satisfy
Av;(0) > 0 if j is even and Av;(0) = 0 if j is odd. (2.45)

Moreover, the coefficients of a continued fraction expansion (2.26) are positive, i.e. satisfy
the inequalities

9; >0, j=1,23..P—1 w,>0, P=123 .. (2.46)

The first order bounding function Fj p(z,u) is equal to (see Definition 1.21)

(1+u) if —1<u<0,
Fooot) — wnF (e — €. Fi(oa) - 2.47
1Lp(2,u) = wpFi(z — & u), Fi(z,u) _(d-w if 0<u<1, 247
1+ (z—=1u

while the P-th order ones take the following forms (see(2.21))

Fp( )—N \/ J; Fuplzu) _
P’lz’u_\/ \/ 14 (2 —xp) ¥ 1 B

k=1j=P,_1+1 (2.48)
= Fp; <z O FLp(z,u)) = \/fc\[:1 S£271+1F1’p<Z,U) =Sp_1F1p(z,u).

?X1,X2,my IN7€7

Note that the formula (2.48) is obtained via replacing in (2.18) fp(z) by Fi p(z,u) and
fi(z) by Fpi(z,u). Now we are in position to introduce the P-th order estimates of a
Stieltjes function fi(z) as follows:

Definition 2.11 For a fized z € C\[—00, —p| we call : 1)
¢p1(2) ={w e C:w=Fpy(z,u) = Sp_1F1 p(z,u); =1 <u<1}, (2.49)
the P — th order complex boundary; 2)
Cpi(z) ={weC:w=8p1 7TFip(z,u); 0<7<1, —1<u<l1}, (2.50)
the P — th order inclusion region; 3)
fi(z) € ©p1(2). (2.51)

the P — th order inclusion relation.
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Theorem 2.12 The P — th order estimations of fi(z), i.e. Fpi(z,u) (2.48), ¢p1(2)

(2.49) and ®p.(z) (2.50) evaluated from the truncated power expansions fi(z) 772"~ 2
are the best.

Proof. From fi(z)21 72"~ 2 it is not possible to find better estimations then
(2.48), (2.49) and (2.50) , since: (i) the correspondence between Fpi(z,u) (2.48) and
Fy p(z,u) (2.47) is one-to-one, cf. Theorem 1.16; (ii) the bounding function Fj p(z,u)
(2.47) is the best estimation of fp(2) for fp(§) = wp, cf. Theorem 1.22). m

The recurrence S-algorithm (2.13)-(2.14), the S-relations (2.47)-(2.51) and Theorem
2.12 are the basic mathematical tools of the SMCFM.

2.2.1 Inclusion relations depending on P
Consider two contiguous bounding functions

Fp11(z,u) = S%HS%HSI]%H...Sﬁxj11+1F17p_1(z, u) (2.52)
and
Fpi(z,0) = Sp 1S5 Sp 1. SPN L SENFy p(2,0) (2.53)
satisfying the relations (cf. (2.2) and (2.16))
Fp_11(§,0) = Fpi(§,0) = fi(§) = n=w:. (2.54)
Our aim is to solve the equation
Fp_11(z,u) = Fpy(z,v) (2.55)

with respect to the real parameters u € [-1,+1] and v € [—1, +1]. From (2.52) and (2.53),
it follows

P P P Py—1 P P Px—1 PN
From the fact that the same operator

P ol QP Py-1
Spy115p 115p 41+ Spy_ 11 (2.57)

appears in both sides of (2.56), it follows that the solution of

Fip_i(z,u) =S¥ Fyp(z,0), Fip-1(£,0) = SpYFip(€,0) (2.58)
solves the initial Eqs (2.54)-(2.56). The explicit form of (2.58)
Fypoi(z,u) = Fapoa(z,0), F1,p-1(£,0) = F2,p-1(§,0) = wpy (2.59)

takes the form of (1.181). On account of (1.184) and (1.185) we infer:
Conclusion 2.13 For a fived z the complex boundary ¢p,(2)
¢p1(2) ={w € C:w = Fpi(z,u); —1<u<1} (2.60)
touches the complex one ¢p_ 1(2)
¢p_11(2) ={weC:w=Fp_11(z,u); —1<u<l}

at the two points
Fp71(2,—1) = Fp&(Z,l) and FpJ(Z,O). (261)

The regions ®p1(z) and ®p_11(z) satisfy the fundamental inclusion relations

fl(Z) c (I)p’l(Z) C q)Ple(Z) C...C q)l,l- (262)
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a)

Im (¢(2)
00t e ozt
N C=r e
L / — 031
-0.1 ! ’ L
E // \l —= $21(2) 0.2
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i 0.1
N\, / f.(z
o3t Q__ . 1(2)
T Re(¢(z) 0.0 [
0.4 .
-0.1 0.1 0.3

b)

o1

Fig. 2.2 The sequence of the first, second and third order boundaries from the truncated
power expansions fi(z) = 0.3+ O(z + 2), fi(z) = 0.18 + O(2), fi(z) = 0.12+ O(z — 3)

representing the Stieltjes function fi(z) = -5 (1 - Z—_b?ﬁln% .

boundaries ¢, ;(2), ¢51(2), ¢3,(2) are computed for z = —5 + i3, while the real bounds
Fi1(x,0), Fia(x,1); Fio(x,0), Fio(x,1); Fys(x,0) and Fy3(x,1) for —0.51 < 2 < —0.49.

The complex

For illustrating of (2.61) and (2.62) we consider the truncated power expansions

f1(2)d =0.18073 + O(2); fi(2)i =0.11527 + O(z — 3);

(2.63)
fi(2)g = w1 +0(2 = §), £ = =2, wy = 0.30000
obtained from the Stieltjes function
1 2.5 1.2+0.12
= 1 1 : 2.64
hi(z) z+2( +:<:+2n?—|—0.5z> (2:64)

The results are depicted in Fig. 2.2.

First order estimation The first order bounding function F;(z,u) incorporating the
power series f;(2)1; takes the form (cf. (2.63;) and Definition 1.21)

Fii(zu) =w Fi(z+2), wy = fi(—2) = 0.3. (2.65)

Second order estimation From fi(z)} and f,(z)73, it follows the second order bound-
ing function F5;(z,u) (cf. (2.63) and (2.48))

Foa(zu) = 77 ﬁf’; Gy Fralsw) =i +2) (2.66)
g1 = 0.18073 and w, = 0.19878. (2.67)

Third order estimation The third order function F3;(z,u) generated by f1(2), f1(2)3
and fi(z)"} is equal to (cf. (2.63) and (2.48))

g1

F31(z,u) X =0 . Fis(z,u) =wsFi(z +2), (2.68)
+
1+ (Z — 3)F1’3(Z, u)
g1 = 0.180733, g, = 0.18930, w3 = 0.09529. (2.69)

For both 2z = -5+ i3 and z = z, —0.51 < x < —0.49 the sequences of the estimates
(2.65), (2.66) and (2.68) of a function (2.64) are computed and depicted in Fig. 2.2.
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In the next two subsections the influence of ¢ and 7 on estimates of a Stieltjes functions
will be investigated. To this end we recall (2.4) and (2.48)

[7(z) = [i7(2)8, (2) = (ﬁ;;ﬁz;jﬁf;’é), T1(E) = (2.70)

and

=7,
3

F£7n( - V ¢ g_] ,’ (Z;u)
Bl z,u)—\/ \/ 14 (z —x) X 17
k=1j=Py_1+1

(2.71)
Ff,’;l(z, u) = wfgnFl(z — &, u),
F1(£,0) =n.

Remark 2.14 From the recurrence relations (2.13) we conclude that the coefficients g;,
j=1,2,..P—11n (2.71) do not depend on & and 7, while wf;" does depend.

2.2.2  Inclusion relations depending on &
Consider two bounding functions Fg}?l (z,u) and Fﬁf;’l From (2.70) and (2.71), it follows

il (60, 0) = FE2 (€2,0) = . (272)
On account of Remark 2.14 the relations (2.71) and (2.72) lead to the inequalities
wp, (€1,m) S wp(§,m), i & <&, (2.73)
while from Lemma 1.24, it follows
D1(2 = &) C Pz — &), if & <&, (2.74)
Thus the relations (2.73) and (2.74) yield
S (2) € B (2), if & <&, (2.75)

Conclusion 2.15 For a fized z € C\[—00,&,], P and 1, the inclusion relations
T (2) € DR (2, u) C BRI (2,u) (2.76)
are satisfied, provided that &, is not less then &,
£ < & (2.77)

2.2.3 Inclusion relations depending on 7
Now we deal with Ff;}:;”(z, u) and Ff;}fz(z, u). From (2.70) and (2.71), it follows

FEP (61,0) = ny, FET(62,0) = . (2.78)

As before the coefficients g; do not depend on 7, while wf;” does, cf. (2.71). Hence on
account of (2.70) and (2.71) one can easily prove that

wf}l’"l < wf}l’%, it 7, <ns. (2.79)
Conclusion 2.16 For a fized Py, £, and z € C\[—00,&,] the inclusion relations
i7" (z) € ¥ (2) € BB (=) (2.80)
are satisfied, provided that ny is not less then 1,

M < 7. (2.81)
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2.2.4 Inclusion relations depending on P,&,n

Assume now that Ff;?(z, u) depends on the all parameters £, and P. From (2.70) and
(2.71), it follows

Fpth(6,0) =y, FE2(,0) = . (2.82)

Theorem 2.17 Forz € C\[—00,&,] andj =1,2,..., N the S-inclusion regions @%’ﬁl(z)

and @%’221(3) constructed from the non-decreasing truncated Stieltjes series (cf. Definition

(2.4))

P} ‘
2 cij(z — ;)" + O((z — z;)7),

Fm(E) =y 4 0z - 6, £ =

7

(2.83)
pi!
P (2) =1y + Oz — &), [P (2) = Z%Cij(z — ;)" + O0((z — 2;)7)
obey the following relations
frm(z) € B (2) C BE(2), (2.84)
provided the inequalities
m<ny,& <&, Pu<k (2.85)

are satisfied.

Proof. The inclusion relations (2.84) are the direct consequence of the Conclusions

(2.13), (2.15) and (2.16). =

The inclusion relations (2.84)-(2.85) have a consequence that the S-multipoint inclu-
sion region ®%"(2) is the optimal estimate of f5(z) obtainable from the given number
of coefficients (P is fixed) and that the use of additional coefficients (higher P) improves
@%771(2)

Theorems 2.12 and 2.17 are fundamental, for they provide the best estimates of a
Stieltjes function f;(z) from the truncated power series expanded at an number of real
points. It is worth noting that the substitution of

11=0,§==—R, n=n=00, pp=p3=..=py=0 (2.86)

to the relations (2.83)-(2.85) reduces the Theorem 2.17 to the Theorem 17.1 proved by
Baker [6, Theorem 17.1].

2.3 General S-estimates of a complex Stieltjes functions

Now we are able to investigate the basic problem of an approximation of a Stieltjes
function f;(z) stated as follows:

Problem 2.18 By starting from N truncated power expansions

-----

fi2) = G () = () (2.87)

we find the best bounding function Fpy(z,u) estimating fi(z).
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To solve the Problem 2.18 the parametric power series f-"(2)? associated with f,(2)? is
needed

1) = S (1) = () fie) = (2.89)

The continued fraction expansion of f£"(z) computed from (2.88) takes the form (see
(2.21))

F1(2) = 8L, f57(2), where f§7(¢) = wi" and =S, fi7(€).  (2.89)
Formula (2.89) leads to the bounding function Fp;(z,u) (cf. (2.71) and (2.89))

. SN (5
Fplzu \/ \/ gj Wp 1(2 5:“)7

k=1j=Px_1+1 1 T <Z - xk) X 1 (290)

wi! = (ngll)‘ln-

Finally from (2.84), (2.85), (2.90), (2.88) and (2.87), it follows the solution Fp;(z,u) of
the Problem 2.18

&n
gj w Fl(z — f,U)
FPI(ZU_%%II—{EO\/ \/ 1+(Z]—x)>< P - —
K k=1j=Px_1+1 k
— lim \]\} <7 gj WS Fy (2 — 1) (2.91)
= 14 (2 — ) X 1 ’

k=1j=P,_1+1

w$™® = lim ((SE,)"'n),

1—00

where (see (2.89))
r =min(z;, j=1,2,...,N). (2.92)

2.4 Particular S-estimates of a complex Stieltjes functions

In this section a few particular cases of the general bounding functions Fp;(z,u) (2.91)-
(2.92) will be investigated.

2.4.1 Stieltjes function expanded at zero
(a) The first term is available only Consider the truncated power expansion f,(z)?

of f1(z) given by
h(z)=hHEE (7) = () (2.93)
The parametric series f&(2)2 accompanying (2.93) take the forms (see Theorem (2.17))
P28, () = (é;é) (2.94)
or explicitly
H(2) =0+ 0(z =€), f[i"(2) =+ 0(2), £<0, g1 <. (2.95)
For (2.95) the general formula (2.71) reduces to

a1 £,00 .. g1 —1n 1
F51(z,u) = lim , wp o = lim =—,2=0. (2.96
2a(2,u) o 14 (z — S Fi(z —&u) n—oo  N§ —£ (2.96)
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Relations (2.96) yield

F2,1<Z7 U) = lim zgl = 91F2(Z» T)u (297)
0N 1+ =Fi(z,u)
—£
where .
if —1<7<0,
Fy(z,u) =4 1+(=-1)1+7) - (2.98)
T if 0<r<1.

For an increasing values of r the convergence of 1/(1+zrFi(z,u)) to Fa(z,u) , -1 <u <1
is illustrated in Fig. 2.3 , cf. (2.97) and (2.98). It can be easily checked that Fy(z,u)
coincides with the elementary bounding function Fi(z,u) (1.154)

Fy(z,7) = Fi(zu), —1<u7<L (2.99)

From (2.97) and (2.98) the identity follows

1
lim

Hoo<1+<z—x)rm(z—x,u>> = Bz-o7). (2:100)

The relation (2.100) will be used to simplify the last terms of the S—continued fraction
expansions of f;(z).

Im r=ow
-0.2 L
— 1/(1+zrF(z,u))
081 ° Faz,u)
- ; Re
1.4 z= 1.+' . ) .

Fig. 2.3 The sequence of (1 + zrFy(z,u))™" , r = —1/€, z = —1 4 i converging to the
bounding function Fy(z,u), cf. (2.98).

2.4.2  Stieltjes function expanded at a number of real points
(b) The case £ < xy=min(x;, j=1,2,..,N) Now we are prepared to explore in
detail the bounding function (2.91) constructed from

hE () = (o) (2.101)
The parametric series f-"(2)? associated with f,(2)? (2.101) take the forms
fE @, (2) = (nrad). (2.102)
From (2.91)-(2.92) and (2.102) we obtain

w$™ = lim ((Sgil)_ln), T =N, (2.103)

n—00
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3 01 00 01 03 04 b) 0.2-0.0 0.1 0.3 0.5
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Fig. 24 The lens-shaped bounding functions Fpi(z,u) P = 1,2,3 evaluated from
the truncated power series fi(z)3 = 0.30 — 0.103z + 0.0392% + O(z3), where fi(z) =

1 2.5 (1+0.12)
S(1+=2 <ln (1+0.5z)) :

. oo (5 —
9 wp 1z —xN,u)
Fpa(z,u) hm \/ \/ 15 (= — ) x 1 ; (2.104)

—>.',U
N\ k=1j=P, ,+1

or more precisely

Pp—1

\/ V 2 . = 00, (2.105)

k=1 j=Pj_ 1+11+(£—xk)><1+(€—xN)wp57°°

P—1

Fpi(z,u) = lim \/ \/ Ji IPN - (2.106)

v Vo B L L =o)X 1+ (2 —an) B (2 — 2y, w)wb

Since 6hm H(Zxﬂ # 0 the relation (2.105 ) yields
— XN x

T OO0~ ay), C <0, €<y (2.107)
- 4N

From (2.100), (2.106) and (2.107), it follows

N  Pr—0gn

gj gp-1F2(z —xn, u)
F . 2.1
pa(z,u) \/ \/ 1+ (2 —ap) x 1 (2.108)
k=1j=P,_1+1

As an example illustrating (2.108) let us consider the truncated power expansion

f1(2)s = 0.30 — 0.10333z + 0.0392% 4+ O(2%) (2.109)
obtained from the Stieltjes function
1 25, 1401z
= - —In—— . 2.110
fi2) 2z ( z 1+ O.5z> ( )

The sequence of the first, second and third order bounding functions F,;(z,u), p=1,2,3
evaluated from (2.109) takes the form

g gF(zu)
1+2x 1 ’

F1,1<Zau) = 91F2(Z,U)§ F2,1(2uu) =
(2.111)

9 g2 g3Fh(z,u)
l1+2x14+2x 1 ’

The results (2.111) estimating (2.110) are shown in Fig. 2.4.

g1 = 0.3, go = 0.3444, g5 = 0.033.

F371(Z, U) =
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(c) The case & < x,=min(x;, j=1,2,..,N) The parametric expansions f"(z)? as-
sociated with (2.101) are equal to (2.102). From (2.91)-(2.92) one obtains

wp'™ = lim lim ((Sgil)’ln), r =1, (2.112)

§—wy N—00

9 wp " Fy (2 — 71,u)
Fp(z,u) \/ \/ . (2.113)
e 1+11+(z—:rk)>< 1

(d) The cases £ < xy=min(x;, j=1,2,...,N—1) and £ < x;=min(x;,j =2,3...,N)
Let’s focus our attention on the bounding functions Fp (2, u) (2.108) and Fp;™(z,7)
(2.113) given by

gt wp(x1,00)Fi(z — x1,u)
le oo J
Pl ZU \/k 1\/J =P _ 1+11+ Z—.’Iik)x 1 ’

(2.114)

fEN TN
FQENOO Z 7_ \/ \/ —0KN ] gp_ng(Z—ZL‘N,T)
P k=1 V j=P, 1+1 1+ (2 — xp) X 1 '

It is proved in the sequel (see Theorem 2.21) that even though the coefficients g7* and
g;" are different the bounding functions (2.114;) and (2.1143) generate identical complex
boundaries, i.e.

P ={weC: w=Fg®(z,u); -1 <u<l1},

(2.115)
P ={weC: w=Fy™ (z,7); -1<7<1}.
As an example we consider the truncated power expansions of fi(z) given by
1
fi(2)s, =14 0(z — 21) and fy(2),, = = +O0(z —13), v1 =0, 23 =3, (2.116)
or by
1
fi(2)s, ==+ O0(z — 1) and fi(2)s, =14 O(z — 22), 21 =3, 22 = 0. (2.117)

x1 7
The relations (2.114;) and (2.114,) evaluated from (2.116) and (2.117) take the forms

1 1
and F32%°(z2,7) = —/——L——. 2.118
1+ ——2%— i (@) 142 (:-3) Fa(z7) (2.118)

1+§(z—3)F1(z,u)

Ffii’oo(% u) =

In spite of the different structures of the bounding functions F37°(z,u) and F57%(z,7)
the complex boundaries ¢37(2) and ¢37°(2) coincide, see Fig. 2.5.

2.5 Diagonal and overdiagonal multipoint Padé approximants

2.5.1 Definitions

Let us define the diagonal and overdiagonal multipoint Padé approximants to an analytical
function f(z) expanded at real points z1, x, ..., Ty, Ty 11, Where max(xy, Ta, ..., Ty, Tn11) <
00.
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Im(®3Y (2))
-0.0

-0.1
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! Re(® 3} (2))
osl | . . | ~ Re(0;3(2)

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4

Im (® 32 (2))

Fig. 25 The complex boundaries ¢5%*(z,u) and ¢37°(2,7) generated by the bounding
functions F5™(2,u) and F57°°(2, 7). They coincide, cf. (2.118).

Definition 2.19 Let p = (p1,p2, .-, DN, Pn+1) denote the numbers of coefficients of the
power expansion of [mp/np|(z) at points &= ( x1,%s,...,TN,Tn11), TEspectively, while
E(y) is the greatest integer not exceeding y. The rational function

[mp/npl(z) = [mp/npE(2), (2) = (g;;;g; ~~~~~ WNH), (2.119)

where . )
ap +a12° + agz” + -+ app 2"t
)

1 + blzl + 6222 —|— A + bannP (2.120)

[mp/nplh(z) =

mp =P —1—-np, np=E(P/2), P:Zj‘v:llpj’

we call the diagonal (mp = np) and overdiagonal (mp = np — 1) multipoint Padé approz-
imant to power series f1(z), if

fi(z) = [mp/npl(z) =0((z —z;)?), j=1,2, .., N, N+lasz—x;. (2.121)

By way of illustration of Definition 2.19 the multipoint Padé approximants [mp/npl?(z)
to the truncated power expansions exp(z)? of exp(z)

exp(z) = exp(=)2, () = (3171) (2.122)
will be constructed. From (2.122), it follows that
P=4 n,=2 my=1. (2.123)
On account of (2.123) the formula (2.119) reduces to

ap + a2t

_ _ 2141y
mafl(() = [1/21() = /R4 = e m e (az
By substituting (2.122) and (2.124) into (2.121) one obtains
21,41,y _ (a2

exp(z) — [1/2]g771(2) = (1 — ap) + (1 — a1 + agbr )z = O(2?),

B 21,41, N Gt a _ 1\
exvl) - [1/28171(:) = (2718 - ) —0(( - 1)), -

Qo — a1

exp(z) — [1/2]5111(2) = (0-368 1o h

bz) = O((=+1)").
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Hence
ag — aq ap + ay
=1, —— =10.368, — agh — =2.718 2.126
Qo " T b by a; — aghy = 1, 1+ by + by ( )
and finally (2.124)-(2.126) yield
1+0.32272
[1/2](2) = [1/2]253(2) = (2.127)

1 —0.6774z + 0.16402%
It is worth noting that on the basis of (cf. (2.119)-(2.121)) we have

[1/2gx51(2) = [1/2h0.51(2) = [1/2ly 1 10(2) = [1/2] 2301 (2)- (2.128)
Now we prove the following corollary interrelating the bounding functions Fp;(z,u), u =
—1,0,1 with the multipoint Padé approximants [mp/np|(z) and [mp_1/np_1(2).

