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Modeling stochasticity in gene regulation

by

Pawel Paszek

Abstract

Intrinsic stochasticity plays an essential role in gene regulation because of the small number of
involved molecules of DNA, mRNA and protein of a given species. To better understand this
phenomenon, small gene regulatory systems are mathematically modeled as systems of cou-
pled chemical reactions, but the existing exact description utilizing a Chapman-Kolmogorov
equation or simulation algorithms is limited and inefficient. The present work introduces a
much more efficient yet accurate modeling approach, which allows analyzing stochasticity in
the system in terms of the underlying distribution function.

The novel modeling approach is motivated by the analysis of a single gene regulatory
module with three sources of stochasticity: intermittent gene activity, mRNA transcrip-
tion/decay and protein translation/decay noise. Although the corresponding Chapman-
Kolmogorov equation cannot be solved when a large number of molecules are considered,
it is used to analytically derive the first two moments of the underlying distribution func-
tion. The mRNA and protein variance'is found decomposable into additive terms resulting
from the respective sources of stochasticity, which allow quantifying their significance in the

process.

The variance decomposition is asserted by constructing two approximations that establish



scription and translation. First, the genes are transcribed into singlestranded ribonucleic
acid (RNA) which is complementary up to some extent to the original DNA strand. Tran-
scription is carried out by large enzymes called RNA polymerases, which repeatedly attach
themselves to the transcription initiation site and synthesize RNA while moving along DNA.
When RNA polymerase finally reaches the termination site, it releases the transcript and
dissociates from DNA. There are three major classes of RNA involved in further protein
synthesis: messenger RNA (mRNA), transfer RNA (tRNA) and ribosomal RNA (rRNA).
Primary transcript undergoes several modifications to generate mature mRNA molecules.
Mature mRNA may carry some functions but in general they are lacking the chemical com-
plexity necessary to be efficient. Instead, in the second step of gene expression, mRNA serves
as a template in the protein synthesis. The mRNA transcript is repeatedly translated by ri-
bosomes to form polypeptide chains built from amino acids, while tRNA and rRNA perform
structural and catalytic roles in this process. Every mRNA transcript molecule contains
at least one coding region that is related to a protein sequence by the genetic code: Each

nucleotide triplet of the coding region represents one amino acid ([39], p. 155).

1.3 Gene regulation

The process of gene regulation is, in general, much more involved in eukaryotes than in
prokaryotes, however basic regulatory mechanisms include mRNA transcription control,
transcript processing and protein translation. The differences arise due to the size and the
complexity of the eukaryotic cell. Eukaryotic cells are compartmentalized, which requires
that mRNA is synthesized and matures solely in the nucleus and then is exported into the
cytoplasm and translated. In prokaryotes, transcription and translation occurs almost si-

multaneously in the single cellular compartment. Ribosomes attach to bacterial mRNA even



before the transcript has been completed.

Controlling the rate of transcriptional initiation constitutes the major gene regulation
mechanism in both prokaryotes and eukaryotes ([57], p. 543). In prokaryotes, genes sharing
similar biological functions are grouped together in clusters called operons (e.g. lac and
trp operon) to be simultaneously expressed from the same DNA regulatory sites ([39], [39],
p. 339). These sites are referred to as promoter regions, promoter sequences or cis-acting
elements, because they promote the recognition of transcription initiation site by the RNA
polymerase. Interactions at the promoter site(s) involve binding of regulatory molecules
(trans-acting elements), which determine whether genes in the cluster are being expressed
or not. The most common mode of the transcriptional control in bacteria is negative: A
repressor protein prevents a gene from being expressed by targeting another cis-acting ele-
ment called the operator. Due to the repressor bound at the operator site, RNA polymerase
cannot initiate transcription. The opposite positive mode of control is implemented when a
transcription factor (another trans-acting element) is required to assist RNA polymerase in
transcription initiation. In general, RNA polymerase activity at the specific promoter site
can be modified by numerous regulatory proteins called activators or repressors depending
whether they favor or permit the polymerase binding.

In eukaryotes, gene regulation is far more complex, however the transcription initiation
plays also an essential role ([68], p. 3-7). Eukaryotes employ three types of RNA poly-
merases, namely polymerase [, I‘I (transcribing majority of the genes) and I11. Their binding
efficiency and specificity is accomplished through series of mechanisms involving regulatory
proteins referred to as transcription factors (trans-acting elements) ([57], p. 548). Tran-
scription factors recognize regulatory sequences of genes (cis-acting elements) by numerous

mechanisms including homeodomains, POU domains, bZip domains, bHLH domains, zinc



fingers, TATA-binding proteins, and many other ([68], p. 25-50). There are two types of
regulatory elements in eukaryotes: promoters and enhancers. As in prokaryotes, eukaryotic
promoters are located immediately adjacent to the genes they regulate and they require
binding of numerous protein factors to initiate transcription, Most of the promoters contain
specific binding domains such us TATA, CAAT and GC box, but there is a large variation
in their organization and localization among different genes. To assure fast and efficient
transcription, the promoter machinery is augmented by series of more remote enhancer sites
allowing recognition of specific genes by transcription factors. There is some analogy between
enhancer and operator regions in prokaryotes, however the former are muéh more complex
in their structure and function.

In addition to transcription initiation, gene regulation can be possibly controlled at other
different stages, which include primary RNA processing, mRNA stability, protein translation
initiation and termination, as well as protein posttranslational modifications. In addition,
mRNA export form the nucleus can be actively regulated in eukaryotes.

Complex organization of the eukaryotic cell requires another level of control of gene
regulation. Eukaryotic DNA is condensed to literally fit inside the nucleus (stretched human
DNA is about 2 meters long, while nucleus has 6-8 pm in diameter, [68], p. 14): About 120-
160 bp long pieces of duplex DNA are wrapped around histones and other regulatory proteins
and tightly packed into chromatin structure. Such structure is not accessible to neither RNA
polymerase nor transcription factors. Therefore expressing any gene requires remodeling and

unfolding of the corresponding DNA region, which is accomplished by histone acetylation

[69], [21] and [11].



1.4 Sources of stochasticity

Intrinsic stochasticity in gene regulation is well recognized because of a small numbers of
involved molecules of DNA, mRNA and protein of a given species.

In prokaryotes, stochasticity is attributable primarily to mRNA polymerase binding,
followed by mRNA transcription and protein translation [1], [41], [3], [29]. Prokaryotic cells
are relatively small and haploid. Bacterial mRNA is typically very unstable (half-life time
at the order of 1 min), therefore at a given time, there usually exist only several copies
of corresponding mRNA transcript (sometimes as few as one or two) and tens of copies
of protein. This implies that the production or degradation of a single mRNA or protein
molecule has a significant effect on the cell’s behavior [13].

On the other hand, eukaryotes are diploid: Each gene has two homologous copies, which
can be independently activated and repressed. In some cases one of these copies may became
transcriptionally inactive. Moreover, some cells may have gene or chromosomal duplications
which lead to a larger number of homologous gene copies. Corresponding mRNA and protein
levels are much higher than in prokaryotes, with up to hundreds of mRNA molecules and
hundreds of thousands of protein molecules of a given species (e.g. molecules involved in
NF-xB regulatory pathway [36], [37]). This implies that stochastic effects due to intermit-
tent gene activity (gene activation and repression) followed by pulses of mRNA production
are much stronger than the stochastic effects caused by production or degradation of single
mRNA or protein molecule. A gene may be activated even by a single ¢rans-activating regu-
latory protein, which binds to the promoter region and allows very fast and efficient mRNA
transcription and production of a burst of protein molecules. As long as the transcription
factor is not bound to the promoter region, the resulting transcription initiation frequency

remains low since it is triggered only by erratic RNA polymerase binding. Recently, a grow-



ing number of experiments on eukaryotic cells supports this hypothesis: Fluorescence in
situ hybridization analysis 6f B-actin transcription sites reveals cyclical mRNA transcription
from a single gene [15]. Dual-reporter measurements of intrinsic noise in gene expression in
budding yeast Saccharomyces cerevisiae disclose effects due to the intermittent gené activ-
ity [49]. Oscillations in NF-sxB-dependent gene products measured at the single cell level
in HeLa (human ovarian carcinoma) and SK-N-AS (human S-type neuroblastoma) cells are
demonstrated to arise through the action of a transcription factor [45], [4], [46] and [37].
Additional stochasticity in eukaryotic gene regulation corresponds to the DNA-chromatin
interactions. Normally condensed and tightly packed DNA must be remodeled to become
accessible to either RNA polymerase or regulatory proteins, which is accomplished by histone

acetylation [49)].

1.5 Overview of the thesis

The present chapter (Chapter 1) briefly presents a biological background of the problem
stressing the basis of the gene regulation and the significance of various stochastic effects in
the process.

Chapter 2 introduces basic notions of Markov processes, which are extensively applied
to mathematically describe gene regulatory systems. In particular it provides a derivation
of the differential Chapman-Kolmogorov equation, which captures the time evolution of the
underlying distribution function. In addition, it provides a literature overview summarizing
recent attempts in modeling stochasticity in gene regulation and their biological implications.

Chapter 3 presents analysis of the single gene regulatory module with three major sources
of stochasticity, namely: intermittent gene activity, mRNA transcription/decay and protein

translation/decay noise. Based on the analysis of the corresponding Chapman-Kolmogorov



equation two approximations to the exact stochastic description are introduced: First, the
continuous model, which considers only the stochasticity due to the intermittent gene ac-
tivity. Second, the mixed model, which considers stochasticity due to the intermittent gene
activity as well as the mRNA transcription/decay noise. |

Chapter 4 includes the comparison between the marginal protein distribution resulting
from the continuous approximation and the corresponding distribution given by the Kepler-
Elston model [30]. In the case when the Kepler-Elston approximation is satisfactory, it is
used to analyze two-gene systems.

Chapter 5 includes analysis of the regulatory system in the case when the process of
gene activity is governed by the collective actions of multiple regulatory factors. Based on
the gene expression data, developed models are applied to hypothesize the existance of a
sequential activation mechanism of NF-«B dependent genes important in cell survival and
inflammation.

Finally, the thesis are concluded in Chapter 6 with discussion that stresses mathematical

and biological implications of the presented work.



Chapter 2

Previous modeling of stochastic effects in gene regulation

2.1 Gene regulation as a Markov process

Gene regulatory systems describing the interactions between the DNA, mRNA and protein
molecules at the single cell level may be considered as systems of coupled chemical reactions.
Under assumption of spatial homogeneity the stochastic process governing chemical reactions

is a Markov process.

2.1.1 Basic introduction to Markov processes

In general, a stochastic process describes dynamics of certain time-dependent random vari-
able X(t). The process, which governs the evolution of X(t), can be completely described

by a set of joint probability densities

p(x1, t1; Xa, t2; X3, T3, ...)

given the realization of X(t), i.e., X1, X2, X3, ... at times t1, 5, 3...[17]. One can also define

conditional probability densities given the joint probability density function:

p(X1,t1Xa, to; [y 1, T Y2, T2t )

= p(Xlutl;X%t% Y1, 715 Y2 T --~)/P(Y1,Tl;}’2’7'2; )7
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given that p(y1,71;y2, 72;...) > 0 and assuming the time ordering t; > t; > 3 > ... 2
71 > Ty.... This interprets conditional probabilities as predictions of X(t), i.e., X1,X2, X3, ...
at times t1, to, t3..., given the past yi,y2,¥s,... at times 71,72, 73.. ..

One of the most important examples of stochastic processes are processes satisfying the
Markov property and known as Markov processes. The Markov property is defined based
on the conditional probability function and assumes that the future values of X(¢) depend

entirely on the present and are not affected by the past, i.e.,

p(X1,t1;Xe, t2; .. 1¥1, T1; Y2, T23 ¥3, T3...) = P(X1, 015 X2, bo; .. [y1, T1).

Using the Markov property, an arbitrary joint probability density function can be ex-

pressed in the terms of the conditional probability densities, i.e.,

p(X1,t1; X2, to; i X, tn) = D(X1, t1]X2, t2)P (X2, t2|Xs, t3)..D(Xp-1, tne1]Xn, tn).

Therefore, the process governing X(¢) can be uniquely defined by all conditional prob-
abilities p(i, t;|z;,t;), where 4,7 = 1,2,3,..and t; > ¢ > t3 > .... Relationship between
such conditional probabilities is given by the following equation and is valid for all stochastic

processes:

p(x1,t1|x3,t3) = /P(Xl,tl;xz,t2fx3,t3)dx2

= /p(xl,t1|x2,tg;x3,t3)p(xz,t2\X3,t3)dx2,

but introducing the Markov property yields the fundamental equation, which is referred
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to as the Chapman-Kolmogorov equation:

p(x1,t1|X3,t3) = /p(Xhtlle,tz)P(Xz,tﬂXs,tz)dxz- (2.1)

The Chapman-Kolmogorov equation is an identity, satisfied by the conditional probability
densities of any Markov process. The time ordering is essential, i.e., £, > ¢2 > t3 and thus
Eq. (2.1) follows by integrating out all possible paths leading from the state x3 to state x;.

In the case of the discrete state space, when the underlying random variable takes on

integer values and is denoted with N(¢), the Chapman-Kolmogorov equation yields:

P(ny, ti|ns, t3) = ZP(nl,t1|n2,t2)P(n2,t2|n3,t3), (2.2)
ns

and corresponds to matrix multiplication, with possibly infinite matrices. P(ni,t:|ny, ta)
is the matrix of all possible transition probabilities from the state nj to state n;.

In the case of the systems of reacting molecules, such us gene regulatory networks, the
discrete state space is a natural domain for the process. The state variable N(t) corresponds
to the vector of amounts of considered molecular species at a given instant of time, which

may only assume positive integer values.

2.1.2 Derivations of the differential Chapman-Kolmogorov equation

By imposing certain restrictions on the conditional probability function connected with the
intuitive notion of continuous movement of the system, the Chapman-Kolmogorov equation
(2.1) can be reduced to a differential equation. This idea was introduced by Kolmgorov
(1931) [35], however the following derivations are based on Gardiner (2003) [17],

First, note that with probability one, sample paths of a Markov process are continuous



12

functions of time ¢ if for any € > 0

1 |
Jm / p(x, + Atlz, t)dx =0 (2.3)

|x—z|>¢
uniformly in x, z and t. Eq. (2.3) is known as the Lindenberg condition and means that
the probability that the final state x is different from the initial state z tends to zero faster
than At, as At — 0.
Based on the Lindenberg condition, derivations of the differential Chapman-Kolmogorov
equation rely on the method of dividing the differentiability conditions into parts: One
connetcted with the continuous motion of a representative particle and the other with the

discontinuous motion. Therefore, assume that for all € > 0:

p(x,t + Atlz, t)

. _ : : — 7l >

AhtIEo A W (z|x,t) uniformly in x, z and ¢ for all |x — z| >¢, (2.4)
) 1
Al%rilo X / (z; — z;)p(x,t + Atlz, t)dx =A;(z,t) + O(e), (2.5)
|x—z|<e
.1 ,
Jim = / (2 — 2:)(z; — 2)p(x,t + At|z, t)dx =Bj;(z,t) + O(e), (2.6)
|x—z|<e

where the last two being uniform in z, € and ¢. It can be shown that the higher-order
coefficients of the form (2.5) and (2.6) must vanish ([17], p. 48). According to the Linden-
berg condition the process has continuous paths only when W (z|x,t) vanishes for all z # x,

therefore the function W (z|x, t) describes the discontinuities in the path of the process, while
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A; and B;; are connected with the continuous part of the path.
Consider time evolution of the expectation of a twice continuously differentiable function

f(z). Then,

@/j@>xu% x—lmMg/f p(x,t + Atly, ') - p(x, tly,t))dx,

but from the Chapman-Kolmogorov equation, Eq. (2.1):

p@¢+Amwv=/$@¢+AWJW@ﬂm0a,

therefore, following a change in the integration order,

&/f@m&imfﬂx (2.7)

= AltI—{lOE {//f p(x, t+At}z,t)p(z,tly,t/)dxdz—/f(z)p(z,t]y,t/)dz}.

The integral with respect to x can be divided into two regions |x — z| >¢ and |x — z| <e.

For |x — z| <¢, since f(z) is assumed twice continuously differentiable, f(x) is given by:

192 f( )
+§Z(%z i = 2223%%] - )(z; - 2) + Ix—2PR(x,2), (28)

where |R(x,2)| — 0 as |x — z| —0. Now, Eq. (2.7) reads,
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' 162 f(
8t/f(X)p(X,t’y,t)dX = AI}:I—I}O—A—Z{ // [Z Oz Ti +Z 282‘292] Zi)(‘rj -

Ix—z|<e

xp(x,t + Atlz, t)p(z, t|y, t )dxdz

+ // Ix — z|*R(x, 2)p(x, t + At|z, t)p(z, t|y, t )dxdz

|x—z|<e

+ // f(Z)p(X,t + At’Z’t)P(Z,t]y,t/)dxdz

x—zl<e

+ // FX)p(x,t + Atlz, )p(z, tly, t dxdz

|x—z|>e

~ [] @it + Atla p(a, tly. ¢ axda).

where the last line gives the negative term in Eq. (2.7) since the integral of p(x, t+At|z, t)
with respect to x is equal to 1. Eq. (2.9) can be inspected line by line:
Lines 1 and 2: By assumed uniform convergence, interchange of the limit and integration

with assumption (2.5) and (2.6) gives

/ [Z A0 @

Line 3: We have,

6%f(z)

5 Balz )5, 5, [Pty t)dz+ O).  (210)
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Ait / x — z|*R(x, 2)p(x, t + At|z, t)dx
|x—z|<e
1
< | = / Ix — z|’p(x,t + Atlz, t)dx Ma:c |R(x,z)|
At Ix—z|<e
|x—z|<e
— ZBii(Z,t)—f—O(e) {!Mclzf |R(x, z)[} (2.11)

but as € — 0 |Mc7z |R(x,z)| vanishes.
X—z|<E

Lines 4, 5 and 6: Assumption (2.4) yields

// f(z) |W(z|x, t)p(x, tly,t) — W(x|z,t)p(z,t|y,t’)] dxdz. (2.12)

|x—z|>e

Incorporating terms (2.10-2.12) into Eq. (2.9) and taking the limit € — 0 gives

/f Zt|yv /IiZA az +Z 1.7 afa(zj)] (th|y’t/)dz (213>

/f {/ (zlx, t)p(x, tly, t) — W(X’Z,t)p(z,ﬂy,t/)} dx} dz.

Integration by parts of Eq. (2.13) yields the following:
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[ sty s = [ 563 5 A Dty % g B Ol . )
+/ [W(zlx, tp(x, tly,t ) — W(x|z,t)p(z, tly,t )} dx}dz.
+sur face terms (2.14)

Now, suppose that the process is restricted to a region R with surface S. In addition,
one can choose f(z) to be arbitrary but nonvanishing only in a region R’ entirely contained

in R. Therefore based on Eq. (2.14) one can deduce that for all z in the interior of R, the

following equation holds

e lys) = -3 = [z (e ty.¢) ]+2§8 - Bz, oty )]

+/ [W(z]x, Op(x,tly,t) — W(x|z, t)p(z, tly, t )] dx. (2.15)

with the initial conditions p(z,t|y,t) = é(y — z). Note that the surface terms necessary
vanish.

