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Abstract

Discrete element method (DEM) is a state of the art numerical tool which is widely

used in industry and academia alike for investigating the mechanics of particulate and

non-particulate materials. Interactions between single particles allow to predict the be-

haviour of bulk solid at the macroscopic scale. Due to this capability of modelling the

movement of individual particles, DEM emerges as a natural tool for evaluating the di-

scontinuous systems. Predominantly in discrete element formulation, particles are treated

as rigid and overlap between particles is allowed, assuming it to be equivalent to the par-

ticle deformation at the contact. This approach is known as the soft contact approach.

The particle overlap is used in an appropriate contact model which offers an advantage

of obtaining the desired macroscopic behaviour. However, despite using the soft-contact

approach, assumed particle rigidity makes the accurate representation of macroscopic

properties in DEM a great challenge and even impossible in some cases. For instance,

the maximum value of Poisson’s ratio that can be obtained with discrete element model

is 0.25 for bonded spherical elements and 0.33 for bonded disc elements. This inhibits

the accurate simulation of elastic deformation and propagation of elastic waves. Addi-

tionally, contacts in DEM are independent which is justifiable for relatively low contact

forces, however, in the case of particles subjected to high contact forces it leads to incor-

rect behaviour of the studied system.

In order to mitigate these limitations, a new formulation of discrete element method

namely, deformable discrete element method (DDEM) was proposed which takes an ap-

propriate account of particle deformability. Presented doctoral dissertation investigates

the formulation of deformable discrete element method in 2D domain i.e. using disc

shaped elements.

The new method introduces the concept of global mode of particle deformation re-

sulting from the particle stress which in turn is induced by the contact forces. Uniform

stresses and strains are assumed for each particle and inverse elastic constitutive relation-

ship is used to determine global deformation of particle under stress. The global particle

deformation leads to the change of overlap in local deformation zone at the contact and

formation of new contacts, which affects the macroscopic response of the particle assem-

bly. In particular, it widens the range of Poisson’s ratio that can be reproduced in DEM,

which is a key parameter in many modelling cases, such as wave propagation.

An accurate computation of the contact forces in the DDEM formulation requires an

iterative solution of the implicit relationship between the contact forces and particle di-

splacements. For preserving the efficiency of discrete element methodology, the new for-

mulation has been adapted to the explicit time integration. It has been shown that DDEM

algorithm is conditionally stable and there are two restrictions on its stability. Except
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for the limitation of the time step as in the standard DEM, the stability in the DDEM is

governed by the convergence criterion of the iterative solution of the contact forces. The

convergence and stability limits have been determined analytically and numerically for

selected regular and irregular configurations of particles assembly.

In order to study the capabilities of DDEM algorithm with respect to standard DEM,

the uniaxial compression of a rectangular specimen characterized by the regular confi-

guration of particles has been simulated. The numerical results have been verified using

the finite element method and derived analytical solutions of a quasistatic problem. Next,

the DDEM algorithm has been applied to the simulation of a uniaxial compression of a

square specimen represented with an irregular configuration of nonuniform size partic-

les. A series of simulations have been performed for different sets of microscopic model

parameters. This facilitated the establishment of micro-macro relationships between the

DDEM parameters and macroscopic elastic constants, the Poisson’s ratio and Young’s

modulus. These relationships have been compared with those obtained with the standard

DEM. It has been confirmed that by taking particle deformation into account, greater

flexibility in the representation of macroscopic material behaviour is obtained, which

improves the current capabilities of standard DEM. It widens the range of macroscopic

elastic properties that can be correctly represented using discrete element framework.

After validating and building profound confidence in the formulation, DDEM is exten-

ded to numerical investigations of wave propagation problems in elastic solids discretized

with disc elements. A 2D bar configuration has been used to simulate longitudinal and

shear wave propagation, triggered by initial displacements of selected particles in longi-

tudinal and transverse directions respectively. Longitudinal to shear wave velocity ratio,

which depends on the elastic microscopic model parameters has been compared between

standard DEM and DDEM models. This study shows that in the problem area of wave

propagation as well e.g. impact loading of civil structures or seismology, the DDEM

extends the range of problems that can be modelled using standard DEM.
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”Nowe sformułowanie metody elementów dyskretnych
z odkształcalnymi cząstkami”

Streszczenie

Metoda elementów dyskretnych (MED) jest nowoczesnym narzędziem numerycz-

nym, szeroko stosowanym zarówno w przemyśle, jak i w środowiskach akademickich, do

badania mechaniki materiałów rozdrobionych, jak i ciągłych. W MED oddziaływania na

poziomie pojedynczych cząstek umożliwiają modelowanie właściwości ciała w skali ma-

kroskopowej. Dzięki możliwości modelowania ruchu pojedynczych cząstek, MED jawi

się jako naturalne narzędzie do analizy układów nieciągłych. W większości przypadków

w zastosowaniach MED, cząstki są traktowane jako ciała sztywne, pomiędzy którymi

dozwolone są pewne penetracje, co odwzorowuje deformację cząstek w strefie kontaktu.