Corollary 2.20 The values of bounding functions Fpy(z,u), u= —1,0,1 (cf. (2.20) and
(2.90))

FP,1(Z,0) \/k 1 Pk 1+1F1,P(270>7 FI,P(Z;O) = wp,
Fpi(z,-1) = Vit S Fup(z,—1) = Fpa(z,1) = Vo, S5 Fip(z1), (2.129)

Fl,P(za _1) = Fl,P(Z> 1) =0

and the multipoint Padé approximants
P P W2y )
me/melt 7)), (M0 = (nrem),

(2.130)
e /e B0, (700) = (i)

coincide, 1i.e.

Fpi(z,1) = [mP—l/nP—l]g(Pil)(f@ = Fpi(z,—1),
(2.131)

Fpy(2,0) = [mp/np5"(2).
Proof. From Definition 2.19 and Theorem 2.8, it follows the identities (2.131)

immediately. m
To illustrate the Corollary (2.20) we use the bounding function

1
F371(Z,U,) = 06322 s F173(Z,O) = W3 = 0316, F173(Z, 1) = O (2 132)
1+ (z—1)Fi3(z,u)
constructed from the input data
exp(z) = exp(2)%, (2) = (4171 (2.133)
By substituting (2.1323) and (2.1323) into (2.132;) we obtain the relations
. 1 . 1 + 0462Z 1,1 +1
ngl(’Z?O) - B 0632Z - 1 - 04622 {1/1] ( )7
140.316(z — 1) (2.134)
1
F3a(z,1) = = [0/1]51(2)

1 —-0.6322

confirming the equalities (2.131). Note that the function exp(z) is not a Stieltjes one, cf.
2.133.
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2.5.2  The complex boundaries as parametric multipoint Padé approximants

Consider the following two parametric functions
Fpi(z,u), uw e [—1,0]; Fpi(z,u), uel0,1] (2.135)

and
Fpiia(z,u), we [-1,0]; Fpi1i(z,u), ue0,1] (2.136)

forming the bounding ones
Fpi(z,u) ,u € [-1,1] ; Fpii1(z,u), ue [—1,1], (2.137)

where we have

Fpi(z,u) \/ \/ 9i Fl’P<Z’u>,

k=1 j=P,_1+1 L+ (2 — @) x 1 (2.138)

Fip(z,u) =wpFi(z — &, u),

9j gp
F
P11(2, 1) \/ \/ L+ (2 —ap) x 1+ (2 — 2n) Frpaa(2,0)

k=1j=Pp_1+1 (2.139)
Fl,P+1(Z, U) = wpp1 F1(z — &, U)
and
Fl,P(Z, 1) = Fl,P(Z> 1) = F1,P+1(Z> —1) = Fl,P+1(Z> 1) =0,
(2.140)
Fyp(2,0) = wp, Fipy1(2,0) = wpyr.
Since
FP+1,1(570) = FP,l(gao) (2-141)
then p
Fup(€,0) = . 9.142
Lp(6,0) 1+ (§ —on)F1p1(£,0) ( )
From (2.140)-(2.142) , it follows
—w
wp(gp) = —2—2F (2.143)

wp(§ —wn)

According to Conclusion 2.13 the next curve (2.1375) touches the previous one (2.137;)
at two points Fpy11(z,1) and Fpi11(2,0). On account of that the parametric multipoint
Padé approximants Hp.11(z, gp)

FP+1,1<Z7 ]-7 _QP) if — wp S gp S 07
Hp_|_171(Z, gp) = ) (2144)
Fpy11(2,0,9p)if 0 <gp <wp

depending on the coefficient gp, where (cf. (2.138), (2.139) and (2.143))

gj —gp
F
Pr11(2 \/ \/ I+ (z—ap)x 1

k= 1] Pk 1+1

(2.145)

FP+11 2,0 gP \/ \/ 9 P

k1 j=Py 1+11+(Z_xk)xl+(Z—IN) gp —Wp

wp(§ — xN)
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N T~

RN H;1(2,91)

/o "~J
-0.2 ;T

i «:7\H4,1(Z'93)
H3,1(ngz)
-0.5 [ L L L |
0.0 0.3 0.6 0.9

gp < wp, p=1,2,3 from the Stieltjes series f1(2)3 = 0.3 — 0.1034z + 0.0392% + O(z?),
fi(2)T1 =7+ O0(z+ 1), where z = —1 +i.

Fig. 2.6 The bounding functions F,;(z,u), =1 < u < 1 and H,i11(z,9p), —wp <

coincide with (2.135;) and (2.135,), respectively, i.e.
XP+1,1(Z) = ¢P,1(Z)»
Xp11(2) ={w € C:w = Hpy1.1(2,9p); gp € [~wp,wp]}, (2.146)
¢p1(2) ={w € C:w = Fpy(z,u); v € [-1,1]}.
As an example illustrating the relations (2.146) we consider the truncated power series

fu(2)8 = 0.3 — 0.1034z + 0.03902% + O(23),

(2.147)
fi(2)T = fi(=1) + O(z + 1), fi(=1) = 0.469
evaluated from the Stieltjes function
1 25, 1+0.1z

The parametric multipoint Padé approximants (2.145) to the truncated power series
(2.147) are of the form

F1’1<Z, 1) — 0, F1,1<Z>O) = 1’ FQ,l(z7 1791) = 4J1, F2,1(Z,0,g1) = 1+ (191 g—)z7
— Y1
0.30 0.30
371(27 792) 1 +9227 3,1(27 7,92) 14 ga2z )
1 0.7 — gz
o7 ¢ (2.149)
0.30 0.30
F4,1(Zalvg3) = T 0.345z F471(Z,O,g3) = 0.3452 ’
1+ g3z 1+ ’
14 0.508 — g3
0.508
where
0<g1 <1, 0<g92<0.7, 0<g3<0.508. (2.150)

For z = —1+1 the values of bounding (2.149) and Stieltjes (2.148) functions are evaluated
and shown in Fig. 2.6.

Now we prove theorem exploiting the different continued fraction structures of the
S-estimates of a Stieltjes function fi(z).
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Fig. 2.7 The best bounding functions F} ; (i’j,z, u) Fs, (i’;’j, 2, u> Fua( potl z,0)

, Fyy (1197:11, z,u) , F31 (15,’2?111’2/’”) , Fyaf 13723:11, z,u) from the input data (2.157),

z=1+110.

Theorem 2.21 Let Fp; (z e u) be the bounding function construc ted from the

7 21,22, N,E

truncated power series of Stieltjes fl(Z)ﬁZiZTVlg For all permutations (o, e, ..., ay)

of natural numbers (1,2, ..., N) the complex boundaries

) Toq 75Eo¢27~-~7$aN7€

Opy (2 70} and o, (2, [ 02 m) (2.151)
generated by the bounding functions

Fp,y <z O R u) and Fp; (z P1 P2 yeesy PN L u) (2.152)

) 1'1,12,~-~’IN7€7 ) xaly-razz"'zxotl\]7£7

coincide (cf. (2.49))

Opy (2 v ) = gy (5, e LY (2.153)

) Toq 7Ia27~~-7-rocN7£

Proof. For a fixed permutation of (aq, ag, . .., an) the two arcs of circles generated
by Fpi(z,u) are determined uniquely by the two sets of three points

Fpa (2 0022 v 1 1), Fpa (2,00 o0 d 1)

Fpaa (7 27200000 0) | and | Fpga (2 22007000 1) | (2454)

Fpa (2,2 22001 0) Fpa (2,702 001 0))
The multipoint continued fractions (2.154;) and (2.154) are the multipoint Padé ap-
proximants to fi(z). Due to Theorem 2.10 for any permutations of (v, aq,...,ay) we
have

1 ys PN 1 ; S
FP,l (Z p1,p2, 7PN,£7J> — FP,l (Z p1 ,p2 PN o 7]> , ] = 0’ 1,

’ Z1,22;--,TN, ? Tay s Tagy-Tapn

(2.155)
Fpiia (z, PP, PN > =Fpy1 (Z P1oP2 e PNFL 1 ) , j=0,1

T1,T25,TN,E ’j ’ z&lazQ2a~~-)IO¢N75]

On account of (2.154) and (2.155) the boundaries ¢p, (z P1op2 5PN 1 u) do not depend

? TaqsTagyTay§’
on the order of (v, e, ..., ay), see (2.153). =
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By way of illustration of the Theorem 2.21 let us consider the rational Stieltjes function

1.833835939 0.3800408399
= (0.1139240506 . 2.156
fil2) T 170.52966803952 ' 1+ 0.06876441793z (2.156)
From the input data
fi(—=1) < o0, fi1(4) =1.000, f1(9) = 0.6666, fi(19) = 0.4444 (2.157)
we compute the sequences of the bounding functions
Foa (2 4u) o B (257 hw) s P (2 et o) (2.158)
F271 <Z, 1;’i11,u> , F371 (Z, 1;’;’i11,u) , F471 (Z, 1;’;”;’i11,u> . (2159)
For example the functions Fy; (z, i,g,’lg,i , u) and Fy (z, lg”i”g’fl , u) are equal to
1,1, 1,41 _1.000 0.100 0.020 0.030Fy (2+1,u)
Fia <Z7 4,9,19,—1’u) T Th(e4) y TH(-9) ¢ TH(z—19) 5 5 )
(2.160)
1,1,1,41 044 037 . 0.057F) (2+1,u)
1% (27 19,4,9,47“) = 1+()(z:119) % 13?37?1) % 14?(2239) % 1 :

The S—estimates given by (2.158) and (2.159) are depicted in Fig. 2.7. Note that the
boundaries Fj ; (z LL, 1’+1) and Fjy (z 1’1’1’+1) coincide (cf. Eqs (2.160; ).

' 4,9,19,—1 119,4,9,—1
1,1, 1,41 _ 1,1,1,+1
{Fua (= bowhow) s we =10} = { P (2 445 0) we L1} (2161)

2.6 Fundamental inequalities for multipoint Padé approximants

On account of (2.50) for z = = € [€,00) € R the inclusion region ®p;(z) reduce to the
sections lying on the real axis

Opy(z) ={weR:w=Fpy(z,u); -1 <u<0}, fi(z)e€ Ppi(x), (2.162)

where (cf. (2.47))

Fpa(z,u) = \N/ <7 9 wpll +u) (2.163)
) kel j=Pp 141 1+ (1} — ZL‘k) X 1

Let us rewrite the formula (2.163) as follows

g1 92
F — F _ g
P’l(x, U) 1+ (.f — l’l)Fp,l’g(l’, u)’ P 172(1.’ U) 1+ (.f — xl)Fp,Q,g(l', U)’
e , Fop i(z,u)= I , By p(z,u) = wFy(z — zy)

14+ (x —zn)Fip(x,u)

Filr—zy)=(14u), —1<u<0,{<z<o0.
(2.164)
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From (2.164) one obtains

8Fp71($, U) . 91($ - 'Tl) anfl’g(l', u)

ou (14 (x — x1)Fp_12(z, U))2 du

g1(z — 1) g2(x — x1) OFp_s5(x, 1)
((1 + (z - xl)FPm(Q?,u))Q) ((1 + (z — xl)Fng(x,u))Q) ou (2.165)

T (_ gi(x — xy) ) OF p(z, u)
(1 + (l’ - ZL’k)Fp_j71+j(q;7 u))2 ou

N
= e =11

k=1 j=Pj_1+1

The sign of 0Fp;(z,u)/0u is given by

N Dk
sign <M> = sign H H (x — ) , € <z < oo (2.166)

ou
k=1 P_1+1

Simple rearrangements of (2.166) yield

) <8Fp,1 (z,u)
sign | —=—1-~

5 ) = sign ((z1 — )P (x2 — z)P...(xy — 2)PV) (2.167)

or equivalently
(—1)° if <z <,

_ 1\~ ;
Sign (8Fp’éq(f7w) _ (—1) if 1 <x<a, (2.168)

For a fixed = the function Fp;(z,u) is monotonic with respect to u (cf. (2.168)). Hence

we have
(—1)°Fpi(z,-1) < (=DPofi(z) if E<az<um,

(=) Fpy(z,—1) < (=DM fi(z) if =z <z <o,

(2.169)
(- Fpy(z,—1) < (=1)"fi(z) if a2y <z<oo
and
(—=1)°Fp;(z,0) < (=DPFfi(x) if E<a<a,
(_1)P1FP,1(*T7 0) < <_1)P1+1f1(x) if 2 <2<, (2170)

= (-1)"Fpy(z,0) < (=1)vHf(z) if oy <x<oo,

where P;, j = 1,2,...,N and P are defined by (2.14). From the relations (2.169) and
(2.170), it follows the fundamental S-inequalities for diagonal and overdiagonal multipoint
Padé approximants Fpy(z,j), 7 =0,1 (cf. Theorem (2.22)

Theorem 2.22 Consider the non-decreasing power series of Stieltjes (cf. Definition 2.4)

Pj

filx) = cij(w — ;) + O((x — 2;)?), j=1,...,N; fi(z) =n+O(x — &) (2.171)

=0
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and accompanying them the Lp(x) characteristic functions, cf. (2.6). For fixed & and n
the diagonal and overdiagonal multipoint Padé approximants Fpi(x,J), x € R\[—o0,{],
J =0,—1 to the power expansions (2.171) satisfy the following inequalities

(—1)Er2® Fp_y 4 (2,0) < (=1)Er1@) Fpy(,0),
(=)@ Fp (v, —1) > (=1)lr1@ Fp, (2, - 1), (2.172)
(—1)Er@ Fpy(2,0) < (=1)Er®@ fi(2) < (=1)22@ Fpy(z, —1).

Proof. From (2.170) and Theorem 2.17 the inequalities (2.172 ) follows at once.
|
The relations (2.172) have a consequence that the multipoint Padé approximants Fp;(x, J), J =
—1, 0 form the optimum upper and lower bounds on f;(z) obtainable using only the given
number of coefficients (P is fixed, Theorem 2.12). The use of additional coefficients (higher
P) improves the bounds Fp;(z,J), J = —1,0 on fi(z).

Theorems 2.12 and 2.22 are fundamental, for they provide the best bounds on a
Stieltjes function fi(z) from the truncated power series expanded at number of real points.
For one-point Padé approximants the relations (2.172) reduce to the classical estimates of
fi(z) derived by Baker in [9, Th.5.22, Th.5.42]. Moreover, the inequalities for multipoint
Padé approximants derived in [28, 69, 70, 71] are the particular cases of the general
relations (2.172).

Now we evaluate the estimates Fp;(x,0) and Fp(z, —1) of a Stieltjes function fi(x), z €
R for the following particular cases.

Stieltjes function expanded at zero
(a) The first term is available only Let the truncated power expansions f,(z)2 of

a Stieltjes function fi(z)
file) = A% (2) = () (2173)

be given. The parametric series associated with the initial input ones (2.173) are equal
to (cf. (2.70))

fi(@) = 5@ (2) = (52) (2.174)
or explicitly
H(@) = g+ Oz = 0), fi"(x) =n+O0(x=§), £<0, g <n, &> (2.175)
From (2.174) and (2.163), it follows

, g1 €, &m
FEM (2, u) =  Fo(eyu) = wy"(14+u), —1 <u<0. 2.176
51 (7, u) 1_1_fo:2,7(£’“) 1o (7, u) 5" ( ) ( )

Relations (2.174), (2.175) and (2.176) yield

) (7)1 g1 £,00 1
F% T, u) = , =00, Wy = —=. 2177
21 (@) 1+ xwg’ooFl (x,u) 14 &ws™ 2 13 ( )
Thus we have at once
F37°(z,u) = lim | =Bz, 7), ~1<uT <0, (2.178)

01— %(1+u)
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where

F(z,7)=—q7, -1 <7 <0. (2.179)
The equation (2.179;) leads to

Fg,l(l', —1) = Ji, FQJ(I‘,O) = O, LQ(QL‘) = 2H(I), (2180)

where H(z) is a Heavisidea function, cf. (1.52). From (2.180) and (2.172), it follows
immediately that

(DO (2,0) < (1)@ fi(a) < (-1 By (2, —1). (2.181)

Finally we obtain

It is worth to notice that the relation (2.182) can be obtained directly from the formulae
(2.97) and (2.98) via replacing of a complex variable z by the real one x.

Stieltjes function expanded at a number of real points

(b) The case & < xn=min(x;, j=1,2,..,N)  For the assumptions (b) and the
input data given by

AL () = (B2n) (2183

the bounds Fp}"™(,0) and Fp}"™(z,1) on fi(z) are equal to (cf. (2.108))

N Pp—6 T T
FEy(x,7) = \/ k\/kN g (Zgrt47) -1<7<0. (2.184)
Bl 1+ (v — ) X 1 ’ - -

k=1j=Py_1+1
The fundamental S—inequalities (2.172) take the form

(—1)EP @ FRY®(2,0) < (=12 f(2) < (~1)P@FEY ™ (2, -1). (2.185)

(c) The case £ < x;=min(x;, j=1,2,...,N) From the power series (2.183) and ac-
companying them the assumptions (c) we obtain (see (2.113))

g wi (1 + u)
Fpu(z, u) \/ \/ ! L , —1<u<0. (2.186)
P 1+11+(x—xk)>< 1

The bounding functions Fpy™(x,0) and Fpy™(x, —1) satisfy the fundamental inequalities
(2.172)

(—D)PP@FE(2,0) < (1)@ fi(2) < (=1)PPE PRy (2, 1), (2.187)

(d) The cases § < xy=min(x;, j=1,2,...,N—1) and £ < x;=min(x;,j=2,3...,N)
Let us turn our attention to the bounding functions Fp}"*™(z,0), Fp}™(z, —1) (2.184)
and Fpy™(2,0), Fp)"™(x,—1) (2.186). They are the best over the input data given by
(2.183), so they should coincide. From the Theorem 2.21, it follows at once

Fpi™(z, —1) = Fpy™ (2, —1) and Fp}™(z,0) = Fpi™(,0). (2.188)
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1

2, of truncated power expan-

As an example we consider the sequences f,(z); and f(x)
sions of fi(x)

fi(x)y, =14 O0(z — z) and f(2)), = % +O(x —x2), 21 =0, 22 =3 (2.189)

and

1
fi(@)}, = - +O(z — z1) and f(2)}, =14 O(x — x2), x1 =3, 25 = 0. (2.190)

For (2.189) and (2.190) the bounding functions are equal to

1
x1,00 1 xr2,00 ?
Fy™(z,u) = 57 and F37%(z,7) = — (2.191)
1+ 5(96 —-3)(1 +u)
It can be easily checked that if u,7 = —1,0 we have
Fo(a, —1) = —— = F23(z, ~1) = —
S 1+2¢ %0 Y7 1+ 2z

(2.192)

F7%(2,0) = - = F1%(2,0) = =

In spite of the seemingly unsymmetrical structures of the bounding functions Fy > (x, J)
and F37%(x, J), J = —1,0 the identities

Ffp™(e, 1) = F3™(e, - 1) and B3~ (0,0) = F3™(2,0) (2199

are satisfied.
As an example illustrating Theorem 2.22 we consider the truncated power expansions

fi(z) 2 = 0.1792 + 0.00958(z — 10) + O ((z — 10)?),
(2.194)
fi(z) 2, = 0.0008 + 0.7517(x — 10*) + O ((z — 10*)?)

of a Stieltjes function
1

The parametric power series added to the input data (2.194) takes the form
Ai@)t =0+ 0l — o). (2:196)
According to (2.184) the multipoint Padé approximants
Fy1(2,0), Fyi(z,—1) and F541(x,0), F51(x, —1) (2.197)
are the best estimations of fi(x) (2.195) constructed from the coefficients
cor = 0.1792, c1; = .00958, cp2 = 0.0008 (2.198)

and
co1 = 0.1792, c11 = .00958, cgo = 0.0008, c1o = 0.7517, (2.199)
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S L B Fa1(x,0)
' p(2)=(2.1)7 T Fs,1(x.0)

/\}\\}\ N :'.'V'Z/.
p(3)=(3, 1)/7"\\

s | ( (3 23\ _____ R F4v1(X,'l)

‘11 f1(x) = In(0.5(x+2))/x x=(10%,10%)

lg (x)

0 1 2 3 4 5

Fig. 2.8 Sequence of Padé approximants Fy(x,0), Fyq(x,—1) and F5(z,
0), F51(z, —1) forming the upper and lower bounds on the Stieltjes function In(0.5(z+2))/z,
cf. Th. 2.22.

respectively. The multipoint Padé approximants (2.197) satisfy the fundamental inequal-
ities (2.185)

(=)@ Fya(2,0) < (=1)M fi(e) < (=1)M Fya(z, -1).

(2.200)
(=15 Fy 1 (2,0) < (=1)5@ fi(2) < (=1)8@ Fy (2, —1),

IA

where
Ly(x) = 3H(z — 10) + H(x — 10*) and Ls(v) = 3H(z — 10) + 2H(z — 10*).  (2.201)

Figure (2.8) presents the bounds Fyq(z,0), Fyi(z,—1) and F51(x,0), F51(z,—1)
on fi(z).

2.7 Summary and final remarks about SMCFM

In this chapter we derived the S- Multipoint Continued Fraction Method of an estimation
a Stieltjes function f;(z) from the incomplete power series f;(z)® constructed at real points
T1, %2, T3, ..., Ty, where max(xy, za,x3, ...,xy) < 00. We proved that the S—estimates
of fi(z) obtained via SMCFM are the best with respect to the truncated power series
fi1(2)P. This important results is new.

The real parameters £, n (2.2), the recurrence S-algorithm (2.13)- (2.14), the funda-
mental S- inclusion relations (2.84)-(2.85) and the general S- inequalities (2.172) are the
main mathematical tools of the SMCEFM.