Eq. (2.15) is called the differential Chapman-Kolmogorov equation. It can be shown that
under certain conditions a non-negative solution to the differential Chapman-Kolmogorov
equation exists and satisfies a Chapman-Kolmogorov equation (2.1).

Each of the assumptions (2.4), (2.5), (2.6) leads to a distinctive part of the equation,

which corresponds to one of the three processes: jumps, drift and diffusion.
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Jump processes. When A;(z,t) = By;(z,t) = 0, Eq. (2.15) simplifies to the following

form:

Op(z, tly, 1) =/[W(Zl><»t)p(x,t!y,t’) — W(x|z,t)p(z, tly, t')]dx, (2.16)

and is often referred to as the master equation.

To show that the process described by Eq. (2.16) is a jump process, i.e., its paths are
discontinuous at discrete points, on can solve master equation (2.16) to the first order in At.
Since

z,t + Atly,t) — p(z, t]y, t

atp(z7t +At|y)t) = At )

one gets that:

p(z,t + Atly,t) = p(z,tly,t) + Oip(z,t + Atly, t)At = p(z, tly,t) (2.18)

—i—At/ [W(z|x,t + At)p(x,t + Atly,t) — W(x|z, t + At)p(z, t + Atly, t)]dx.

With the initial conditions p(z, t|y,t) = §(y — z), the former yields

p(z,t + Atly,t) =d(y — z)[1—At/de(x]y,t)]+AtW(z}y,t). (2.19)

Therefore for any At there is a finite probability for the particle to stay at the position
y, given by the coefficient of the 6(y — z). The distribution of those particles, which do not
remain at y is given by W (zly,t) after normalization. The typical path of X (t) will consist

of sections of straight lines with discontinuous jumps, where the distribution of jumps is
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given by W(zly,1).
In the case of discrete state space, the differential Chapman-Kolmogorov equation for the

jump process is given by:

g, P(n,tln’,¢) =Y [W(n|m,t)P(m,t|n’,¢') - W(m|n, ) P(n, t|n’,1)]. (2.20)

m

In this case, W(n|m, t) and W (m|n, t) are matrices, which include all possible transition

into the accessible states.

Diffusion processes. When W (z|x,t) =0, Eq. (2.15) reads:

aptety ) = = 3 5 [Ada Dntatie ]+Z;8% [Butmptatiy, )] @220

Eq. (2.21) is often referred to as the Fokker-Planck equation and describes a process
known as a diffusion, characterized by a continuous sample paths (with W (z|x,t) = 0 the
Lindenberg Condition, Eq. (2.3) is satisfied). The vector A;(z,t) defines a drift and the

matrix B;;(z) a diffusion component.

The distribution function captured by the Chapman-Kolmogorov equation (note that the
adjective "differential” is going to be omitted from now on) describes exactly the underly-
ing stochastic process. Unfortunately, this description is very limited and inefficient. The
solution to the Chapman-Kolmogorov equation (even numerical) can be obtained only in
some very simple cases. Usually, the Chapman-Kolmogorov equation describing systems of

chemically reacting molecules such as gene expression systems cannot be solved due to non-
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linearities, large numbers of considered molecular species and possibly infinite state space.
Fortunately, it has many advantages: In the case of linear equations it allows one to analyt-
ically derive the moments of the underlying distribution function using generating function
techniques [63], [61], [62]. In addition, it can serve as a departure point for various approxi-

mations which greatly simplify the analysis [67], [30], [66].

2.1.3 Stochastic simulations

Instead of directly solving the Chapman-Kolmogorov equation one may numerically sim-
ulate the Markov process it describes by use of the Gillespie algorithm (otherwise known
as a stochastic simulation algorithm) [18], [19]. The Gillespie algorithm is an computer-
oriented Monte-Carlo simulation method, which assigns probability to every single possible
reaction and by means of a Markovian random walk in the space of molecular species gen-
erates trajectories of the underlying stochastic process. The approach enables to follow the
transient behavior of reacting species but also, but taking appropriate samples, to estimate
the distribution of the considered molecular populations at each instant of time. Unfortu-
nately, stochastic simulations become computationally inefficient when a number of reacting
molecules is large.

During the last few years, several approximation methods were proposed to accelerate
the Gillespie algorithm. Among other methods, 7-leap procedure introduced a division of
the time domain into 7 long intervals. The length of the interval 7 was chosen to obtain
approximately constant propensity functions for the considered chemical reactions. With this
requirerﬁent satisfied, the number of reactions fired in each channel during interval 7 becomes
a Poisson random variable [20], [8]. Such treatment is less computationally intense since

it requires counting only the reactions fired within each of the contiguous time intervals 7
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instead of determining the precise firing times of each single reaction. Another approximation
can be applied if it is possible to separate chemical reactions into "fast" and "slow" [23], [55],
[9]. The "fast" reactions can be approximated by the deterministic rate equations or the
stochastic Langevin equations, while the "slow" reactions are treated stochastically according
to the Gillespie scheme. Unfortunately, even the accelerated stochastic simulations become

computationally inefficient, especially when estimating multivariate distributions.

2.2 Review of the prior modeling and its implications

At the beginning, the research was focused on gene regulation in prokaryotes, because the
development of model biological systems such as lacZ operon and bacteriophage A allowed
extensive experimental investigations. Early attempts to explain the regulation in bacteria
(phage A repressor) relied on the deterministic approach assuming a rapid equilibrium be-
tween regulatory proteins and gene promoters [28], [1], [56]‘. More recently, Monte Carlo
techniques [18], [19] were applied to explore effects of small number of mRNA and protein
molecules in bacteria, sometimes in quite complicated scenarios. For example, Arkin et al.
(1998) [3] considered a detailed stochastic model of the phage A lysis-lysogeny decision circuit
in Esherichia coli. In this system, intrinsic stochasticity plays an essential role in directing
the cells into two different phenotypes as they follow different paths.

Analysis of model bacterial systems resulted in more theoretical investigations of noise
‘propagation in prokaryotic regulatory networks. McAdams and Shapiro (1995) [41] pro-
posed a hybrid modeling approach that integrated conventional biochemical kinetics with
a framework of circuit simulations to model in vivo behavior of phage A. Using Monte
Carlo simulation, McAdams and Arkin (1997) [42] analyzed chemical reactions controlling

transcript initiation and translation termination in a small prokaryotic genetic networks.
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They incorporated a competition between mRNA translation and degradation, which cre-
ated switching mechanisms that selected between alternative regulatory pathways. McAdams
and Arkin (1999) [43] in their following publication hypothesized that cells use redundancy
and extensive feedback mechanisms to achieve regulatory reliability to compensate for the
transcriptional noise. Thattai and Oudenaarden (2001) [63] used a more rigorous approach
to investigate stochasticity in small (one- and two-) gene networks. In addition to Monte
Carlo simulations, they derived expressions for expected values and variances of mRNA and
protein number based on the analysis of the corresponding Chapman-Kolmagorov equation.
They demonstrated that a negative feedback mechanism efficiently decreases system noise.
Neither of the above investigations incorporated the intermittent gene activity as a po-
tential source of stochasticity in gene regulation, although this idea was introduced a decade
before. To explain heterogeneous levels of individual gene expression in steroid-inducible
mouse mammary tumor virus system, Ko (1991, 1992) [32], [33] postulated that the stochas-
ticity in eukaryotic gene regulation is driven by interactions between transcription factors and
DNA (gene promoters). More precisely, at a given instant of time a gene copy is thought to
be either "switched on" by having transcription complex bound to its promoter, or "switched
off" by having transcription complex not bound. In the proposed mathematical model, which
was simulated numerically, Ko assumed that transcription and translation proceeds deter-
ministically when a gene is turned on. Monte Carlo simulations of this model were applied
by Cook et al. (1998) [10] who showed that haploinsufficiency diseases may arise from the
stochasticity caused by intermittent gene activity. Recently, a growing number of experi-
ments on eukaryotic cells including Saccharomyces cerevisiae [49], [5], rat NRK [15] as well
as human HeLa and SK-N-AS [45], [37] complemented with numerical simulations supports

Ko’s hypothesis contributing stochasticity in eukaryotic regulation to the intermittent gene
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activity. Lately, stochasticity due to the intermittent gene activity was incorporated into
bacterial studies. Kierzek et al. (2001) [29] simulated random fluctuations in the number
of protein molecules in a very detailed model of transcription initiation in LacZ gene in E.
coli. Similarly, using Monte Carlo techniques, Bundschuh et al. (2003) [7] analyzed effects of
protein dimerization on the noise reduction in the control circuit for the A repressor protein
cl of phage A in E. coli.

The past few years of research resulted in more theoretical and rigorous approaches
departing from the analysis of the Chapman-Kolmogorov equation. Tao (2004) [61] inves-
tigated effects of the negative and positive feedbacks on the intrinsic and external noise in
a single-gene regulatory networks. He employed a Chapman-Kolmogorov equation for the
underlying distribution function and calculated the first two moments of the gene product
marginal distributions, i.e., expected value and variance of the number of mRNA and protein
molecules. Tao assumed that the transcription rate depends on the amount of the protein
and he neglected stochasticity due to the switching of the gene status. While considering
| two-gene networks Tao (2004a) [62] disregarded mRNA transcript as an intermediate gene
product. To simplify the corresponding Chapman-Kolmogorov equation he introduced a
Fokker-Planck approximation and analyzed statistics of the protein production/decay noise.
The noise in one- and two-gene regulatory networks was also analyzed by Tomioka et al.
(2004) [66]. The authors analyzed a protein fluctuations using a linear noise approximation
to the corresponding Chapman-Kolmogorov equation. Tomioka et al. (2004) assumed that
a network is close to the deterministic stable equilibrium and disregarded stochastic effects
due to the intermittent gene activity.

The stochasticity caused by a switching of a gene status recognized by Ko (1991, 1992)

[32], [33], was first rigorously analyzed by Kepler and Elston (2001) [30]. In their influential
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paper, Kepler and Elston (2001) considered synthesis of protein oligomers in the process,
however assumed a direct protein translation from DNA. The approach involved a Chapman-
Kolmogorov equation for the underlying probability distribution function approximated by
a Fokker-Planck equation. In the case of a single gene without feedback regulation Kepler
and Elston (2001) derived a steady state expected value and variance of the protein number
in the system. In the case of a single self-activating gene, they further simplified the Fokker-
Planck equation by neglecting the diffusion term, which lead to the first order system of
PDEs. While analyzing a system of two mutual repressors, Kepler and Elston (2001) used
Monte Carlo simulations to obtain a marginal protein distributions.

Stochasticity due to the intermittent gene activity was also analyzed by Raser and O’Shea
(2004) [49] in more general model incorporating in addition the mRNA /protein produc-
tion/decay noise. The authors analyzed the corresponding Chapman-Kolmogorov equation
with moment generating functions and derived a normalized steady state protein variance.
Raser and O’Shea (2001) proposed that the balance between gene promoter activation and
transcription influences the variability in the mRNA level and confirmed this hypothesis by
matching a Monte Carlo simulations of the model with the measurements of the intrinsic
noise in the genetically engineered cells of E.coli and budding yeast.

For the sake of simplicity it is usually assumed that the transcriptional gene activity is
due to the actions of a single trans-acting regulatory molecule (transcription factor) and a
single cis-acting regulatory element, i.e., operator in bacteria or promoter in eukaryotes [32],
[30], [29], [63], (7], [61], [66]. In fact, the specific patterns of gene expression are determined
by combinatorial interactions of series of transcription factors that may bind to various
regulatory sites within gene promoters and enhancers ([68], p.72). In this context, Louis et

al. (2003) [40] developed a theoretical model of regulation of Sez-lethal gene that controls
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sex determination and dosage compensation in Drosophila melanogaster. These authors
considered stochastic effects caused by interactions between multiple regulatory molecules
and a series of regulatory sites. Pirone and Elston (2004) [53] considered three binding
sites that controlled transcription of a lacZ gene. They used the Fokker-Planck equations
to calculate the first two moments of the underlying distribution function. In this work
they focused on oligomerization reactions leading to the formation of protein dimers and
tetramers, while disregarding mRNA in the model.

The aforementioned investigations relyed on the exact stochastic description in the terms
of the Chapman-Kolmogorov equation or Monte Carlo simulations. The alternative approach
utilizes a Langevin equation, which is a stochastic differential equation driven by white noise
[67]. In this approach, the system is described by deterministic rate equation augmented
with an additive of multiplicative stochastic terms, which mimic the external noise. The
approach leads to the Fokker-Planck equations for the underlying distribution function.
Using this approach Hasty et al. (2000) [24] demonstrated that small deviations in the
transcription rate can lead to large fluctuations in the protein number. Similarly, Ozbudak
et al. (2002) [50] concluded that the level of phenotypic variation in an isogenic Bacillus
subtilis population can be regulated by genetic parameters. In addition, Simpson et al.
(2004) [58] considered transcriptional regulation involving switching between discrete high
and low transcriptional rates. The approach included a frequency analysis of a spectral
density and provided a distribution of noise associated with mRNA production/decay noise

and fluctuations at the operator state.
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Chapter 3

Analysis of a single gene regulatory module

3.1 Exact stochastic description

Consider a system of a single haploid gene without feedback regulation into its own tran-
scriptional activity with three sources of stochasticity: intermittent gene activity, mRNA
transcription/decay, and protein translation/decay noise (Fig. 3.1). Since the gene acti-
vation and inactivation is due to the binding and dissociation of regulatory proteins it is
natural to assume that activation and inactivation rates (intensities) depend on the amounts
(concentrations) of regulatory factors. In the case of regulation without tyhe feedback, it is
assumed that a gene is activated at a constant rate ¢ and deactivated at a constant rate b,
which follows from the constant amount of regulatory protein. While the gene promoter is

bound by the regulatory protein, mRNA transcript molecules are produced at a constant

Figure 3.1 : Schematic representation of a single gene regulatory module.
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rate H. However, when the promoter is not bound, then the gene is inactive and the basal
transcription rate is neglected. If mRNA transcript is present in the cell, protein transla-
tion proceeds at a rate K. The mRNA transcript degradation rate is set to 1 to eliminate
a nuisance parameter, and therefore the protein degradation rate r reflects the ratio of the
corresponding protein and mRNA degradation rates. Such normalization implies that the
time course as well as other parameters describing the system are rescaled by the degradation

rate of the mRNA transcript. The model can be summarized in the following reactions:

IS5 A ADT (3.1)
AT mRNA L 4, (3.2)
mRNA L protein o ¢, (3.3)

where A and I denote possible conformations of the promoter with the transcription
factor bound and the active gene in the state A, and the empty promoter and inactive gene
in the state I. Function G is a binary variable describing the status of a gene, i.e., the
promoter conformation, G(A)=1 and G(I)=0. Degradation of gene products is depicted
with symbol ¢.

If z and y denote the number of mRNA and protein molecules respectively, then the
state of the system at any instant of time is given by the triple (z,y,G), where z and y are
nonnegative integer valued random variables and G is a binary random variable. Their joint

distribution can be represented as a pair of probability mass functions:
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fey(t) = Pl# mRNA =z, # protein =y,G = 0], (3.4)

Juy(t) = P[# mRNA =z, # protein =y,G = 1], (3.5)

which correspond to the probability of having z and y amounts of mRNA and protein
molecules in the single cell, in the gene inactive and active state, respectively. The marginal
distribution pgy:=fzy+9zy describes the level of gene products regardless of gene status.
Because the process is independent from cell to cell, the functions f;, and g4, also describe
a proportion of cells in the population with a given amount of gene products, and thus
can be related to measurements provided by experiments at the single cell level, such as
flow-cytometry.

The process described by Egs. (3.1-3.3) is a jump process, because the number of
molecules in the system changes only at discrete instants of time. In fact the number of
molecules changes only by one, and such Markov process is known as a one step process
([67], p. 34). The time evolution of distribution function defined by (3.4-3.5) is given by the

following master equation [67]:

dfs

—% = ngy - Cf:cy + G([)Hfz—l,y + (z + 1)fm+1,y - (HG(I> + x)fzy + (3'6)
+K$fx,y—1 + T(y + 1)fm,y+1 - (K:E + Ty)fwy’

dgs

%ty- = —bgmy + Cf:cy + G(A)ng—l,y + (:U + 1)9:6-’:—1,3,1 - (HG(A) + 'r)gzy + (37)

+K2gey—1 + 7Y+ 1)gey+1 — (KT + TY)gay,
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where z, y=0,1,2,3...

The system (3.6-3.7) is equivalent to the master equation (2.20). Note that in the con-
sidered case, the mass function P(n,t|n’,t') from the Eq. (2.20) describes the triple n =
(z,y,G), where G is a binary random variable. Therefore, given that G € {0,1}, the distri-
bution P(z,y, G,t) is represented as a pair of probability mass functions, P(z,y,0,t) = fuy(t)
and P(z,y,1,t) = g4,(t), and analogically, the master equation (2.20) can be represented
by a pair of equations coupled by transitions between P(z,y,0,t) and P(z,y,1,?), as in the
system (3.6-3.7). The first two terms in Egs. (3.6)-(3.7) correspond to the probability flow
due to intermittent gene activity or, in other words, to the transition between f; and gzy.
The next three terms depict the flow of the probability due to the synthesis and degrada-
tion of mRNA molecules, and the last three terms describe the synthesis and degradation
of protein molecules. Note that since G(I)=0, the mRNA synthesis terms are absent in Eq.
(3.6).

The solution to the master equation (3.6)-(3.7) is the primary interest. However, the
analytical solution is unknown even for 5'”—?’- = dgT’;“ = 0. A numerical solution is possible
to obtain when the number of molecules involved remains small. At the steady state, Egs.
(3.6)-(3.7) can be represented as a set of infinite simultaneous linear algebraic equations.
The resulting system of equations is infinite since the probability functions f., and gy have
infinite supports. In this case, the tails of f,, and g can be disregarded since the proba-
bility assigned for arbitrarily large z and y is negligible. By this approximation, the steady
state distribution is described by a finite system of linear algebraic equations. The num-
ber of equations describing the solution grows quadratically with the number of considered
molecules. For eukaryotes, where the number of mRNA molecules might be at the order

of hundreds and the number of protein molecules at the order of hundreds of thousands
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(e.g. molecules involved in NF-«B regulatory pathway {36}, [37]), one would need to solve a
system at the order of 107 simultaneous linear equations, which is beyond our computational
reach. Due to these limitations, the corresponding Chapman-Kolmogorov equation can be
effectively solved only for prokaryotic systems, where the number of molecules considered is
relatively small. An alternative, although less rigorous approach is to estimate the underly-
ing distribution function by means of Monte Carlo simulations of system (3.1-3.3) using the
Gillespie algorithm [18], [19] or other stochastic simulation schemes. Similarly, the latter ap-
proach becomes inefficient when a large number of reacting molecules is involved, especially

when estimating multidimensional distributions.

3.2 Variance decomposition

Note that despite the fact that equations (3.6)-(3.7) cannot be solved analytically, they can
be used to derive the moments of the underlying distribution function [17], [67]. Generating
function techniques allow deriving arbitrarily high moments at the steady state as well as
their time evolution in some cases (see the Appendix A for details), but for the purpose of
this work only the steady state expected value and the variance are presented.