Podejście to zwane jest modelem ”miękkiego kontaktu” (ang. the soft contact model). Pe-

netracje pomiędzy cząstkami są uwzględniane w modelu kontaktu. Przyjęcie odpowied-

niego modelu kontaktu umożliwia uzyskanie pożądanego zachowania makroskopowego.

Ze względu na przyjęte założenie dotyczące sztywności cząstki pomimo zastosowania

modelu ”miękkiego kontaktu” dokładne odwzorowanie właściwości makroskopowych

stanowi wielkie wyzwanie w modelowaniu dyskretnym, a w pewnych przypadkach jest

niemożliwe. Dla przykładu, maksymalna wartość współczynnika Poissona, którą można

uzyskać za pomocą modelu elementów dyskretnych wynosi 0.25 oraz 0.33, odpowiednio

w modelu kohezyjnych elementów dyskretnych o kształcie kuli (3D) oraz walca (2D).

Powyższy efekt prowadzi do uzyskania niezupełnie właściwych wyników numerycznych

w modelu odkształcenia sprężystego czy propagacji fal sprężystych. Ponadto, kontakty w

MED traktowane są jako niezależne, co jest uzasadnione w przypadku stosunkowo ma-

łych sił oddziaływania kontaktowego, natomiast w przypadku cząstek poddanych dużym

obciążeniom prowadzi do nieprawidłowego odwzorowania analizowanego układu.

W celu zminimalizowania powyższych ograniczeń zaproponowano nowe sformuło-

wanie metody elementów dyskretnych, zwane metodą odkształcalnych elementów dys-

kretnych, która uwzględnia odkształcalność cząstek. Niniejsza rozprawa doktorska pre-

zentuje badania właściwości nowego sformułowania dla cząstek w postaci dysków (2D).

Nowa metoda opiera się na koncepcji globalnego odkształcenia cząstek (elementów dys-

kretnych) wynikającego z naprężeń generowanych przez siły kontaktowe. Sformułowanie

odkształcalnych elementów dyskretnych zakłada jednorodne naprężenie i odkształcenie

cząstki. Globalne odkształcenie cząstki wyznacza się z odwrotnej zależności konstytu-

tywnej. Odkształcenie to uwzględnia się w analizie kontaktu. Ma ono wpływ na penetra-

cję między cząstkami (zmiany w lokalnej strefie odkształcenia w miejscu kontaktu) oraz

prowadzi do tworzenia się nowych kontaktów. Zastosowanie nowego podejścia posze-

rza zakres współczynnika Poissona, który można odtworzyć w MED, co stanowi główny

czynnik problemów w wielu modelowanych przypadkach, np. w propagacji fal. Do-
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kładne obliczenie sił kontaktowych w sformułowaniu metody odkształcalnych elemen-

tów dyskretnych wymaga zastosowania niejawnego rozwiązania iteracyjnego niejawnej

zależności między siłami kontaktowymi a przemieszczeniem cząstki. Dla zachowania

odpowiedniej wydajności obliczeniowej nowe podejście zostało dostosowane do jawnego

schematu całkowania. W rozprawie doktorskiej wykazano, że algorytm metody odkształ-

calnych elementów dyskretnych jest warunkowo stabilny oraz wskazano dwa ogranicze-

nia jego stabilności. Poza ograniczeniem dotyczącym kroku czasowego - jak w standar-

dowym podejściu MED - stabilność w nowej metodzie jest określona poprzez kryterium

zbieżności rozwiązania iteracyjnego dla sił kontaktowych. Dla wybranych regularnych

i nieregularnych konfiguracji ułożenia elementów dyskretnych zostały wyznaczone oraz

zbadane analitycznie i numerycznie granice zbieżności i stabilności rozwiązania.