The algorithm (2.13)-(2.14) transforms the truncated power series (2.88) first to the
bounding functions (2.90) next to the complex boundaries (2.49) and finally, if f;(z) € C
to the best inclusion regions (2.50) or if fi(z) € R to the best upper and lower bounds on
fi(2) (2.172).

From the fundamental S-inclusion relations (2.84)-(2.85) and the general S-inequalities
(2.172), it follows the values of the parameters ¢ and 7 (2.2) optimizing bounds on fi(2)
in both complex (via 2.91), (2.84)-(2.85)) and real (via 2.91), (2.172) domains.

The problems of an approximation of a Stieltjes function fi(z) from the truncated
power series fi(z) exploited before in [6, 9, 10, 24, 26, 27, 28, 53, 54, 55] dealt with
limited numbers of coefficients of the power expansions of f;(z), see also [6, Chap.17].

The SMCFM established here is a first method of the theory of an approximation of
Stieltjes functions, that incorporates into the estimates of f;(z) the power series consist-

ing of arbitrary numbers of terms. The computational block diagram representing the
SMCFM is as follows:

| fi(z) = fi(z) 2VF2 P -the initial input data |
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‘ f15,77 (Z) P1,P25--PN L

o IN’f—the parametric input data ‘

!
fon (pl’pz’ PNl fe(z ))—the S-continued fraction expansion of f(z)

T1,02,--,TN,E’
!
ffn <£$ vavg’é' fp(§)> = n-the equation for w = fp(§)

!
&1 (pl’pz’“"pN’l z, wFy(z, u))—the bounding function estimating £ (z)

) I17$27-"7IN7£7

the best bounding function for f(z)
Fpi(z,u) = lim lim Flg’f(z w),x = min(xy, Ta, ..., TxN)

E—axn
| |
the best complex the best bounds
boundary for fi(z), z € C, i.e. on fi(z), z € C, i.e.
¢pi(z) ={weC:w= (—1)FrE Fpy(2,0) < (1) fi(2)
Fpi(z,u); =1 <u <1} < (=)EPR Fpy(z,—1)

Among many unquestionable advantages the SMCFM has one essential disadvantage. It
does not work with the truncated power series expanded at infinity. In the next chapter we
overcome this disadvantage by establishing the T-Multipoint Continued Fraction Method
(TMCFM) of estimation of a Stieltjes function.
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Chapter 3

THE BEST ESTIMATES OF A STIELTJES FUNCTION
EXPANDED AT REAL POINTS AND INFINITY

The aim of this chapter is to derive in a unified and coherent form the T-Multipoint
Continued Fraction Method (TMCFM) of an estimation of a Stieltjes function fi(z) from
the truncated power series expanded at real points 1, z9, ..., T, infinity zy,1 = 0o and
¢ < min(xy, zg,...,xy). The first letter T" appearing in TMCFM follows from Thron, who
first derived two-point continued fractions to analytical functions, cf. [31].

The TMCFM is the first method of the theory of an approximation of Stieltjes func-
tions, that incorporates into the estimates of fi(z) the truncated power series fi(z) ex-
panded at infinity, cf. [6, 9, 24, 27, 53, 54, 55, 66, 67, 68]. If the power expansion of f(z)
at z = oo is unknown the TMCFM reduces to the SMCFM established in Chapter 3.

In the sequel the TMCFM is adapted for estimating of the effective transport coeffi-
cients of two-phase media.

3.1 The T-multipoint continued fraction expansions of a Stieltjes function.

3.1.1 Power expansions of a Stieltjes function at infinity

The following Lemma is a starting point for an estimation of a Stieltjes function f(z)
from its power expansions available at a number of real points and infinity.

Lemma 3.1 If fi(z) is a Stieltjes function

1/eo
dry, (u
e = [P w0 0<g <o (3.1)
/00
then ¢,(s) defined by
Qoo
dy o (u
o) = [T, w2 0.0 < 0 < o (3.2)

Qo
18 also a Stieltjes function, provided that

fi(2) = srls), 2 == 33

where
iy (1) = —udv, (%) | (3.4)

Proof. By substituting z = 1/s into (3.1) we arrive at (3.2)-(3.4) immediately. m

Remark 3.2 Since fi(z) and ¢,(s) are Stieltjes functions any estimation procedures con-
structed for fi(z) are valid (after simple adaptation) for p,(s) as well, cf. (3.1)-(3.4).
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In this section we limit our investigations to Stieltjes functions fi(z) represented by
the power series with non-zero radii of convergence 1/0,, > 0, see (3.1)-(3.4). Consider
the power expansions:

Of fi(z) at z = zy,
filz) = Zcm (z—zn)", —0p<2z<2N+0p) (3.5)
=0
Of ¢,(s) at s = yn

~ i 1 1
pr(s) =Y din (s —yn)', —oo <8< 2(yn + —). (3.6)
i=0 ° ©
Of sp,(s) at s = yn

o0

s1(9) = Yot (s~ i)' === < < 2o+ ) (37)

Here xy and yy are real numbers. The intervals of a convergence of the power series f;(2)
(3.51), ¢1(s) (3.61) and sg;(s) (3.7;) follow directly from the inequalities (1.69)-(1.70).
The substitution into (3.5)- (3.7)

1
3:; Yn = —, (3-8)

allows us to write the equalities

fl(Z) = ZCiN (Z - (L‘N)i = ZbZN (1 - i) = 1z:du\/ (1 - i) (39)
i=0 i—0 z TN z =0 z TN

valid for z satisfying
1
5, 2 <Z<2<$N+QO). (310)

TN Oco

The coefficients b;y, d;n and ¢;x appearing in (3.9) are interrelated by the recurrence
formula derived in Section 7?7 of the Appendix

(D" & (41 —d)lenyiitng
b() = Cp, bn = ol & y2n+1—i , N = 1,2, cee
(3.11)
(D™ & (n4+1—=0)byy1—iTny
Co = bo, cp, — ol 2 T , = 1,2, cee
where
b, =vyd, +d,_1, n=1,2, ...,
— (3.12)
d1=0, d,= M, n=12,..,
Yy
and

Tji—1,0 = 0, rji-11 = 1, Ti—1j+1 = 0,

rj,k = 2(] — k)rjfl,kfl + T'jfl’k, k= 1, 2, ,j —+ 1.

}, i=1,2,..,n. (3.13)
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For i = 1,2 the formulae (3.11)-(3.13) reduce to the following relations

ro,0 =0, 701 =1, 192 =0, ri1 =711 =1,

&1 b(] bl bo
0= G = Trg do= o = o n T o (3.14)
do dox + dy 1
T T X

Note that in (3.11)-(3.14) the index N is omitted , cf. (3.9).
Now we focus our attention on the Stieltjes series represented by (3.9;) and (3.93)
only. The equality (3.9) leads to the following conclusion

Conclusion 3.3 If z > 2= and xny — oo then

filz) = %gojdxoo) G) = %gdi(m) G - %) _ icl-(xN) (—an), (3.15)

=0

where d;(xy) and ¢;(xy) are interrelated by (3.11)-(3.13).
By replacing in (3.15) d;(zx) by d;(00) and ¢;(zn) by ¢°(zxn) we arrive at:

Conclusion 3.4 If z > 2= and xny — oo then

A =130 (3) =130 (3 - ) =L e —aw) (319
where d;(c0) and ¢°(xy) are given by (3.11)-(3.13).

From the infinite power series (3.16), it follows immediately:

Conclusion 3.5 If zy — oo and |z — zn| — 0 then

’ (3.17)
- °°z = (an) (2 — an) + O ((2 — an)P=)

provided d;(00) and ¢°(xy) satisfy (3.11)-(3.13).
The equality (3.17) motivates us to introduce:

Definition 3.6 The truncated power series (3.17,) and (3.17,) with the coefficients d;(c0)
and ¢°(xy) interrelated by (3.11)-(3.13) we call the interchangeable ones.

Now we are ready to present the main result of this section:
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Theorem 3.7 Consider two sets of truncated power series (cf. (2.4))

fl(Z) =f1(Z)p1’p2 ----- DN —1,Poo;1 and flxzv(z) :ffN(Z)pl’pz ----- DN—1,Poo;1 (3.18)

T1,X2,. TN —1500,8 T1,22,+TN—1,TN,§’

where the following ones coincide

fl(z)pl,m ~~~~~ PN-1,1 __ ffN(Z)Plvp? ~~~~~ PN-1,1 (319)

1,22, TN 1,8 1 1,22, TN -1,

while the remaining fi(z)P> (see (3.181)) and fi™V (2)5 (see (3.18)y) take the forms

Al =23 4 (o0) (1) ro(@r) (320)

=0 z z

and

(e = 3 ) (s —aw) O (5 — 2w ). (3:21)

If the expansions (3.20) and (3.21) are interchangeable (see Definition 3.6) then the bound-

ing function Fpe 1(2,u) computed from (3.18,) and the bounding one Fpl |(2,u) generated
by (3.18;) satisfy the relations (cf. 2.48)

1
Fpoo 1(2z,u) = Fpi 1 (2,u), x5y — 00, P = ZFl Di + Poo + 1. (3.22)

Proof. Due to Theorem (3.11) the bounding functions FpX ;(z,u) and Fpe 1(2, u)
are defined by

Poo—1

FRL(zu) =) 7 an) (z—an) =O0((z—ay)P=), —1<u<l  (3.23)

i=0
and

Fooe(2,1) — % idi(oo) <1) _ 1 ((5%0) Cl<u<l (324)

Z z z

Since the power series (3.20) and (3.21) are interchangeable the following equality is true

(cf. (3.17))
(G (2) o () - =

St e (y) (2 — xn)' + O ((2 — 2n)P>) for zy — oo and |z — x| — 0.

Thus from (3.23), (3.24) and 3.25), it follows the identity (3.22). =
By way of illustration of Theorem 3.7 we consider the truncated power series

Ai(2) = % (do(oo) + dy(00) (%) L0 (G)Q)) (3.26)

7 (2) = ¢ an) + & (an) (2 —an) + O (2 — an)?) | (3.27)

and

where
do(oo)’ () = _do(oo)xN3+ dl(oo)‘ (3.28)

N TN
One can easily check that series (3.26) and (3.27)-(3.28) are interchangeable, see (3.143).

o (zn) =
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Now let us compute the Padé approximants F3;(z, —1) (see (2.131)) to the power

series (3.26)

do(00)

F3a(z,-1) = T.j)l (3.29)
L (o)

and the Padé ones F3) (2, —1) to the expansion (3.27) (cf. (2.131))

do(0)
Fo¥(z,—1) = Iy . (3.30)
3,1 do(oo)xa];[]j;rdl(oo) (2 . xN)
1+ do(o0)
TN
From (3.29) and (3.30), it follows that
_ dg(o0)
Fyi(e,—1) = lim Foy (s, —1) = — @) (3.31)
’ TN—o0 7 _ do(OO)Z
dl OO)

Note that the particular equality (3.31) agrees with the general one (3.22).

3.1.2  Recurrence formulae for T-multipoint continued fraction expansions of analytical
functions

Definition 3.8 The following formulae interrelating f1(z) and fp(2)

. fry+1(x1) . fry+1(z1)
fPo-l—l(Z) - 1+(z_§:1)<ppo+2(z) - 1+(z—:c1)ep0f2+(z—$1)fpo+2(z)’
. fpy (1)
ceeny fP1<Z) - 1+(Z7-731)€P1+11+(Z7731)fP1+1(Z)’
_ fpy+1(x2) . fpyy1(z2)
frn(z) = 1+(Z—;>2)90p1+2(2) B 1+(2—932)6P1+12+(2—$2)fP1+2(2)’ (3.32)

_ fpy(z2) . Fpy_41.(@N)
e IR (2) = 1+(zfz2)6P2+12+(Z*$2)fpz+1(Z)’ fPN71+1(Z> T I+(z—an)epy  42(2) 7T

fpy (@) fpy (@)

fPN (Z) == 1+(zfng)g0PN+1(Z) - 1+(Z7£L'N)6P+(Z7£L'N)fP(z)’

where 1
fuz) = fi(2)h, (5) = (Beivr=y),

.....

fp(z> = fp(z)é = WP(GP) + O(Z - f),

(3.33)

and
{ 0i(00) >0, =23, ...,ps0 + 1,
€; =
=0,

Po=0,Pj=5" p,j=12.,N, P=Py+1,
we call the T—multipoint continued fraction expansion of fi1(z) to fp(2).

On the basis of the notation (2.19) the recurrence formula (3.32) can be abbreviated as
follows
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\/ \/ 9; fr(2)
k=1 V=P a1 14 (z —xp)eju + (2 —ap) x 17

(3.35)
fr(2) =Wp(ep) + O(z = &), Wp =wp —ep, Wp = [p(§).
The alternative notations for (3.35), namely
\/ \/ 9j fr(z)
k=1 Vj=Po 1+l 1+ (2 —ag)ej + (2 —xp) X 1 (3.36)
=Tp_1fr(2) = Vi, T 1 fp(2),
and
N P
\/ \7 9j fr(z) _
k=1j=P,_1+1 1 T (Z N l’k>€j+1 T <Z N xk) x 1 (337)

Az fe(2) = h (z e fp<z>)

will also be used. As an example let us evaluate the T-continued fraction expansion of

1 2.5 1+0.12
=—(14+—In )
h(z) z ( z <1 +0.5z>) (3.38)
from the truncated power series
A28, (B) = (527). (3.39)

Formulae (3.39) and (3.38) yield

f1(2)3 =0.1807 + O(2 — 2); f1(2)t =0.1153 + O(z — 5);

2 (3.40)
Sfu(2) = 1 — 4.0236 G) +0 G) (=) = 04695+ O(z + 1).

The recurrence relations (3.32) and the input data (3.40) lead to the following continued
fraction expansion of fi(z) (cf. (3.35))

A= 5 (2 20502 =

_ 91 92 f3(2) _
Il+e(z—2)+(2—2)x1+e3(z—5)+(2—5) x 1 (3.41)
91
= , f3(2) =Ws + O(z + 1),
1+€2(Z—2) + (2_2)92

1+e3(z—5)+ (2 —5)f3(2)

where

a1 €2 g2 €3 W3 (3 42)
0.180733985 | 0.180733985 | 0.00857127 | 0.09666667 | 0.01114 80 '
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3.1.8 Main properties of T-multipoint continued fraction expansions of a Stieltjes
function

Now we prove theorems stating the most important properties of T'—continued fraction
expansion of fi(z) to fp(z), cf. Theorems 2.6, 2.7, 2.8, 1.16 and 2.10.

Theorem 3.9 If fi(z) is a Stieltjes function

fi2) =] D 0 =0, (3.43)

then the tail fp(z) of a continued fraction expansion of fi(z)

VARV, 9 ) o) = Witer)  (3a9)

A 14+ (z —ap)ejrr + (2 — x) X

s also a Stieltjes function

Avyp(0) =0. (3.45)

2 dyp(u
0
Here Avy;(0) = v;(04) —v;(0-),7 = 1,2,...,p denote the jumps of v;(u) at u = 0.

Proof. By applying the linear fractional transformation (1.107) to the function
fi(z) Py times we arrive at the relation (3.44). The Stieltjes integral (3.45;) and the
relation (3.45;) result directly from Theorem (1.9). =

The next Theorem is relevant to Theorem 3.9. It states:

Theorem 3.10 If fp(z) is a Stieltjes function

o) = T T2, Ap(0) =0 (3.46)

then fi(2) appearing in

= \/ \/ 97 fpl(Z), fp(§) =Wp(ep)  (347)

et P L+ (2 —ap)ejn + (2 — ap) X

1s also a Stieltjes function

(0) = 0. (3.48)

0
Here Avy;(0) = 7;(04) —7,(0-),7 = 1,2,...,p denote the jumps of v;(u) at u = 0.
Proof. Theorem 3.10 is a direct consequence of Theorem 1.15 m

Theorem 3.11 Let the continued fraction expansion of a Stieltjes functions fi(z) to
fp(z) be given

fi(2) = fi (2, i fo(2)) , fel6) = We. (3.49)
The low order derivatives of fi(z) (3.49)
dofl (Z) dofl(Z) d1f1(2> dpkilfl(Z)
vy ————— k=1,2,...N .
dz0 |7 d20 | det | 7T et ] T (3:50)

do not depend on fp(z) satisfying (3.49:).
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Proof. The proof of the Theorem 3.11 is analogous to the proof of Theorem 2.8.
|

Theorem 3.12 There is an one to one correspondence between Stieltjes functions

f € TPLPzpN ool g £ e Fé (3.51)

T1,22,...,TN,00,
satisfying T'—linear fractional transformation (3.44), where

OO

p17p2 77777 PN »Poo,1 d’yl(U)ZO (3.52)

P1,P2,---3PN sPoo 1
F 1, [RARS) ). ) — f f
, C5'17502 7777 CEN,OO,E !

T1,L25--5 INyoové-

and

) =wp+O0(z—8), dyp(u) >0, . (3.53)

1—%: fP7fP E

0

Proof. Theorem 3.12 is a direct consequence of Theorems 1.16 and 3.11. m

Theorem 3.13 Let the continued fraction expansions of fi(z), i.e.

P1,P2;--,PN sPoo,1 o P1,P2;--PN ;Poo,1 <
h (Z7 TayTag s Tay ;00,8 P<Z>> and fy <Z’ LBy TRy T 00,6 P(Z)> ) (3’54)
where
JR(€) = Wg and fp(€) =Wy, (3.55)
be given. For any permutations of (a1, e, ..., an) and (B, By, ..., Bx) of natural numbers

(1,2,...,N) the following identities are true

’ Ty yTag sy l’aNaooaf’

fl (z P1,P2,-,PN ;P01 ) fl ( P1,P2;-+ PN Poo,1 W’B> (3.56)

Proof. The fraction expansions fi (z, 2, f&(z)) and fi ( z, 5, f5(2 )) are eval-
uated for the Stieltjes function fi(z), see (3.54). Hence the rational functions fi(z,2
W§g) and f; ( 25, ,Wﬁ) are T'—continued fractions to each other, cf. (3.54)-(3.55). On
account of that they coincide, cf. (3.56). =

3.2 Fundamental relations for T-inclusion regions

Since f;(z), j = 1,..,Py and fp(z) appearing in (3.32) are Stieltjes functions the
coefficients of T-continued fractions (3.35) satisfy the inequalities

g; >0, €41>0,i=1,.., Py, wp > 0. (3.57)
The tail fp(z) is represented by (cf. (3.45))
fr(2) = [p(€) + O(z = &) = Wp + O(z = ). (3.58)
The first order bounding function Fj p(z,u,ep) is equal to (cf. (1.154))

Fi p(z,u,ep) = Wp(ep)Fi(z — &, u), (3.59)
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while the (P + pe)-th order one (cf. (3.35)) takes the form

gj FI,P<Z7U7€P)
P . (3.60
Ppeei (20) \/k 1\/J =P+l 14 (2 — xp)ejn + (2 — o) X 1 (3:60)
From (3.60), it follows that
(DP+p0071(Z) =
(3.61)
{w eC:w= ka:1 TJI;ZAH TF p(z,u,ep); 0<7<1, —1<u< 1}
and
¢P+poo,1(z) =
(3.62)
{w ceC:w= \/k 1 Pk 1+1F1,p(Z,U,€P); —1<u< 1},
where
f1<Z) - cI)p+poo71(Z). (363)

Here ®p, . 1(2) is the (P+ps)-th order inclusion region , while ¢p,, () the (P+po)-
th order complex boundary.

Theorem 3.14 The estimations of fi(z), i.e. Fpip1(z,u) (3.60), Ppy, 1 (3.61) and
Gpipo1(2) (3.62) evaluated from the incomplete power expansions fi(z)? "2 PN-P <1 are
the best. 7 ’

Proof. It follows directly from Corollary 1.22 and Theorem 3.12 m
Now we establish the inclusion relations for 7T-inclusion regions estimating a complex
Stieltjes function f(z).

Theorem 3.15 For z € C \(—o00,&,] the T-inclusion regions @f&ﬁﬁ( ) and @%02721( )
constructed from the truncated non-decreasing power series of Stzeltjes (see Deﬁmtwn

2.4)

1&177]1(2)1)(P;)0)7 (p(P]OO)) — (pl(P]oo)ﬂp2(Pfo)1 7pN(PI°O)7p<>O(PI°O)71)’

T T T1, T2 eeeny TN, 00, &
527772 (Z)p(P})]o) (p(PI"f)) — (pl(P})]o)vlJQ(P?]o)v "-7pN(P[O?)7poo(P]O?)7 1) (3,64)
1 z ) T L1, T2 ---ey TN, OO, 51 7

P =300 pi(1) + 14 pao(1), PP =30, pil2) + 14 pec(2)
satisfy the relations

FiE(2) € DRI (2) € B (2), (3.65)
provided that
m <My & <&, Py <P (3.66)

Proof. By replacing the S-inclusion regions <I>§1 "1(2) and @%’Zﬁ(z) appearing
in (2.84) by the corresponding T-inclusions ones @%f.g’?ll(z) and CI)%I;gfl(z) we obtain the
relations (3.65) and (3.65) at once. It is justiﬁed by Theorem 3.7. m

For fixed ¢ and 7 the T-inclusion region ®% P 1(2) forms the optimum estimate of
$7(2) obtainable from a given number of coefficients (P> = P + p,, is fixed, Theorem
3.14) and that the use of additional coefficients (higher P> = P + p,,) does not worsen
DL 1 (2), cf. (3.65).
Theorems 3.14 and 4.2 are fundamental, for they provide the best estimates of a

Stieltjes function fi(z) over the truncated power series fi(z)% available at real points and
infinity.
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3.3 General T-estimates of complex Stieltjes functions.

Now we are able to investigate the problem of an incorporation into estimates of a Stieltjes
function fi(z), among many others, the power series expanded at infinity.