The expected number of mRNA and protein molecules at the steady state in the system

(3.1-3.3) is given by

c

BX] = ——H. (3.8)
ElY] = TEIX] (3.9)

respectively, whereas the variance of the number of mRNA and protein molecules decom-
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poses into additive terms resulting from different sources of stochasticity:

b
c(l+c+b)
rb(l+c+b+r)

VarelY] = A er e ernt T

E*X] + E[X], (3.10)

r  E?[Y]
(1+7r) E[X]

VCLT'E[X]

+E[Y]. (3.11)

It will be shown in the following sections that the first term in mRNA variance [expression
(3.10)] results entirely from intermittent gene activity, while the second is due to the mRNA
production/decay noise. Additionally, it will be shown that the first term in protein variance
[expression (3.11)] represents the variation due to intermittent gene activity, the second term
depicts the mRNA production/decay noise integrated through translation mechanisms and
the third term corresponds to the protein production/decay noise.

The following section proposes two approximations to the exact stochastic process (3.1-
3.3), which allow assessing the variance decomposition (3.10-3.11): First, the continuous
approximation which accounts only for the stochastic effects due to intermittent gene ac-
tivity. Second, the mixed approximation which accounts for the stochasticity corresponding
to intermittent gene activity and mRNA production/decay noise, while the protein produc-

tion/decay noise is neglected.

3.3 Approximations to the exact description

3.3.1 Continuous model

Taking into account that in eukaryotes the stochastic effects in gene regulation are primarily

attributable to intermittent gene activity [15], [30], [5], [53] rather than to the mRNA /protein
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production/decay process, one can simplify the system (3.1-3.3). This leads to the exact
stochastic description of molecules present in a small number of copies (in this case gene
copies) with the ordinary differential equation (ODE) description for processes involving
molecules present at larger levels (in this case mRNA and protein molecules). For a single
haploid gene without feedback regulation, the continuous approximation of the system (3.1-

3.3) yields:

IS4 A>T (3.12)
d
d—zf = —z+ HG(t), (3.13)
dy
—— - K _— .
7 T — Ty, (3.14)

where G(t), as in the exact description, is the binary state of a gene promoter, with G=1
whenever activating protein occupies the promoter region, and G=0, otherwise. Variables «
and y, as before, denote the mRNA and protein levels, respectively.

Eq. (3.13), which describes the mRNA transcription and degradation process, is a
stochastic differential equation driven by a binary random variable G(t). It is similar to
the Langevin equation [67], but it reflects the intrinsic stochasticity connected with gene
activation process, rather than an additive white noise. The Eq. (3.14) is an ordinary differ-
ential equation describing the protein production and degradation process. As a result, the
number of mRNA as well as protein molecules are a continuous random variables, bounded
by the steady state solutions to Eqgs. (3.13)-(3.14) at the active gene state (G=1): z€[0,H],
yel0,EL]

The state of the system at any instant of time is described by a triple of random variables
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(z,y,G), two continuous (z and y are no longer integer valued) and one binary. Similarly
to the exact description, their joint distribution can be represented as a pair of probability

density functions f(z,y,t) and g(z,y,t), defined as follows:

f(z,y, t)AzAy = Plz(t) € (z,z+ Az), y(t) € (y,y + Ay), G = 0], (3.15)

g(z,y,t)AzAy = Plz(t) € (z,z + Ax),y(t) € (y,y + Ay),G = 1]. (3.16)

By fluid dynamics analogy one can find a system of partial differential equations (PDEs)

describing evolution of densities f and g [38]:

df , dx dy _
EZ+dw Kdtc&o’ dt) f} = bg — cf, (3.17)
dg , dz dy _
0 + div [(dtG:1, dt) g} = —bg+cf. (3.18)

The system (3.17)-(3.18) is obtained from the continuity equations with source terms
resulting from the change of gene status (transformation between f and g), Eq. (3.12), while
the velocity fields (dz/dt,dy/dt)|c=0 and (dz/dt,dy/dt)|c=1 are given by Egs. (3.13) and

(3.14), respectively. Egs. (3.17-3.18) can be further expressed as

d 0 0
dg 0

Y b (= 2)g) + (Ko =19)g) = —bg-+ef (3.20)
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The above system of first-order PDEs is analogous to the general form of the differential
Chapman-Kolmogorov equation given by Eq. (2.15). In the considered case, the distribution
p(z,t|y,t') described by the Eq. (2.15) corresponds to the triple z = (z,y,G), where G is a
binary random variable while z and y are continuous. Therefore, given that G € {0, 1}, the
distribution p(z,y, G, t) is represented as a pair of probability mass functions, p(z,y,0,t) =
f(t) and p(z,y,1,t) = g(t), and analogically, the Chapman-Kolmogorov equation (2.15) can
be represented by a pair of PDEs coupled by transitions between p(z,y,0,t) and p(z,y, 1,1)
as in the system (3.6-3.7). This coupling between f and g, corresponds to the jump process
caused by a change of gene status and is described by the right hand sides of Eqs. (3.19-3.20).
In addition, the partial derivatives with respect to z and y constitute the drift vector given
by (dz/dt,dy/dt)|c=0 and (dz/dt,dy/dt)|g=1 for f and g, respectively. In this case there is
no diffusion in the process, but rather the process is composed of a nonzero drift onto which
a jump process is superimposed.

Independently of the exact stochastic description, the first two steady state moments of
the gene product marginal distributions given by the system (3.19)-(3.20) are derived (see
Appendix A for details). It was found that the expected number of mRNA and protein

molecules is given by

BIX] = —H,
ElY] = “E[X]

respectively, whereas the mRNA and protein variance is equal to:
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VarclX] = miTwEZ[X], (3.21)

_ rb(l4+c+b+r) 2
VarelV] = iz esnrernl DF (3.22)

Comparison with the exact stochastic description shows that disregarding the mRNA /protein

production/decay noise does not affect the expected number of mRNA and protein molecules.
In addition, the protein [as well as the mRNA] variance accounted for in the continuous ap-
proximation is equal to the first term of the total variance given by (3.11) [(3.10)]. This shows
that the first term in the protein [mRNA] variance in the exact stochastic description, Eq.
(3.11) [Eq. (3.10)] is entirely due to the stochastic effects introduced by intermittent gene
activity. Furthermore, since the protein noise does not effect the mRNA level, the second
term in the total mRNA variance, Eq. (3.11), contributes the variation entirely due to the
mRNA transcription/decay noise. In fact, at the steady state, the mRNA production/decay
process in the active gene state has a Poisson distribution with parameter (expected value)
given by Eq. (3.8) [this can be shown by analytically solving simplified version of the system

(3.6-3.7) restricted only to the mRNA transcript with G=1].

3.3.2 Mixed model

In the continuous model, the number of mRNA as well as protein molecules is approxi-
mated with ODEs. Such treatment is well justified in eukaryotes for the amount of protein
molecules, since their number in the cell may be at the order of 10° molecules of a given
species. A similar description for the mRNA transcript may not be valid since the mRNA

is typically much less abundant. Such motivation leads to the model which attributes the
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stochasticity to intermittent gene activity and mRNA production/decay process, while the

protein translation/degradation noise is neglected:

IS4 AST (3.23)
AT mRNA L 6, (3.24)
d
Yo~ Kr-my (3.25)

dt

The mixed (discrete in the mRNA and continuous in the protein number) model provides
an exact treatment of mRNA transcript, while the amount of the protein is modeled using
ODE description as in the continuous approximation.

The state of the system in any instant of time is given by the triple of the random
variables (z,y,G), but in this case, z and G are discrete, and y is continuous. Their joint

distribution can be represented by the pair of the probability density functions:

fo(y,t)Ay = P[# mRNA=z,y(t) € (y,y +Ay),G =0, (3.26)

9:(y,t)Ay = P[# mRNA=z,y(t) € (y,y + Ay),G = 1]. (3.27)

Similarly to the continuous model, one can write the PDEs for densities f. and g.:
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dfs
—djit-—f—é%(fm(l(x—ry)) = by, — cfe + (@ + 1) frr1 — Tfa, (3.28)
dj; + %(Qm(KCU —ry)) = —bg,+cfs (3-29)

+Hgeo1 + (x4 1)gpq1 — (H + )0z

The right-hand sides of equations (3.28)-(3.29) account for two flows of probability. The
first corresponds to the change of gene activity, while the second depicts the probability flow
due to the discrete process of mRNA transcription and degradation as in the Chapman-
Kolmogorov equation (3.6)-(3.7).

The system (3.28-3.29) is an infinite system of partial differential equations since the
densities f,(y) and g, (y) have infinitely long tails (z=0,1,2...), as in the exact stochastic
description. Nevertheless, it is analogous to the differential Chapman-Kolmogorov equation
(2.15) and can be obtained by explicitly expressing all conditional densities p(z,t|y,t’) for
z=0,1,2,... and G € {0,1}. Similarly to the continuous approximation, Eqgs. (3.28)-(3.29)
describe a jump process with drift. In this case jumps are generated by a discrete process
of mRNA production and change of gene activity, while drift corresponds to the protein
production (z is discrete and y is continuous).

Egs. (3.28)-(3.29) can be approximated by the finite system of ODEs (or the finite
system of linear simultaneous algebraic equations for the steady state) by disregarding the
infinite tail of the distribution, and then solved using developed discretization techniques

(see Appendix C for details).

By employing generating function techniques (see Appendix A for details), the first two

steady state moments of the distribution captured by the system (3.28)-(3.29) were derived.
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The expected number of mRNA and protein molecules remains the same as in the case of
the exact description and continuous approximation, given in expressions (3.8)-(3.9). The
mRNA and protein variance is found to account for two sources of stochasticity: intermittent

gene activity and mRNA production/decay noise:

b

Vary[X] C(—1—+—c—+—b)E2[X] + E[X], (3.30)
rb(l+c+b+r) 5 r  EYY]
VarulY] = armiserrrernl Y asn BEx (3:31)

The mRNA variance accounted for in the mixed model is equal to that given by the
exact description, Eq. (3.10), since the mRNA treatment is generically the same as in the
former by construction. The protein variance accounts for the first two terms in the exact
description [Eq. (3.11)], therefore taking into account the continuous approximation, the
second term in the protein variance is attributed to the mRNA transcription/decay noise.
Finally, the last term in Eq. (3.11), not accounted for in the mixed model, is due to the
protein translation/decay noise. Specifically, assuming that mRNA transcript is present at
a constant level n in the cell, the protein production/decay noise has a Poisson distribution
with mean equal to £2 at the steady state.

In addition, it can be shown that if a gene is continuously active (G=1), the mRNA and

protein variance are given by:

Varg=1lX] = FE[X], (3.32)

Varg=1lY] = + ElY], (3.33)
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respectively, which follows from disregarding the variation due to intermittent gene activ-
ity. This result is in agreement with previous investigations, which disregarded intermittent

gene activity as a potential source of stochasticity in gene regulation [63].

3.4 Applicability of introduced models

Introduced approximations allow much faster single cell simulations than the exact stochastic
description. In the considered case of regulation without feedback mechanism the continuous
* model (3.12-3.14) requires only stochastic simulations of gene activity, while the mRNA and
protein levels can be obtained separately by solving ODEs (3.13-3.14) between the times
when the gene activity changes. Such separation follows from the assumption that rates
at which gene activity changes, b and c, are constant and do not depend on the produced
protein. Similarly in the mixed model, single cell trajectories can be simulated from Egs.
(3.23)-(3.24) according to the Gillespie algorithm, while the protein number can be obtained
by solving Eq. (3.25). The mixed approach is still much more efficient then the exact
stochastic description (3.1-3.3) since simulations of the protein number constitute the most
time consuming part when the Gillespie algorithm is applied.

Introduced approximations not only allow much faster Monte Carlo simulations of single
cells than the Gillespie algorithm, but also transformations into equations for probability
distribution function. In the continuous approximation, PDEs (3.19)-(3.20) can be numeri-
cally solved using developed discretization techniques (see the Appendix C for details). The
steady state solution can be obtained by numerically solving a system of simultaneous linear
equations, while its time evolution is captured by the system of ODEs. As opposed to the
Chapman-Kolmogorov equation (3.6)-(3.7), the distribution function described by the con-

tinuous approximation can be solved for an arbitrarily large number of molecules considered.
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The mixed approximation (3.28-3.29) is not as efficient as the continuous model, but is has
a computational advantage over the Chapman-Kolmogorov equation that allows the consid-
eration of an arbitrarily large number of protein molecules, whereas the mRNA transcript is
treated exactly.

Introduced approximations are particularly useful in the case of eukaryotes when the
numbers of molecules involved are large and the Chapman-Kolmogorov equation (3.6-3.7)
can not be solved. Therefore to quantify their performance, the errors introduced by each of
the approximations are derived (see Appendix B for details). In the derivations it is assumed
that the protein half-life time is much greater than that of the mRNA transcript, i.e. 7 < L.

The continuous approximation neglects €, fraction of the total protein variance when

cle+b)K 1

= EYT (3.34)

whereas, the mixed approximation neglects ¢, fraction of the total protein variance when

ey = C(CT“; ) E—[ly—] (3.35)

Note that as the expected number of protein molecules increases, resulting errors decrease.
However, if ¢ and b increase, and thus the gene activity changes more frequently, the errors
introduced by approximations increase. The error introduced by the continuous model in
the protein variance is approximately K times greater than that of the mixed model, where
K is the transcription rate.

The mixed approximation accounts for the total mRNA variance, while the continuous

approximation neglects €,, fraction of the mRNA variance when, assuming that r<1,



40

. _c(l+b+c) 1
™ b E[X]

(3.36)

" Therefore the error of the continuous mRNA approximation decreases when then the

expected number of mRNA molecules increases.

3.4.1 Significance of various noise sources

Expressions describing mRNA and protein variances allow quantifying the significance of
considered sources of stochasticity in the process. Note that the first term in the total
mRNA variance, Eq. (3.10), corresponding to the intermittent gene activity is at the order
of E?[X] (the rates at which gene activity changes, c and b, are at the order of 1), while the
second, corresponding to the transcription/decay noise, is at the order of E[/X/. Therefore,
in the case of eukaryotes, where E[X], the expected number of mRNA molecules, can be
at the order of hundreds of molecules (e.g. species involved in early immune response [36],
[37]) the former dominates the latter. In prokaryotes, where E[X] is at the order of one
molecule, the transcription/decay noise has a significant contribution to the total variance.
Similarly in Eq. (3.11), which describes the protein variance: The first term corresponding
to the intermittent gene activity is at the order of rE?[Y]. The second term due to the
mRNA transcription/decay noise is at the order of rE*[Y//E[X]. Finally, the third term
resulting from the protein translation/decay noise is at the order of EfY/ (¢ and b, are at
the order of 1, while r<1, since the protein molecules are typically much more stable than
mRNA molecules). In eukaryotes, E[Y], the expected protein number, can be at the order
of hundreds of thousands of molecules. Therefore, the intermittent gene activity contributes
most of the total variability in the process, while the protein/decay noise is of least signifi-

cance. In prokaryotes, where E[Y] may be relatively small (at the order of tens), there is a
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competition between stochastic effects due to intermittent gene activity and mRNA/protein

production/decay noise.

The following part of the chapter includes comparison of thé introduced models in the
terms of the single cell trajectories and the probability distribution functions. Hypothetical
cells are parametrized to reflect levels of mRNA and protein molecules of a given species
on average in the cell. For "prokaryotic cell” it is assumed that H=10, K=6, r=0.25, which
results in a relatively small number of mRNA and protein molecules in the cell (about 10
mRNA molecules and about 200 protein molecules). For “eukaryotes” it is assumed that
H=100, K=250, r=0.25, which yields that mRNA number is at the order of 100 molecules
on average, while protein number is at the order of 10° (which is the case of molecular
species involved in NF-xB regulatory pathway [36], [37]). Two regimes are considered: For
¢>1 and b>1 the gene activity changes frequently with respect to the mRNA half-life time
and this regime is called to be close to the statistical equilibrium. For ¢<I and b<I, the
transcriptional activity changes slowly on the time scale of mRNA half-life time, and this

regime is referred as being far from the statistical equilibrium.

3.4.2 Single cell simulations

Introduced approximations are validated by means of conditional trajectories. First, a single
trajectory of the system (3.1-3.3) is generated using the Gillespie algorithm [18], [19]. Then,
conditioning on the gene activity switching times, the corresponding path for the continuous
model can be obtained by solving ODEs (3.13)-(3.14) in the contiguous intervals given by
the switching times (setting G=1 or G=0 depending on the current gene state). The initial
conditions for the ODEs, the amount of the mRNA and protein, are passed from the end of

the previous time interval to the next. Similarly, for the mixed model, conditioning on the
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Figure 3.2 : Single cell conditional trajectories for "prokaryotes".
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Single cell conditional trajectories for "prokaryotes" in the regime close to the statistical
equilibrium (H=10, K=6, r=0.25, ¢=8, b=2). Shown here is a single realization of the
exact model (red color) augmented with conditional trajectories for continuous (black) and
mixed model (blue). Panel A presents mRNA trajectories, while panel B protein trajectories.
Note, that the mRNA trajectory for the mixed model and exact description are the same by
construction, so the former is not presented as a separate curve (panel A).
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time instants when the mRNA amount changes, the protein trajectory can be obtained by
solving Eq. (3.25) in the contiguous intervals given by the switching times.

Shown in the Fig. 3.2 are stochastic conditional trajectories for a single prokaryotic cell
in the regime close to statistical equilibrium (H=10, K=6, r=0.25, ¢c=3, b=2). One can
observe discrepancies between the exact description and its continuous and mixed approxi-
mations. The mRNA trajectory simulated by means of Gillespie algorithm (Fig. 3.2A- red
curve) exhibits much larger variability then the trajectory resulting from the continuous ap-
proximation. The jumps corresponding to the production or degradation of a single mRNA
molecule are clearly visible in the exact description, while the trajectory for the continu-
ous approximation is smooth, except for the kinks reflecting the changes of gene activity.
Moreover, the number of mRNA molecules in the exact trajectory elevates to as much as 15
molecules, while for the continuous approximation it is bounded by 10, which is the number
given by the solution of Eq. (3.13) at the gene active state (G=1). Protein trajectories
for the approximating models are much more like these given by the Gillespie algorithm
(Fig. 3.2B). Variability due to the protein production/decay noise in the exact description is
much smaller than that for the mRNA molecules, although still visible. Overall, the protein
approximation seems to be quite good, especially for the mixed model.

Conditional trajectories for the hypothetical eukaryotic cell (H=100, K=250, r=0.25)
are depicted in Fig. 3.3. For eukaryotes, where the large number of both mRNA and
protein is involved, the approximations are very good. The number of mRNA molecules is
approximated quite well by the continuous model (Fig. 3.3A, C -black vs. red curve), but still
the large variability in Gillespie based trajectory, especially in the gene active state, is not
captured by the continuous model. Nevertheless, these discrepancies are much less visible for

the amount of the protein molecules, and the approximation given by the continuous model
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Figure 3.3 : Single cell conditional trajectories for "eukaryotes".
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Single cell conditional trajectories for "eukaryotes" (H=200, K=250, r=0.25) in two regimes:
Panel A, B -close to the statistical equilibrium (¢=3, =2), panel C, D -far from the equi-
librium (¢=0.75, b=0.75). Shown here a single realization (in each case) of the exact model
(red color) augmented with conditional trajectories for continuous (black) and mixed model
(blue). Note that the mRNA trajectory from the mixed model and exact model are the same
by construction, so the former is not presented as a separate curve (panel A, C).
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appears to be very good (Fig. 3.3B, D). The mixed model, discrete in mRNA and continuous
in protein number, seems to approximate the exact description almost perfectly (Fig. 3.3.
blue vs. red curve). The mRNA trajectory is generically the same by construction, and the

protein trajectory overlaps with that of the exact description.