W celu porównania właściwości nowego algorytmu metody odkształcalnych elemen-

tów dyskretnych w odniesieniu do standardowego podejścia MED, przeprowadzono sze-

reg symulacji jednoosiowego ściskania prostokątnych próbek charakteryzujących się re-

gularną konfiguracją ułożenia cząstek. Wyniki numeryczne zostały zweryfikowane za

pomocą metody elementów skończonych oraz wyprowadzonego analitycznie rozwiąza-

nia problemu quasistatycznego. Podobną analizę numeryczną zastosowano w przypadku

symulacji jednoosiowego ściskania kwadratowej próbki o nieregularnej konfiguracji uło-

żenia cząstek. Przeprowadzono szereg symulacji dla różnych kombinacji parametrów mi-

kroskopowych w celu wyznaczenia zależności pomiędzy wielkościami mikroskopowymi

modelu oraz sprężystymi właściwościami makroskopowymi - współczynnikiem Poissona

i modułem Younga. Relacje te porównano z analogicznymi wynikami uzyskanymi za po-

mocą standardowego podejścia MED. Potwierdzono, że dzięki nowemu sformułowaniu

wprowadzającemu globalną deformację cząstek uzyskano większą elastyczność w od-

wzorowaniu makroskopowego zachowania materiału. Poszerzony zostaje zakres makro-

skopowych właściwości sprężystych, które mogą być uzyskane w ramach modelowania

elementami dyskretnymi.

Po dogłębnej analizie oraz weryfikacji, nowe podejście MED zostało zastosowane do

badań numerycznych nad propagacją fal w sprężystym ośrodku w kształcie pręta skła-

dającego się z dwuwymiarowych dysków. Przeprowadzono symulacje propagacji fal

podłużnych oraz poprzecznych generowanych poprzez początkowe przemieszczenia wy-

branych cząstek, odpowiednio w kierunku wzdłużnym i poprzecznym. W ramach badań

numerycznych porównano uzyskany ze standardowego oraz nowego modelu MED sto-

sunek prędkości fali podłużnej do poprzecznej w funkcji mikroskopowych parametrów

sprężystych. Powyższa analiza pokazała, że w zagadnieniu dotyczącym propagacji fal,

jak również w innych aplikacjach, np. w inżynierii lądowej czy sejsmologii, metoda

odkształcalnych elementów dyskretnych zwiększa obszar zagadnień, które można mode-

lować za pomocą standardowego podejścia MED.
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Chapter 1

Introduction

1.1 Background and motivation

The discrete element method (DEM) belongs to a class of numerical techniques used

for studying discontinuous problems of mechanics of materials [121]. It was introduced

in the 1970–s and 80–s in the classical works by Cundall [18, 27], Zubelewicz and Mróz

[164] and Walton [150, 151]. It was further developed by Williams et al. [155], Bardet

and Proubet [5], Moreau [97] and many others. Over the years, DEM has emerged as

a robust numerical framework for investigations of scientific and industrial problems in-

volving various materials like soils [113, 153], powders [90], and metals [38], in areas

such as agriculture [51, 154], pharmaceuticals [67, 69] and even space [74, 159]. DEM

has seen a surge in its popularity (cf. Fig. 1.1) due to an increasing impetus of physically

based material modelling and tremendous rise in available computational capability of

the hardware and software.
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Figure 1.1. Total number of articles published on DEM over a span of years 2000 -

2019 (as of January), indexed in Web of Science Core Collection. Keyword: "discrete" +

"element" + "method", document types: article, Web of Science categories: Mechanics.
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1.1 Background and motivation 14

The ability of discrete models to take into account the discontinuities, defects and

grain structure has allowed simulating various physical phenomena using DEM, such as

granular flows [4, 17, 136], rock fracture [115] and rock burst [164]. DEM has also

been adopted for thermal and thermomechanical processes [36], multiphysics problems

like coupling DEM with FEM [126], DEM with SPH [119] and DEM with CFD [160].

Special models have also been developed for simulating powder metallurgy processes

[76, 86, 91, 106].

Discontinuities of a system are embraced within the discrete element framework by

representing the material as a large assembly of particles (discrete elements) interacting

with one another by contact cf. Fig.1.2. Although these discrete elements can be of

arbitrary shape [23, 129, 140], spherical particles are often a preferable choice [4, 113,

153] because of the simplicity of the formulation and the computational efficiency of

contact detection algorithms for spherical objects.

contact

interaction

Figure 1.2. Assembly of spherical particles in a DEM model with contact interaction

details shown in the inset.

It is worth highlighting here that in the DEM, it is the complex cumulative response of

the aggregate [75] which determines the macroscopic material properties. It significantly

depends on the discrete element assembly characteristics and on the choice of the inter-

particle contact model [123]. An interparticle contact in the DEM is primarily treated

in two different approaches, the soft-contact approach [21, 27, 115] and the hard-contact

concept [45, 50, 118]. In the soft-contact formulation, a small overlap of the particles

is allowed which is considered as equivalent to the particle deformation at the contact

point. The particles are treated as pseudo-rigid bodies with deformation concentrated at

the contact points. The contact between the particles is assumed to last much longer than

the time step, and the contact force evolution is analysed. In the hard-contact approach,

particle penetration is not allowed. The change of the particle momentum due to a col-

lision is determined. The collision time is assumed to be very short and therefore it can

be neglected. The contact force variation is not analysed. In the present work, the soft-
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contact approach is used. This approach allows to adopt a suitable contact model and thus

obtain a required macroscopic behaviour. Contact models for loose and cohesive granular

materials are reviewed in depth by Luding in [83] and [84], respectively.