Problem 3.16 By starting from the N + 1 truncated power expansions of fi(z)

fi2) = K@ (2) = () (3.67)

77777

let us construct in a complex domain the best bounding function Fpy, 1(z,u) estimating

fi(2).

To solve the Problem 3.16 the parametric power series f”(z)2 associated with f,(z)? are
needed

fE1(z) = @8, (2) = (mremr=l) | where fi(€) = 7. (3.68)

.....

The T-continued fraction expansion of f-7(z) computed from (3.68) takes the form (see
(3.36))

FE1(2) = TS f57(2), where f57(€) = W5"(ep). (3.69)

Formula (3.69) leads to the bounding function Ff,zp 1(z,u) given by (cf. (3.58)-(3.60)
and (3.69))

N &m
el (zw =\ 'V 9i Fl,P(Z’“’eP)’
k=1j=P,_1+1 1+ (2 — ap)ejin + (2 — p) X 1 (3.70)

Fol(z,u ep) = WE(ep) Fi(z — €,u),  W5"(ep) = (TS )n.

On account of (3.65)- (3.66), (3.67) and (3.70) we have immediately

gj W5 (ep)F1(z—Eu)
Fpip1(z,u) = lim lim \/ \/ e e ey B pler)! —

N P41

N P

\/ \7 gj Wgoo(ep)Fl(zfrr,u) (371)
1+(z—zk)ej1+(z—k) « 1 )

k=1j=P,_1+1

= lim
-

Wi (ep) = Jim ((T)) '),
where (see (3.74))

r=min(z;, j=1,2,...,N). (3.72)

The bounding function Fp,,_ 1(2,u) (3.71)-(3.72) solves the Problem 3.16. It is the best
estimate of f(z) with respect to the given input data (3.67).

3.4 Particular T-estimates of a complex Stieltjes function

Now the particular cases of the bounding functions Fp,,_ 1(2,u) are studied (cf. (3.71)-

(3.72)).
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3.4.1 Stieltjes function expanded at zero and infinity

(a) The first term is available only Let the truncated expansions of a Stieltjes
function fi(z) at zero and infinity be given

hEE (2) = (02)- (3.73)
The parametric series f-"(z)? accompanying (3.73) take the forms

S1n (2) = () (3.74)
or explicitly

€2
)t =n+0@—¢), £€<0, g1 <n.

The bounding function Fgfu(z, u) is given by (cf. (3.75) and (3.70))

P8 =g1+0(2), fi"(2)L = % (ﬂ +0 (%)) ’ (3.75)

g1

Fgfl,l(zu U) = ¢
142 (62 + F1y (2, u, 62))

, oY (z,u) = Wi (ea) Fi(z — & u).  (3.76)

Relations (3.71), (3.72) and (3.76) yield

g1 £,00 1 0,00
—:OO, w = —, F Z,'LL — F Z7u7€ . 3.77
1+ cus™ 2 ¢ 2i11(2 1) = g1Fy( 2) (3.77)
Here
1
Fy(z,u,€2) = lim - (3.78)
1+ zey+ 2 (—_f — 62) Fi(z,u)
and finally
—u
if —1<u<0,
Fy(z,u,e9) = ! _;Bzu + (=11 +u) (3.79)
T e if 0<u<l.
1+ zesqu

The inclusion regions ®52(z) generated by Fy(z,u, e2) are depicted in Fig. 3.1, cf. (3.61).
From (3.78) and (3.79) the identity follows

i 1 = Z—T,Uu,€ep
)E&(H(z—x) (ep—i-(?"—ep)Fl(z—ac,u))) = Bz 2 u,ep). (3.80)

The relation (3.80) will be used to simplify the last terms of 7'—continued fraction expan-
sions of Stieltjes functions fi(2).



82 The best estimates of a Stieltjes function expanded at real points and infinity

m ($52(2))

PR .
-0.2 L = Y R ®,(z), €,=0.0
“-l — — ®,(z), €,=0.5
I K -
-~ -7 ; | == D ,(z), e,=1.0
-0.8 | s \ - 2(2) 2
\’ - ) -—-—— D ,(z), e,=1.5
\
se1si T Re(652(2))
1.4 .
0.4 0.4 1.2

Fig. 3.1 The sequences of the complex boundaries ¢3?(z) and inclusion regions ®52(2)
computed from the truncated power series (3.75).

3.4.2  Stieltjes function expanded at a number of real points and infinity
(b) The case £ < xy=min(x;, j=1,2,...,N) Let us estimate f,(z) from the input
data given by

AR () = (bmrs). (3.81)
The parametric power series f5"(z)2 associated with (3.81) is of the form
@ (2) = (et (3.82)

From (3.71)-(3.72) and (3.82) we obtain

; F;
Fpip i(z,u) = lim \/ \/ 9i 1’P(Z’u’ep),

Cean Vg T E e+ (2 - o) X 1 (3.83)

Fyp(z,u,ep) = Wp™(ep)Fi(z — ay, ),
where

Wg™(ep) = lim (T ) 7'n), ==y, (3.84)

n—00

or more precisely

FP+p0071(Z7 U) =

— lim \/ T 5;]{ 9Py , (3:59)
E"CEN k—1 5700
1+ (z —zn) (ep + <wp — ep> Fi(z — mN,u)>
where
N  Py—0iN
\/ \/ 9j 9Py —
kel j=Pp 1 +1 1+ (5 - xk>€j+1 + (f - Jfk) X1+ (5 — IN)U)%OO (386)
0 __ W]{j,oo —ep
Since lim m # 0 the relation (3.86 ) yields
E—an 1+(§—zN)w
1
W™ = — +C+0(E—1zy), C<oo, £<uxp. (3.87)

§— N



Particular T-estimates of a complex Stieltjes function 83

Finally the Eqgs (3.80), (3.86)-(3.87) lead to (cf. (3.79))

N  Py—0kn

gj gp—1F5(2 — xn,u, ep)
Fpipoi(z,u) . (3.88)
TP k‘\/lj Plerl 1 + (Z — .’Ilk)ejJrl + (Z — Z’k) X 1

(c) The case £ < x;=min(x;, j=2,3...,N) Consider once again the initial input
data (3.81). The parametric power expansions f>"(z)2 are given by (3.82). From (3.71)-
(3.72) we have

\/ \/ Ji Wph*Fi(z — 21,u)

F Z,u) ,
P¥peo, 1 1+ (Z - ZL’k)Gj_H + (Z — ZL‘k) X 1

k= 1] Pk 1+1

(3.89)

W™ = limy oo (TEL) M), @ = a1,

(d) The cases £ < xxy=min(x;, j=1,2,...,N —1) and £ < x;=min(x;,
j=2,3,...,N) Let us turn out our attention to the bounding functions Fp\:> (2, u)
(3.88) and Flfi;o 1(z,u) (3.89) generated by the input data (3.81)

F;;c.ipoo (Z, u) —

N  P.—0gn

\/ \/ 9" gp—1F3(2 — xn, u, ep)

1+ (z — zp)ejp1 + (2 — @) X 1 ’

k=1 j:Pk,1+1
(3.90)
Fpypen(z0) =

N P 1,00
\/ \7 gj Wpl Fl(Z—Z'l,U).
kel j= Py +1 1+ (Z - xk)€j+1 + (Z — Z’k) X 1

It is proved further (see Theorem 3.20) that even though the coefficients g;* and g7
different, the complex boundaries ¢3}"° |(2) and ¢35 | (2) determined by the bounding

functions FpY ™ | (z,u) and Fpy”® (2, u) coincide

czﬁfafi’;fo,l( z) = ¢?+Z°oo1( 2);

G ((2) = {FpL ((zu); —1<u <1}, (3.91)

O {Fﬁi;‘”( w); —1gug1}.

By way of illustration of the relations (3.91) let us consider the truncated power expansions
of fi(z) given by

AEL =1+0G=a), Aok =7 +0G=m). 4z =1+0(3).

' 2T ’ z (3.92)

1 =0, 20 =3, x3=00
and
1

)k =2 +0G-m), [, =1+0(-n), [k =1+0 (‘) " (3.93)

1 =3, x5 =0, x3 = 0.
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For the cases (3.92) and (3.93) the relations (3.90) reduce to

1
2,00 ? 2,00 1
F3+1,1(Zau) = 1 ) F272 (Z7u) :?FQ(Z7u7O)7
1+=(z=3)+ (2 — 3)F2”f§’°°(z,u)
7 (3.94)
x1,00 1 1,00 1
Fyivi(zou) = = s Fi3™(z,u) = gFl(z,u,O).

1+2z+

L+ (2= 3)F3%(z,u)
Here Fi(z,u,0) and Fy(z,u,0) are given by (1.154) and (3.79). For z = —1+i the relations
o3t (z) = {FEni(z ) —1<u< 1} (3.95)

and
S3ia(e) = (R w; 1 <u <) N

are evaluated and depicted in Fig. (3.2). In spite of the seemingly different structures

- r X
00T Im (@ 341.1)

- X
Im (@ 3%, 4)

Re(® 3X+11,1 )

X
2

06 [ . . . . . Re(®d, 1)
-0.2 -0.1 0.0 0.1 0.2 0.3 0.4

Fig. 3.2 The complex boundaries ¢35 (2) and ¢3777(2,u) defined by the bounding
functions F3 177 (2,u) and F3277(2,u), cf. (3.94). Note that ¢3175(2) and #3377 (2, u)
coincide.

of the T-continued fraction expansions (3.94) the T-boundaries ¢35 (2) and @337 (2)
coincide, cf. Fig. 3.2.

3.4.3 Example
In order to illustrate the TMCFM we consider now the following truncated power expan-
sions

fi(2)t1 =0.4694 + O(z + 1), fi(2)s =0.18073 + O(z — 2),

1 1 1 (3.97)
f1(2) =011527+ 0O(z = 5), fi(2)% = ;(1 — 4.0236; + 0(2)2)
evaluated from the Stieltjes function
1 25, 124~z
=—|14+—1 , .
fi(2) z ( * z n20+5z) (3.98)

First order estimation The first order bounding function Fio;(z,u) generated by
f1(2)*} takes the form (cf. (3.97)

F1+071(Z, u) == wlFl(z + ]_,U), W1 == fl(_1> = (0.4694. (399)
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Second order estimation From the expansions f;(2)3 and fi(z)*}, it follows

91
Foro1(z,u) = . Fia(z,u,e9) = Wa(e2) Fi(z + 1, u),
240,1 11 =2 2 2 2(€2) 1 (3.100)

e2 =0, g1 =0.18073, Wy = 0.2050.

Third order estimation The third order bounding function Fbi; (%, u) generated by
fi(2)3, fi(2)i and f(2)1] is equal to

Foyi1(z,u) = 9 ’
7 1+ (2—2)(e2 + Fra2(z,u))
Fia(z,u,e2) = Wa(ea) Fi(z + 1, u), (3.101)

g1 = 0.180733, e = 0.18073, W5 =0.02427.

Fourth order estimation The expansions fi(2), fi1(2)}, fi(2)L and f(2)*] of fi(2)
yield

g1

Fyia(z,u) = (z — 2)g 5

1 =+ (Z — 5)F1’3(Z, u, 63) (3102)
Fi3(z,u,e3) = Ws(es)Fi(z + 1, u),
g1 = 0.180733, ¢5 = 0.18073, go = 0.0086, e5 = 0, Ws = 0.1078.

1—|—(Z—2)€2+

Fifth order estimation From fi(2)}, fi(2)}, fi(2)% and f(z)*}, it follows
9

Fyy01(2,u) = = —2)g ’
14+ (2 —5)es+ (2 — 5)F13(%, u, e3)
F173(Z,U, 63) = W3(€3)F1(Z + l,u),

g1 = 0.180733, ex = 0.18073, g2 = 0.0086, ez = 0.0967, W3 = 0.0111.

1 + (Z — 2)62 +
(3.103)

For z = —3 + i the narrowing lens-shaped estimations (3.100)-(3.103) and the value of
the Stieltjes function (3.98) are depicted in Fig. 3.3.

3.5 Multipoint Padé approximants to power expansions of Stieltjes function

Let us consider the multipoint Padé approximants
r(R r(R D25 ,
[mR/nR]x((z])Hl)(Z), (X(x(le) = (;’117522 77777 ;’glgvi) 7 (3.104)

r(R) aglensr) Far(an)2t o amg (Tng) 2R
[mR/nR]x(zN+1)<z) - 1 2 e’
L+ bi(rng1)2t + bo(xng1)22 + - 4 by (Tv41) 2R (3.105)

mp=R—1-ng, ng=ER/2), P=3" pj, R=P+pyn
to the Stieltjes functions f;(z) satisfying the relation (cf. (3.1))

lim |z f1(2)| < oo. (3.106)



86 The best estimates of a Stieltjes function expanded at real points and infinity

Definition 3.17 The rational function [mp/ng)\\(z) defined by

(o)

[ma/naly) (=) = m_[ma/nal ) (2) =
(3.107)

~ag(00) + a1(00)2" + ax(00)2® + - - + ayy, (00) 2R
1+ b1(00)2t + ba(00)22 4 - - - + by, (00) 278

we call the T-multipoint Padé approximant to fi(z). If R is odd (even) we call it the odd
(even) T—multipoint Padé ones.

From (3.104)-(3.105), it follows that the contiguous odd, even T-multipoint Padé approx-
imants to fi(z) are of the forms

ap(00) + a1(00)2! + az(00)2% + + - - + @y, (00) 2R
1+ b1(00)2! + b1(00)22 4 - - - 4 by, (00) 2™

[ma/nal D) () =

(3.108)

Y

iy 11D () = G(0Q) Han(00)e £ F iy (00)2A
R—1/MR—1]x(c0) 1+ bi(00)2t + - - - 4 by, (00)2mA-1

r(R-1)
x(0)

respectively. The main properties of [mpg/ nR];((fg)(z) and [mp_1/ng_1] (2) given by

(3.108) state the following theorem:

Theorem 3.18 Since for R odd the coefficient a,,,,(c0) appearing in (3.108,) vanishes
Ay (00) =0 (3.109)

the contiguous odd (3.108,) and even (3.108) T-multipoint Padé approximants coincide
i ra T () = e s PTG (310)

Proof. If 41 # 0 and |z — x| — 0 it follows from (2.121) and (3.106) that

<1(6) = lmafnnli, o) =20z~ o) =0 (2= =) 7). )

Z  TN+1

By substituting z = 1/s in 3.111) we obtain at once
1 r(R) PN+1 1 1
p1(s) — g[mR/nR]y(sN+1) (1/5) = O((s = sn1)™"), ¢1(s) = gfl(g) (3.112)

IM(psp_, 1(2)

— $2101 (D

© b @

0.1 @345 4(2)

D,,0,1(2)
= by (2

Y1 A N e e @
-0.71 fl(Z)

) 5 z=-3+i
1.0F @,,14(2) Re(qjmpw,l(z))

-0.3 0.0 0.3 0.6

Fig. 3.3 The complex boundaries ¢p,, ,(z) evaluated from the truncated power series
(3.100)-(3.103) representing the Stieltjes function (3.98).
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For R odd the relation (3.108;) and (3.112) yield

1 ao(Tn41)8™E + -+ (TN11) PN+1
- = = — . a1
#1(s) S <st +bi(wng1)s™ R+ by (T ) O (s = sv1) ). (3:113)

Hence the following equality holds

Prl50) = — (<SNH)(SN“)mRa°<IN“)+'"+amR(IN“) ) (3.114)

S MR 4 (Sn41)™E 7y (1) oo D (TNg)

N+1
On account of (3.106) we have

1

lim ¢(sy,,) <00, 5y, = —. (3.115)
TN+1—700 TN+1
Thus from (3.114), it follows
: mp-1(00)
lejlrgoo Ump(TN+1) = Amg(00) =0, ¢,(0) = m (3.116)

The Eqgs (3.108;) and (3.116) yield

ap(00) ++ -+ + Ay —1(00) 2R

r(R) _
[mR/nR]X(OO)(Z) - 1+ bl(OO)Zl 4+ .4 me(OO)ZmR

= [mp_1/nrolis V(). (3.117)

The relation (3.117) and (3.110) coincide. The proof is complete.
As an illustration of the Definition 3.17 and the Theorem 3.18 let us compute the
multipoint Padé approximants to the truncated power expansions

fi(2)z, () = (ffjfo) (3.118)

of a Stieltjes function

1 25 12+ 2
From (3.118), it follows
R=1+2=3n3=5(3/2)=1, ms=3—-1-1=1. (3.120)
The equation (3.105) reduces to
55 (2) = Jim [1/1]515,(2), (3.121)
where
11542 (z) — Golr2) Hanlra)s (3.122)

1+ by(z2)2
On the basis of (2.121) one obtains

AN =1/ (2) = O((z + 1)),
(3.123)
1f1 (%) — %[1/1]f}822 (%) =0(s?), s= 1, So = l

S
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For sy — 0 the substitutions (3.122) and (3.119) into (3.123) yield

— 2 2
o= _ 0.4695, 1 = m, 4.0236 = a1522~|— Gos) + 1by (3.124)
1—b (52 +b1)s2 s3(s2 + b1)?
and for s, =0
7N 14695, 22 =1, ayby, = 0. (3.125)
1—10; b1
Finally we get
ar =0, ap = 0.3195, b, = 0.3195. (3.126)
From (3.121)-(3.122), it follows
0.3195
1172 () = ———— = [0/1]" 7L (). 3.127
[A2(2) = T = [0/1] L (2) (3127)

Note that the results (3.126,) and (3.127) confirm the equalities (3.110).
Now we interrelate the bounding functions Fp,_ 1(z,u) with the Padé approximants

[ /el 5 e () and [mpe /npad 37T (2).

Corollary 3.19 The bounding functions Fpi,. 1(z,u) given by

FP+p0011(Z7 u) = \/fcvzl Ijli];,l—lel,P(za u)? u=-11,

(3.128)
N
FP+poo,1(Zv u) = \/kzl TI§:71+1F17P(Z7 u)v u=0
and the T'—multipoint Padé approximants
ma/nali® (), (57) = (et
(3.129)
mees/maa 0 (2), (00) = (mremre?)
coincide, 1i.e.
Fpipo1(2,=1) = Fpap.a(2,1) = [ma-1 /npa) 50wl (2),

(3.130)

Fpip(2,0) = [mp/ng]Pi02mbel(2),

Proof. From Definition 3.17 and Theorem 3.11, it follows the identities (3.130) m
In order to illustrate the Corollary (3.19) we consider the truncated power expansions

fi2) T =n+0(z =€), £ =—1, n=0.4694; fi(2))=0.18073 + O(2);
1 1\ ? (3.131)
fi(2)} = 011527+ O(z — 3); zfi(2)%, =1 — 4.0236-+ O <;)

of the Stieltjes function

25, 1.240.1z

1
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The bounding functions F3i11(z,u) and Fsi91(z,u) evaluated from (3.131) are of the
forms (cf. (3.103))

0.181
0.009(z — 2) )
1+ Wis(es)(z — 5)Fi3(2,u,0) (3.133)

Fyi1a(z,u) =

1+0.181(2 — 2) +

F1,3<Z,U, 63) = W3<€3)F1(Z + l,u), Wg(@g) = 01078, €3 = 0,

0.181
0.009(z — 2) ’
1+e3(z —5) + (2 — 5)F13(z,u, e3) (3.134)

Fy01(2,u) =

1+0.181(2 — 2) +

F173(Z,U, 63) = W3(€3)F1(Z + 1,U>, Wg(@g) = 0011, €3 — 0.097.

By substituting
F 5(2,0,0) = 0.1078, Fi3(2,0,0.097) = 0,011 (3.135)

into (3.134) we obtain

1,1,1,41 0.300 + 0.0703z

F =[2/2 = 1

p1a(2,0) = 2250 54(2) = 1550370 5802 + 0.07022" (3-136)
0.300 + 0.07032

Fy21(2,0) = [1/2]y550 (2) (3.137)

~ 1.000 + 0.580z + 0.07022

Note that the contiguous odd and even T- Padé approximants [2/ 2]§é§0+_11 (z) and [1/ 2];éio+_11(z)
to the Stieltjes function (3.132) coincide, cf. Theorem 3.18.

3.5.1 T-inclusions regions generated by T-multipoint Padé approrimants
Consider the following functions

Fpip.1(z,u), uwe[-1,0]; Fpip1(z,u), ue0,1] (3.138)

and
FP+1+p0071(Z’ U), u€ [_17 0]7 FP+1+pw71(Z7u)7 u € [0> 1] (3139)

forming the contiguous bounding ones
Fpipo1(z,u), uwe[-1,1] and Fpii4p 1(z,u), v e [—1,1]. (3.140)

The functions 3.140 estimate fi(z), where (cf. (3.60))

Fp (z u) . \A} <7 g;j F17P(Z,U, GP)
+Poo,l ) - )
k1 j=Pp 141 1+ (Z — ZL’k)Gj_H + (Z — ZL‘k) X 1 (3'141)
F1,P(Z,U7 ep) = Wp(ep)Fi(z — &, u)
and
N P,
gj Fypi1(z,u,0)
Fpyiy 0071(Z7U) = )
p k;\z/lj_Pyl-f—l 14 (2 —xp)ejpr + (2 — ) X 1 (3.142)

Fipia(z,u,0) = Wpi1(0)Fi(z — &, u).
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In addition the relations are true
Fl,P<Z; —1) = F1,P(Z, 1) = F1,P+1(Z, —1) = F1,P+1(Z, 1) =0,

(3.143)
Fl,P(Z70> eP) = Wp(@p), Fl,P+1(Za 070) = WP+1(O)'
Since
Fpi14pe1(§,0) = Fpip1(£,0) (3.144)
th
- Fyp(€,0) = i . (3.145)
’ 1+ (§ —2n)F1,p41(£,0)
From (3.143)-(3.145) , it follows
gp —Wp
w = 3.146

According to Conclusion 2.13 the new curve (3.1405) touches the old one (3.140;) at
two points Fpi14p.1(2,1) and Fpiiip 1(2,0). On account of that the parametric mul-
tipoint Padé approximants Hp14,. 1(2, gp) depending on the coefficient gp (cf. (3.141),

(3.142) and (3.146))

Fpiiipei(z,1,—gp) if —wp < gp <0,
Hpi1ipe1(2,9p) = ' (3.147)
Fpiitp.1(2,0,gp)if 0<gp <wp,

9j —gp
Fritipma(z SV, ,
i 1+11—|—(z—yck)>< 1

(3.148)

9j gp
Fri1ipo1(2,0,9p) \/ \/ — ;
k=1j=P;_ 1+11+(z_xk)xl+(z—x1v) gr —Wr

Wp(§ —zn)
coincide with (3.138;) and (3.138,), respectively, i.e.