3.4.3 Distribution functions

In »this section the steady state solutions to the equation for the probability distribution func-
tions in considered models are presented. The Chapman-Kolmogorov equation (3.6)-(3.7) is
solved when the number of molecules involved remains small (for the hypothetical prokary-
otic cell). PDEs resulting from the continuous and mixed model, Egs. (3.19)-(3.20) and Egs.
(3.28)-(3.29), are solved using developed discretization techniques (see the Appendix C for
details).

Fig. 3.4 presents two-dimensional mRNA-protein distributions for "prokaryotes"” in the
regime close to statistical equilibrium (H=10, K=6, r=0.25, c¢=38, b=2). Distributions are
consistent with the single cell trajectories presented in Fig. 3.2. While the distributions
given by the exact description seem to be approximated quite well by the mixed model (Fig.
3.4A, B, C vs. C, D, E), the distributions given by continuous model (Fig. 3.4G, H, I) are
much more narrow and peak much higher. In fact, the continuous approximation accounts
only for 40% of the total variance in the mRNA number and 39% in the protein number in
this case. The mixed approximation explains 100% of the mRNA variance (by construction)
and 89% of the protein variance (Table 3.1).

For eukaryotes, the Chapman-Kolmogorov equation (3.6)-(3.7) cannot be solved anymore
due to its computational limitations. However, as indicated by the single cell trajectories

(Fig. 3.3) the mixed model provides almost exact approximation in this case. Shown in Fig.
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Figure 3.4 : Two-dimensional mRNA-protein distributions for "prokaryotes".
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Two-dimensional mRNA-protein distributions for "prokaryotes" in the regime close to the
statistical equilibrium (H=10, K=6, r=0.25, ¢=3, b=2): Panel A, B, C- exact distributions
calculated on a grid 20 mRNA x 300 protein molecules, panel D, E, F- mixed model on a grid
20x240 and panel G, H, I continuous model calculated on a grid 100x100. Distributions
shown in the same scale (15 mRNA x 300 protein molecules) and normalized to the exact
description. In the left column, f(z,y)- distributions for the gene in the inactive state (G=0),
in the middle column, g(z,y)- distributions for the gene in the active state (G=1) and in the
right - the marginal distribution p(z,y)=f(z,y)+g9(zy).
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Figure 3.5 : 2D distributions for "eukaryotes" close to the statistical equilibrium.
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Two dimensional mRNA-protein distributions for "eukaryotes" in the regime close to the
statistical equilibrium (H=200, K=250, r=0.25, ¢=8, b=2): Panel A, B, C -distributions
for mixed model calculated on a grid 300x 300, panel D, E, F -continuous model on a grid
200x200. Distributions shown in the same scale (250 mRNA x 2-10° protein molecules) and
normalized to the mixed model. In the left column, f(z,y)- distributions for the gene in the
inactive state (G=0), in the middle column, g(z,y)- distributions for the gene in the active
state (G=1) and in the right - the marginal distribution p(z,y)=f(z,y)+9(z,y).
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Table 3.1 : Variance explained for "prokaryotes".

model mRNA | protein
Mixed 1 0.89
Continuous 0.4 0.39

Percentage of the total variance given by the exact description explained by the mixed and
continuous model for "prokaryotes" in the regime close to the equilibrium (H=10, K=6,
r=0.25, c=8, d=2). Shown here are the ratios of mRNA and protein variance for the intro-
duced continuous and mixed models, Egs. (3.21)-(3.22) and Eqgs. (3.30)-(3.31), respectively,
and total variance given in Egs. (3.10)-(3.11).

3.5 are the joint mRNA-protein distributions calculated for the mixed and continuous model
for "eukaryotes" in the regime close to statistical equilibrium (H=200, K=250, r=0.25, c=3,
b=2). The distributions are consistent with the single cell trajectories presented in Fig. 3.3.
There is almost no visible difference between the continuous (panels E, F; G) and mixed
approximation (panels A, B, C). Their marginal distributions (Fig. 3.6) reveal some dis-
crepancies between them. The continuous approximation introduces artifacts in the mRNA
marginal distributions (Fig. 3.6A, B, C -black curve): The distributions are bounded by 200
molecules, while the mixed model approximation (blue curve) exceeds that number. These
minor differences in mRNA marginal distribution seem not to affect the protein marginal
distribution; the continuous and mixed protein marginal distributions almost overlap each
other. As shown in the Table 2, the mixed model in this case explains 100% of the total vari-
ance in mRNA and 99.9% of the protein variance. The continuous approximation accounts
for 93% and 94% of the total mRNA and protein variance, respectively.

Shown in Fig. 3.7 are the joint mRNA-protein distributions calculated for the mixed and
continuous model for "eukaryotes" in the regime far from the statistical equilibrium (H=200,

K=250, r=0.25, ¢=0.75, b=0.75). The artifacts introduced by the continuous model are
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Figure 3.6 : Marginal distributions for "eukaryotes" close to the statistical equilibrium.

4 107 [A] f(X) o 107181, 90 [C], fE)+g(%)
gl N ] Sl ] 0008 e i Ny i
0006 fi i
b f ] Aboof ]
QO04 - fi R
1 """""""""""""" 2 """""""""""""" 0002 ..........................
%o 100 200 O 100 200 %0 100 200
_BmRNA level _SmRNA level mMRMNA leval
—— Mixed T SA 5
Cont. [y oglo N 15 i
4 ........................... 06 .............. ------------- 1 ............. .............
0 TR (R i
3 SRERSEEEEERY IREERRRERE CRERRRD : 05p- i fe HERRTEVE CRRRERY
0.2 AR s
% _ 2 % k > % 1 2
protein level « '105 protein level X 105 protein level X 105

Marginal distributions for "eukaryotes" (H=200, K=250, r=0.25, c=3, b=2) calculated from
joint distributions presented in Fig. 3.5. Panel A, B, C: marginal mRNA distributions for
mixed (blue) and continuous model (black), panel C, D, F marginal protein distribution for
mixed (blue) and continuous model (black). The exact model The mRNA marginal distri-
butions given by the mixed model are the same as for the exact description by construction.
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Table 3.2 : Variance explained for "eukaryotes".

T regime [ ¢=3,d=2 [ ¢=0.75,d=0.75 |
“ Model H mRNA ” protein H mRNA H protein ”
[ Mixed [ 1 [ 0999 [ 1 ]0.9999 |
[ Continuous | 0.93 [ 094 [ 097 [ 098 |
[KeplerElston | - [ 112 [ - [ 111 |

Percentage of the total variance given by the exact description explained by the mixed, con-
tinuous and Kepler-Elston model for "eukaryotes" (H=200, K=250, r=0.25) in two regimes.

clearly visible: The boundary induced by ODEs (3.13)-(3.14) creates an artificially high
peak at the gene active state (Fig. 3.7E, F), whereas the corresponding peak in the mixed
approximation (Fig. 3.7B, C) is much smaller since the distribution can freely disperse. The
distributions at the inactive gene state (Fig. 3.7A vs. D) are very much alike. The marginal
distributions depicted in Fig. 3.8 reveal that the artifacts are present only for the amount of
the mRNA transcript at the gene active state: The continuous approximation (black curve)
is bounded by 200 mRNA, the mixed approximation (blue curve) exceeds this number (Fig.
3.8B, C). Nevertheless, the protein marginal distributions for both of the models overlap
each other almost exactly (Fig. 3.8D, E, F). In this case, see Table 3.2, the mixed model
explains 100% of the total variance in mRNA and 99.99% of the protein variance, while
the continuous approximation accounts for 97% and 98% of mRNA and protein variation,
respectively.

When the protein half-life time is smaller than the mRNA half-life time, i.e., 7 > 1, the
artifacts introduced by the continuous approximation at the mRNA level (Fig. 3.8) are also
exhibited at the protein level. It is due to the fact that the protein level follows the mRNA
level very closely (data not shown). This case is depicted in Fig. 3.9, which includes marginal

distributions for eukaryotes in the regime far from the statistical equilibrium (H=200, K=250,
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Figure 3.7 : 2D distributions for "eukaryotes” far from the statistical equilibrium.
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Two dimensional mRNA-protein distributions for "eukaryotes" in the regime far from the sta-
tistical equilibrium (H=200, K=250, r=0.25, ¢=0.75, b=0.75): Panel A, B, C -distributions
for mixed model calculated on a grid 300x300, panel D, E, F -continuous model on a grid “
200%200. Distributions shown in the same scale (250 mRNA X 2-10° protein molecules) and
normalized to the mixed model. In the left column, f(z,y)- distributions for the gene in the
inactive state (G=0), in the middle column, g(z,y)- distributions for the gene in the active
state (G=1) and in the right- the marginal distribution p(z,y)=f(z,y)+g(z,y).



Figure 3.8 : Marginal distributions for "eukaryotes” far from the statistical equilibrium.

[Al. f() [B], 9() [C]. feO)+g(x)
—— Mixed | | |
0.01 CONntinUOUS [{ 0.01 |rvrreberern
Q005 EN it 0[] TRRETITTEEITRO &
%o 20 % 10 200 % 100 200
5 mRMA level 5 mRNA level 5 mRENA level
5 X 10 [D], f(y) 5 X107 [E] gfy) | 5 X107 [F], fy)+9)
4 ............................ 4 .......................... ,] ,,,,,,,,,,,,,,,,,,,,,,,,,,,
Fhofe ] IETTIO AUUUR P B D5k
OO 1 2 OO 1 2 OD 1 2
protein level X 105 protein level « 105 protein level X 105
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from joint distributions presented in Fig. 3.7. Panel A, B, C: marginal mRNA distributions
for mixed (blue) and continuous model (black), panel C, D, F marginal protein distribution
for mixed (blue) and continuous model (black).
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r=2, ¢=0.75 b=0.75). The protein degradation rate is assumed to be twice greater than
that of the mRNA, i.e., r=2. Although the continuous model accounts for 98.1% of the total
protein variance (mixed model account for 99.98%), the former predicts the marginal protein
distributions with three maxima, while the correct distribution given by the mixed model has
only two, Fig. 3.9F. Considered case of r > 1, i.e., the mRNA more stable than the protein
can be encountered in signaling pathways when the rapid signal propagation is achieved
through active protein degradation. This is the case of the NF-«xB pathway [36], [37], where
the NF-xB inhibitor IxBa is catalytically degraded with a half-life time of about 10 min,
while its mRNA has a half-life of about 20 min. In this case, the two-dimensional IsBa
mRNA-protein distribution is important for understanding the underlying dynamics of NF-
xB transcription factor, and moreover, only the mixed model provides a good approximation

for that system.

3.5 Model extensions

The following sections extend the proposed models, first, to the case of single haploid gene
with feedback regulation, and second, to the case of n-allelic gene without feedback regula-

tion.

3.5.1 Single haploid gene with feedback regulation

Consider a singie haploid gene whose activity is regulated by the synthesized protein. Namely,
assume that the gene activity rates ¢ = ¢(y) and b = b(y) depend on the amount of the pro-
duced protein y [30]. Then, the stochastic process governing intermittent gene activity is

given by the reactions analogous to the Eq. (3.1):
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Figure 3.9 : Marginal distributions for "eukaryotes” when mRNA is more stable than protein.
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Marginal distributions for "eukaryotes" in the regime far from the statistical equilibrium
(H=200, K=250, r=2, ¢=0.75, b=0.75). The protein degradation rate is assumed to be
twice greater than that of the mRNA, i.e., 7=2. As a result the artifacts introduced by the
continuous approximation at the mRNA level, Fig. 3.8, are now exhibited also at the protein

level.
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[Y¥a A (3.37)

while the reactions (equations) describing the mRNA /protein production/decay noise
remain the same for a given model, i.e., the exact stochastic description as well as the
continuous or mixed approximation. This implies that the underlying distribution function
for a given model is described by the system of equations analogous to the case without a
feedback regulation, but with ¢ = ¢(y) and b = b(y). In this case steady state distribution
functions can be obtained with the same computational expenses as in the former description
(Appendix C).

Note, that the extension to the feedback regulation do not allow deriving the moments of
the underlying distribution. Consider an example of a haploid gene activated by produced
protein monomers with a constitutive activation rates co and by, i.e., ¢(y) = ¢y + 1y and
b(y) = bp. When applying generation function techniques one finds that due to the linear
term in c(y), the n'* partial moments depend on the moments of the n+ 1 order. Therefore,
unlike the case without feedback regulation (Appendix A), the ODEs for the partial moments
do not factorize into independent pairs of linear equations, but rather create a infinite system
of ODEs which cannot be solved analytically. Therefore, when the feedback regulation is
introduced into the model, the moments can be obtained only numerically based on the

marginal mRNA /protein distribution.

3.5.2 n-allelic gene without feedback regulation

Previous sections were dedicated to the analysis of stochastic regulation of a single haploid
gene. Such mode of regulation is natural for all prokaryotes, however higher organisms can

possibly have more gene copies (alleles). In general eukaryotes are diploid, which means that
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each gene has two homologous copies distributed among the chromosomes. In some cases
one of these copies can became transcriptionally inactive. Occasionally, due to the gene or
chromosomal duplications, the number of alleles per gene can be substantially larger.

Consider a single n-allelic gene without feedback regulation. Since the transition rates c
and b are constant and do not depend on the amount of the produced protein y, the gene
products resulting from different alleles are independent. Moreover, each double of random
variables (X;,Y;), j = 1,...,n, describing the number of mRNA and protein molecules pro-
duced by the j** gene copy is identically distributed with a joint mRNA-protein distribution
given for a single haploid gene considered previously.

Therefore, the moments of the gene products for a single n-allelic gene, X:Z;'“zl X, and

}7:2;;1 Y}, can be obtained based on the previous results:

E[X] = nE[X], (3.38)
E[Y] = nE[Y], (3.39)
Var[X] = nVarlX], (3.40)
Var[Y] = nVarlY], (3.41)

where (X,Y) is the amount of mRNA /protein for a single haploid gene. Note, that the

above is true for all of the considered models, i.e., the exact stochastic description as well as

the continuous and mixed approximation.
In addition, the marginal mRNA-protein distribution function p(Z,7) can be calculated
by n* order convolution of the distribution obtained for a single copy. In this case, the

convolution has to be carried numerically.
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The following chapter introduces further simplifications to the model, which considers

systems of multiple interacting genes.



58

Chapter 4

Kepler-Elston approximation as a special case of
continuous model

4.1 Derrivations of the Kepler-Elston approximation

While considering the continuous approximation (3.13-3.14) note, that for » < 1 (protein
molecules much more stable than the mRNA transcript) the mRNA transcript reaches equi-
librium much faster than the protein number. In this case, the dynamics of the mRNA
production, Eq. (3.13), can be neglected in favor of its steady state z=HG. This assumption

yields the following approximation in the case of a single haploid gene:

I5A ADI (4.1)

dy
7 HKG —ry. (4.2)

The system (4.1-4.2) is equivalent to the model introduced by Kepler and Elston (2001)

[30], which assumed direct protein production from DNA.
The joint distribution of the double of random variables (y,G) describing the state of the

system in any given time is given by the pair of probability density functions:
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fly,t) Ay = Ply(t) € (y,y+ Ay),G = 0], (4.3)

9(y,t)Ay = Ply(t) € (y,y + Ay),G = 1], (4.4)

Analogically to the system (3.19-3.20), PDEs for probability density functions f and g

yield:

-1 f) = bo-cf, (4.5)
% + %((HK —ry)g) = —bg+cf. (4.6)

The densities described by (4.5-4.6) have an analytical steady state solution for y €

[0, £Z]. At the steady state Egs. (4.5-4.6) for f(y) and g(y) yield

—%(yf) — bg-of, (“7)

d KH

@((—‘T— -v)g9) = —bg+cf, (4.8)

where ¢, = 2, b, = ! Adding Egs. (4.7) and (4.8) gives the integral

d KH
& —yf+(———vg| =0, (4.9)

which implies that
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KH
—yf+(——y)g= —f(-ff£

- —) =9(0). (4.10)

Since f(y) and g(y) are nonnegative, the condition — f(££) = g(0) implies that f(£Z) =

g(0) = 0. Hence, from Eq. (4.10), g = yf/(i(;li —y). Then, the Eq. (4.7) yields

- —(yf) = E_ﬁ—_—yf —crfs (4.11)

or equivalently

This implies that
., KH
fo) = Ay ==~ (4.13)
KH
gly) = Ay (— -y (4.14)
where
T(c, +b,) / T \er+br
A=
(e )T () (7m) (4.15)

is a normalizing constant. For ¢, < 1, limy_o f(y) = oo and for b, < 1, limy_; g(y) = 00,
while for ¢, > 1,b, > 1 one has that f(0) = g(0) = f(££) = g(EZ£) = 0. The marginal

distribution p(y) := f(y) + 9(¥),
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KH KH

pW) = fW) +o9y) = A —y (= —y)" 7, (4.16)

describes the protein level regardless of the gene status. For ¢, < 1 and b, < 1, function
p(y) has a minimum between 0 and ££, whereas lim,_o p(y) = oo and limy_; p(y) = oo.
For ¢, > 1 and b, > 1, p(y) has one maximum. The larger ¢, and b, are, the distribution
p(y) is more concentrated since the gene activity changes more frequently.