Despite its versatility in simulating a wide variety of engineering problems, an appro-

priate representation of macroscopic properties in DEM is still a challenge [63]. Some of

its major limitations are due to the assumption of the rigidity of discrete elements. Even

the soft contact approach is sometimes not sufficient to produce a required deformation

behaviour [111]. One of the known drawbacks of the DEM is the incomplete represen-

tation of macroscopic properties. For example, in the discrete element models developed

for bonded particles (or equivalent lattice models) one cannot obtain the Poisson’s ratio

greater than 0.25 (0.33 in 2D DEM models) [8], which is also confirmed numerically [78]

as shown in Fig. (1.3).
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Figure 1.3. Limit of the Poisson’s ratio in DEM and its numerical verification.

With the unrealistic value of the Poisson’s ratio, physical phenomena such as elastic

deformation and elastic waves cannot be reproduced accurately. Another troublesome

simplification is that the contacts are independent of each other. This assumption is justi-

fiable when the particles are rigid enough such that their deformation is neglected. How-

ever, there are applications such as powder compaction where this simplification leads to

an erroneous behaviour of such particulate systems at higher relative density [47].

The aforementioned drawbacks can be effectively mitigated in principle if a proper

account of element deformations could be taken into consideration. The element defor-

mation will lead to interdependent contact interactions and formation of new contacts. As

a result, the macroscopic response of the aggregate will change and the current capabili-

ties of DEM can be enhanced.
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1.2 State of the art review

The numerical analysis of the engineering problems often require the development

of a mathematical model which can most adequately represent the physical aspects of

the problem at hand. For some problems, researchers have used the so-called "divide

and conquer" strategy, where the model is assumed to consist of the finite number of

well-defined elements such that an independent mathematical treatment of each element

is possible. The global behaviour of such a system is then evaluated using precise inter-

relations between the individual elements. Beams structure is a classic example of such

an approach and such a system is known as discrete or discontinuous.

On the other side, some problems instead are comprehensible if treated using the

mathematical assumption of an infinitesimal element, theoretically implying that an infi-

nite number of smaller elements are used to define a system. Such systems possess infinite

degrees of freedom and are termed as continuous. These problems are solved numerically

by dividing the systems into sub-domains which must satisfy the governing differential

equations and the condition of continuity at the interfaces. In this way, an approximate so-

lution for a continuous system with infinite degrees of freedom is obtained using elements

with finite degrees of freedom [61]. It must be noted though that the notion of continuity

referred here is a macroscopic concept. It means that if seen from a macroscopic level,

there are effectively no voids between any two material points in the problem domain. It

is in this context, that systems described earlier are termed as discrete or discontinuous.

Currently, the Finite Element Method (FEM) and the Discrete Element Method (DEM)

are amongst the main methods for continuum and discontinuum approach, respectively.

Both continuous and discrete numerical methods offer their own advantages and pose

some limitations. Standard continuous models, for instance, are not suitable for the prob-

lems in which small scale physical processes occur. For modelling the dynamics of pro-

cesses occurring on a small scale, the discrete models appear to be natural modelling

tools. The major drawback of continuous methods emerges for the problems involving

strain localization, faults and crack propagation, since the problems in which material

weakening occurs, the problem becomes ill-posed and certain regularization in the model

becomes essential [120]. Despite regularization, continuous models lack the ability to

adequately model non-linear deformations and local yielding. Discrete methods on the

other hand can deal with such problems by the very nature in which they are formulated.

However, discontinuous models usually lead to large computational power require-

ments. High computational cost restricts the use of such models for simpler industrial

problems, however with recent advances in the availability of affordable computational

resources, this scenario is changing rapidly. Another drawback of discontinuous mod-

els is the simplified particle shapes used typically which in a way limits the possibilities
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to obtain accurate solutions. Despite such shortcomings, DEM still appears to be most

promising numerical tools specially for the problems involving large shear.

Historically, the DEM approaches are found to be rooted within the disciplines

of rock and soil mechanics from which the concepts for motion and deformation of

block/particles emerged [10, 19, 21, 24, 30]. The discrete fracture network (DFN) ap-

proaches which were mainly used to model the flow and transport in fractured rocks led

to the development of DEM models for coupled problems later. The use of general princi-

ples of the continuum mechanics and numerical framework of the finite element method

(FEM) [162] was a common feature of all the theories mentioned above, which are some

of the earliest original developments in this scientific domain.