XP+1+poo,1(2) = ¢P—|—poo,1<z)7
Xpi1ipoo1(2) ={w € C:w = Hpi14p.1(2,9p); gp € [~wp,wpl}, (3.149)

Opipoi(2) ={weC:w=Fpyy 1(z,u); ue[-1,1]}.
To illustrate the identities (3.149) we consider the truncated power expansions
[T =n1+0(z—¢), € =—1; n=0.4694; fi(2)5=0.18073 + O(z — 2);
1 1\ 2 (3.150)
f1(2): = 0115274+ O(2 = 5); zfi1(2)% =1— 4.0236; +0 <;)
computed from the Stieltjes function

25, 1.240.1z

=—(1+—lh——7-—]. 151
fi2) < * Pl 2+0.52> (3.151)
For the input data (3.150)-(3.151) the bounding functions Fp,,_ 1(2,u) and Hpi14p..1(2, gp)
are evaluated. The boundaries ¢p,, ,(2) and xp, 14, 1(2) generated by Fp,, 1(2,u) and
Hpi11p.1(%, gp) are depicted in Fig. 3.4.
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b210,1

0.1 d)2+l,1
T ¢3+1,1

-0.4 “mm 05,0
- f(2)

-0.7 | X3+0,1
S X311

-1.0 Yoo Xas1,1
* X421

(z)
(z)
(z)
(z)

(z)
(z)
(z)
(z)
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Fig. 3.4 The complex boundaries xp.;,, () and ¢p,, () defined by the bounding
functions Hpy14p.1(2,9p), 0 < gp < wp and Fpi,1(z,u), =1 < u < 1, computed from
the truncated power series (3.150). Note that xp,;,, () and ¢p,, (z) coincide.

Theorem 3.20 Let Fpy, (2 PLp2sPNPoorl 9y e g bounding function evaluated from

) ‘r17x27"'7IN7 Oo’ 67

the truncated power series of Stieltjes fl(z)ﬁ’;'_'.’gjv’gzlg,

of natural numbers (1,2, ..., N) the inclusion regions

D1;P2,--PN ;Poo;1

Ppip. (2, e E) and Ppip 1(2

generated by the bounding functions

D1;P2,--,PN ;Poo; 1

) 1,2, TN, 00, £ u) and FP+p°°’1<Z

FP+poo,1(Z

coincide, i.e.

D1;P2,--,PN ;Poo;1

Proof. For a fixed permutation of (ay, s, ..

points
P1 ;P2 5y PN >Poo,l
FPeroo’l <Z7 Ty sTagye-sTapyyO0, g’ 1>
p1,p2 ;- pN+17p0071
FP+1+p°°71 <Z’ TapTags Tapn s OO, §’ 0
P1,P2 5y PN sPoo,l
FP+p°°71 <Z7 TagsTag s Lo pn 0, &’ O)
and

D1 3P2 s PN sPoo,l 1
’ z&laIQQa“-)IQN’OO’ 57

FP+1+p°°’1 (27 Taqp sTagss Tap X, &’

p1,p2 7~~-:PN7P0071
FP+p°°71 (Z’ TaqpsTagsTapn 0, 5’

P1 ;P2 5oy PN+1,poo,1 1>
0).

generate the complex boundaries ®p.,,_ 1 PL P2 5oy PN Poosl

? Loy sTagsTaps

For all permutations (o, . .

D1 ;P2 5--s DN Poo,l
? Loy sTagsTapns 00, 13

D1 ,P2 5.5 PN sPoo;1
’ Loy sTag Lo p s &’

_ D1 ,P2 5y PN sPoosl
®P+poo’1(z7 T1,T2,...,ZN, OO, E) o ®P+p°°’1(27 TaqsTag,-Tap, 00, §

'705N)

(3.152)

(3.153)

(3.154)

.,ay) the following sets of three

(3.155)

(3.156)

£>. Since the multipoint con-

tinued fractions (3.155) and (3.156) are the Padé approximants to fi(z) we have (cf.

Theorem 3.13)
P1 P2 53 PNsPoos1 | __
FP+P0011 <Z’ ml,z2,...,mN,oo75’]> - FP+p°°’1 <Z

P1 P2 53 PN+1,poo,1

P1,P2 -+ PN>Poo,
’ malymazy"'zxm]\/yooy

')

S\ D1 ;P2 5--s PN+1,po,1
Friiipon (2, Ty Ty Ty 100, € J) = Fpi1ipo.t (27 Ty T Ty 000 €

where j = 0,1 The relations (3.157) imply the equality (3.154). =

(3.157)
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3.6 Fundamental inequalities for T-multipoint Padé approximants to Stieltjes
functions

For z = o € R the lens-shaped inclusion region ®p,,_1(z) (3.61) and the complex
boundary ¢p., 1(2) of ®pyp. 1(2) (3.62) reduce to the segment lying on the real axis

Ppipe1 () = Ppipea (@) ={w e R:w = Fpyy a(z,u); =1 <u <0},

(3.158)
fi(z) € Ppip (),
where
g FlvP(xvuaep)
Fpip1(z,u) = \/ \/ , E<ux,
et jopp 1 T (@ Tr)ej X 1 (3.159)
Fip(x,u,ep) = Wy(ep) Fi(z — & u), Fi(z,u)=(14u), —1<u<O0.
It is convenient to represent Fpi,  1(z,u) (3.159) as follows
()1
F ) - )
Ptpse 1(7: ) 14+ (x —a1)es + (v — x1) Fp_12(z, )
g2
Fp_1o(x,u) =
............... R e
p—1
F5p_ F
2P 1(%"“) 1+($-$N)€P+(l’—xN)F1p(l' U)’ 1P(I’U)
Wp(ep)Fi(z — & u), Fi(z —&u)=(1+u), —1<u<0, {<z<o0.
Hence we have
aneroo,l(l',U) _ gl(ZE — Il) (9Fp_172(x, U)
du (14 (z — 1) (e2 + Fp_12(z,u)))’ ou ’
8FP71,2($, U) - 92(95 - 961) 3FP72,3($7 U)
> = - > : (3.161)
U (1+ (z — 1) (e3 + Fp23(w,u))) du
3F2,P—1(I, U) _ gPN<5U - $N) Fl,P(% U)
du (14 (z —x) (ep + Fip(z,u,ep)))”  Ou

Further simplification of (3.161) yields

OFpip.1(z,u) al —g;(x — xy)
+an1 =we]] H ( J S|, (3.162)

k=1 j=P,_i+1 (14 (z — zx) (ej41 + Fr_jasj(z,u)))

where
Wp = Wp — €p. (3163)

Thus

OF. Al
sign( P+p°°’1(x’u)> = sign H H (xp—2) ]|, £ <x < oo, (3.164)

u
g k=1P,_q1+1
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or more exactly

. (aFP+pw,1($a u)
sign e

) = sign (21 — 2)" (3 — 2)"...(wn — 2)™).

Relation (3.165) means
( (1) if <z <a,

P .
: OFpypa(w,u)\ (=D if o <w <,
S1gn ou - (_1)P2 it @y << s

The bounding function Fp,_ 1(z,u) is monotonic with respect to u. Hence

(=1 Fpipea(z,—1) < (=DPfi(z) if {<a<a,
(_1)P1FP+pOO,1($; -1) < (=D fi(x) if x <2<,
(=) Fpip 1z, —1) < (=1)2fi(z) if x9 <z <as,

and

where P;, j =1,2,...,N and P are given by (2.14).

Theorem 3.21 Consider the non-decreasing power series of Stieltjes

f1<117> - i)cij(l‘ - xj)i + O((‘T - xj)pj)’ j = 17 "'7N7

=180 (1) +0((2)"). nw=n+o6-9

93

(3.165)

(3.166)

(3.167)

(3.168)

(3.169)

and accompanying them the Lpy, (x) characteristic functions (2.6). For fived & and n
the multipoint Padé approximants Fpi,, 1(z,J), x € R\[—00,£] to the power expansions

(3.169), where J = 0,1, satisfy the following inequalities
<_1)LP+p°°71(x)FP+poo—1,1(x, 0) < (_1)LP+poo—1($)FP+poo’l(x’ 0),
(=1)fraree 1@ Fpyy 1a(w,—1) > (=1)Frere 1O Fpyy (2, —1),

(=1)frere @ Fpy, 1(2,0) < (=1)Frere @ fi(2) <
(_l)LP+Poo(I)FP+pOO’1(:L" _1)

(3.170)
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Proof. The inequalities (3.170 ) are direct consequence of the relations (3.167)
and (3.168). m

From (3.170) and Theorem 3.14, it follows that the Padé approximants Fp,_1(z,J),
J =0, —1 form the optimum upper and lower bounds on f;(x) obtainable using only the
given number of coefficients and that the use of additional coefficients (higher (P + ps))
does not worsen the bounds Fp,_1(z,J), J =0,—1on fi(z).

The Theorems 3.14 and 3.21 are fundamental, for they provide the best upper and
lower bounds on f;(z) obtainable from the truncated power series of Stieltjes fi(x)2. If
the power expansion of fi(x) at infinity is not available the T- estimates of fi(z) (3.170)
reduce to the S-estimates of fi(z), cf. (2.172). Hence the inequalities for T-multipoint
Padé approximants (3.170) generalize the corresponding S-inequalities (2.172).

3.7 Particular cases of the optimum T-estimates of a Stieltjes function in a
real domain.

The particular cases of the general estimates Fpy,_ 1(2,0) and Fpip 1(x, —1) of fi(z)
will be investigated, cf. (3.170).

3.7.1 Stieltjes function expanded at zero and infinity

(a) The first terms are available only Let the truncated expansions of a Stieltjes
function fi(z) at zero and infinity be given

A (2) = (o2) (3.171)

The parametric power series f(x)? accompanying (3.171) take the forms (cf. Theorem

(4.2))
@) (2) = (omk)- (3.172)

(2 e <x)> (3.173)

(@ ) =n+0(x—¢), £<0, g1 <.
The input data (3.173) generates the characteristic function Loyq(x) (cf. (2.6))

From (3.172), it follows

H(2)5 =g+ Oz —0), fi"(@)% =

H|>—‘

Lopi(z) =2H(x), £ <z <00 (3.174)
and the bounding one (cf. (3.78))
Fyy(x,u) = g1 Fa(w,u, e0), (3.175)
where on account of (3.792)
u
F: =— 0<u<l. 3.176
2+171($»U) 1+ zeau’ SUS ( )

The Padé approximants Fgoff,l(x, 0) and Fgfil(x, 1) defined by (3.175)-(3.176) satisfy the
inequalities (3.170)

(1) HEEDT (2,0) < (—1)@ fi(z) < (1) HOET, (2,1). (3.177)
By substituting the relations (3.175) and (3.176) into (3.177) we arrive at

0< fi(z) < lflxez, 0<a < oo (3.178)
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3.7.2  Stieltjes function expanded at a number of real points and infinity

(b) The case £ < xxy=min(x;, j=1,2,...,N) The initial input data for estimating
fi(z) is
Rl@)s, (3) = (). (3.179)

77777

The parametric input one f(z)? associated with (3.179) takes the forms

@), (1) = (). (3.180)

x? b’

Due to (3.180), (3.88) and (3.79) we obtain

N P,—s oo
SNCIEAVERYA 5 P35 er)
" k=1j=Py_1+1 L+ (7 — xg)ejpn + (z — x1) X 1

P 3.181

FQ,%Ll(xau) = gp_1Fo(z — zn,u, ep), ( )

_u .
Fy(z,u,ep) = —— if —1<u<0.
1 —xepu

The multipoint Padé approximants F' ;%Cz’l(x, 0) and F 121;:,1(% —1) satisfy the inequal-
ities (cf. Theorem 3.21)

(_1)LP+POO(‘$)(FIN’OO (.T, 0) S (_1)LP+Poo(x)f1(l')

P+poo,]-
(3.182)
< (_1)Lp+poo(x))F;1}z’l(x7 —1),
where
Lpip(z) =30 piH(r —2)+1, j=1,2..,N, 0<z<o0. (3.183)

(c) The case £ < x;=min(x;, j=2,3...,N) Consider again the initial input data
(3.179). The parametric power expansions ()P associated with (3.179) are given by
(cf. (3.180)) From (3.89) we obtain

N Py 21,00
gj FlP <x7u7€P)
Fpliy l(x,u):\/ \/ J v ’
' k=1j=P,_1+1 L+ (x - xk)ej—kl + (o — xk) X 1
(3.184)

Fiz,uy=14+u), —1<u<0.

The multipoint Padé approximants Fp} " | (z,0) and Fp° | (x, —1) satisfy the inequal-
ities (cf. (3.184))

(=1)frere @ FRET L (2,0) < (=1)Frre (@ fy(z)

(3.185)

< (_1)LP+POO (z))F]”_f;i;Zo 1(1’, —1).
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(d) The cases £ < xn=min(x;, j=1,2,...,N —1) and £ < x;=min(x;,
j=2,3,...,N) Let us turn out our attention to the bounding functions F f,i;:o (z,u)
and  Fpl> | (z,u) given by

FYE*(x,u,ep)

N Py gﬂil
Fpr>e (m,u) = L ,
Ppeo,1 k\_/lszylﬂ L+ (x — zp)efty + (z — mp) X 1

(3.186)
N Pi—édin . _—
Fpli™ ((z,u) = \/ \/ gﬂ%N Fy oz, u, €P)7
| k=1j=Py_1+1 1+ (2 — xk)€j+1 + (z — ) X 1

generated by (3.179), cf. (3.184) and (3.181). From the Theorem 3.20, it follows that
even though the coefficients g;*, €7}, and g;",eY, are different the functions (3.186,) and
(3.1863) do coincide

FECe (2,0) = FEN (2,0), FESS (2, —1) = FEL (2, —1). (3.187)

P+peo,1 P+pco,1 P+poo,1

As an example illustrating the identities (3.91) we consider the truncated power expan-
sions of fi(x)

@)y, =1+ 0@ —a1), fi(z),,= % +0(@ = 22), fi(a)ey =140 (i) T (3.188)

r1 = O, To = 3, I3 = OO
and

@l =3+ 0 —m), Ao, =14+0( ), Az, =140 (

1 =3, ¥ =0, x3 = 00.

For the cases (3.188) and (3.189) the relations (3.186;) and (3.1862) yield

x1,00 ]- 1,00 1
F3+’1,1('r7 u) - T 5 F173 (JU, u, 0) = 5(1 + U),
1+z+ 50
1+ (x = 3)Fy5™ (z,u,0)
1 (3.190)
xr2,00 ? 2,00 1
F3+1,1(x7u) - 1 0 ) F272 (.I’,u,()) = _?u‘
1+ ?(x —3) 4 (v = 3) Fy5 (v, u, 0)
It can be easily checked that
Foii(0,0) = F33275(2,0), Fyiyy (@, —1) = F3Ey7y (v, —1). (3.191)

In spite of the seemingly different structures of the T-continued fraction expansions of
f1() (3.190) the T-bounding functions Fy 1 (2, u) and Fy77] (@, u) coincide (cf. (3.191)).
3.7.8 Series of Stieltjes with a leading coefficient f1(£) =n

(e) The case £ <min(x;, j =2,3...,N) and f;(§) =n Consider the truncated power
series fi(x)2 with the coefficient f;(£) equal to n

Pl (5) = (nremret). e =0 (3.192)
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From (3.192), it follows the P — th order bounding function

N Py Ui
F§"  (a,u) = \/ \/ 9j Frp(@,u,ep)
Prtpoo, 117 1+ (z — x)ej + (x — xp) X 1 ’

k=1 j=Pj,_1+1 (3.193)
Fﬁ’}l(x,u, ep) = WENep)Fy(x — & u), Fi(z,u)=1+u, —1<u<O0.
By substituting
u=0, z=¢ Fp!,_1(£,0)=n, Fi(z—¢£0)=1 (3.194)

into (3.193) we obtain the equality

N P e
9i W' (ep)
= 3.195

k;\—/lj:p>/1+1 1+ (f - xk)€j+1 + (f - Ik) X 1 ( )

determining W5"(ep). From (3.64)-(3.65) we have
fi(z) € BT, (). (3.196)

In order to illustrate the case (3.193) we consider the truncated power expansions

Fu@)h = 018073+ O(z — 2), fulx)L — é (1 +0 (1)) ,

v (3.197)
of the Stieltjes function
1 25, 1401z
=—(1+—1 . 1
fil@) T ( * T n1—|—0.5x) (3-198)

First order bounds The functions L;(z), Fi1(z,u), F11(2,0), F11(x,—1) computed
from fi(z)"] take the forms (cf. (3.183) and (3.193))

Li(x) =H(x+1), Fii(z,u) = 0.4694(1 + u),
(3.199)
(—1)HE+) 0.4694 < (—1)AE+D £ (2) <0,
From (3.199) we have

0< fi(z) <0.46940 for —1<z < oo. (3.200)

Second order bounds From the expansions f;(z)3and fi(x) 1, it follows Ly(x), Fyi(x,u),
F51(2,0) and Fy;(x,—1)

0.18073
Ly(x)=H 1)+ H(z—2), F =
o(z) = H(z+ 1)+ H(z =2), Flew) = T gosm e ey

) 0.18073 ) 3.201)
_1)H(@+1)+H(z—2) < (_1)H(@+1)+H(z-2) (
(=1) 1+ 0.2050(x —2) (=1) i),

(_l)H(I+1)+H(I*2)f1 (1;) < (_1)H(m+l)+H(x72) 0.18073.
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From (3.201), it follows

0.18073
0.18073 < fi(z) <

for —1<z<2
=1102050(z—2) o S =T=S

(3.202)
0.18073

1+ 0.2050(x — 2)

< fi(xz) <0.18073 for 2 <z < 0.

Third order bounds The functions Loy (), Foy11(z,u), Fory1(2z,0) and Fopqq(x, —1)
generated by fi(x)}, fi(z)l, and f(x)'] are equal to

Los(e) = H(x+1) + H(z - 2),

0.18073 (3.203)

F 1) =
21 (2,0 1) = I TN 618073 1 0024301 £ 0))”

where 0.18073
—1)L2+r1(2) i < (=1)L2+1(@) <
(=1) 1+ 0.2050(z — 2) s (=1) Hilz) <
(3.204)
(1)t 0180T8
1+ 0.18073(z — 2)
On account of (3.201) one obtains
0.18073 0.18073
< < for —1<z<2
701808 =2) = "W = T =g [ ~1=7s?
(3.205)
0.18073 0.18073
< fi(x) for 2 <z < oo.

<
1+ 0.2050(z — 2) = 1+0.18073(x — 2)

The fundamental T-inequalities (3.192)-(3.205) are new. They generalize the S-ones
(2.172) derived in Chapter 2, see also [15, 60, 71] and [27, 28]).

3.8 Summary and final remarks about TMCFM

In this chapter we established the new T- Multipoint Continued Fraction Method of an
estimation a Stieltjes function fi(z). We prove that the T'—estimates of fi(z) obtained
via TMCFM are the best with respect to the power expansions of f;(z) available at real
points and infinity, c¢f. Theorems 3.14 and 4.2. This important result is new.

The auxiliary parameters &, n (2.2), the recurrence T-algorithm (3.32)- (3.34), the
fundamental T- inclusion relations (3.65)-(3.66), the general T- inequalities (3.170) are
the main mathematical tools of TMCFM.

The T-algorithm (3.32)- (3.34) transforms the truncated power series (3.33) first to
the T-continued fraction (3.35) then to the T-bounding function (3.60) and finally to the
T-estimates of f1(z) represented in the complex domain by the inclusion regions (3.61),
while in the real one by the upper and lower bounds (3.170). The computational TMCFM
block diagram consists of:

| fi(z) = fi(z)PrP2PNPo _the initial input data

T1,T2,...,LN,00

& (Z) D1,P25+-+sPN Poo, 1
1 1,29, N ,00,E

- the parametric input data

1
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fon (’; S 51 , 2, fp(Z)) ~the T-continued fraction expansion of f£"(z)

T1,22,..,TN,00,§

fE (marern € fp(€)) = -the equation for w§” = fp(€)

P+peo,l \ z1,22,...,xN5,00,6

|
ST <p1’p2""’pN’p°°’1 z,w%”Fl(z,u)) -the bounding function for f>(z)
!

F z,u) = lim lim F&7(z,u),
P (1) §—w n—00 A u) - the best bounding function for fi(z)
x = min(xy, T, ..., TN)
| |

the best bounds if z € R :
(=D)friree G Fpy, 1(2,0) <
(_1)Lp+poo (Z)fl<z)
< (=D)Erre B Fpy a2, 1)

the best boundary if z € C :

Gpapr(z) = {w € O
w=Fpipa(zu); —1<u<1}

Note that if in the above block diagram we replace z by s and fi(z) by ¢,(s) we obtain
the TMCFM procedure estimating the Stieltjes function ¢, (s) = zf1(z), see Remark 3.2.

The TMCFM established here is the first method of the theory of an approximation
of Stieltjes functions fi(z) that can incorporate into the complex and real T-estimates of
f1(2) the power expansions of fi(z) at infinity.