Note that the steady state densities f(y), g(y) and p(y) are in fact rescaled beta densi-
ties, therefore the partial protein moments joint with gene activity as well as the marginal
moments can be directly derived. Alternatively, the moments can be derived by analysis
of the system (4.5-4.6) with generating functions. The second approach allows derivation
not only the moments at the steady state but also their time evolution. The expected

value Fxgp[Y] and the variance Vargg|Y] of the stationary marginal distribution of protein,

o(y) = f(y) + g(y), are given by (the partial moments are presented in the Appendix A):

¢c KH
Brsl] = —5o, (4.17)
br

Please note that the expected value of the protein is the same as in the exact stochastic
description, while the variance Vargg[Y] can be obtained from Varg[Y], i.e., the continuous

approximation by assuming that r < 1.
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4.2 Applicability of the Kepler-Elston approximation

To verify the Kepler-Elston approximation, stationary densities f(y), g(y) and p(y) given
by Egs. (4.13), (4.14) and (4.16) are compared against the marginal protein distributions
[ flz,y)dz, [g(z,y)dz and [ p(z,y)dz obtained numerically for the continuous approxi-
mation, Egs. (3.28-3.29). As expected, the Kepler-Elston approximation is quite accurate
when r < 1 (Fig. 4.1A-F, where r=0.25), especially for large c and b. However, even for
a small r it introduces more variation than the continuous approximation: The marginal
protein distributions, Fig. 4.1C, E are broader andhave lower maxima. In fact, for r=0.25,
c¢=3, b=2 Kepeler-Elston model overapproximates the exact protein variance by 12%, and
for r=0.25, ¢=0.75, b=0.75 by 11% (see Table 3.2). Fig. 4.1A, B, D, E reveals minor dis-
crepancies between the Kepler-Elston and continuous protein distributions joint with gene
activity, f(y), g(y). In fact, as given in Eq. (A.27), the expected values of the protein num-
ber joint with gene activity, Exg[Y, G = 0] and Exg[Y,G = 1], differ form the these given
by the continuous model. Note that the continuous as well as the mixed model gives the
same expectations joint with gene activity as the exact stochastic description, Eq. (A.26).
The Kepler-Elston approximation fails when r > 1. The stationary protein distribution
p(y) for r=4, c=38, b=2 presented in Fig. 4.11 (magenta curve) is bimodal, while the marginal
distribution f p(z,y)dz calculated based on the continuous approximation has only one
maximum. This is due to the fact that although ¢ > 1, 6> 1, but ¢, < 1, b, < 1. Condition
r > 1 corresponds to the case when the protein molecules are degraded faster then the
mRNA transcript. Such situation may be encountered in the molecular pathways where the
rapid signal propagation is achieved throughout catalytic protein degradation, e.g., NF-xB
pathway [36], [37]. In such systems the two-dimensional mRNA-protein distributions are

important to understand the underlying dynamics.
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Figure 4.1 : Protein distributions in the Kepler-Elston approximation.
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Marginal protein distributions for a Kepler-Elston approximation (magenta curve), Eqs.
(4.13), (4.14) and (4.16), compared against the marginal protein distribution calculated nu-
merically based on the two-dimensional mRNA-protein distributions for a continuous model
(black curve). Hypothetical "eukaryotic" cells are considered (H=200, K=250): Panels A,
B, C correspond to 7=0.25, c=8, b=2; Panels D, E, F correspond to r=0.25, c=0.75, b=0.75;
Panels G, H, I correspond to r=4, c=3, b=2. In the left column, f(y)- distributions for the
gene in the inactive state, in the middle column, g(%/)- distributions for the gene in the active
state and in the right - the marginal distribution regardless of gene status p(y)=f(y)+g(y).
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The Kepler-Elston approximation proves to be very accurate and well justified when
r < 1 and provides a great simplification in the analysis. It can be used to analyze systems

of two, and possibly more interacting genes.

4.3 Two gene systems in the Kepler-Elston approximation

Consider a system of two interacting genes in the Kepler-Elston approximation. Let y; and
y2 denote the amounts of protein related to the first and second gene, respectively. By

analogy with Eq. (4.2) the ODE description of the model reads

dy:(t)

o7 = —ny + HiK1Gi(t), (4.19)
dyo(t
det( ) = —rays + HyKyGa(t), (4.20)

where G; and G, are the binary random variables describing the state of each of the
genes. Eqs. (4.19-4.20) are parametrized analogically to the system (3.1-3.3) with subscripts
corresponding to the respective gene. Assume general transition rules between the gene

activity states:
LA A4 N LG L) = 0,Gi(A) = 1, (4.21)

where the transition rates are, in general, functions of produced protein y; and y,. More

specifically, assume that
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Ay,y2) = cho+ iy + chaye, (4.23)
by (Y1, 42) = bl + biiyn + biyye (4.24)
(Y1, y2) = oo+ Cory1 + ol (4.25)
by(y1.y2) = bhg + by + by, (4.26)

where free terms correspond to the basal (constitutive) activation rates, while linear
(inducible) terms correspond to the regulation due to the protein monomer binding.

One can introduce rescaled variables for problem (4.19-4.26):

* !

3 ) =t- . .
U = K, =YY = Hng oYt 1 (4.27)

Substituting new variables and dropping the asterisks yields the following system:

dus(t
y;t() = —y + G, (4.28)
dyo(t

y;f) = r(—ys+ Gy), (4.29)

where 7 = 72 relates the half-life times of involved proteins (recall that r; is the ratio of

the protein and mRNA degradation rates for the i gene). The transition rules are given by

Lo A 4" L eyn) = 0,Gh(A) =1, (4.30)

.[2 Ag, A2 [Q,GQ(]Q) = O, GQ(AQ) = 1, (431)



where

C1 (yl ; yz)

by (917 92)

02(91» y2)

bz(yl, yz)

€10 + C11Y1 + C12Y2,
bio + b11y1 + b2y,
Co0 + C21Y1 + C22Y2,

bao + b21y1 + bagya,
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(4.32)
(4.33)
(4.34)

(4.35)

and ¢ = Céo/ﬁ, big = béo/m Ci1 = 021/K1/H1, bin = bél/Kl/Hly Cip = ng : T‘/K2/H2,

bip = by - 7/ Ky/Hs for i = 1,2 respectively.

The state of the system in any instant of time is given by the four random variables

(y1, Y2, G1,G2). Define the probability density function

fii(y1,y2, £) A Aya = Plyi(t) € (y1, i +Au1), 12(t) € (Yo, 2+ A1), G1 = 1, Gy = 7], (4.36)

where ¢,j = 0,1. By analogy with the continuous approximation, the time evolution of

fi;'s is given by the following system of PDEs:

dfoo

dt

dho
dt

dn
dt

&
dt

-+ div

+ div

+ dev

+ div

4y |
dt ¢,

dys
o dt ¢,

)
)
)

foo| =

S| =

foo| =

—(e1 + ¢2) foo + b1fio + bafor,
—(e2 + b1) fro0 + c1foo + b2 f11,
—(c1 + b2) for + c2foo + b1 f11,

—(by + b2) f11 + 1 fo1 + c2fio.

(4.37)
(4.38)

(4.39)

(4.40)
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At the steady state Eqgs. (4.37-4.40) yield:

%(—ylfoo) + %(—Wﬁoo) = —(c1 +c2)foo + bifio +bafor,  (4.41)
5(3—1[(1 = y1)fio] + %(—Tysz) = —(co+b)fio+ecifoo+bafu,  (442)

2 o)+ g b= wlf] = (et teafottifu (449
53-1[(1 —y)ful + 5(3—2[7‘(1 —yo)fu] = —(b1+b)fu+cifu+cafio (4.44)

The system (4.41-4.44) can be numerically solved using developed numerical techniques.
Appropriate discretization for the general case is included in the Appendix C. Note, that
without the Kepler-Elston approximation, one would need to analyze four-dimensional dis-

tributions.

The following sections considers examples of two-gene regulatory networks: the activator-

repressor and the repressor-repressor system.

4.3.1 Activator-repressor system

In the case of the activator y; - repressor y, system, assume the following transition intensi-

ties:
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Figure 4.2 : 2D distributions for the activator-repressor system, case one.
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parameters.
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Figure 4.3 : 2D distributions for the activator-repressor system, case two.
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parameters.
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ci(y1,¥2) = co (4.45)
bi(y1,y2) = braya(?), (4.46)
c2(y1,42) = can(t), (4.47)
ba(y1,92) = bo, (4.48)

which implies that the inactivation of the activator y; is proportional to the amount of
the repressor yz, while the activation of the repressor is proportional to the amount of the
activator. In Figs. 4.2 and 4.3 the steady state solutions of the activator-repressor system
for two sets of parameters are presented. When the transition intensities cig, b12, €21, by are
relatively large, the resulting protein-protein distribution f = foo+ fi0+ fo1 + f11 has a single
mode (Fig. 4.2). However, when transition intensities are smaller, the resulting distribution

f = foo + fio + for + f11 has three maxima and a complicated profile (Fig. 4.3).

4.3.2 Repressor-repressor system

In the case of the repressor y; - repressor ¥, system, assume the following transition inten-

sities:

C1 (yl, yz) = G, (4-49>
bily, y2) = bioayelt), (4.50)
c2(y17y2) = (a0, (4-51)

ba(y1,42) = bautn(?), (4.52)



71

Figure 4.4 : 2D distributions for the repressor-repressor system, case one.
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Figure 4.5 : 2D distributions for the repressor-repressor system, case two.
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which implies that the inactivation of the 1st repressor ¥; is proportional to the amount
of the 2nd repressor y, and vice versa. In Figs. 4.4 and 4.5 the steady state solutions of the
activator-repressor system for two sets of parameters are presented. One can observe that the
repressor-repressor system is relatively unstable. Relatively small differences in constitutive
production rates (cio = 1.7, cgo = 1.5) lead to the substantial asymmetry in the resulting
protein-protein distribution (Fig. 4.4). This asymmetry can be also a result of different
half-life times of involved proteins as shown in Fig. 4.5, where the activation intensities are

the same for both genes, while r = 2.
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Chapter 5

Collective actions of multiple activators

For the sake of simplicity it is usually assumed that the transcriptional gene activity is due
to the actions of single trans-acting regulatory molecule (transcription factor) and single
cis-acting regulatory element, i.e., operator in bacteria or promoter in eukaryotes [32], [30],
[29], [63], [7], [61], [66]. In fact, the specific patterns of gene expression may be governed by
combinatorial interactions of series of transcription factors that bind to various regulatory
sites within gene promoters and enhancers ([68], p. 72).

Such regulatory mechanism is hypothesized for the NF-xB dependent genes in HeLa cells,
where activity of the primary transcription factor (NF-xB) cannot explain the behavior of

induced genes [51].

5.1 Biological motivation

The NF-xB family of transcription factors plays an important role in pathogen or cytokine
inflammation, immune response, cell proliferation and survival [65]. In mammals, the NF-xB
family contains five members but its RelA subunit is responsible for the most common NF-xB
binding activity. In resting cells NF-xB is sequestered in the cytoplasm by association with
the members of another family of inhibitory proteins called IxB. In response to extracellular
signals such as the tumor necrosis factor-a (TNF), I«xB inhibitory proteins are degraded,

which allows NF-«<B to translocate into the nucleus, bind to xB motifs present in promoters
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of numerous genes and upregulate their transcription.

Recently, cells engineered to have NF-£B activity controlled by exogenous doxycycline
have been used to empirically identify the members of the NF-xB dependent gene network
by high density microarrays [64], [65]. In this system, the pattern of gene expression in
wild type cells in response to a stimulus is compared against the pattern produced by the
same stimulus in the absence of NF-xB. In response to the TNF, 91 genes were identified
to be NF-xB dependent by analysis of variance. Hierarchical clustering was used to stratify
these genes into common expression profiles. As shown in Fig. 5.1, the NF-kB responsive
genes can be grouped into 3 characteristic classes (regulons): early (such as IxBa, A20,
Grog or IL8), for which the amount of mRNA transcript has its maximum at about 1 hour,
intermediate (such as NF—/{Bl or TNFAIP2) with the maximum at 3 hours, and late (such
as NAF1, NF-xkB2 or TRAF1) with the maximum at about 6 hours.

For previously studied human fibroblast, the nuclear activity of NF-«B is terminated by
the newly synthesized IxBa, which enters the nucleus, binds to NF-«<B and takes it out into
the cytoplasm [64], [44], [36]. The experiments show that in HeLa cells, in contrast, NF-<B
is not effectively lead out of the nucleus by the IxBc, but rather, after entering the nucleus
at 15 min from the beginning of TNF stimulation, it remains there for at least 6 hours at
a steady level (Fig. 5.2A). Analysis of RelA, i.e., NF-xB’s functional subunit, association
with promoters of early and late inducible genes reveals similar binding kinetics: Within 30
min from TNF treatment, transcriptionally active RelA binds to gene promoters and persists
bound for at least 6 hours at a steady level (Fig. 5.2B).

The finding that NF-«xB remains associated with early promoters throughout the 6 hours
time course, even though expression of corresponding genes is actively being terminated (Fig.

5.1) strongly suggests the presence of a “repressor” that silences NF-xB activity. Additionally,
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Figure 5.1 : Three classes of NF-xB dependent genes.
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Kinetics of NF-xB-dependent gene expression in Hela cells (high expression depicted with
red color). Data represent the mean of three independent time course experiments analyzed
by high-density microarrays. In this experiment the NF-xB nuclear translocation is enabled
by culturing cells in the presence of doxycycline (Dox). The expression profiles for selected
genes of each group where confirmed by Northern blots. The data reveal three characteristic
classes of genes: early, intermediate and late, stratified by the time of 1, 3 and 6 hours at
which the level of the mRNA transcript reaches the maximum value.
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Figure 5.2 : Kinetics of NF-xB transcription factor in HeLa cells.
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[A] The Electrophoretic Mobility Shift Assay (EMSA) of the NF-«xB binding activity. HeLa
S3 cells were stimulated with TNFa (30 ng/ml) for the indicated times prior to nuclear
extraction and analysis of NF-«xB binding by EMSA. Shown is an autoradiogram of the
protein-DNA complexes. The relative migration of the specific NF-xB heterodimers is la-
beled. Rel A/NF-xB1 and c-Rel-RelA complexes are rapidly induced by TNF treatment
within 15 min. and persist in the nucleus for 6 h. A later peak at 24 h is also seen. |B] ChIP
analysis of RelA association with promoters of early (IkBc, Gro8 and IL8) and late (NAF1,
NF-xB2 and TRAF1) genes. HeLa cells were stimulated for various times with TNF« prior
to formaldehyde fixation. Rel A was used as the immuno-precipitating antibody. Far right
lane is genomic DNA control. Similar RelA association with early and late promoters is
observed: Binding occurs 30 min after TNF stimulation and persist for 9h at the steady
level.
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the fact that the same NF-xB binding kinetics results in three different transcription profiles
among the dependent genes, proves that the dynamics of NF-xB transcription factor is not
able to explain the observed phenomena. It is hypotesized that some other factors (co-

activators) are required to initiate and terminate gene expression.

5.2 Model and derivations of expected expression profiles

To explain the expression profiles among 3 classes of genes, the model involving 3 activators
and 1 repressor is proposed. Without an attempt to identify these regulatory f‘actors, it is
hypothesized that they might be activating (e.g. histone acetylation) or repressing factors,
not necessarily connected with the DNA /protein binding.

The model relys on the introduced continuous approximation, however the analysis is
limited to the mRNA level, since the protein abundance in not measured.

It is assumed that each gene has n potentially active homologous copies, and the activa-
tion and repression of these copies proceeds independently. The amount of mRNA transcript
in a cell is a sum over amounts of transcript produced by each of homologous gene copies.
Amount of mRNA transcript produced by a single gene copy j of a gene from the " class,

denoted with zJ(¢), is given by

dz](t)
dt

= —ri-al(t) + H - Gi(t) (5.1)

where i = 1,2, 3 corresponds to 1st (early), 2nd (intermediate) and 3rd (late) class of
genes, respectively, and j = 1,...,n denotes the homologous gene copy. As previously, H
depicts the transcription rate, while 7; corresponds to the mRNA degradation rate, which in

general may differ between the genes from different classes. The function G{(t) is a binary
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random variable describing the status of a gene.

The differences between considered gene classes are modeled through the stochastic pro-
cess governing the gene activity, i.e., the function G{ (t). It is assumed that an activation of
a gene from the 1% class (early regulon) requires only binding of the first activator, while
to activate a gene from the 2" class (intermediate regulon) one additional co-activator is
required, finally to activate a gene from the 3™ class (late regulons) two co-activators are
required in addition of the first one. Activity of all genes is eventually terminated by a
repressor. Such description implies that at a given instant of time a gene can be either in the
inactive, active or repressed state. Analogous to the previous considerations, it is assumed
that Gf(t) = 1 whenever all required activators occupy promotory region, but the repressor
is not bound, and Gf(t) = 0 otherwise. Binding of the activators and of the repressor occurs
with intensities for the activators equal to A;, A\; and A3, respectively, and with the intensity
equal to Ao for the repressor. It is assumed that A;'s,i = 0,1, 2, 3 are constant, which means
that the corresponding regulatory factors are present at the constant amount in the cell.

It is assumed that co-activators act according to a conditional mechanism, so there exists
a certain order of events. Let ¢; be the time of the first activator binding from the beginning
of stimulation. Then, let ¢; be the time of the second activator binding, counted from the
time of binding of the first activator. Similarly, let ¢3 be equal to the duration of the period
between second and third activator binding. Finally, let ¢, be the time between binding of
the last activator and the repression event. Since the binding intensities are assumed to be
constant, the t;’s, i = 0,1, 2,3 are independent random variables exponentially distributed
with parameters \;, i = 0,1, 2,3, respectively. The schematic representation of the model is
depicted in Fig. 5.3 for the case of a gene from the second (intermediate) class.

th

In addition, let 7; and ¢; be activation and repression times of genes from the ¢** class.
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Figure 5.3 : Schematic representation of the model for intermediate genes.
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Schematic representation of the model for the genes from the second (intermediate) class.
Two activators, I and I, required for gene to start mRNA transcription bind at the expo-
nentially distributed times, ¢; and to, respectively. Gene activity is terminated by repressor,
R, binding at exponentially distributed time to following activation. The representation for
other gene classes would differ only in number of activators needed to initiate gene expression.
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Specifically, for the first class, the activation time is equal to 71 = t;, for the second 7, =
t1 + t9, and for the third 73 = ¢; + ¢3 + t3. The repression time among genes from the ith
class is equal to ¢; = 7; + to. Each of these characteristic times is a sum the corresponding
exponentially distributed random variables and its distributions can be analytically derived.

The solution of the Eq. (5.1) for a given initial conditions depends on the function G (t),
which is determined by the underlying stochastic process. The status of each homologous
gene copy j from the it* class GJ(t) = 1if t € (7;, 7 + to) and zero otherwise. Therefore to
obtain the amount of transcript in the single cell produced by the gene from the i** class,
first, the function G{ (t) is simulated by drawing 7; and to from the underlying probability
densities for each gene copy j, second, the Eq. (5.1) is solved, and third, the amount of
transcript is summed over all gene copies.

It is possible to describe the solution of Eq. (5.1) in the terms of its expected value,
which corresponds to the gene expression measurements at the population level. Please note
that from the Eq. (5.1), the expected number of mRNA transcript over time, E[z] (t)], (the
. average expression profile of a gene copy j from the ™" class) is described by the following

differential equation:

dE [z](t)]

= glt)-H—r E[2l(t)], (5.2)

T

where ¢/(t) = E [Gf(t)] is the expected gene activity. The expected gene activity g7 (t)

can be evaluated as:

0= [ [t 0200 ot dtodr = [ [ g o) dor, 53
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where 14(t) is an indicator function equal to 1 if t € A and zero otherwise, fo (t) is the
probability density function of repressor binding and fr, (), ¢ = 1,2,3 are the activation
distributions for consecutive gene classes.