The original work on DEM was presented by Cundall and Strack in a series of papers

[26–29]. In their work, Cundall and Strack [27] devised the term distinct element method

for a specific case of DEM, where contacts are deformable and the motion of circular

and rigid particles is resolved using explicit, time domain solution. The numerical imple-

mentation of the algorithm of distinct element method led to computer program BALL,

which was capable of simulating the aggregate response of two dimensional particles.

The validity of the method and computer code BALL was demonstrated by comparing

simulation results with the results of photoelastic experiments conducted on the assembly

of discs. Subsequent extension of the code to 3 dimensional spherical particles [28] led

to the code named, TRUBAL. BALL and TRUBAL were the main numerical tools used

in the material modeling post 1980’s for investigating the features of the method, perfor-

mance of the underlying algorithm and fundamentals of macroscopic response based on

microscopic behaviour, in works such as Walton [150, 151], Thornton and Barnes [142]

and Ng [102].

The study of micromechanical aspects of the granular systems emerged as a major

research theme in 1980’s and early 1990’s. Key developments in this direction were

made by Rothenburg [128], where idealized granular assemblies of discs and spheres

were studied in static equilibrium under external loads. The macroscopic behaviour of

idealized bonded granular materials was described by elastic parameters, formulated in

terms of microstructural parameters. Thornton and Barnes [142] examined the relation-

ship between the microstructure and the stress tensor for a random assembly of discs

with different sizes. Micromechanical analysis of the assembly of discs for a range of

diameters with linear contact interactions was presented by Bathurst and Rothenburg in

[8]. Whereas in [6], Bathurst and Rothenburg presented key theoretical developments in

linking the characteristics of fabric anisotropy to the stress through so-called stress-force-

fabric relationship.

By the late 1980’s and throughout 1990’s DEM achieved widespread use in research

of granular materials. This rapid development resulted in a number of new DEM codes
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for simulating material behaviour of granular systems comprising 2D elements of dif-

ferent shapes such as circular, elliptical or polygonal. The corresponding 3D element

shapes included spheres, ellipsoids and polyhedrons. Some of the examples for such tools

may include, DISC by Bathurst and Rothenburg [7], MASOM by Isaa and Nelson [54],

SKRUBAL by Trent and Margolin [145], ELLIPSE2 by Ng and Lin [103], ELLIPSE3

by Lin and Ng [80], DEFORM by Saltzer [134], POLY by Mirghasemi et al. [95] etc.

Despite the rapid advancements in the DEM research as described above, the high cost

and limited availability of computational resources restrained the use of the developed

programs for simulation of a few hundred particles only. In order to overcome this lim-

itation, the idea of using parallel computing to solve problems of practical nature could

be traced back as early as late 1990’s in the work by Kuraoka and Bosscher [77] where a

fully parallelized DEM scheme was proposed based on TRUBAL. For simulation of 400

balls, a 900 percent speed up was reported using 16 processor parallel computer. Nowa-

days, industrial scale problems with multi-million particles can be simulated effectively

within a reasonable amount of time and decent computational cost [65].

The abundance of granular material encountered in the engineering problems has re-

sulted in the application of DEM to many different areas such as material processing

[40], agriculture [68], soil mechanics [52] and geotechnical [92] engineering etc. The

DEM codes developed in earlier days were usually focused on some specific problem

area. For instance, the commercial codes UDEC [20] and 3DEC [22, 46] released first

in 1980’s by Itasca consulting group are specifically oriented towards rock engineering

problems. However, the widespread application of DEM led to the development of more

general purpose DEM tools, which are available commercially, non-commercially and

in open-source domain. At present, the most popular DEM based commercial software

products are PFC [55] from Itasca consulting group, EDEM [34] from DEM solution

Ltd. and Rocky DEM [31] from ESSS Company. Other open source and non-commercial

DEM software packages include YADE [148], MercuryDPM [94], LIGGGHTS [116] and

DEMpack [32].

A general DEM model should be able to simulate the physical behaviour of a discrete

assembly comprised of arbitrarily shaped particles. However, most of the research efforts

in DEM employ circular discs and spheres due to the large savings in computational cost

associated with contact detection for a geometry with a single defining parameter, radius.