In the next chapter we adapt the TMCFM for computing T-bounds on the effective
transport coefficients of two phase-media better then previous ones reported in literature,
cf. [44].
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Chapter 4

THE OPTIMUM T-ESTIMATES OF EFFECTIVE
TRANSPORT COEFFICIENTS OF TWO-PHASE MEDIA

The main theoretical results of the previous chapter, i.e. the fundamental inclusion
relations (3.65)-(3.66) and the general inequalities (3.170) are adapted for establish-
ing T'—multipoint continued fraction bounds on effective transport coefficients A(z) — 1,
Az) = Ae(2)/A1, 2= A3/A1 — 1 of two-phase media.

The T-estimates of A\(z) — 1 are optimal over the given number of coefficients of the
power expansions of (A(z) — 1) /z constructed at finite real points and infinity. The T-
bounds derived here are new and better than previous ones reported in literature, cf.
[44].

4.1 Fundamental T-inclusion relations for the effective transport coefficients

To get T—bounds on macroscopic coefficients A(z) —1 a few modifications of the TMCFM
established in Chapter 3 should be done. Let us consider the homogenized equations
determining the effective transport coefficients of two phase media (cf. (1.30)-(1.31))

_ 1 T (y)
A1) = 137 [ @aln T B
0 aT (y) (4.1)
(9y_j (1+204(y)) —ayj =0, (yi—T®) Y — periodic,
where AE) - 1 A2) \
. Z)— e z . _ . _2
hlz) === M) === 2=h—1 h= (4.2)

Here ©5(y), A, A\; and Ay denote in turn: the characteristic function of inclusions, the
effective coefficient of a composite, the physical constant of a matrix and the material
coefficient of inclusions. Without loss of generality we assume that

A =1 (4.3)

The effective property (A(z) — 1) /z (4.1)-(4.3) has a Stieltjes integral representation (1.51)
satisfying the physical restriction (A\(—1) —1)/z < 1 (cf. [11], [29] and [44])

1
Az) -1 dry, (u)
= = > —1) < 1. .
fite) =22 = [P i =0, -1 <1 (4.4
0
We limit our investigations to the case
liIJZl zfi(z) = ligl (A(z) — 1) < o0, (4.5)

i.e. to the inhomogeneous material consisting of a matrix with A\; = 1 and inclusions
with Ay € [0, 0o].
Consider the power expansions of fi(z) at N real points z;, j =1,2,.., N
Az) —1

fi(z) = — = Zfial cii(z — xj)i +O0((z—x;)"), j=1,2, ..., N, (4.6)
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at infinity ‘
filz) = 52— == Zp”_l (1) +0 (%) (4.7)
and at &
h(z) = [ +0(z+1), f1(§) <, (4.8)
where
£=-1,n=1 (4.9)

Problem 4.1 By starting from the truncated power series Mz)-1 ) given by (4.6)-(4.8) we
compute the optimum estimates of effective transport coeﬂiczents Az) — 1 of two-phase
media.

To this end we rewrite the input data (4.6)-(4.9) as follows
1) = JT ) = f R (2) = (Bl ), (4.10)

The values of the Stieltjes functions f; “'(z) belong to the inclusion regions &, +p 1(2)
(4.10)

fr(2) € @pyya(2). (4.11)
From (4.11), it follows immediately
2fi () € 2ply a(2), (4.12)
where we introduce
z@}ill) ={weC:w=zz z¢€ CI>P+p (2)}. (4.13)

Thus the bounding function zF ;}r}}wl(z, u) estimating zf; "' (2) is equal to (cf. (3.59)-
(3.62))

, Fh Z,u, e
(z,u —z\/ \/ Ji L P). (4.14)

F,
k=1j=P_ 1+11+(Z_'rk)6j+1+(z_xk)x 1

P+poo

Now we establish the fundamental inclusion relations for 7T-inclusion regions estimating
zf7 " (2) in a complex domain.

Theorem 4.2 The T-inclusion regions z® Pl ) (1)1 (2)) and 2@, bl (2) constructed

P(2)+p(2),1
from the non-decreasing power series of Stieltjes (see Definition 2.4)
FTH R0, (2) = (P00 et (4.15)
and
FT D, (2) = (n@ e @) (4.16)

satisfy the relations
~1,1 1 1
2fi 7 (2) € 20, (:;+p (2),1 1(2) C 2@ (§+pw(1) (2), z € C\[—o0, —1]

P() =31 p(1) +1, P2) =31, mi(2) +1,

(4.17)

provided that
P(1) < P(2), poo(1) < poo(2). (4.18)
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Proof. By substituting in (3.65) £, = £, = —1, n; = 1, = 1 and multiplying both

sides of (3.65) by z we obtain the fundamental inclusion relations (4.17)-(4.18). m
The general T-inclusion relations (4.17)-(4.18) have a consequence that 7T-inclusion re-
gions z@}i’;wl(z) form the optimal estimates of the effective transport coefficients A(z)—1
obtainable from the given number of coefficients (P + p., ) and that the use of additional
coefficients (higher P + p.) does not worsen z@}i’;wl(z). Thus the T-inclusion rela-
tions (4.17)-(4.18) are fundamental for an estimating of the effective transport coefficients

A(z) — 1 from the input data given by (4.6)-(4.9).
4.1.1 Particular T-estimates of effective transport coefficients of two-phase media in a
complex domain

Let us focus our attention on the general T-bounding functions zF ;}rgoo (z,u) (4.14)
estimating the effective transport coefficients \(z) — 1

F (z,u) \]\} @ 9j F\ p(z,u,ep) (4.19)
Z20pipe,1(2,U) =2 . .
v k=1j=Pj_1+1 L+ (2 — zp)ejon + (2 — 1) X 1

Here for the sake of simplicity the indices —1,1 are omitted. Now we compare the T-
estimates of (A(z) — 1) given by (4.19) with the earlier bounds on (A(z) — 1) reported in
literature [14, 42, 44, 53, 67].

a) The case p;>0, p2>0, p3>0, ..., px> 0, poo=0. The T-bounding function
(4.19) reduces to the S-bounding one (2.48) derived in Chapter 2

F ( ) \N/ <7 9j FLP(Za u, 0) (4 20)
2Fpi(z,u) =z ) )
P 14 (z —xp) X 1

The S—estimates (4.20) of the effective transport coefficients A(z) — 1 are new.

b) The case p;>0, pa=1, ps=1, ..., py = 1, Poo=0. From (4.20) we obtain at
once

P g N Ptk g Fy p(z,,0)
ZFP,l(Z,U) =2z \/ J 2 \/ \/ k 1,P(%, U, . (421)
j=FPo+1 1 2 X k=2 j=P1+k 1 + (Z - xk) X 1

The estimates zFp;(z,u) of A(z) — 1 derived by us (see 4.21), by Milton [42] and by
Bergman [14] lead to the same inclusion regions z®p;(2) estimating A(z) — 1.

c) The case p;> 0, p2=0, ps=0, ..., pxn= 0, po= 0. We obtain further simplifica-
tions of (4.21)

Py
gj Fl,P(Zvuao)
F = . 4.22
2Fp1(z,u) z\/ T2 x 1 (4.22)
j=Fo+1

The formula (4.22) was derived by Tokarzewski and Telega [67] and applied to compute
the effective dielectric constants of regular arrays of spheres.
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d) The case p; = 1,2, p2=0, p3=0,..., px= 0, po=0. The formula (4.19) leads
to the bounding functlons

F; 0
2Fpi(z,u) = Z\/1+z>< lpju ) (4.23)
and
F;
2Fpi(z,u _Z\/l—l—zx 1’P<217u70), (4.24)

which are the complex counterparts of the Wiener [73] and Hashin-Shtrikman [30] bounds
on A(z) — 1 defined in the real domain.

4.1.2  Illustrative example of an evaluation of the complex T-estimates

As an example of a practical evaluations of the T-inclusion regions estimating A(z)—1 (see
Theorem 4.2) we consider a dielectric consisting of equally-sized cylinders embedded in
an infinite matrix, cf. Fig. 4.1. To this end we set: 1, eo- dielectric constants of a matrix
and inclusions, z = ((e2/€1) — 1)- nondimensional constant of cylinders, e(z) = e.(z)/e1-
effective coefficient of a composite, p- radius of cylinders, ¢ = mp?- volume fraction of
inclusions. For isotropic symmetry the system of equations determining the effective

Y,

0
Q g
Ea

€1

Fig. 4.1 Unit cell for square array of cylinders: ¢, e;— dielectric constants of a matrix and
inclusion, respectively.

constant (£(z) — 1)/z reduces to (cf (1.30)-(1. 31))

—1
& / O (4.25)
9 9T(y) —_, 0 O2(y) IT(y) (y1 —T) Y — periodic. (4.26)

Here ©,(y) is the characteristic function of cylinders. The asymptotic solutions of the
equations (4.25) and (4.26) is reported in Section 1.2 of Chapter 1

g(z) —1

— = T) = (. (1 +20) " 1) = Qo) + (. Tin) 2 +0(2), (4.27)
where .
T=(1+20)" gy =) (T (4.28)

For macroscopically isotropic composite materials the first two coefficients (y;,y;) and

—1
(y1,Ty1) of the power expansion of ) =1 (4.27) are evaluated in [11]
2

(o) = 6. {0, Ton) = 5001 ). (4.29)
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Im(Z(PP+pm’1(Z ) - Z‘P1+0,1(Z)
-0.002
""" T Z2954,4(2)
0.007 F 2¢3,1,1(2)
' - Z‘P3+2,1(Z)
-0.012 | | . Re(IZ(Ppﬂ)wvl(z )

0.0 0.2 04 06 0.8 1.0

Fig. 4.2 The complex boundaries z¢p,, ,(2) estimating the effective dielectric constant
A(z) — 1 of a square array of cylinders, cf. (4.36), ¢ = 0.785, z = 20 + i.

Hence we have
e(z)—1

= co(0) + c1(0)z + O(2%), (4.30)
where (cf. (4.29))
w(0) = ¢ =1, e1(0) = b=~ (1~ g). (4.31)

The power expansion of (e(z) — 1) /z at z = oo is evaluated by McPhedran et al. [39]

-1 _1 (do(OO) +di(o0); +0 (1>2> , (432

<z z

do(00) = A = [r(w—1) — 1], dy(00) = B = —2nw(w — 1) lnw, w=,/ T4 . (4.33)
™= 4ap
From (4.8), it follows

5(2)—1.

By starting from (4.30)-(4.31), (4.32)-(4.33) and (4.34) the sequences of the T-bounding
functions

f[i(z) = A(=1) + 0@ +1), A(-1) <1, fA(z) =

(4.34)

zFa(z,u), 2Foa(z,u), 2Faga(z,u), 2Fs410(2,u), 2F3421(2,u) (4.35)
and the complex T-boundaries

Z¢1,1(Z)7 Z¢2,1(2)> Z¢2+1,1(Z)a Z¢3+1,1(2)> Z¢3+2,1(Z) (4-36)

are evaluated in the analytical forms. For example for zF5 51(2, u) we obtain

z
2Fyaa(z,u) = L , (4.37)
1+ €2z +
1+e3z+ (w3 — 63)F1(Z + 1,U)

e =l gy £ @A A gitete-l ) g

1 y 2 Aa 2 A ()09 3 A2+(,OB(P’ 3 gl+€2—1 5 .
25 €2 92 €3 w3 (4.39)

0.785000 | 0.005756 | 0.101744 | 0.108299 | 0.513753 | ° '

The complex boundaries (4.36) are evaluated and depicted in Fig. 4.2. For more examples
of estimations of complex coefficients by TMCFM we refer the reader to Section 4.3.
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4.2 Fundamental inequalities for T- bounds on the real effective transport
coefficients

Now we establish the fundamental inequalities for T-multipoint Padé approximants  Fp,_ 1(z, j),
j = 0,—1 to the transport coefficient A(z) — 1 of a two-phase medium, where x =
()\1/)\2) —1eR.

Theorem 4.3 Consider the non-decreasing power expansions of effective transport coef-
ficients ( see (2.7)- (2.9))

fi(z) = icij(x —z;)'+ O((z — z;)P), j=1,...,N,

filz) = jzzdm (1) L0 ((l)p]) fi(z) =140z + 1), (4.40)

i T

_ Az)—1

fi(x)

and accompanying them the Lpy, (x)- characteristic functions, see (2.6). The diagonal
and overdiagonal T-multipoint Padé approzimants Fpp 1( x, J), x € R\[—00,¢], J =
0,1 to the power expansions (4.40) satisfy the following inequalities

(=D)ftrere1 @ Fp, 1a(2,0) > (=1)frtre1@aFp, o (,0),

(1) Frre1@gFp, (2, —1) < (=1)Brere@gFp, (2, 1),

(4.41)
(=1) v g Fpyp 1(2,0) > (1)@ (X(2) — 1) >
(_1)RP+p°° (x)xFPH?oo,l (:U, _1)7
where
Rpip. (x) = Lpyy, (v) + H(z). (4.42)

Proof. By substituting ¢ = —1 and = 1 in (3.170) and multiplying both sides
of the inequalities (3.170) by = we obtain:
If —1 <z <0 then

(1) @z Fpy, 1a(2,0) > (=1)FP 1O Fpy, o(2,0),
(1) D Fpyy 1a(z, 1) < (~1)E - @aFp, (2, ~1), (4.43)
(1) Fpyy 1 (0,0) = (~)2 @y () > (~)@aFpy, i (r,~1).
If 0 <z < oo then
(1) @z Fpy, 1a(2,0) < (=1)Pr Bz Fpy, a(a,0),
()@, a(z,—1) > (=1)Er1@gFp, (2, —1), (4.44)
(1) @ 2Fpip 1(2,0) < (-1)rWafi(z) < (-1)P@zFpy (2, —1).

Due to (4.42) the inequalities (4.43)-(4.44) and (4.41) coincide. m
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The T-multipoint Padé approximants zFpy,_1(x,7), j = 0,—1 form the optimal
upper and lower bounds on A\(x)—1) obtainable using only the given number of coefficients
(P + ps) and that the use of additional coefficients (higher (P + p..)) does not worsen the
bounds zFpi,_1(x,j), j=0,—1. Thus the Theorem 4.3 is fundamental for it provides,
with respect to the given terms of the truncated power series (A(x) — 1) /x, the optimum
bounds on A(z) — 1.

Fig. 4.3 Sketch illustrating the fundamental inequalities (4.41) for the multipoint Padé
bounds ZL’F6+171(1}, 0), I‘F6+171(l’, —1) +5 and ZL’F8+171(£L', 0) + 10, $F8+171(£L‘, —1) + 15 0on the
effective transport coefficient A(z) — 1. The numbers of coefficients of power expansions of
fi(x) at —1, 0, 2, x3, x4 incorporated into the bounds zF py,  1(x,u)+C, u=—1,0 are
depicted on the graph.

By way of the illustration of Theorem 4.3 the Padé approximants

$F6+171(£L‘, O), ZE’F6+171(£L', —1) 3 ZL'F8+171(£L', 0), IF8+171(ZL', —1) (445)
estimating the effective transport coefficient
zfi(x) = ANz) -1 (4.46)

are sketched qualitatively in Fig. 4.3. The numbers of the coefficients of the expansions
of z f1(x) at —1, x1, x9, x4 incorporated into the T-Padé bounds (4.45) are specified in Fig.
4.3. By summing them in a proper way we arrive at the characteristic functions Rg(z)
and Rg(z) associated with the estimations (4.45). For example we have (cf. Fig. 4.3):

Res(x) =5, Rg(x) =61if 2o <z <u3 (4.47)

and

Rs(z) =7 , Rs(z) =9, ifxy <z < o0. (4.48)
By substituting into (4.41) the characteristic functions (4.47) and (4.48) we obtain (cf.
Fig. 4.3)

(—1)2Fg11(2,0) > (—1)° (Mz) — 1) > (—1)°xFpi11(z, —1), 29 < & < 3, 19)
(—1)8 2Fyir1(2,0) > (—1)° (\x) — 1) > (—1)° 2Fga (2, —1), 20 < < 3.
and
(=17 2Fe111(2,0) > (=1)" (M) = 1) > (=1)7 Fesaa(w, —1), 24 < < 00,
(4.50)
(—1)° 2F3111(x,0) > (1) (M(z) = 1) > (=1)° 2Fg1 (2, —1), x4 <z < 00.

From (4.41), it follows that xFg11(2,0), xFg11(x, —1) and xFgi11(2,0), xFgi1q(x, —1),
—1 < x < oo are the optimum bounds on A(z) — 1 over the input data given by eight
(741) and nine (8+1) coefficients of the truncated power series, see Fig. 4.3. Here +1 ap-
pearing in (7+1) and (84 1) means that one coefficient of an expansion of (A\(x) —1)/z at
infinity is incorporated into bounds (4.50).
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4.2.1 Particular T-estimates of effective transport coefficients of two-phase media in a
real domain

The general T-multipoint Padé bounds on the effective transport coefficients A(z) — 1,
x € [—1, 00| of two-phase media take the forms (cf. (4.19))

F (z,u) \]\} <7 gj Fip(x,u,ep) (4.51)
TLpyp 1T, U) =T 7 .
+p k=1j=P,_1+1 1+ (2 — xk)€j+1 + (z — xp) X 1

where u = —1, 0. Particular cases of the T-formula (4.51) will be discussed:

a) The case p;> 0, po=0, ps=0,...,pNy=0, P> 0. The inequalities (4.41)-(4.42)
reduce to

(=) O Fpyy 1(2,0) > (=1) e @) (\(2) = 1) >
(—1)RP+Poo(x)ych+poo71(x, —1), x€[-1,00], (4.52)

Rpip () =1+ (p1 +1)H(2) + pH(x — 00), P =p; + 1,
where (cf.(4.51))

p1

gj Fl7p<$,u, 6p)
F =
rrp poml(l',U) l'j\/l 1 T

€jr1+ T X 1

, u=—1,0. (4.53)

The inequalities (4.52) valid for the three-point Padé bounds (4.53) were derived by
Tokarzewski and Telega in [68], see also [54, 58, 59].

b) The case p;> 0, p2> 0, ps>0,...,px> 0, po=0. The inequalities (4.413)-(4.42)
take the form

(—1)r@zFpy(z,0) > (-1)r@ (M) — 1) = (=1)r@aFp (2, -1),

Re(s) = Lp(a) + 1) = 1+ 3 puH (o — ) + H(2), (454

N
P=1+> pi x€(—1,00),
=1

while (4.51) reduces to
N P
; Fip(x,u,0
eFppoa(zu) =2\ \/ T (93 “’(1 ), u=—1,0. (4.55)

T — ) X
k=1j=Py_1+1 k)

The estimates (4.55) and the inequalities (4.54) coincide with the bounds derived in [71]
and rigorously proved in [27], cf. also [28, 52, 60].

c) The case p;> 0, po=1, p3=1,....,pn> 1, Poo= 0. From the inequalities (4.413)-
(4.42), it follows

(—=1)r@zFpy(x,0) > (=1)r@ (Az) = 1) = (=1)*r@aFp, (2, -1),
Rp(x)=Lp(z)+ H(x) =1+ (p1 + 1)H(x) + éH(x — k), : (4.56)

P=1+p+N—-1, z€(—1,00),
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while the relation (4.51) yields

IFPJ(I, u) =
¥ gj VREVE Ik Fyp(z,u,0) (4.57)
j=Po+l e k=2 j=P1+k-1 + (=) X

Earlier Milton [42] and independently Bergman [14] derived the estimates (4.57), but they
did not establish the inequalities for them, see (4.56). On account of that the relations
(4.56) are new.

d) The case p;> 0, p2=0, p3=0,...,pn= 0, pw= 0. Further simplifications of (4.56)-
(4.57) are obtained

(—=1)Er@ g Fpy(2,0,0) > (=1)Er@ (A(z) — 1) > (=1)Fr@zFp, (2, —1,0),
(4.58)
Rp(z) = Lp(z)+ H(z) =1+ (m + 1)H(z), P=1+p, z € (-1,00),
where -
1
_ 9j FLP(xauv 0) _
xFy p(x,u,0) —acj\:/1 T3 x 1 , u=—1,0. (4.59)

The inequalities (4.58) are applied by Tokarzewski [53], Tokarzewski and Telega [67] for
an investigation of the effective thermal conductivity of regular arrays of cylinders, see
also [21, 22, 38].

e) The case p;=1, po=0, p3=0, ..., py=0, poo=0. The relations (4.413)-(4.42)
and (4.51) yield

(=)@ Fy (2,0) > (=1)R@) (\(2) = 1) > (=1)R@OrFy (v, —1),

(4.60)
Ry(x) = Lo(z) + H(x) =14 2H(x), z € (—1,00)
and
! g; Flg(l' u 0)

E: = J s =—-1,0. 4.61
rFy;(x,u) szll—l—xx N , U ,0 (4.61)

The bounds zF5;(x,0) and xF5;(x, —1) take the explicit form (cf. (4.61))

ox

F =— zF -1) = 4.62
4 2,1(I>0) 1+<1—(,0)$’ T 271(1:7 ) P, ( 6 )

where ¢ denotes the volume fraction of inclusions. Hence the inequalities (4.60) reduce
to "
(_1)1+2H(z)90— > (—1)1+2H@) (\(z) — 1) >

1+ (1 —¢)x (163)
(—D)"H2H@pr x € (—1,00).
From (4.63), it follows immediately
o

The relations (4.64) coincide with the classical Wiener bounds [73].
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Y

P Y.
@/ ’

A1

Fig. 4.4 Unit cell for square array of cylinders: A, As—thermal conductivities of a matrix
and inclusion, respectively.

f) The case p;=2, p2=0, ps=0, ..., pn=0, poo= 0. The relations (4.51) yield the
Padé bounds