The probability density functions fy (t) and fr, (t) are given by assumption:

folt) = Aoe™, (5.4)

Fr(t) = e (5.5)

while to calculate fr, (), note that 7 = t; +¢5 is a sum of two exponentially distributed

independent random variables, thus its density is given by the convolution formula:

Ao

t
fro () = /0 MAgeMime et dry = Ay =M

(et —emht) (5.6)

Analogically, the distribution f-, (¢) follows by noticing that 73 = 72 + 3, i.e.,

A1 AgAs 1 Mt —Ast 1 “Xat _ =Xt
f'l's (t) - )\2 _ Al i:)\B _ Al (e € ) )\3 . /\2 (6 € ) ' <57>

Given that, gf (t), the expected gene activity of a single copy j from the " class, i =
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1,2,3, can be obtained by solving Eq. (5.3). One has the following:

; )\1 _ )\1 -
7 — Aot At
gi (t) Y w A v v (5.8)
; A1z - A1Ag _
I(t) = e Mot 4 e Mt 5.9
92 (0) (A1 = Ao) (Ag — Ag) (Ao = A1) (A2 — A1) (5.9)
/\1/\2 —Aat
+(/\o ) 0 = /\2)6 , (5.10)
. AAads ot A1AzAg At
t) = e” " + e " (5.11
s (0 (A1 = A0) (A2 = Ao) (A3 = Ao) (Ao = A1) (A2 = A1) (As = A1) (5-11)
N A A2z e—et | A1A2As et
(Ao = A2) (A1 — X2) (Azs — A2) (Ao — Az) (A1 — A3) (A2 — As)

In general, in the case of N gene classes the expected gene activity gf (¢), 1 <i< N, can

be expressed as:

J(4) — i H?:l/\l —Axt
) k:OKHz;o,lwz—Aw)e ] (512

Then, the average expression profile of a gene copy j from the i class, can be derived
by substituting Eq. (5.12) into Eq. (5.2) and solving it for £ [m{(t)} Assuming zero initial

conditions, i.e., z](0) = 0,

E [:Cf(t)] — : |: H <H H§=1 Al )) (e—)\kl _e'—Tit)] _ : (5.13)

More specifically, in the case of considered three gene classes, i = 1,2, 3, the Eq. (5.13)

gives the following expected expression profiles:

MH
(Ao = A1) (r1 — A1)

MH =

(M = Xo) (11 = Xo) (et — &™), (5.14)

—e ) +




84

AAgH

AMAH ~Ait —rat
+(>\o*/\1)(/\2—/\1)(7"2—>\1) (7 =)
MAH ~ Azt —rat
e T = & e
i _ AMAoAs H “hot_ —rat
Blm®] = (A1 = A0) (A2 = Ao) (Az — Ao) (13 — Ao) (e =) (516)
Az H gt st
e ey & )
MAsAs H “dat _ —rat
e TR = ) e g & )
MAAsH st st
+(/\o = A3) (A1 = A3) (A2 = A3) (3 — As) (70— e,

In addition, define a gene from the i*" class be active at the time ¢ if the mRNA transcript
is produced by at least one of its copies. Assuming that n copies of a gene act independently,
the proportion of active cells (i.e. cells with an active gene) in the population at time ¢ can

be evaluated using Eq. (5.12):

Elg(t)] =1-(1-g] (t)" (5.17)

E[g:(¢t)] constitutes a measure of transcriptional variability among genes from different

classes.
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5.3 Fit at the population level

The proposed model was fit to reproduce 3 different expression profiles of NF-xB dependent
genes presented in Fig. 5.1 (i.e. the characteristic times of the maximum mRNA transcript
abundance given at 1, 3 and 6 hours after the stimulation for early, intermediate and late
genes, respectively). It is assumed that every gene has four potentially active homologous
copies (in fact HeLa cell are almost tetraploidy, since their modal number is 82 [2]). In
addition, it is assumed that all genes have the same mRNA degradation half-life time equal
to 20 min, which corresponds to degradation rate 7=0.00057 s~*. This is in agreement with
the experimental data from Blattner et al. (2000) [6], who estimated the degradation half-life
time for early gene IxkBa to be within 15 to 30 min range. In fact, the two fold increase of
the degradation half-life time results in relatively small change in expression profiles [51]. A
common transcription rate among genes is assumed, equal to 4 mRNA molecules per minute
per gene copy (H=0.0667 s!), which was confirmed for G-actin by single RNA transcript
visualization [15]. Given this, the profiles are determined by the set of four parameters A;,
i =0,1,2,3 describing binding rates of three activators and one repressor.

The fitting procedure was carried out analytically by taking the time derivative of the
profiles given by Eq. (5.14)-(5.16) and equating it to zero. Given the 3 characteristic times
of peak transcription at 1, 3, and 6 hour the parameters can be derived by solving the
equations so obtained. Unfortunately there are four unknown parameters and only three
expressions describing them. Thus, taking into account the fast dynamics of NF-xB, the
expected binding time of the first activator is assumed to be 10 min, which corresponds
to the binding rate A\;=1.667 x1072 s, Then, the remaining parameters are determined
by numerically solving the given equations. As a result, the following binding rates were

fitted: A\p=7.4 x1075 571 X\3=8.1 x107% 57! and A\y=1.96 x107% s~! which corresponds to
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the expected binding times of 225, 205 and 85 min for the two remaining activators and one
repressor, respectively. Note that the obtained fit is not unique, the different assumption
about the degradation rate and expected binding of the first activator would result in different
estimates for other parameters.

The fit for three hypothetical genes belonging to the early, intermediate and late class,
respectively, is depicted in Fig. 5.4. First three rows correspond to the single cell simula-
tions. These trajectories have characteristic kinks, which reflect initiation or termination of
expression in any of four homologous copies of the gene. The fourth row includes expected
mRNA trajectories analytically derived in Eq. (5.14)-(5.16), corresponding to expression
profiles averaged over the population of cells. These should be compared to experimental
data in Fig. 5.1. Finally, in the last row, the gene activity over time is shown, defined in
Eq. (5.17) as the proportion of the cells in the culture with at least one of the four gene
copies active. Single cell expression trajectories are significantly different from the profiles
obtained for the population of cells. In fact, no individual cell behaves like an “average” one.
This is especially visible for the late genes, where the variability among single cell profiles is
much larger than for early and intermediate genes. Another interesting observation is that
not all cells (genes) are active in the population even at their peak transcriptional activity.
The proportion of active cells (with at least one active copy) at their maximum activity is
1 for the early class, but significantly decreases to 0.61 and 0.43 for intermediate and late
genes, respectively. The same statistics for a haploid cells yields proportions of 0.75, 0.21
and 0.13 for early, intermediate and late genes in the active state in the population at their
peak transcriptional activity.

The average expression profiles obtained fit the microarray observations on NF-s<B de-

pendent genes very well. The fact that variability among single cell profiles is larger for
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First 3 rows show single cell

mRNA profiles, while the profiles in fourth row depict the expected expression in the cell
culture derived in Eq. (5.14)-(5.16). These latter should be compared to experimental data
in Fig. 5.1. Finally, in the last row, gene activity over time is shown, defined in Eq. (5.17)
as the proportion of cells in the culture with at least one of four gene copies active. The
kinks visible on single cell profiles correspond to initiation or termination of expression in
any of the homologous copies of the gene. The difference among single cell profiles is larger
for the late genes and, as a result, the averaged expression profile is broader, what is well

confirmed by Northern blot data [47].
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late genes and, as a result, the averaged expression profile is broader, was well confirmed
by Northern blot data [47]. From the other hand, derived expression profiles cannot be
fitted assuming just one or two activators including NF-sB, unless biologically unjustified

parametrization is assumed [51].

5.4 Experimental distribution functions

In addition to the data on the expected expression profiles, another set of experiments
provided a time dependent mRNA distributions for two specific NF-«B regulated genes.
The experiments were conducted for IL8, which is an early gene, and NF-xB2, which is a
late gene. The method of in situ hybridization was used: TNF stimulated HeLa cells were
harvested at multiple time instants and fixed, and then the targeted mRNA was hybridized to
the probes, which wre then visualized by dye. Each of the individual cell can be characterized
by the amount of the dark dye, which is proportional to the level of the mRNA transcript in
the cell at a given time instant. Measurements (images) with multiple replicates were taken
at 0, 5, 10, 15, 30, 45, 60 and 120 min after TNF stimulation for the IL8 gene, and at 0,
1, 3, 6, 12 hours for the NF-kB2. Acquired images (only one replicate per time is shown)
depicting large colonies of HeLa cells are presented in Fig. 5.5. Further image quantification
yielded time dependent distributions (histograms) of the dye intensity in the population of
cells (Figs. 5.6 and 5.7) [16]. Each cell from the population captured at consecutive time
instants was represented by their average dye intensity in the CMY space. Two directions
in the the color space were estimated for each population: First, corresponding to dye
intensity, second corresponding to the background staining. Since the obtained vertors were
not perpendicular, the background staining component was removed by substraction.

As shown in the Fig. 5.6, the initial dye intensity distribution for the IL8 gene spreads



89

Figure 5.5 : In situ hybridization measurements.
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TNF stimulated HeLa cells are harvested and the target mRNA transcript is hybridized to
a dyed probes. Shown here are the acquired images of cell colonies: Top panel, IL8 mRNA
transcript at 0, 5, 10, 15, 30, 45, 60 and 120 min after TNF stimulation; Bottom panel,
NF-xB2 mRNA transcript at 0, 1, 3, 6, 12 hours after TNF stimulation. Each individual
cell can be characterized by the amount of the dark dye, which is proportional to the level
of the corresponding mRNA transcript.
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right in time as more mRNA transcript is being produced. However, some discrepancies are
observed: At 10, 45 and 60 min after stimulation more dye than expected is concentrated
around zero intensity. Similarly, by the time of 120 min one still cannot observe effective
repression, which was apparent at this time from the expected expression profiles depicted
in Fig. 5.4 or microarray data, Fig. 5.1. Instead, the dye distribution continues to spread
right comparing with the measurement at 60 min. In the case of the NF-xB2 (Fig. 5.7),
where the time horizon is larger, the initial distribution spreads right with time again, to be
effectively repressed at 12 hours as the maximum dye intensity decreases.

Shown in Fig. 5.8 are the average dye intensities calculated based on quantified in situ
measurements. What was already apparent, the peak abundance of IL8 transcript occurs at
2 hours after the stimulation, Fig. 5.8A, rather than at 1 hour as suggested by microarray
experiments, Fig. 5.1. In addition, the measurements at 10, 45 and 60 min are not consistent
with the expected expression profiles. This is not the case of average dye intensities for NF-
kB2 gene, Fig. 5.8B, which are in agreement with the previous data (Fig. 5.1).

Nevertheless, the in situ measurements support proposed herein mechanism of collective
activation of NF-kB dependent genes in HeLa cells. Although there are discrepancies be-
tween the in situ and microarray data, please note that the former are collected for two
specific genes, while the latter correspond to a group of genes with some heterogeneity
among individuals. In addition, the discrepancies observed for IL8 transcript at 10, 45 and
60 min are also likely due to the fact that the corresponding images have different colors and
backgrounds than the others, Fig. 5.5, which may have affected the quantification [16].

The following sections provide analysis of the proposed model in the terms of the time
dependent mRNA distributions. The model is revisited to accommodate the in situ hy-

bridization data on two specific genes.



Figure 5.7 : Quantified dye intensity distributions for NF-xB2 gene.
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Figure 5.8 : Average dye intensity.
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5.5 Refined ndodel and the distribution functions

By analogy with the exact stochastic description (3.1-3.3) the proposed model can be ana-
lyzed in the terms of its underlying distribution function. To avoid artifacts introduced by
the continuous approximation (3.12-3.14), the analysis is based on the discrete analog (exact
stochastic description) of the system given by the Eq. (5.1). Previously it was assumed
that the mRNA transcript is produced only when a gene promoter is bound by all of the re-
quired activators, and there is no production otherwise. As a result, e.very mRNA transcript
molecule produced after TNF stimulation would be eventually degraded. To the contrary,
the quantifications of the in situ experiments reveal an initial mRNA transcript distributions
(Fig. 5.6 and 5.7 at t=0 min) prior to the stimulation. This new finding is incorporated
into the refined model by allowing the mRNA production with a erratic transcription rate
from an inactive or repressed gene. This is equivalent to assuming that GJ(A,¢) = 1 and
GI(I,t) = GI(R,t) = ¢;, where &; < 1 and A denotes the active gene state, while I and R
denote the inactive and repressed states, respectively.

Please note that the expected expression profiles for the refined model can be obtained
based on the Eq. (5.13). One can split the amount of the mRNA transcript produced
according to the refined model into two pools: First, produced by a single, continuously
active gene with a transcription rate equal to H - ;. Second, produced by a transiently
active gene with a production rate equal to H - (1 — ¢;) at the gene active state, and zero
otherwise. The former yields constant amount of mRNA transcript on average equal to HTEL,
while the latter yields the expected mRNA level as in Eq. (5.13), but with the transcription
rate equal to H - (1 — ¢;). Therefore, the expected expression profiles in the refined model

are given by:
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s e [HO=e) [ Tl A BV
E [x;(t)] + kg‘) { — (szo#k - m) (e )} , (5.18)

where 7 = 1,2, 3 corresponds to early, intermediate and late class of genes, respectively.
Please note, that Eq. (5.18) is valid for the continuous as well as the discrete analog
of the model, since as shown previously, the first moments are preserved regardless of the

approximation.

5.5.1 Early genes

The exact stochastic description of the system (5.1) for early genes in the refined model

reads:

I3 A ANR (5.19)
Gi(A) = 1,Gi(I) = Gi(R) = &1, (5.20)
AT W RNA T 6, (5.21)
1749 mRNA D 6, (5.22)
RYEP mRNA T ¢, (5.23)

where I denotes inactive, A active and R repressed gene state and G1(4) = 1, and
G1(I) = G1(R) = ;. While gene is in the active state, the mRNA transcript is produced
with the rate HG1(A) = H, but while not in the active state the transcription proceeds with

the rate Hey, where £; < 1. Please note, that in this case, the state of a gene is equivalent
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to the state of its promoter: Empty promoter corresponds to the inactive gene, promoter
bound by the first activator corresponds to the active gene, and promoter bound by repressor
corresponds to the repressed gene.

The state of the system (5.19-5.23) can be described by double random variables (z1, S1),
where z; denotes the number of mRNA transcript molecules, while S; denotes the state of
gene promoter, S; € {I, A, R}. The joint distribution of (z;,5;) can be captured by the

triple of probability mass functions:

uz(t) = P[# of mRNA=u1,,5 = A, (5.25)
v(t) = P[# of mRNA=1,5 = R], (5.26)

where w,(t) denotes the mRNA distribution in the gene inactive state, while u,(¢) and
vz(t) in the active and repressed state respectively. Because the process is independent from

cell to cell the marginal distribution
pm(t) = wx(t) + um(t) + Ug (t> (5'27)

describes a time dependent distribution of cells in the population with a given amount
of mRNA transcript regardless of the gene status, and thus can be related to the in situ

experiments.

By the analogy with the master equation (3.6-3.7), the time evolution of densities (5.24-

5.26) is given by:
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7 = Heywy_y + 11z + Dwepr — (Hey + riz)wy — AWy, (5.28)
2(t

dudt( D~ Hus + i@+ Dt = (B 4 riohue = ot + Az, (5.29)
dv(t

Udt( ) Hevg_1 + ri(z + Dvgyr — (Hey + 717)vz + Aotz (5.30)

where z = 0,1,2,...The right hand sides of Egs. (5.28-5.30) account for two flows of
probability: The first corresponds to the discrete process of mRNA production and degra-
dation and it is depicted with first three terms in each of the equations. The second flow of
probability corresponds to the process of gene activation, for example, the last term in Eq.
(5.28) depicts the gene activation event, which is equivalent to the binding of first activator
with intensity A;.

The system (5.28-5.30) has a nontrivial marginal steady state distribution, which is a
Poisson(ﬁfk) [see the discussion following Egs. (3.21-3.22)]. The steady state results from
the erratic transcription rate at the repressed gene state and provides the initial mRNA

transcript distribution at the beginning of the simulation.

wy(0) = Poz’sson(E;—l), (5.31)
w(0) = 0, (5.32)
ve(0) = 0, (5.33)

The system (5.28-5.30) is in fact an infinite system of linear ODEs, since the support of

the distributions w,, u, and v, is infinite. However, similarly to the master equation (3.6-
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3.7), the tails of w,, u, and v, can be disregarded since the probability assigned for arbitrarily
large z is negligible. By this approximation, the underlying time dependent distribution is

described by a finite system of linear ODEs, which can be numerically solved.

5.5.2 Late genes

Note, that for the late genes there are three different promoter conformation in the inactive
gene state: First, denoted with Iy, corresponds to the empty promoter; second, denoted
with I;, corresponds to the promoter bound by the first activator; and third, denoted with
I, corresponds to the promoter bound by first and second activator. Binding of the third
activator activates a gene, and this state is denoted with A, as previously. When in addition
binding of the repressor occurs, the gene becomes repressed and its state is again denoted
with R. Therefore, the discrete haploid analog of the system (5.1) for late genes in the

refined model reads:

L35, L35 L%A ANSR (5.34)
G3(A) = 1,Gs(Iy) = Gs(I1) = Gs(I) = G3(R) = &3, (5.35)
AT RNAT 6, (5.36)
L 7Y mRNA T 6, k= {0,1,2}, (5.37)
RS mRNA T 6. (5.38)

While a gene is in the active state (A), the mRNA transcript is produced with the rate
HG3(A) = H, but while in the inactive (Iy, [; or I3) or repressed state (R), the transcription

proceeds with the rate Hes, where €5 < 1.
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The state of the system (5.34-5.34) can be described by double random variables (z3, Ss),
where z3 denotes the number of mRNA transcript molecules, while Ss denotes conformation
of the promoter, Ss € {Io, I1, I2, A, R}. The joint distribution of (x3, S3) can be captured by

the following probability mass functions:

wl(t) = P[# of mRNA= 13,8 = I, (5.39)
wi(t) = Pl# of mRNA=1z3,5; =I], (5.40)
w2(t) = P[# of mRNA=z3,5; =1, (5.41)
ug(t) = P[# of mRNA= 13, S3 = A, (5.42)
v(t) = P[# of mRNA =13 Ss=R], (5.43)

where w¥(t), k = {0, 1, 2} describes the mRNA distribution in the respective conformation
of the promoter in the inactive gene state, while u,(t) and v,(¢) describe the distribution in

the active and repressed state, respectively. The marginal distribution

p2(t) = wo(t) + wl(t) + w2 (t) + ug(t) + ve(2) (5.44)

describes the time dependent mRNA distribution regardless of the gene status.

The time evolution of densities (5.39-5.43) is given by the following master equation:



dwdgt(t) = Heauw® | +7r3(z + Dwl; — (Heg + r3z)wd — A,

dwjt(t) = Hegwl_ | +rs(z + 1wk, — (Hes +rsz)wl + \wd — dwl,
dwjt(t) = Heaw?_ | +73(z + Dwi,| — (Hes + r3z)w? + Agwy — Azw?,
du;f(t) = Huwg 1+ 73(x + Dugrs — (H + 737)uy + A3w2 — Moug,
dU;t(t) = Hesvp1 +7r3(z+ Vvgry — (Hes + m32)v, + AoUy,

H
wl(0) = Poz’sson(—r—%),
3

wi(0) = wi(0) = u,(0) = v,(0) = 0.

100

(5.45)
(5.46)
(5.47)
(5.48)

(5.49)

(5.50)

(5.51)

The system (5.45-5.49) is again an infinite system of linear ODEs, however the tails of

wk, k= {0,1,2}, u, and v, can be disregarded since the probability assigned for arbitrarily

large z is negligible. By this approximation, the underlying time dependent distribution is

described by a finite system of linear ODEs, which can be numerically solved.