Consequently, a large number of particles can be simulated for a given amount of compu-

tational resources with discs and spherical shaped elements. It must be remarked though,

that discs and spheres tend to rotate and roll easily and may not reflect the realistic be-

haviour of materials especially in under large shear. To provide an accurate representation

of the material behaviour using DEM, more complex shapes such as ellipses [144] and

polygons [37, 54, 93] have been used extensively for problems in 2D domain. In 3D
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domain, ellipsoids [80], polyhedra [22, 43, 46] and superquadrics [49, 100] have been

reported (cf. Figs. 1.4, 1.5). Greater flexibility in the particle characterization in the

DEM is introduced with these complex shapes [96, 157]. However, the contact detection

in complex geometries such as polygons and polyhedrons is quite challenging and eval-

uating forces becomes difficult in cases such as edge-edge, edge-corner or corner-corner

contacts. Extension form 2D to 3D and bonding of particles can also become complicated

and computationally expensive [152].

Figure 1.4. Basic polyhedra for representing realistic particle shapes in DEM [58].

Figure 1.5. Superquadric shapes are also used to simulate complex shapes in DEM [114].

Figure 1.6. Clusters of non-penetrating spheres used in DEM simulations for generating

complex shapes [133].
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Figure 1.7. Coke particles modelled by overlapping spheres for DEM simulation corre-

sponding to 3D scanned shape of particles [89].

As an alternative, the multi-sphere (MS) approach is also used in DEM to represent the

shape of real particles (cf. Figs. 1.6, 1.7). The complex shapes of particles in this method

are achieved by forming aggregates or clumps of different sized spheres (or discs) bonded

together [16, 56, 104, 133]. Even though contact detection in a multi-sphere approach re-

quires much less computational cost w.r.t to polyhedrons, for instance, it becomes difficult

to evaluate the contribution of surface roughness.

The shape of particles used in DEM simulation directly determines the packing char-

acteristics of the discrete assembly, which in turn influences the macroscopic response

of the system. The parameters like average contacts per element and their orientations

are not only dependent on the shape of the particles used but also on the packing al-

gorithm used for given particle shape. The packing algorithms used in DEM currently

can be broadly categorized as dynamic methods and geometric methods [57]. The dy-

namic method basically uses the underlying DEM algorithm itself to trace the particle

trajectories and final positions inside a container for instance, which itself might be

discretized with bonded discrete elements. Different contact laws can be used for the

particle-particle or particle-wall interactions [15, 135]. A variety of dynamic packing

algorithms have been reported over the years and use different techniques to generate

packings such as gravitational deposition [138], isotropic compaction [139] or even their

combination [105]. Flexibility in choosing variety of generation schemes individually or

in combination (cf. Fig. 1.8) and selecting different contact laws is a real advantage pro-

vided by dynamic packing algorithms. This allows to control the packing properties and

generate dense isotropic packings. Nevertheless, drawbacks such as residual overlaps and

quite high generation time must be taken into consideration.
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Figure 1.8. Example of dynamic packing - combination of gravity deposition and

isotropic compression is used in parallel [105].

Figure 1.9. Example of geometrical packing using sub-grid strategy [105].

The geometrical packing algorithms on the other hand use purely geometric calcula-

tions in order to generate a packing, without simulating the dynamics of particle motions,

such as shown in Fig. 1.9. Such algorithms generally fall into three basic types [59],

namely, ballistic algorithms [147] wherein particles follow a well-defined or definable

trajectories to find its static place in the packing. The second type of algorithms be-

longs to a class known as random placement algorithms, for instance, used by Jodrey and

Tory in [62], where particles from a pre-defined size distribution are placed randomly

into the container such that no two particles can overlap. After a certain fixed number

of iterations, the particle is discarded if the non-overlapping position is not obtained and
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the process continues with the next particle. Due to its ease in the implementation, this

method is widely used. The third type of algorithms are known as growth algorithms in

which initially particles are generated randomly and then allowed to grow until they meet

a pre-defined constraint such as inter-particle distances. The lower computation time re-

quired in generating dense polydisperse packings is a major advantage of the geometric

algorithms over dynamics methods. With an ever increasing demand in simulating prob-

lems of granular assemblies at industrial scale, advanced geometrical packing methods

using triangulation based have been developed [2, 57]. A good review of recent advances

in particle packing algorithms in DEM is published by Recarey et al. [117]. Most of the

packing algorithms are typically reported for spheres or spheres aggregates. Only a few

algorithms reported are dealing with non-spherical particles for example, in [59], Jia and

Williams used digitization of both particle shape and the packing space into pixels, thus

overcoming the difficulties suffered by the conventional method. Packing is then achieved

by manipulating pixel data on a square lattice, onto which packing space is mapped.