2y F 3(z,u,0)
F = J 13 — = _]- 4‘
x 3,1(ac,u70) xj\:/11+xx 1 , U ;O ( 65)

fulfilling the inequalities

(D)@l (2,0) > (1) (Mz) = 1) > (-1)B@aFy, (2, 1),

(4.66)
Rs(x) = Ls(z) + H(x) =14+ 3H(x), z € (—1,00).
The bounds zF3;(z,0) and xF5;(z, —1) are equal to (cf. (4.65))
B T . _ P
I‘F371(ZL',O,O) = 05(1 —gO)iL" I‘F371(l’, 1,0) 1+05<1 —(p),r (467)
14—
1+ 0.5z
By substituting (4.67) into (4.66) we obtain the estimates
_1)\1+3H(z) pr > (_1)1+3H(x) 1) >
1+ 0.5z . (4.68)
_1)H3H(@) pe 1
(=1) 14051 —p)z’ v € (=1,00)

derived earlier by Hashin-Shtrikman [30].
4.2.2  FExample for an evaluation of real T-estimates

As an example of practical application of the T-multipoint Padé bounds on A(x)—1 (4.41)
we consider a thermal conductor consisting of equally-sized cylinders regular embedded in
an infinite matrix, cf. Fig. 4.4. We set: A\;, A\oa— conductivity coefficients of a matrix and
cylinders, x = ((A\2/\1)—1)— nondimensional modulus of the cylinders, A(x) = A.(x)/A1—
nondimensional effective conductivity, ¢ = 7p?- volume fraction of inclusions, p —radius
of cylinders. By substituting into (4.35) z = x € R we get the real T-Padé bounds

IFQ,I('Tau)v Q?Fg,l(l',U), 'CUF3+2,1($7U)7 u= _170 (469)

estimating the effective conductivity A\(x) — 1 of a square array of cylinders, see Fig. 4.5.
The T-Padé estimations zF3 01 (x,u), u = —1,0 are better then the Wiener xF5 1 (z,u),
v = —1,0 and Hashin-Shtrikman zF3;(z,u), v = —1,0 ones, cf. [73] and [30]. In
Subsection 4.3.4 the T—Padé bounds on (A(z) —1)/z narrower then (4.69) are evaluated,
see also [58].
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Table 4.1 Low order coefficients, ¢,,9, (n = 1,2,...6) and w, (n = 1,2,...7) for
evaluation of S-continued fraction bounds F},;(z,0) and F},;(z, 1) for the conductivity A.(x)

of regular arrays of spheres

Array of
spheres n=1 n=2 n=3 n=4 n=>5 n=6 n="7
©=20.5 Cn 0.5 0.0833 0.0235 0.0019 0.0043 0.0023
simple Jn 0.5 0.1667 0.1158 0.2693 0.1170 0.3203
cubic Wy 1.0 0.5000 0.6667 0.8261 0.6741 0.8263 0.6162
v =20.6 Cn 0.6 0.0800 0.0149 0.0042 0.0016 0.0008
Body- Jn 0.6 0.1333 0.0530 0.3376 0.0710 0.3856
centred Wy, 1.0 0.4000 06667 0.9204 0.6331 0.8878 0.5657
p=0.7 Cn 0.7 0.0700 0.0144 0.0056 0.0028 0.0016
Face- Gn 0.7 0.1000 0.1064 0.3458 0.1046 0.3381
centred Wy, 1.0 0.3000 0.6667 0.8403 0.5884 0.8221 0.5872
ast Hashin-Shrikman — Fpy %D
357 = Fy1 (x0)
25f e | P,y (D)
AN N s Fa1 (X0)
051 ——— Faip1 (1)
-05 o '1 '2 :')’ [‘1 .......... Faip1 (0)
Fig. 45 The comparison of the mutipoint Padé bounds xFb(z,u), xFs;(z,u),
rF3i01(z,u), u = —1,0 on effective transport coefficient A\(x) — 1 with the classical
Wiener and Hashin-Shtrikman estimates. Padé bounds zF3;9 (2, u),u = —1,0 are narrower

then Wiener and Hashin-Shtrikman ones.

4.3 Numerical examples of evaluation of effective transport coefficients by
TMCFM

In this section we present a few nontrivial applications of TMCFM in the mechanics of
inhomogeneous media.

4.8.1 Complex dielectric constants of spheres forming reqular arrays [67]

Let us consider simple, body-centered and face-centered, cubic lattices of spheres em-
bedded in an infinite matrix material. By e., €9, €1 we denote the dielectric constants
of a composite, spheres and matrix, respectively. For a macroscopically isotropic, two-
component materials the first two coeflicients of the power series developed at zero are as

Im (e(z))

-0 ) . =7
1 z2=-5-i5 .7 -6
-2 —-“’l’*’ ——__::'7—"*,,\‘\ =5
.3 l‘:‘-.\ \\\ T =4
-4 "\.\ ~ . =3
" s =2

-2 -1 0 1 2 3 4

Fig. 4.6 The sequence of the lens-shaped bounds 1 + z¢,;(2) on the effective dielectric
constant ¢, /e, for the simple cubic lattice of spheres.
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Im (e(z)) 0.6
¢=0.

6 T LT S — P=6
Pt S

st o A :} o | P=5
A4 S R

AN, e 2N U (e P=4

3 . i 7 - [— P=3

2 ~_\—:‘~ ‘;j —— P — 2
z=-5-i5 el o -

! ~" Re(s(z) |- P=1

0

-2 0 2 4

Fig. 4.7 The sequence of the lens-shaped bounds 1 + 2¢p,(2) on the effective dielectric
constant ¢, /e; for a body-centred cubic latice of spheres.

follows ((4.30)-(4.31))

filz) = %&_81 :go—%@(l—@)z—i—()(f), z=¢e9/e; — 1. (4.70)

Here ¢, (1 — ¢) denote the volume fractions of inclusions and of a matrix, respectively.
At &€ = —1 we can write (cf. 4.8)

fi(z) <14+ 0(z+1). (4.71)

Since e; = 0 the T-continued fraction expansion of f(z) reduces tu the S— continued
fraction one (cf. (4.70)-(4.71))

oy s1—9)  fi(2)
D=1 T 1

(4.72)

The low order S—bounding functions zFp1(z,u), p = 1,2,3 take the forms (cf. (4.19)
and (4.72))

vz weFi(z+41,u)

2F11(z,u) = 2Fi(z+ 1Lu), zFyi(z,u) = T+ 2 x N ,

(4.73)

1
vz §(1—<p)z wsF(z+ 1,u)
F = . 4.74
25z, u) 1+2 x 14+2 x 1 (4.74)

Here Fi(z,u) is the elementary bounding function estimating fi(z) (1.154), while the
constants wp (P = 1,2, 3) are equal to

2
w1 = 1, W2 = @, W3 = 5 (475)

By substituting (4.75) into (4.73) and (4.74), we obtain zFp;(z,u) estimating e./e; — 1
for the cases:
1) P = 1— first coefficient of the series (4.71) is known:

(1—1—1u)z7 1<u<o
2Fy1(z,u) = l—u (4.76)
H% o 0<u<1
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Table 4.2 ¢,- the coefficients of the power expansion of ¢./e1; g, and w,, - the coefficients
of the S-continued fraction to ¢./e;

Arr.ays of n=1 n=2 n=3 n=4 n=>»s n=>6

cylinders

»=0.75 Cn 0.75 0.094 0.030 0.015 0.009 0.006
Square g, 0.75 0.125 0.196 0.304 0.144 0.356
array Wy 1.00 0.250 0.500 0.607 0.500 0.712

»=0.88 Cp 0.88 0.053 0.011 0.005 0.003 0.002

Hexag. g, 0.88 0.060 0.146 0.354 0.169 0.331
array Wy 1.00 0.120 0.500 0.710 0.500 0.661

2) P = 2— first coefficients of the series (4.70) and (4.71) are known:

(

. U-pU+w o
142 X 1
2Fy1(z,u) = ( ) 1—u (4.77)
- ¥
Pz 14+ z2u 0<u<l1
\ 1+2 X 1
3) P = 3— two and one coefficients of the expansions (4.70) and (4.71) are given:
( 1— 2
= — : —1<u<o,
1 x 1 X 1
2F31(z,u) = (4.78)
(1-—yp)z 21-u B
i 3 31+ zu C0<u<1
1 X 1 X 1

The TMCFEFM bounds (4.76)-(4.78) coincide with the low order complex bounds derived by
Milton [40] and independently by Bergman [12]. The circular arcs 1+2¢, ;(z), 1+2¢,,(2),
1 + z¢4(2) estimating the effective dielectric constant . /e, are depicted in Figs 4.6 and
4.7. To get bounds more narrow then (4.76)-(4.78) we have to incorporate in a computing
algorithm many terms of a power expansion of €.(z)/e; at z = 0. For the simple, body-
centered and face-centered cubic lattices of spheres McPhedran and Milton [38] evaluated
several coefficients of a power expansion of e.(a)/e;, @ = z/(2 +2), at = 0 and
gathered them in the tables as discrete functions of . In [67, Appendix B] we develop
a simple formulae relating the terms @, a™ of the power series €.(z)/e; to the terms ¢, 2"

Ae /M Ae /A1
10r1

057

0.0
0.0 0.1 1.0 10 10 10

Fig. 4.8 Monotone sequence of upper and lower bounds evaluated from p coefficients
of power expansion of A.(x) uniformly converging to the effective conductivity A.(z) of
face-centered array of spheres.
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of the power expansion of e.(«)/e;. From the given coefficients @,, [38, Tabs 6,7,8] we
have calculated the unknown coefficients ¢,,. The T-continued fraction procedure (3.32)-
(3.34) applied to Z§=1 cn 2" yield the continued fraction coefficients g, and constants wp,
gathered in Tab. 4.1. The sequence of the bounds 1+z¢p () or equivalently the inclusion
regions 14+ 2®p1(z), P =1,2,3,4, 5,6 estimating the effective dielectric constants e, /e of
regular arrays of spheres are shown in Figs 4.6 and 4.7. Note that the inclusion regions

2®p;(z) satisfy the fundamental inclusion relations (4.17)-(4.18).

4.3.2  Effective conductivity of regular arrays of spheres embedded in an infinite matrix
[65]

The results gathered in Table 4.1 were also applied to evaluate the bounds on the effective

conductivity A, of simple, body-centered and face-centered, cubic lattices of spheres of a

conductivity Ay embedded in an infinite matrix of the conductivity A;. The calculation
procedures used by us is reported in the Subsection 4.3.1. Results are shown in Fig. 4.8.

4.3.83 Real dielectric constants of reqular arrays of cylinders embedded in an infinite

matrixz [67].

Let us consider square and hexagonal lattices of cylinders, with a dielectric constant e
embedded in an infinite matrix made of a material with the dielectric coefficient ;. By
ee(x)/e1(x = h — 1, h = e3/e1) we denote as previously the nondimensional effective di-
electric constants of a composite. For a regular array of cylinders, the first two coefficients
of power series expanded at zero are as follows

file) = %&_51 e %w — o)+ 0(?), (4.79)

where z = (e2/e1) — 1. Here ¢ and (1 — ¢) denote the volume fractions of the cylinders
and of the matrix, respectively. At £ = —1 we can write

filz) =14 0(x+1). (4.80)

Since e; = 0 the T-continued fraction expansion of f1(z) is expressed by (cf. (4.79)-(4.80))

(4.81)

_— prl(X,l)
---- Fp,1(x,0)

p=1,2,...,9
x=h-1

h=¢es /¢

Fig. 49 The sequence of upper and lower bounds on the effective dielectric constant
e(x)/e1 of square array of cylinders.
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— Fpai(x,1)
---- Fp1(x,0)
p=1,2,..., 8

x=h-1
h:82 / €1

€e /€1 30 €e /€]

Fig. 410 The sequence of upper and lower bounds on the effective dielectric constant
ee(x)/e1 of hexagonal array of cylinders.

(=0.78530816337.... ¢=0.78539816
o | g oinders 2 goeses0y | T Fasull)
o ¢=0.78539000 - asymptotic solution
10 00N | ——  XFayup(X,-1)
10° | ©=0.78500000
10" {22
1 2 3 4 5 6 7 h

10 10 10 10 10 10 10

Fig. 4.11 Effective conductivity coefficients \. of a square array of nearly touching cylinders.

The low order bounding functions zFp;(z,u), p = 1,2,3 (3.159) and the characteristic
ones R(z) (4.42) evaluated from (4.79) and (4.80) are given by (cf. (2.163))

cF(z,u) = 2Fi(x+ 1u), R(x) = H(x+ 1) + H(x),

© waFi(z+ 1, u
142 x 1 ’

rFyi(z,u) =2 R(z) = H(z+1)+2H(z),

(4.82)

. © %(1 —p)x wsFy(z+ 1, u)
14+z X 1+zx X 1

rF3q(x,u) =

Here Fy(z,u) = 1+ u, —1 < u < 1is a real elementary bounding function, cf. (1.154).
The relations (4.82; 2 5) take the following explicit forms:
1) P = 1— first coefficients of (4.80) is known

(_1)H(x+l)+H(x)x > (_1)H(x+1)+H(z) (i_j _ 1) > 0. (4.83)

2) P = 2— first coefficients of (4.80) and (4.79) are available

(—1)HE+D+2H(@) 4 Y l—¢ > (—1)H@+)+2H (@) <E _ 1) >

1 1
i - (4.84)
> (—1)H+)+2H (@) ﬂ‘
a 1
3) P = 3— first coefficient of (4.80) and two coefficients of (4.79) are given
(_1)H(r+1)+3H(r)$ ® 0.5(1 = ) > (_1)H(:Jc+1)+3H(x) Ce 1) >
1+xx 1 - €1 -
(4.85)

P 05(1—gp) 05
l+zx 14z X

(_1)H(:E+1)+3H(x)x
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Relations (4.84) and (4.85) are well known as the Wiener [73] and Hashin-Shtrikman
bounds [30], respectively. The calculation of better bounds requires more then two coeffi-
cients of the power expansion of (¢./e1) — 1. For square and hexagonal arrays of cylinders,
the terms ¢, (n =1,2,...6) of the power expansion of (e./e; — 1)/z have been calculated
by the method presented in [37] and gathered in Table 4.2. The T'—multipoint continued
fraction procedure (2.13)-(2.14) applied to Y7 ¢,a™ provides g,, n = 1,2,..., P and
wp, P = 1,2,...,7, see Table 4.2. The narrowing sequences of the upper and lower
bounds on the effective dielectric constants for square and hexagonal arrays of cylinders

are shown in Figs 4.9 and 4.10, respectively.
4.8.4  Densely packed highly conducting cylinders [58, 59]

Let us consider an infinite array of identical, parallel cylinders arranged in a square lattice.
Without loss of generality we assume that the nearest- neighbour distance at the cylinder
axis is equal to one. We denote the cylinders radius by p. The difference of the conduc-
tivities of the cylinders and the matrix medium is denoted by x = h — 1. The continuous
temperature distribution in the system considered obeys the conductivity equations of

the form
V(14 20:)VT =0, (4.86)

where O, is the characteristic function of the volume occupied by the cylinders. The
conductivity equation (4.86) is supplemented by the continuity condition for the normal
component of the heat current J=(1 4+ 20,)VT at the surfaces of the cylinders.

In order to evaluate the effective heat conductivity we consider the system under the
influence of a constant temperature gradient along one of the main square lattice axis, say
in the X —direction. The temperature field can be then decomposed into the systematic
part 7 and the periodic part §7

T =T 4 4T. (4.87)

Since the problem is linear the amplitude of the temperature field is irrelevant. Therefore
we may set

7O = X, (4.88)

Also, since 0T is periodic in space it is sufficient to consider the conductivity equation
(4.86) in a single unit cell, with a periodic boundary condition for 67"

The effective conductivity coefficient ). is related to the above-defined temperature
field by the following equation

e = <<1 + x@z)g—;> , (4.89)

where (---) = S7! [ - -dS denotes the average over a unit cell.
The solution of (4.86)-(4.89) is obtained in the form of the power expansion

oo

Ae(x) — 1 n

Alo) =1 ch:r”, en =g\ o, (4.90)
T
n=0
where ¢\™is determined by
n o (1 mg
g§n+1) - = ZnZI gl(C ) (Eékm + apm 2k ) ) g?ﬁ%) — 51m7
(4.91)
m+ k)! 1
Am = (—1)k(m—,) (Akm + §7T5m+k,2) :
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Table 4.3 Discrete values of the elastic torsional modulus Q(X)/u,; — 1 for the hexagonal
array of cylinders, after [46]

x p=0.76 | ¢=0.80 | ©=0.84 | p=0.88
-1 [ -0.8711 | -0.8996 | -0.9286 | -0.9607
0 | 0.0000 | 0.0000 | 0.0000 | 0.0000
9 | 3.3778 | 3.9489 | 4.6887 | 5.7225
49 | 5.7076 | 7.2600 | 9.7931 | 5.1565
oo | 6.7600 | 8.9586 | 3.0093 | 24.4508

Here Ay, denotes the coefficients of a Wigner potential evaluated in [46]. Several terms
of the asymptotic expansion of A\, at x = co have been obtained by McPhedran and his
collaborators [39]. Namely they have shown for nearly touching cylinders that

—2
Ae() =1 =dp+ dlé +0 ((i) ) ,doy=7(r—1), dy = 2nr(r—1)Inr, (4.92)

r=, /m. (4.93)

The two-point Padé approximants xFss.i(z, —1) and xF349(z,—1) to the truncated
power series (4.90)-(4.93) were evaluated and depicted in Fig. 4.11. For volume frac-
tions ¢ = 0.7853 and 0.78539 the lower xF34.2(z, —1) and upper xF3s5.(z, —1) bounds
are narrow, with the maximal difference of the order of 2%. Only for very high vol-
ume fraction, such as ¢ = 0.785398 and 0.78539816 the maximum difference between the
bounds grows about 10% to 50%.

where r is given by

4.4 Complex torsional rigidity of a cancellous bone filled with a marrow [70]

4.4.1  Mathematical model of a prism-like cancellous bone.

Let us consider a two-phase material consisting of elastic porous solid filled with vis-
coelastic fluid. Such an idealized composite material is used to model a trabecular bone.
Assume that X = X, +4\; and p} = ) 4] are complex moduli of the solid phase, while
A5 = Ay +iX, and 1 = i, + ipy characterize the viscoelastic properties of the fluid phase.
Note that the case A, = 0, p; = 0 and )\,2 = 0, 1, = 0 represents a material consisting
of a porous elastic matrix filled with a Newtonian fluid. For the oscillating viscoelastic
solid-fluid composite the governing equations take the form

0, =0 onQ, n=0,1, (4.94)
where .
g'ij = )\Z'Zk;’k(sw + ,U:; (’Zm‘ + 'Zjﬂ) in Q, n = 1, 2. (495)
The interface conditions are given by
1
Qlti = 12Li, alijmj = 3ijmj on 0f). (496)

The boundary condition is classical

all-jmj =g; on 0N (4.97)
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12 1 2 . .
Here 05, 04, u; andu; denote the components of stress and displacement fields in the

solid and fluid phases respeetlvely, while g; are prescribed forces. The geometry of the
composite material is defined by: Q is the domain occupied by a matrix, while Q denotes

the domain occupied by fluid, 2 = Q U Q is the domain occupied by a composite material,
2

0f) and 0f) are the surfaces enclosing the solid and fluid phases, respectively. As usual
1 2

0f) denotes the boundary of {2, m stands for the unit vector normal to 92 and 0f2 and is
directed outwards.

4.4.2  Torsion of an inhomogeneous beam
Consider a porous beam filled with a fluid. Assume that at the opposite ends of the beam
the torsional moments are applied . For such a case the displacement field takes the form
[45]
12
Uy = —OéXgXQ, U2 = OéX3X1, Uz = a/B(X17X2) in Q=0 U Q, (498)
12

011:022:033:012:021:Oin Q=0QuUN. (499)

The parameter a denotes the torsional angle of unit length of the beam. By substituting
(4.98)-(4.99) to (4.94)-(4.97) we obtain

9 :
Ok3 = ozF*(X)a—Xk ((BX) + (-1D)"Xp Xpa1) inQ, k=1,2; X =(X;,X5), (4.100)
where
X ? if k = 17 * * *
Xps1= { ij i r o o LX) =01(X)u] + 6:(X) 3. (4.101)

Here ©;(X), i = 1,2, are the characteristic functions: 0;(X) = 1 (0;(X) = 0), if X
belongs (does not belong) to the phase i. The stresses o3 given by Eq. (4.100) satisfy
the equilibrium equation, cf. (4.100),

2
0 0
§—F*X— X )X X =0in Q 4.102
k:lan[ ( )6Xk(ﬁ< )+ ()X kil) 0in (4.102)
and the interface condition

ZQ:F*(X)i (B(X) + (—1)* X} Xpa1) mip =0 on O (4.103)

!
Here 0X2 denotes the lateral surface of the beam, while I'*(.X) is the complex shear modu-
lus. The set of equations (4.98)-(4.99) and (4.102)-(4.103) describe the torsional response
of the prismatic solid-fluid beam under harmonically oscillating external moments.

4.4.8 Homogenization of an anisotropic inhomogeneous beam

In the sequel we restrict our considerations to a periodic distribution of shear modulus

now represented by
X
(X)) =T"(X) =I'"(—), (4.104)
€
where ¢ > 0 is a small, nondimensional parameter characterizing the periodicity of a

cross-sectional microstructure of the porous beam.
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Fig. 4.12 (a) The scanning electron micrograph showing a prismatic structure of cancellous
bone; a sample taken from the femoral head, after [23], pp. 318. (b) An idealized structural

model of a prism-like cancellous bone represented by hexagonal array of fluid cylinders spaced
in an elastic matrix.