5.6 Comparison with the in situ data

The refined model is fit to reproduce measured time dependent mRNA distributions for the

IL8 and NF-xkB2 gene. First, the expected expression profiles derived in Eq.

(5.18) are

matched against the averaged dye intensities (Fig. 5.8). Then, obtained parametrization is

used to predict transient mRNA distributions from the model.
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The measured dye intensity is proporﬁional up to some extent to the number of the
mRNA transcript in the system, however the corresponding proportionality constant is not
estimated, instead the fitting procedure is carried out for the average intensities normalized
by the area they span. Therefore neither the transcription rate nor the number of considered
copies per gene affect the fitting procedure. However, the best match in the terms of mRNA
distribution functions was obtained when assuming that every gene has four potentially
active homologous copies. In fact the HeLa cells are almost tetraploid since their modal
numebr is 82 [2](the modal numeber of a regular diploid human cell is 46). Because the
data include rather small number of noisy observations, the fitting procedure is carried out
manually based on the parameters estimated previously to explain microarray experiments.
The fit was carried separately for the IL8 and NF-xB2 gene to allow heterogeneity in decay
between corresponding mRNA transcripts.

The fit of the expected expression profile for the IL8 gene is depicted in Fig. 5.9. In
this case, 20 min mRNA half-life time is assumed (r; = 0.00057s7!). In addition, the
transcription rate of 2 mRNA transcript per minute per gene copy is assumed, which is equal
to production rate H = 0.033s™!. Notice the two fold decrease comparing to the microarray
fit, but it allows obtaining distribution functions relatively less separated at measured time
instants, Fig. 5.10. While the gene copy is in the active state, the transcription proceeds
with a rate H, but when it is in the inactive or repressed state transcription proceeds with
rate He;, where £, = 0.02. The expected binding time of the first activator is assumed to
be 10 min, which corresponds to the binding rate A;=1.667 x 1073s™%. The binding rate
51

of the repressor is fit to be equal to Ao=9.7 X 107 which corresponds to the expected

)

binding time of 170 min. A two-fold decrease in the repressor binding time allows obtaining

the maximum mRNA abundance at 75min after the stimulation (Fig. 5.9A). The initial fast
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[B], Average dye intensity vs fit
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the curve.
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increase in the average mRNA number is well depicted by the model, while measurements
at 45 and 60 min are treated as outliers (Fig. 5.9B).

Model predictions for transient distributions of IL8§ mRNA corresponding to the obtained
parametrization is presented in Fig. 5.10. In addition to the marginal mRNA distribution
pz(t) corresponding to a haploid gene (black curve) given by the solution to Egs. (5.28-5.30),
Fig. 5.10 presents distributions for a diploid (red curve) and tetraploid gene (blue curve),
obtained from the former by convolutions. One can observe that with time, the initial
mRNA distribution resulting from the erratic transcription spreads right as more mRNA is
proyduced in the system. The best match with the quantified in situ data presented in Fig.
5.10 is obtained for a tetraploid gene. Some discrepancies are observed at 10 min after the
stimulation, where the measured distribution remains almost unchanged comparing to the
5 min time point. In addition, experimental distributions at 45 and 60 min have more dye
concentrated at zero intensity than these predicted from the model, however these two time
points were treated as outliers during the fitting procedure.

As already mentioned the fit is not unique, however the predictions of mRNA distributions
remain in a good agreement with the measurements even after three-fold increase of the IL8
mRNA half-life time and simultaneous fit of other parameters (data not shown). This is
not the case of the NF-xB2 gene. It was found that the model predictions improve when
assuming two- and three-fold increase of mRNA half-life time comparing with IL8 gene.

For the NF-sB2 gene the best fit for the expected expression profile is depicted in Fig.
5.11. Tt is assumed that NF-xB2 mRNA half-life time is equal to 60 min, which corresponds
to the degradation rate r3 = 0.00019s™!. Analogous with the IL8 gene, the transcription
rate of 2 mRNA transcripts per minute per gene copy is assumed, which corresponds to

the production rate H = 0.033s™! in the gene active state, and production rate Hej, where
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Figure 5.10 : Model predictions of transient IL8 mRNA distributions.
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Figure 5.11 : Fitted expected expression profile for NF-xB2 gene.
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g3 = 0.02, in the inactive and repressed state. In addition, the following binding rates were
fitted: A\ = 1.667x 1073571, Ay = 7x 1074 571, A3 =3.88x107% s~ and Mg = 2.8 x 10~ 45!
which corresponds to the expected biﬁding times of 10, 24, 430 and 60 min for the three
activators and one repressor, respectively. The expected expression profile fits very well
averaged dye intensity calculated based on the quantified experiments, Fig. 5.11B, however
the maximum abundance of NF-xB2 mRNA transcript is observed at about 5 hours after the
stimulation. The parameters fitted are quite different from the previous estimates from the
microarray data (except of the first activator binding time), with a very long expected time
for the third activator binding, i.e., 430 min, and rather short for the second activator, i.e.,
24 min (previously 225 and 205 min, respectively). This indicates that, in fact, only one step
required for activation of NF-xB2 gene is time limiting and causes most of the cell-to-cell
variability (due to assumed constant activation rates, the binding events are independent
and thus their order is interchangable). As in the case of IL8, the system is quite robust to
changes of parameters (increase of mRNA half-life time followed by simultaneous fit of other
paramters), however the disproportion between the fitted expected binding time of the third
and second (or first) activator is still observed.

Model predictions in the terms of the transient mRNA distributions are depicted in Fig.
5.12 and these should be compared against the data depicted in Fig. 5.7. The marginal
mRNA distributions for a single gene copy (black curve), obtained by solving Eqgs. (5.45-
5.49) are augmented with the distributions for the diploid (red curve) and tetraploid (blue
curve) gene, derived based on the former by convolutions. The initial mRNA distribution
spreads right with time, although rather slowly (at 1 hour one can notice only a slightly
heavier tail of the mRNA distribution) to arrive at the maximum spread at 6 hours followed

by a clear repression at 12 hours after TNF treatment. One problem with the fit can be
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Figure 5.12 : Model predictions of transient NF-xB2 mRNA distributions.
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Model predictions in the terms of the transient NF-«B2 mRNA distributions for the
parametrization as in Fig. 5.11. These should be compared against quantified dye intensities

in Fig. 5.7.
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observed: At any instant of time, model distribution functions range from about 5 mRNA,
while in the data, the corresponding left extreme of the dye intensity tends to follow the
average over the time course of the experiment, i.e., the initial increase is followed by the
decrease. This feature cannot be depicted by the model due to its simplicity and probably
indicates a very compex dynamics in the original biological system. Besides of that, the

model predictions are in good agreement with the experimental data presented in Fig. 5.7.

5.7 The role of phosphorylated NF-<B

The model presented assumes that the expression of NF-xB dependent genes in HeLa cells
is governed by the collective action of multiple regulatory factors. Without an attempt
to identify these factors, it is hypothesized that they might be activating (e.g. histone
acetylation) or repressing events, not necessarily connected with the DNA /protein binding.

Recent experimental findings report that a subset of NF-xB regulated genes are de-
pendent on the formation of specifically phosphorylated functional subunit of the NF-xB
transcription factor (phospho-Serine 276 RelA) [48]. It was shown that the phospho-Serine
276 RelA is required to facilitate expression of most of the early genes including IL8 and
coincides with their peak expression (Fig. 5.13 top three panels). Phosphorylated RelA
enters the nucleus about 15 minutes after TNF treatment and remains associated with early
promoters only for a short period of time. In fact, in the case of IL8 gene there is no mea-
sured binding activity at 30 min after stimulation. Recall, that in the same system the
bulk (unphosphorylated) RelA remains associated with IL8 promoter for 6 hours after TNF
treatment, Fig. 5.2B. To the contrary, experimental evidence that phospho-Serine 276 RelA
is responsible for transcriptional activity of late genes is not conclusive. In the case of NAF1

and NF-xB2 , Fig. 5.13, one can observe that the binding activity of phosphorylated RelA
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Figure 5.13 : Kinetics of phospho-Serine 276 RelA in HeLa cells.
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ChIP analysis of phospho-Serine 276 Rel A association with promoters of early (Grog3, IxBa,
IL8) and late (NAF1, NF-xkB2, TRAF1) genes. HeLa cells were stimulated for various times
with TNFa prior to formaldehyde fixation. Phospho-Serine 276 Rel A binding coincides
with peak expression of early genes at 1 hour after TNFa treatment.

remains roughly the same during the time course of the experiment. However, there is some
suggestion that the peak activity occures at 6 hour by analogy with the TRAF1 promoter.
More importantly, kinetics of phospho-Serine 276 RelA association with the late gene pro-
moters is significantly different that with the early ones, which was not the case of the bulk
RelA, Fig. 5.2B.

Nevertheless, above experimental findings [48] are in agreement with the proposed model
of regulation of NF-xB dependent genes. In the case of early genes, the only one activator
required in the model to initiate transcription can be identified with the phospho-Serine 276
RelA. The repressor assumed in the model, whose task is to terminate gene expression, can
explain heterogeneity of phospho-Serine 276 RelA dissociation from early promoters (Fig.

5.13). As ChIP assay suggests, the termination of phospho-Serine 276 RelA binding activity



110

can be due to a some unknown process of active repression, e.g., dephosphorylation. In
the case of late genes, it is not clear if the kinetics of phospho-Serine 276 RelA can explain
corresponding expression profiles by itself. In addition, there is no explanation how the
RelA is being phosphorylated (with exception of its initial wave which is assumed to be
phosphorylated in the cytoplasm due to the TNF treatment). The model proposed suggests
that RelA associates with late promoters prior to the serine 276 phosphorylation event, while
the phosphorylation event might be a time limiting step required for late gene activation.

This hypothesis has to be further examined experimentally.
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Chapter 6

Discussion

Stochasticity in genetic regulatory systems results from a small numbers of involved molecules
of DNA, mRNA and protein of a given species. These effects are especially important in
prokaryotes, where the abundance of gene products might be as low as one mRNA transcript
molecule and several protein molecules on average in the cell [1], [41], [3], [29]. Therefore, the
production or degradation of a single mRNA or protein molecule has a significant effect on
the cell’s behavior [13]. In eukaryotes, and especially in higher eukaryotes, fluctuations in the
system are significantly influenced by the process governing intermittent gene activity. Over a
decade ago, Ko (1991, 1992) [32], [33] postulated that the interactions between transcription
factors and DNA (gene promoters) contribute major stochastic effects in the process. More
precisely, Ko postulated that at a given instant of time a gene copy is thought to be either
"switched on” by having transcription complex bound to its promoter, or "switched off" by
having transcription complex not bound. Typically, to activate a eukaryotic gene, several
regulatory proteins, i.e., transcription factors, are required with prior chromatin remodeling.
Therefore, when a gene becomes active for a sufficiently long period of time, it results in
production of large bursts of mRNA transcript followed by protein molecules. The resulting
cell-to-cell heterogeneity cannot be explained only by effects due to the small number of
involved molecules of mRNA and protein [60], [59], since their levels in eukaryotes can be
fairly large with up to hundreds of transcript molecules and hundreds of thousand of protein

molecules (e.g. species involved in early immune response [36], [37]).
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To better understand the phenomenon of gene expression, gene regulatory systems are
subject to extensive investigations. Interactions between molecules of DNA and their mRNA
and protein products are being modeled as systems of coupled chemical reactions. Under the
assumption of spatial homogeneity, the stochastic process governing the reacting molecules
is a Markov process and its distribution can be exactly captured by a Chapman-Kolmogorov
equation [67]. Unfortunately, this approach is limited by the number of involved molecules
and the corresponding Chapman-Kolmogorov equation can be solved only for the bacterial
systems. A second, although less rigorous, method relies on the stochastic simulation al-
gorithm [18], [19] (or its approximations [20], (8], [23], {55], [9]), which instead of directly
solving the corresponding Chapman-Kolmogorov equation, allows numerical simulations of
the underlying Markov process (or its approximations).

The latter, although historically older approach is extensively applied to the analysis
of large biological networks [41], [42], [3], [10], [29], [5]. Unfortunately, the specifics of the
considered biological systems and the method itself does not allow providing a rigorous de-
scription and understanding the details of processes connected with gene regulation. This
can be obtained by the former approach, which relies on the rigorous analysis of small (one-
or two-) gene regulatory systems in the the terms of the correéponding Chapman-Kolmogorov
equations [30], [63] [61], [62], [66], [49]. The methods introduced allow to derive analytical
expressions for the moments of the marginal mRNA and protein distributions, usually under
some simplifiying assumptions. Among mentioned work, stochasticity caused by a switching
of a gene status, was first rigorously analyzed by Kepler and Elston (2001) [30]. In their
influential paper, Kepler and Elston (2001) considered synthesis of protein oligomers in the
process, however they assumed a direct protein translation from the DNA. The approach in-

volved a Chapman-Kolmogorov equation for the underlying probability distribution function
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approximated by a Fokker-Planck equation. In the case of a single self-activating gene, they
further simplified the Fokker-Planck equation by neglecting the diffusion term, which lead
to the first order system of PDEs for the underlying protein distribution function. Recently,
stochasticity due to the intermittent gene activity was also analyzed by Raser and O’Shea
(2004) [49] in a more general model incorporating in addition the mRNA /protein produc-
tion/decay noise. The authors derived the normalized steady state protein variance, however
they did not address the problem of solving the corresponding Chapman-Kolmogorov equa-

tion for the underlying distribution function.

This thesis is dedicated to the analysis of stochastic effects in small gene regulatory
networks. The existing description of the underlying stochastic process utilizing a Chapman-
Kolmogorov equation proves to be limited and inefficient. The present work introduces a
much more efficient yet accurate modeling approach. Opposite to other methods, proposed
modeling approach allows analyzing stochasticity in the system in the terms of the underlying
distribution function in addition to Monte Carlo simulations.

The novel modeling approach is motivated by the analysis of a single gene module with-
out feedback regulation with three major sources of stochasticity: intermittent gene activity,
mRNA transcription/decay noise and protein translation/decay noise. Although the corre-
sponding Chapman-Kolmogorov equation cannot be solved when a large number of molecules
is considered, the first two moments of the marginal mRNA and protein distributions are
derived. The variance of the number of mRNA and protein molecules is found decompos-
able into terms corresponding to different sources of stochasticity, which allows to quantify
their significance in the process. It is shown that in eukaryotes, intermittent gene activity
contributes most of the total variability in the process, while the protein/decay noise is of

the least significance. However, in prokaryotes, there is a competition between stochastic
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effects due to intermittent gene activity and the mRNA /protein production/decay noise.
This result extends findings of Thattai and Oudenaarden (2001) [63] and Tao (2004, 2004a)
[61], [62] who disregarded the intermittent gene activity as a potential noise source, and
work of Kepler and Elston (2001) [30] who neglected the mRNA transcription/decay noise
in the system. An analogical model of a single gene regulatory module was analyzed by
Raser and O’Shea (2004) [49] who derived analogical expressions for the normalized steady
state protein variance, and concluded that the balance between gene promoter activation
and transcription determines the magnitudes of different stochastic effects in the process.

Based on the variance decomposition, two approximations to the original stochastic pro-
cess at the single cell level are proposed: First, the continuous approximation, which accounts
only for the stochastic effects due to the intermittent gene activity [38]. Second, the mixed
approximation, which accounts for the stochasticity corresponding to the intermittent gene
activity and mRNA production/decay noise, while the protein production/decay noise is
neglected [52|. Approximations yield systems of linear first-order PDEs for the underlying
probability distribution functions, Egs. (3.19-3.20) and Egs. (3.28-3.29), for the continuous
and mixed model, respectively. Altough they were originally derived based on the fluid dy-
namics analogy, resulting PDEs follow from the differential Chapman-Kolmogorov equation
(2.15), first derrivations od which are due to Kolmogorov (1931) [35]. Similar equations were
used to describe the time evolution of the distribution funcion in the process governed by the
Langevin equation [54], [14], [30], however the latter included diffusion term resulting from
the white noise term in the Langevine quation. Such equations has been used in physics to
describe noise induced transitions [25] and in theoretical mechanics to describe dynamics of
rigid bodies under trains of random impulses [26], [27].

Discretization techniques developed (Appendix C) allow reducing resulting PDEs into
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large systems of the linear algebraic equations for the stationary two-dimensional mRNA-
protein distribution functions or large systmes of ODEs for their time evolution. In addition,
the errors introduced by each approximation are evaluated, which allow the choice of ap-
propriate approximation in the specific modeling task. This is especially important because
of the trade-off between the continuous and mixed approximation: Mixed model is more
accurate, but also more computationally intensive than the continuous approximation, while
the continuous approximation is very efficient but it may introduce artifacts at the mRNA
and protein level.

The marginal protein distribution resulting from the continuous approximation is com-
pared against the marginal distribution given by the Kepler-Elston model [30], which disre-
gards mRNA and assumes direct translation of protein from the DNA. The approach taken
by Kepler and Elston (2001) relies on the Chapman-Kolmogorov equation for the underlying
probability distribution function approximated by a Fokker-Planck equation. These equa-
tions are further simplified by neglecting the diffusion term, which leads to the first-order
system of PDEs, analogous to the system (4.5-4.6). Whereas Kepler and Elston introduced
their approximations at the population level, considered herein continuous and mixed models
rely on the approximation of the exact stochastic description at the single cell level. The
latter approach allows validating approximations not only by comparison in the terms of
the distribution functions (Figs 3.4-3.9), as does the Kepler-Elston model, but also in the
terms of the single cell conditional trajectories (Fig. 3.2 and 3.3). It is shown that the
Kepler-Elston approximation fails when the mRNA transcript is more stable than the corre-
sponding protein (Fig. 4.1). However, in the opposite case, the approximation is satisfactory
and provides a great simplification in the analysis. It is used here to analyze the two-gene

systems for which the two-dimensional protein-protein distributions are calculated, namely
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for the activator-repressor and the repressor-repressor system. Without the Kepler-Elston
approximation, this would require derivations of four-dimensional distributions. A simpli-
fied system of two repressors was analyzed by Kepler and Elston (2001) [30] by means of
Monte-Carlo techniques, but the authors assumed that the genes considered share the same
operator and have the same kinetic parameters.

For the sake of simplicity it is usually assumed that the transcriptional gene activity is
due to the actions of single a trans-acting regulatory molecule (transcription factor) and a
single cis-acting regulatory elements, i.e., an operator in bacteria or a promoter in eukaryotes
[32], [30], [29], [63], [7], [61], [66]. In fact, the specific patterns of gene expression are governed
by the combinatorial interactions of series of transcription factors that may bind to various
regulatory sites within gene promoters and enhancers ([68] p. 72, [40], [53]). This mode of
gene regulation is exploited in last chapter of this thesis. Collective mechanism of multiple
regulatory factors is hypothesized to explain the dynamics of NF-sB dependent genes in
HeLa cells importanf in cell survival and inflammation. The modeling treatment follows the
exact stochastic description and its continuous approximation introduced throughout this
work, restricted to the amount mRNA transcript measured in microarray and in situ experi-
ments. Expected expression profiles derived, as well as time dependent mRNA distributions,
fit well experimental measurements. Although some of assumed regulatory factors remain
unknown, it is hypothesized that they might be activating (e.g. histone acetylation) or re-
pressing factors, not necessarily connected with DNA/protein binding. Nevertheless, the
model developed confirmes that the phospho-Ser276 RelA is responsible for the regulation
of early NF-xB dependent genes, and in addition it suggests that Ser276 phosphorylation of
RelA is a time limiting step in activation of late NF-xB dependent genes.