The importance of particle shape and packing algorithms in determining the macro-

scopic behaviour of a DEM model is reflected by the extensive focus these topics have

received over the decades of DEM modelling research. However, the deformability of

particles in DEM, which is an equally important aspect for the correct representation of a

problem, has received relatively less attention. Deformability of the material inside dis-

crete elements has been taken into account using different ways in earlier works by some

of the researchers. Discretization of particles with finite elements [42, 47, 99] presents

the simplest method to inculcate deformability in the DEM, however other discretization

methods for particle volumes, for instance, the continuum-based Material Point Method

(MPM) [101, 149] or the discrete-based Bonded Particle Method (BPM) [33, 101] can

equally be employed. On one side, these methods present the flexibility to model particles

of arbitrary shapes and different deformation mechanisms assuming the elastic or plastic

behaviour of deformable particles with an additional possibility to model the breakage of

particles. On the other side, however, the high computational cost associated with these

techniques limit their use to a small number of particles.

Adding deformation modes to a rigid motion (translation and rotation) of discrete el-

ements extends an alternative approach to take into account the deformability of discrete

elements. The formulation for a discontinuous system of deformable blocks (triangular

or quadrilateral prisms) has been put forth by Cundall et al. [25] wherein the block defor-

mation is described by the superposition of independent strain modes. Various solutions

to define the deformation of a discrete element has been reviewed by Williams and Mus-

toe [156] and they proposed the use of eigenmodes obtained from the modal analysis in

defining the deformation of the discrete element. Jin et al. [60] also used modal decompo-

sition to define the deformation of a discrete element. Shi [137] described displacement
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field within discrete elements in terms of polynomial functions in a method he developed

known as discontinuous deformation analysis (DDA). Zubelewicz [163] has developed an

original discontinuous model in which the motion of elements comprises element trans-

lations and rotations. Each discrete element is described as a rigid core surrounded by a

deformable boundary attached to it with a set of springs. The distinct feature of this ap-

proach is that though the method belongs to the broad class of discrete element methods,

it still retains properties of the finite element method. This method is numerically effi-

cient and allows for a proper description of the elastic and inelastic properties of stressed

material.

It must be noted at this point that although the formulations [25, 60, 99, 137, 156]

presented earlier deal with deformable elements, they primarily focus on block elements

such as polygonal prisms (in 2D) or polyhedra (in 3D). Deformability of cylindrical (in

2D) or spherical (in 3D) discrete elements with the soft contact approach have rather been

the focus of only a few works which appeared recently. Multiple-contact discrete element

method (MC-DEM) proposed by Brodu et al. [14] is one such work where the inter-

actions between multiple contacts on the same discrete element are taken into account

explicitly. The particle deformation under the multi contact forces is evaluated on the

basis of different analytical solutions such as an elastic sphere loaded with a point force

[12], for the contact between two elastic spheres [44, 161], and for the elastic half-space

subjected to a point load [13]. Some experimental adaptation becomes necessary within

MC-DEM due to use of the analytical solutions. A similar concept of multiple contacts

interactions on individual grains are also proposed in the granular element method (GEM)

presented by Karanjgaokar [64]. In GEM, the evaluation of inter-particles forces involves

a multi-objective optimization problem. Grain level strain and kinematic data are utilized

to determine inter-particle force using two sets of grain level equations viz. conserva-

tion of linear and angular momentum, the balance between averaged stress and external

(contact) forces within individual grains. These two sets of equations supplemented with

constraint equations define a multi-objective optimization problem. A simple approach to

modelling deformable particles in the DEM based on the geometrical considerations has

been proposed by Haustein et al. [48]. The deformation has been realized by expanding

the radius of the spherical particles, depending on their overlap so that the volume of the

material is kept constant – the material from the overlapping area has been redistributed

on the free surface.

It is worth highlighting that the DDEM formulation investigated in the thesis is origi-

nal with respect to other formulations discussed above. Even though there are some com-

monalities which can be identified but there are also comprehensible differences which

testify the novelty of the DDEM formulation. In particular it is worth examining the sim-

ilarities and differences with respect to the MC-DEM proposed by Brodu et al. [14] and
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the GEM presented by Karanjgaokar [64]. Similarities between DDEM and MC-DEM:

• contact analysis is conducted by taking into account the overall deformation of the

particles due to the contact forces,

• resulting in the evolution of additional contacts and interactions between contact

forces acting on each particle, and indirectly between contact forces in the whole

particle assembly.

The main difference between DDEM and the MC-DEM:

• in MC-DEM the analytical solutions of similar problems in the theory of elasticity

are used in estimating particle deformation,

• whereas, DDEM proposes an evaluation of the particle deformation assuming a

uniform strain in the particle induced by the volume averaged stress derived in

terms of the contact forces acting on the particle.

Similarities between DDEM and GEM:

• both DDEM and DEM use the volume averaged stress in the particles and the bal-

ance of the average stress and contact forces.