Table 4.4 Multipoint Padé approximants 1 4 [3/3] and 1 + [2/2] to torsional modulus

Q(X)/p, of a hexagonal array of elastic cylinders embedded in an elastic beam; ¢-volume
fraction

® 1+ 2Fya(2,0) 1+ by (z, —1)
0.76 141.7328240.9159224-0.147623 14-1.34602+0.406622

: 1+40.97282+0.267822+0.019023 140.58602-+0.05242:2
0.80 1+1.8655241.0787224-0.191023 14-1.33642+0.388122

: 141.06552+0.30632240.019223 140.53642-+0.03902:2
0.84 141.8901241.0865224-0.181623 14-1.3048240.3481x2

: 1+1.0501240.271722+0.013023 140.46482-+0.02492:2
0.88 1+1.8582241.0009224-0.134523 141.2331240.268522

: 1+40.9782240.192922+0.005323 140.35312+0.010622

By substituting (4.104) into (4.102) one obtains

iilF*(z)i(ﬁf(XH(—l)kXX )| =0in a0 (4.105)
P an c 8Xk kANk+1 == . .

To solve Eq. (4.104) the two-scale asymptotic method was applied. After tedious calcula-

tions we arrive at the following homogenized boundary value problem replacing the exact
one (4.102)-(4.103)

2 2 | B
J;;ijm (f(X) + (=1) Xp Xgs1) = 0, 106
2 a .
I{;Q;ka—)(k (f(X) + (—1)* X} Xpa1) mu = 0,
where "
Q) = J ™ (y) (@k . gyiy)) dy (4.107)

are the homogenized coefficients. The Y —periodic functions x* appearing in (4.107) satisfy
the equations

S AW = 50 4P = 5 (g ) (1.109

B Oy, 3% 3%

By substituting into (4.108) and (4.107) x*(y) = yx — T*(y) we obtain
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Table 4.5 The torsional moduli Q(z)/, for the inhomogeneous beam filled with the viscous
forming hexagonal array of cylinders: Q(z)/11y =14 [3/3](2),2 =1 — ({w/), ¢ = py/ps;
- the volume fraction

* I
QO Q (2)7 = _w - 1 = ﬂ
! > Mo
0.76 | 7.760 — 80.980x _ _0.0974x _ _0.0431x

10.09r—Iw 4.157x—Iw 2.831x—Iw

0.80 | 9.957 — 19262~ 0.18315 02185

12.56x—Iw 3.814x—Iw 2.603x—Iw

209.39¢ 0.41925¢ 0.0192¢
0.84 14.01 17.27x—Iw 4.2102c—1w 2.477x—1Iw

737.96¢ 1.65692¢ .022345¢
0.88 | 25.45 31.67x—1Iw 5.446c—Iw 2.388x—1Iw

oT* ,
ijsz*(y)a—(y)dy, Jok=1,2. (4.109)
Y

Yj

Here T*(y) are determined by

Z < Dy, < 8T’“( )> =0, (yx—T"(y)) Y — periodic. (4.110)

0y,

Relations (4.109)-(4.110) with T'*(y) given by (4.101) were investigated in Chapter 1 in
the context of the effective transport coefficients of two-phase composite materials. Thus
the torsional modulus @7, (2)/p; has a Stieltjes integral representation of the form (cf.

(1.51))

1
w2 5o z/w, Y (4.111)
H1 / 1+ zv I
where 3;;(v) is a nonnegative-definite tensor.

Now let us consider an inhomogeneous beam consisting of cylinders regularly spaced
in a solid phase and filled with a fluid. For such a porous beam we have T! = T? = T,
Q7 = @, = Q" and QF, = @5 = 0, see Fig. 1b. On account of that the anisotropic
boundary value problem (4.109)-(4.110) reduces to the isotropic one

O = / I(y 3y1 " (4.112)

where

il (F*(y)aT(y)> + 9 (F*(y)aL(y)) =0, (1 —T(y)) is Y — periodic. (4.113)

dy Oy Yo Yo

4.4.4  Hexagonal array of elastic cylinders

First we consider a hexagonal array of elastic cylinders embedded in an elastic matrix. For
such a case the parameters pj, p3 and consequently z = ud/ui — 1 take real values only.
For convenience we set Q* = Q, pi = u} = py, 5 = phy = py and z = z. From (4.111),
it follows that the solution Q(z)/u, of the boundary value problem (4.112)-(4.113) has a
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Fig. 4.13 Hexagonal array of elastic cylinders with volume fraction ¢ and physical parameter
x = (fy/py)—1; (a) multipoint Padé bounds 1+-[3/3](z) (conventional lines) and 1+[2/2](x)
(scattered line) on the torsional modulus Q(X) /1, (b) error & = 100%x {[3/3](x)—[2/2](x)}

/ {1+ [3/3(x)} for Q(x)/pua.-

Stieltjes integral representation

Q) _, [d8) _h
1= / 1. (4.114)

In order to find Q(z)/u; by means of TMCFM the following informations are required:
(i) The discrete values of (Q(x)/u;) — 1 given for ¢ = ¢, and x = x;, see Tab. 4.3.
(ii) The expansion of ((Q(x)/uy)—1)/z at z =0: (Q(x)/p) —1 = p+0.50(1 —p)x+

O(z?).

By starting from the input data (i) and (ii) the multipoint Padé approximants

1+ 2Fy(2,0) = 1+ [3/3](2) and 1 + 2 Fyy (2, —1) = 1+ [2/2)(2) (4.115)

are evaluated and gathered in Table 4.4. The rational functions 1+[3/3](x) and 14[2/2](z)
estimate Q(x)/u, as follows (cf. (4.41))

(=D (1 + 2Fia(2,0)) > (-1)"DQ(x)/py > (1) (1 + 2Fypa (2, —1)), (4116)
4.116
R(x)=H(zx+1)+3H(z)+ H(x —9) + H(x —49) + H(x — c0).

Fig. 4.13 depicts: a) the Padé bounds 1 + [3/3](z) and 1 4+ zFy1(x,—1) on torsional
modulus Q(z)/uy, b) the approximation error & = 100% x {[3/3](z) — [2/2](x)}/{1 +
3/3](x)}, = py/py — 1 for Q(x)/py. From Fig.4.13 we conclude that the torsional
modulus Q(z)/u, differs from the multpoint Padé approximants 1 + [3/3](z) and 1 +
[2/2](x) by less than 0.3%. On account of that we assume that the function

Qx)/m =1+ [3/3](x), # = (/) =1, ¢ <0.88 (4.117)

provides a good estimate of the effective torsional modulus.
4.4.5 Hezagonal array of fluid cylinders

Consider now a hexagonal array of cylinders filled with a viscous fluid and spaced in an
elastic beam . For such a case the parameters p}, ps and consequently z = pj/puf — 1
take complex values. By replacing in (4.117) x by z one obtains the complex torsional

modulus Q*(z)/p, (cf. [16])

Q" (2)/ 1y = 1+ [3/3](2) for ¢ < 0.88, z = Twpy/py — 1. (4.118)
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Table 4.6 The torsional moduli Q~!(2)p, for the porous beam filled with a viscous fluid
forming hexagonal array of cylinders: Q(z)/11y =14 [3/3](2),2 =1 — ({w/), ¢ = py/ps;
- the volume fraction

1
RN CRST

4 Q*(2)’ % 1o

0.01465¢ 0.0655¢ 0.9348s¢
0.76 0.129 + 4.196x—Iw + 2.887x—Iw + 2124 —Iw

0.0476¢ 0.0666¢ 0.92265¢
0.80 0.100 + 3.911x—Iw + 2.643x—Iw + 2.095x—[w

0.075515¢ 0.09255¢ 0.90115¢
0.84 1 0.071 + 4.397x—Iw + 2.521x—Iw + 2.066x—Iw

0.1339¢ 0.14715¢ 0.8608¢
0.88 0.039 + 5.956c—[w + 2.450x—Iw + 2.034x—[w

Here 11,is the shear modulus of the elastic matrix, while p, denotes the viscous coefficient
of a Newtonian fluid. Tables 4.5 and 4.6 depicts formulae for complex moduli Q*(z)/ 14
and complex compliances i, /Q*(z), z = (Jwps/p;) — 1 of the hexagonal array of fluid
cylinders. Figs 4.14 and 4.15 present a complex modulus Q*(z)/u, and its real and
imaginary parts, respectively.

Note that the modulus Q*(z)/p; and compliance p,/Q*(2), z = ({w/x») — 1, 3 =
f1/ 1ty divided by Iw are Fourier transforms of torsional creep function ®(¢) and torsional
relaxation function ¥(t), cf. [16]. Hence we can write

1, 0(Iw) = —12 Vw) Q=) - Twmy (4.119)
lwQ*(2)" Twpy 15}

The inverse of the Fourier transformations of ®(/w) and ¥(/w) are of the forms, cf. Tab.
4.5 and 4.6 and Eq. (4.119)

3 bC
(0 = &+ 3 5 (1 (14 atoet) )
n=10n (4.120)
WUt 3.0
O g - (1 agety e
H n=1 CLZ

Here the coefficients d¢, d", b¢, b" , af

YN n) 'n

and a;, take values listed in Table 4.7 and Table 4.8.

14 7
12 ~ 6
=
10 55
5 8 g4
EN S
X 2
3
=, % 2
2 =1
0 0
0 10 20 10%10210" 10° 10" 10% 10°
Re(Q*/p1) CYTPYTEY

Fig. 4.14 Complex torsional modulus for the elastic beam filled with viscous fluid; ¢ = 0.76,
0.80, 0.84, 0.88.
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Fig. 415 Real and imaginary parts of the effective torsional moduli for the elastic beam
filled with viscous fluid, ¢ = 0.76, 0.80, 0.84, 0.88.

Table 4.7

© d° bS b b a§ as as§
0.76 0.1289 | 0.0146 | 0.0655 | 0.9348 | 2.1958 | 0.8867 | 0.1238
0.80 0.1004 | 0.0476 | 0.0666 | 0.9226 | 1.9109 | 0.6432 | 0.0948
0.84 0.0714 | 0.0755 | 0.0925 | 0.9011 | 2.3972 | 0.5213 | 0.0656
0.88 0.0393 | 0.1339 | 0.1471 | 0.8608 | 3.9565 | 0.4500 | 0.0344
Table 4.8

% dr b} b by aj a’, aj
0.76 7.7600 | 60.980 | 0.0974 | 0.0431 | 8.0939 | 2.1575 | 0.8312
0.80 9.9586 | 102.62 | 0.1831 | 0.0218 | 10.557 | 1.8143 | 0.6035
0.84 14.009 | 209.39 | 0.4192 | 0.0192 | 15.275 | 2.2101 | 0.4768
0.88 25.451 | 737.96 | 1.6569: | 0.0223 | 29.669 | 3.4456 | 0.3877

The torsional creep ®(¢) and relaxation W(¢) functions given by (4.120) and Tables 4.7,

4.8 are depicted in Fig. 4.16

D(xt)/py
= N N w
o o o o

[
o

o wm

Fig. 4.16 The torsional creep function ®(t) and torsional relaxation function ¥(t) for a
porous beam consisting of hexagonal array of fluid cylinders spaced in a linear elastic matrix.

4.4.6  Torsional rigidity of prism-like cancellous bone

Most of bones in the body consists of a dense compact bone surrounding a spongy can-
cellous one filled with marrow, see 4.12. In previous sections the macroscopic torsional
modulus, torsional creep function and torsional relaxation one have been evaluated for
cancellous bone. Consider now a homogeneous viscoelastic material surrounded by an
elastic one. Such a composite models a prism-like human bone, see Fig. 4.17. Two
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cancellous bone
— (viscoelastic core)
‘

compact bone
(elastic shell)

Fig. 4.17 An idealized model of typical human bone after the process of homogenization of
a cancellous core.

equivalent relationships between the torsional angle o and torsional moment M are are
commonly used

a(lw) = Tw ¢ (Jw) M(Iw) or M(Iw) = Iw ¥**([w) a(lw), (4.121)
where
TwWwar([ T S _
RV - ([w) = (f [dxdy + —Iw\i(llw)f fdxdy) <x2 +y? + yaﬁéff“) - xaﬁéiw)) - (4122)
1 S; Sa

Here Jw®(Iw) and [wW¥(lw) denote the torsional rigidity and torsional compliance of
an inhomogeneous beam, respectively. The parameter p, is the elastic modulus of the

surrounding shell, while JwW(/w) denotes the effective shear modulus of the viscoelastic

core, cf. Fig. 4.17. For a circular cross-section (see Fig.4.17) we have 3(x,y,t) = 0, thus
B(Iw) = 0. Formulae (4.121), (4.122) take the form

s
No ""li" § N
ALY N 5o
€™ I (TS0 Co
N sy 3
89 III s XN
£y I IIIII ﬁ?;w
9
39 D
NN 3"
? ¢
TP
SR>

Fig. 4.18 The hydraulic stiffening of a torsional complex rigidity of a porous beam modelling
a long human bone filled with marrow.

2[w¥ (Iw) _ @@2 14 Twar(Jw) - R3 -
7y Ry H1 H1 ’ R~
7Ry Jw® (1) 1 LB (4.123)
2 - Twler (Jw)’ R T
(ﬂ) (2 — 1)+ L) 1
Ho Ha

The influence of the parameter g and ratios p,/ 1, Wity /i1, on the nondimensional torsional
rigidity 2/wWaP(Iw)/mu, R} and nondimensional torsional compliance 7R}, [w®* (Iw))
have been investigated. The results are depicted in Figs. 4.18 and 4.19.
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Fig. 4.19 The hydraulic stiffening of a torsional complex compliance of a porous beam
modelling a long human bone filled with marrow.

4.4.7  Final remarks

In this study using TMCFM we have developed an idealized model of a prism-like compact-
cancellous bone structure filled with marrow. The model established predicts the mechan-
ical response of prism-like cancellous structure loaded by torsional moments. The ana-
lytical formulae relating the torsional rigidity, compliance, creep and relaxation functions
with apparent density, viscosity of marrow and elastic constants have been obtained. The
formulae obtained predict the hydraulic stiffening of a human bone due the presence of a
bone marrow.

4.5 Summary and final remarks about the TMCFM estimates.

By means of TMCFM established in the previous chapter we derive the general T-
estimates of the effective transport coefficients A\(z) — 1 of two-phase media, namely the
T-inclusion regions valid in a complex domain and the T-bounds defined on the real axes,
cf. (4.19) and (4.51).

The fundamental T-estimates obtained are the optimum ones with respect to the given
power series (A(z) — 1)/z available at real points (4.6), infinity (4.7) and satisfying the
inequality (4.8).

The TMCFM is a first method of the theory of composites materials that can incorpo-
rate into the estimates of the effective transport coefficients A(z) — 1, among many others,
also the power series (A(z) — 1)/z expanded at infinity.

The main TMCFM tools adapted to composite materials, i.e. the fundamental T-
inclusion relations (4.17)-(4.18) and the general T- inequalities (4.41)-(4.42) are new.
They are published for the first time.

The following block diagram presents the TMCFM computational steps for evaluating
of the effective transport coefficients of two-phase media from the truncated power series

Ld
fi(z) = A(Z;_l = M) dy,(u) >0, fi(—1) <1 -Stieltjes function

o 1+ z2u’
!
| fi(z)r P2 PP - truncated power expansions of fi(2) ‘
!
‘ F57(2) b ll’pjz"::jprjv’p;j”gl - parametric power expansions of f5(z) |
!

flfvn <p17P2,~~-,PN7poovl

ey % fp(z)) -T-continued fraction expansions of f5(z)

!
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At (MQ ~~~~~ pbeol f;l’l(—1)> = 1 -equations for wp"" = f5 " (~1)

T1,L2500y ZN,00,—17

D1,P2;--,PN ;Poo,1 . .
2Fpip 1 (xlm 77777 xN,oo,—1>vaPF1<Z>u)) -bounding functions for f(z)

!
— the bounds on fi(z) : if z € R,
the boundary for fi(z) :if z € C, (=1) i@ Fpy ) 1(2,0) >

ZZ?P+poo71(Z) —{welC:w= (—1)Frree® 2 f (2)
Ll <u <1t
2Fpipea(zu); -1 <u <1} > (=1)Rrere G 2P, (2, —1).

If in the above block diagram we replace z by s and fi(z) by ¢,(s) we arrive at the
TMCFM estimates of a Stieltjes function ¢,(s) = A(z) — 1, z = 1/s, see Remark 3.2.

From the Subsections 4.1.1, 4.2.1 and the relations (4.19), (4.51), it follows that all
previous bounds on A(z) — 1 reported in literature [14, 42, 44, 53, 67] and [54, 58, 59] are
the particular cases of the new T-estimates of A(z) — 1 derived in this chapter.

As an examples of applications of the TMCFM we have investigated complex dielectric
constants and termal conductivities of arrays of spheres, real dielectric constants of lattices
of cylinders, conductivity coefficients for densely packed highly conducting cylinders and
finally torsion rigidities of human bones filled with a marrow, see Sections 4.3.1, 4.3.2,
4.3.3, 4.3.4 and 4.4.

For more nontrivial examples of the estimations of complex material constants by
means of TMCFM we refer the reader to our earlier papers exploring the effective transport
properties of linear [3, 37, 60, 62, 64, 66, 68] and quasilinear [21, 22, 51, 57, 56] composites.
In [52, 69] we also deal with effective torsional rigidities of long human bones filled with
Marrow.
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CONCLUSIONS

By starting from the continued fraction techniques of matching up of the rational
functions with the Stieltjes series developed by Baker [6, Chap.16, 17], [9, Chap. 5],
Gilewicz [24], Gilewicz and Magnus [25, 26], Gilewicz et al [27], Tokarzewski [53, 54, 55]
and Tokarzewski and Telega [66, 67, 68] we derived in a coherent form the new S-
and T-Multipoint Continued Fraction Methods of an estimation of the effective trans-
port coefficients \.(z)/A; — 1 of two-phase media for the cases, where the inequality
[(Ae(2)/A1) —1)/z ].=—1 < 1 and the truncated power expansions of (A.(z)/\) —1)/z
at a number of real points (SMCFM) and infinity (TMCFM) are known. If no power
expansion of (A.(2)/A1) — 1)/z are given at infinity the TMCFM established in Chapter
3 reduces to the SMCFM derived in Chapter 2. On account of that we limit our further
conclusions to TMCFM only.

The TMCFEM is the first method of the mechanics of inhomogeneous media that
incorporates into the complex and real estimates of (A¢(z)/A1) — 1 the unlimited numbers
of coefficients of power expansions of (\.(z)/A1)—1)/z available at a number of real points
and infinity.

In the complex domain the TMCFM produces the T-multipoint inclusion regions
(4.12) estimating via (4.17) the effective transport coefficients (A.(z)/A1) — 1 of two-phase
media. They are optimal with respect to the truncated power expansions of (A.(z)/A1) —
1)/z available at real points and infinity, see T-fundamental inclusion relations (4.17),
Theorem 3.12 and Corollary 1.20.

In a real domain the T-multipoint inclusion regions (4.12) reduce to the segments lying
on the real axis. The beginnings and the ends of these T- segments represent the optimal
upper and lower multipoint Padé bounds on (A.(z)/\1) — 1 over the given numbers of
coefficients of the power expansions of (A.(z)/A1) — 1)/z at real points and infinity, see
T-fundamental inequalities (4.41), Theorem 3.12 and Corollary 1.20.

On the basis of the relations (4.19)-(4.24) and (4.51)-(4.68) we conclude that TMCFM
bounds generalize the classical estimates of A.(z)/\; reported by Wiener [73], Hashin-
Shtrikman [30], Milton [41, 40], Bergman [14] and the recent ones derived by Tokarzewski
[53], Tokarzewski and Telega [67], Tokarzewski et al [58] and Telega et al [51].

It is worth adding that the SMCFM and TMCFM are new not only in mechanics of
inhomogeneous media, but first of all in the theory of approximation of Stieltjes functions
fi(z). Theorems 2.12 and 3.14 provide the best estimates of fi(z) from the power series
expanded at real points and infinity.

Many nontrivial applications of the TMCFM are provided in this work. In Subsections
4.3.1 and 4.3.2 we compute the bounds on the complex dielectric constants €.(z)/e; and
effective conductivities A.(z)/A; of simple-, body-, and face-centered cubic lattices of
spheres, see Figs 4.6 and 4.8. In Subsections 4.3.3, 4.3.4 the real dielectric constants
and thermal conductivities of square and hexagonal arrays of cylinders are studied, see
Figs 4.9, 4.10 and 4.11. The torsional rigidity of a long human bone is investigated in
Subsection 4.4, see Figs 4.18 and 4.19.

More examples of nontrivial applications of TMCFM provide our earlier papers dealing
with the effective behaviors of natural and man-mad two-phase media. In the articles
[52, 69] the marrow influence on a complex rigidity of a long human bone is investigated.
The papers [61, 63] deal with the complex dielectric constants of regular lattices of spheres,
while [3, 37, 58, 60, 62, 64, 66, 68] and [21, 22, 51, 56, 57| explore the multipoint Padé
bounds on the real effective conductivities of linear and quasilinear regular composites.

From the recurrence relations (3.32)-(3.34), it follows that the TMCFM is especially
suited for an implementation as fast, accurate numerical algorithm, since it is recursive



128

and does not involve the solution of a large number of coupled equations or finding the
zeros of a high-order polynomials.

It is worth noting that, while the bounds described in this contribution are optimal
over the given input data, they are sometimes not optimal over the same input data. For
example when the properties of constituents of composite are replaced by their reciprocals,
then the effective coefficient obeys a certain ”phase exchange inequality” [50] (in two
dimension this become an equality [32]), which is violated by some of our bounds. It is
therefore possible in those cases to get somewhat improved bounds on A.(z)/A;. Such a
improved bounds are presented in [62].

It is commonly known [44, Chap.18, pp.422] that on the trajectories depending on
one parameter the eigenvalues of the effective coefficients of linear composite materials
have Stieltjes integral representations with a positive-semidefinite Stieltjes measures, cf.
(1.51). Hence the TMCFM established in this contribution can also be applied to any
linear inhomogeneous materials, for examples to viscous suspensions, porous materials,
elastic and viscoelastic composites and media conducting heat and electrical currents.

The main aim of our future work is to extend the validity of TMCFM on the multi-
components composite materials possessing anisotropic symmetries.
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