The approach taken provides interesting insights. Single cell expression profiles are sig-
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nificantly different from the profiles constructed by averaging over the population of cells
(Fig. 5.4). No individual cell behaves like an “average” one. This is especially visible in the
example of the late NF-xB dependent genes, where the variability among single cell profiles
for late genes is much larger than for early and intermediate group. This observation has
a strong implication in the terms of understanding the microarray experiments. The time
course microarray experiments provide us with measurements of gene expression averaged
over the cell population. These measurements have continuous values, but in a single cell, at
a given time moment, the targeted gene is either turned “on” or “off”. It is also shown that
not all cells (genes) are always active in the culture, in fact, their number may be unexpect-
edly small. Thus it is misleading to think that every cell in the tissue responds gradually in
the terms of the expression level, as the microarray measurements might seem to suggest.
One should rather think about a proportion of the transcriptionally active cells at the given
time in the population.

Microarray studies rely on the assumption that the abundance of mRNA molecules is
tightly correlated with the abundance of the corresponding protein, therefore the measured
mRNA expression levels are being often extrapolated to the protein level. This can also be
misleading. It is shown (Appendix A) that in the case of the single gene without feedback
regulation corresponding correlation coefficient is equal to 1 only when the protein half-life
time approaches zero, i.e., when theproduced protein is immediately degraded. Moreover,
when the protein half-life time increases and approaches infinity, i.e., when the protein never
degrades, the correlation coeflicient tends to 0 at a rate /T, where r is ration of mRNA and
protein degradation rates. Hence, in the biologically more realistic situation, in which the
protein molecules are much more stable then the mRNA, r < 1, the correlation between

the amount of the mRNA and protein molecules can be very small. This is the case of the
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NF-xB pathway [36], [37], where the NF-xB inhibitor IsBo is catalytically degraded with a

half-life time of about 10 min, while its mRNA has a half-life of about 20 min.

Recent advances in genetic engineering allow synthesis of small artificial genetic networks
based on the available well-characterized genetic components that naturally occur in their
context [31]. Such relatively simple systems are needed to study in the quantitative way
how the genetic structure and connectivity of cellular networks are related to their function
including origin and consequences of stochastic gene expression. Currently, a libraries of
small synthetic networks are being designed in Escherichia coli based on the transcriptional
regulators such as Lacl, AcI and TetR [12], [22], [34]. In addition, a varity of artificial gene
networks is being reported in Saccharomyces cervisiae based on the eukaryotic components
[5], [49]. In these biological systems, the ability to quantitatively and rigorously interpret
the undelying dynamics is of crucial importance. In this context, the mathematical tools
introduced herein may prove to be especially important by allowing rigorous analysis in the

terms of the underlying distributions functions, which is being measured experimentally.
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Moments of the marginal mRINA and protein distribution

A.1 Equations for MGFs

Exact description. Given the probability generating functions (PGFs):

F(Z, S) = Z 2w5yfzy,

T,y
Glz,8) = D #*s"gey,
T,y

Egs. (3.6)-(3.7) lead to the following partial differential equations for PGFs :

8F((;,s) - (e- 1)8Féz,s) Ka(s - 1)0F(gz,s)
—r(s — l)é)ié—zﬂ + bG(z,8) — cF(z,s),
05— fe 160 5) - (2 - D22 4 gea(s - 1) TEE
0G(z,s)

—r(s—1) ER — bG(z,8) + cF(z,s).

(A1)

(A.2)

Equations (A.3)-(A.4) can be used to derive the moments of the mass functions f and g,

both at the steady state as well as their time evolution. The method of generating functions

allows deriving moments of arbitrary order, but for the purpose of this work only the expected
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value and the variance are shown. By the property of PGFs, the first partial moments joint

with the state of gene activity are given by:

E[X;G = m=8igﬁhpmh (A.5)
E[X;G = u=aﬂigbqﬂ, (A.6)
Byvic = 0= E é‘i’s) oot (AT)
ElY;G = H=aﬂfﬂbﬁﬁ, (A.8)

thus by differentiating Eqs. (A.3)-(A.4) with respect to 2, and separately, with respect
to s, and substituting z=s=1, one gets the system of linear ODEs for the evolution of the
first partial moments or by setting time derivative to zero, system of algebraic equations for
the steady state. Resulting system must be augmented with the ODE describing changes of

gene activity:

dG(1,1)
dt

= ¢(1-G(1,1)) - bG(1, 1),

where G(1,1)= G(z,8)|,=s=1 is the probability that the gene is active. Unique solution of
the resulting system of equations yields quantities (A.5)-(A.8), which are then used to derive

the expected number of mRNA and protein given by:

ElX] = E[X;G=0]+E[X;G=1], (A.9)

ElY] = E[Y;G=0]+E[Y;G=1]. (A.10)
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To obtain the second moments, it is required to express in terms of F' and G the second

factorial moments:

&8F

EX(X-1;G = 0]= ——%Lm:b (A.11)
2

EX(X-1);G = 1]= %Lm:h (A.12)
OF?

EY(Y -1)G = 0]= ———a;’ ) | e=s=1, (A.13)

0G?(z, s
EYY -1)G = 1]= ————8(52 ) le=s=1, (A.14)
as well as the joint mRNA and protein moments:

OF2(z,

E[XY;G = 0] = %Lm:l, (A.15)
0G(z,

EXY;G = 1]= —?9—2(5’:—3)L2=s:1. (A.16)

To write system of linear ODEs for the evolution of the second factorial moments (A.11-
A.14) (or by setting time derivative to zero, system of algebraic equations for the steady
state) one needs to differentiate Egs. (A.3)-(A.4) twice with respect to 2z and separately
with respect to s, and substitute z=s=1. In addition, Egs. (A.3)-(A.4) must be differentiated
with respect to both, z and s, followed with substitution z=s=1 to close the system with
equations for the joint moments (A.15)-(A.16). The resulting system of equations can be
uniquely solved for the partial moments E/X?%;G=0], E[X*;G=1], E[Y?;G=0], E[Y?;G=1],
and then the second moments, E/X?], E[Y?] follow analogically to (A.9)-(A.10). Then, the
variance can be derived, e.g., Var/X/=E[X*]-E?*[X].
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Continuous model. Given the moment generating functions (MGFs):

F(z,8) = //e”“yf(x,y)d:vdy, (A.17)
G(z,8) = //ez‘”syg(a:,y)da:dy, (A.18)

Egs. (3.19)-(3.20) lead to the following partial differential equations

OF(z,s) o OF(z,8) 0F(z,8) _ _
Y + (2 — sK) e + sr ER = bG(z,8) —cF(z,8), (A.19)
005) 16+ (o - 510 20D 17,9900 46 5) 4 ez ). (20)

Equations for the partial moments (their time evolution as well as at steady state) can be
obtained by differentiating Eqs. (A.19)-(A.20) with respect to z and s and setting z=s=0,
similarly to the derivations for the exact description. Please note, that the second derivatives
of MGFs with respect to z or s directly yield the partial moments (E[X?/G=0], E[X?/G=1],
E[Y?/G=0], E[Y?/G=1]), instead of the factorial moments in the case of the PGFs (A.11-
A.14).

Mixed model. Given the MGFs:

Flzs) = Y [ #ehiw) (A.21)
Gze) = 3 [ oty (A2
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Egs. (3.28)-(3.29) lead the following partial differential equations:

O0F(z,s) OF(z,s) oF(z,s) . \OF(zs)
Era zsK 5 + sr B = —(z-1) P
+ bG(z,s) — cF(z,s), (A.23)
0G(z,s) 0G(z, s) 0G(z,5) 3 0G(z, s)
— zsK e + sr 5 = H(z—-1)G(z,8)— (2 —1) e
— bG(z,s) + cF(z,s). (A.24)

Egs. (A.23)-(A.24) can be used to derive the moments (steady state and time evolution)
by taking derivatives with respect to z and s and setting z=1, s=0, similarly to the exact
description. Note, that the second derivative with respect to z yields the factorial partial
moments, E/X(X-1)/G=0], E[X(X-1)/G=1], while the second derivative in s provides the
regular partial moments, E[Y?/G=0], E[Y*?/G=1].

A.2 Partial moments

The partial moments joint with the gene activity were derived as described in the previous
section. The steady state solutions are presented below. To compress the notation, a binary
variable « is introduced: a=1 at the gene active state and a =0 at the gene inactive state.

The first partial moments for the exact, continuous and mixed models are given by the

same expressions:

b(l—a)+ (1+c)a

BIX;G =] = He=g o)

: (A.25)
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b(l—a)+ (r+c)o
r(r+c+b)

(b+7)(1—a)+ca

r(r+c+b) EX;G=1].

(A.26)

E[Y;G=a]=K EX:G=0+K

The first protein partial moments for the Kepler-Elston model are different than for the

others and equal to

d(l1—a)+ (r+ca

ExslV;G=0a]=K .
kplVG = ol = KHe o o d)

(A.27)

The joint mRNA and protein partial moments for the exact, continuous and mixed model

are given by

(1+b+7)(1—a)+ca

E[XY;G = q] (y+mu+c+b+@-ﬂxaG=o] (A.28)
bl—a)+(L+etna o o
+ K(l NIl+ctb+r) E[X*G =1]
b(l—a)+(I+ctna .
" H(1+r)(1+c+b+r> ElY;G = 1],

where the second moments (i.e. E[X%,G=0] and E[X?;G=1]) depend on the specific

model. The second partial moments are given below:

e Exact description:

b(l—a)+ (2+c)a

2 N faewel =
EplX5G =a] = H (24 c+b)

EX;G=1]+E[X;G=10], (A.29)




(b+2r)(1 — a) + co

2. v _ =
BelY% G =a] = Koo oo S = BplXYiG =0
b(l —a)+ (c+2r)a o
bR e S S B XY G = 1
+ E[Y;G =0,

e Continuous model:

b(l—a)+ (2+ o

E X2' = = . ==
clX*G=al=H Gicth) ElX;G =1],
b+2r)(1 —a)+ ca
E Y2' = = < 3 =
clY: G =a K erbia) Ec[XY;G = 0]
b(1 — a) + (¢ + 2r)a N
K r(c+b+2r) EelXY;G = 1],

o Mixed model:

b(l —a)+ (2+c)o

2t EX;G=1+FE[X;G=0],

EM[XQ;GZ Oz] =H

(b+2r)(1 — a) + co

E Yz' - == . —
M[ ,G a] K T(C+b+2T) EM[XY,G 0}
b(l—a)+ (c+2r)a L
t K En[XY:G =1],

¢ Kepler-Elston approximation:

b(l —a)+ (2r +c)a

ExplY%G=0a]|=KH
kel o] r(2r +c+b)

EKE[Y; G= 1}
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(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)
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A.3 Correlation between mRNA and protein number

Based on the partial moments correlation between the number of mRNA and protein molecules
in the case of the exact stochastic description is derived. The correlation coefficient is given

by

Cov(X,Y)
VVarg(X)Warg(Y)'

Corr(X,Y) = (A.36)

where the covariance can be expressed as Cov(X,Y) = E[XY] — E[X]E[Y]. Based on

Eq. (A.28) the steady state covariance is equal to

rb(l4+c+b+7) K
c(1+r)(l+c+b)(r+c+b)

Cov(X,Y) =

E[X]. (A.37)

It can be shown, that the first term in Eq. (A.37) is due to the intermittent gene activity,
while the second results from the mRNA production/decay noise. In addition, it can be
shown, that if 7 — 0 (i.e. the protein half-life time approaches infinity, or in other words,
the protein accumulates and never degrades), Corr(X,Y) — 0 with a rate proportional to
VT If  — oo (i.e. the protein half-life time approaches zero, or equivalently, the protein is

degraded immediately after translation), Corr(X,Y) — 1.
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Appendix B

Error estimation

Continuous model. Based on th Eq. (3.10) the model neglects ¢, fraction of the total

mRNA variance when

ElX]
Em = )
Var[X]
which yields that
1 c(l+b+c) 1
Em = < , (B.1)
g B+ 1 b E[X]

when the expected number of mRNA molecules is much greater than 1.

If the consecutive terms in expression (3.11) are denoted with D, M, S, respectively, to
have Varg[Y] = D + M + S, then the continuous model neglects ¢, fraction of the total

protein variance equal to

L __M+S
P D+M+S

or equivalently

& _ M+S
l-¢, D

Assuming that r<1 (protein degradation rate much smaller than the mRNA degradation
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rate) and introducing respective terms from (3.11) gives that

ep._c(c—i—b) 1 1
l—-¢ b (E[X]

Then, since Ez] = £ E[y] [Eq. (3.9)], the former yields that

€p cle+b)(K+1) 1  clc+bK 1

1—-¢, rb E[Y] rb E[Y)
where the transcription rate, which is the average number of protein molecules produced
from a single mRNA transcript, is much greater than 1. In addition, when ¢, <1, i.e. the

error remains small, one finds that

(B.2)

Mixed model. The model neglects €, fraction of the total protein variance given in Eq.

(3.11) equal to

Ep = 5
P " D+M+S
or equivalently
& S
l-¢, D+M

Assuming that r</ and introducing respective terms from (3.11) gives that

Ep 1 cle+b) 1
< .
1—¢ o EY]+ K rb  E[Y]
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In the above the second term in the denominator, K, is neglected, since the first term

equals C(lerij - E[X] and thus much greater than the former. In addition, when &, < 1, one

finds that

_cle+b) 1
T T E)Y]
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Appendix C

Discretization techniques

Kepler-Elston approximation. To illustrate the discretization techniques recall the sim-
plified system (4.1-4.2). Consider PDEs (4.7-4.8) on a spatially discretized grid i, 0 < i < N,
‘The continuous variable y is replaced by i%, t=0,1,...,N. Let f; and g; denote the prob-
ability density functions f and g at point ¢ of the grid. The discretized system (4.7-4.8)

reads

dfi HK , HK
EZ - brgz_'crfz Z'm‘fz+(z+1)7]—\f‘f1+1

dgi HK HK
— —brg,+crfz—(N-Z)Wgz-%—(N-i—l—z)ng_l

In each of the equations the first two right-hand side terms correspond to the exchange
between densities f and g. The last two terms are due to the transport from and into the
grid point i. Note the different directions of transport, from 7 + 1 to 7 in the case of f and
from ¢ — 1 to i in the case of g.

The stationary distributions are calculated by setting %:%:0. The resulting system
consists of 2 x (N + 1) algebraic equations. However, to make the system unique one of its
original equations has to be replaced by a normalization equation, i.e. 1/(N + 1) Zf\;o(fi +
g:;) = 1. Fig. C.1 presents comparison between the numerical solutions obtained for N=100

and N=500 and the analytical solution given in Eqgs. (4.13)-(4.14). As the size of the grid N
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Figure C.1: Accuracy of the numerical solution.
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Numerical solution for N=100 (dotted lines) and N=500 (dashed-dotted lines) versus ana-
lytical solutions (solid lines) given in Eqgs. (4.13)-(4.14). Shown are the stationary protein
distributions f(y) and g(y) in Kepler-Elston approximation for H=200, K=250, r=0.25, c=3,
b=2, r=0.25.
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increases, the numerical solution becomes more accurate.

Continuous model. Consider the system (3.19)-(3.20) on a spatially discretized grid ¢,
j, where 0<i<N and 0<j<N. The continuous variables £ and y are replaced by z% and
j%{, respectively. Let f;; and g; ; denote distributions f and g at point i, j of the grid. The

discretized system (3.19)-(3.20) now yields:

dfs; . . o
_th"L = bgi; — cfij — Z%fi,j + (i + 1)%fi+1,j - KTVIilZ — 7l fij

+EE (i +1-7) fijo1 L+ EH(j+1—1) fije1Llo

dg; i . R . ,
i = —bgy+cfiy— (N —0)%g;+ (N+1-0)Eg 1 ; — i -] g:5

+L BE(i 4+ 1—7) gijr + LoBE (5 +1—1) giju,

where L1 and Lo are the logical variables,

L, = lifi>j—land Li=0ifi<j—1,

Ly, = lifi<j+land Ly=0if¢> 7+ 1.

The stationary distributions are calculated by setting %:%:0. As a result system of
2% (N+1)?* algebraic linear equations is obtained. To make the solution unique, one of the
equations by normalization Zij(fi,j + gij) = (N + 1)? is replaced. Note that the matrix of

the resulting system is relatively sparse, and the number of nonzero entries grows as N?, not

as N4

Mixed model. The system (3.28)-(3.29) is considered on the grid i, j, where 0<i<Ng,

0<j<Ny. The first coordinate, i, corresponds to the mRNA count and N, describes the
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maximum number of mRNA molecules considered. The continuous variable y is discretized

into units of size h:}—f—]j\%‘, where N, is the number of unites considered. The discretized

system (3.28)-(3.29) now yields:

di . .
gt"j = bg” - Cfij + (Z + l)fi-{-l,j - I‘f”
L | 1 ' ' 1 , .
_E‘KZ — rhjlfij + Ll—h—(Kz —rh(j = 1)) fij-1 + Lz'};(Kz —rh(7 + 1)) fizs1,
d T ) ]
575] = —bgy+cfij+Hgir;+ (@ +1)gir1; — (0 + H)gy;

1

: . 1 . .
h(Kz —rh(j = 1))gij-1 + Lo(Ki — rh(j + 1))gi 541,

1. :
~ 2| = rhilgy + L :

where L; and L, are logical variables,

L, = 1ifKi>rh(j—1)and Ly =0 if Ki < rh(j — 1),

L, = 1if Ki<rh(j+1)and Ly = 0 if Ki < 7h(j + 1).

The stationary distributions are calculated by setting %:d—gg‘i:a As a result, a system
of 2x(Ny+1)(N,+1) algebraic linear equations is obtained. To make the solution unique

the height of the distribution f(z,y) is set to be 1 at its mRNA and protein mean.

Two-gene system in Kepler-Elston approximation. Consider a system (4.37-4.40)

on the grid 4, j, where 0 < ¢ < N, 0 < j < N. The continuous variables y; and ys are



discretized into /N and j/N, respectively. The discretized system (4.37-4.40) reads

00
ar

dt

10

dt

01

dt

vJ

dt

where

d 11

Z OO+(Z+1) Z+1j

Y

.] 00+T(]+1) 4,J+1

(Cl +cz) 00+b* 01+b* 11]0,
—(N_Z) (N+1 )11]_7‘.7 10+T(.7+1) 1,7+1
—(c5 + bf) O+ fy + bz
.\ £01 -\ 201
—1 +(2+1) H—l] — (N =g)fiy +r7(N+1=7)fi
—(c} + ) f + s fiy +Hhif
—(N =) fF + (N+ 1= f = (N =) fif +r(N +1
(b*+b2) +CQ +Cl 2]?
ct ciot+c ¢ +c J
1 10+ Cngg + G
b = by + by + bia
1 10+ 015 + 012
ca Cop + C ! + J
2 20 21N CQQN’
) .
b; bao + by~ + b

N N’

—J)

11
1,7—1
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