The main difference between DDEM and GEM:

• the framework in which the relationship between the average stress and the contact

forces are used in the DDEM is entirely different from that of the GEM.

• the problems to be solved and solution algorithms in the DDEM and the GEM

which were outlined above are also different.

1.3 Objectives and scope of the thesis

The main scientific aim of the proposed thesis is the investigation of deformable dis-

crete element method (DDEM) - a new formulation of DEM which takes into account

the particle deformability of the material inside the discrete elements. This work will be

limited to 2D domain and focuses on the three specific objectives:

• investigating the potential of DDEM model in improving the current modelling

capabilities of standard DEM while preserving its efficiency,

• analysing the convergence and stability of the DDEM formulation,

• verifying the model numerically and analytically by performing the DEM simula-

tions.
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The presented research objectives involving numerical and analytical analysis are in-

cluded in the scope of the thesis are detailed as follows. The dissertation investigates an

original formulation of DEM. With an aim to enhance standard DEM’s capability in ef-

fective representation of elastic deformation of particles, the new formulation introduces

the concept of additional (global) deformation mode. The additional (global) deformation

in turn changes the particle interaction and consequently the distribution of forces in the

discrete element assembly. The contact forces are now evaluated in terms of overlap of

the globally deformed particles, which in turn determines the particle deformation, hence

implying an implicit relationship for the contact forces. This implicit problem could be

solved iteratively, however, in order to retain the advantage of an efficient solution at a

single time step associated with the explicit discrete element algorithm, the DDEM al-

gorithm has been adapted to the explicit time integration scheme. Therefore a rigorous

analysis of convergence and stability of the DDEM formulation itself has been conducted.

The iterative implicit DDEM algorithm as well as its adaptation to the explicit time inte-

gration scheme have been presented. A general approach to analyse the convergence of

iterative algorithms and the stability of the explicit time integration have been introduced.

Analytical evaluation of the convergence criteria for selected problems and numerical

studies of the stability of the DDEM solutions have been conducted.

The DDEM formulation has been implemented in DEM/FEM program DEMpack

[32] developed and validated by Rojek et al. [123–125]. The theoretical approach and the

modified numerical code has been verified with the use of benchmark problems such as

unconfined uniaxial compression tests. Furthermore, isotropic biaxial compression and

pure shear tests have been carried out for selected cases to check the consistency of the

elastic constants obtained in unconfined uniaxial compression tests. The discrete speci-

mens with increasing degree of complexity are used in simulations. The relationships be-

tween the constitutive micro- and macroscopic parameters have been further determined

and verified in numerical analyses. Additional verification of the implemented solution

algorithm has been done using an equivalent finite element model of the discrete sample

in some simple cases. Finally, a numerical investigation is conducted to study the po-

tential of DDEM formulation for the correct representation of elastic wave propagation

phenomenon in solid materials discretized with bonded disc elements.

The execution of the tasks formulated in the work will allow verification of the fol-

lowing thesis:

The new formulation of discrete element method with deformable particles is
capable of mitigating the limitations of standard formulation and broadening the
range of macroscopic properties that can be represented using discrete element
method.
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1.4 Outline of the thesis

The outline of the thesis is as follows. Chapter 2 presents the main idea behind the

DDEM. For completeness, a snapshot version of the formulation for the standard discrete

element model has been presented. Next, theoretical developments and the solution algo-

rithm necessary in the implementation of the new formulation i.e. DDEM are discussed.

Furthermore, an example of two particles contact model under uniaxial compression has

been analysed using DDEM formulation and finite element method (FEM) to support the

better understanding of the underlying concept of DDEM.

An elaborate discussion on convergence and stability of the DDEM formulation has

been provided in chapter 3. Convergence and stability criterion has been derived analyt-

ically and verified numerically for three simple discrete models of equal sized particles

– an infinite row, an infinite simple cubic (SC) specimen and an infinite hexagonal close

packing (HCP) specimen.

Micro–macro relationships for stresses, strains and constitutive properties in the DEM

and DDEM are presented in chapter 4. The macroscopic constitutive parameters based on

Voigt hypothesis are presented and energy balance aspects of the problem are discussed.

Numerical verification is conducted by applying the DDEM algorithm to the simulation

of an unconfined uniaxial compression test, first of a regular rectangular assembly of

equal particles. The results of the DDEM simulations for this problem have been verified

by simulations of an equivalent FEM model and with an analytical solution. Next, an

unconfined uniaxial compression of a square specimen discretized with nonuniform size

particles assembled in an irregular configuration has been simulated.

A large number of simulations have been performed taking different sets of model

parameters in order to obtain micro-macro relationships which show the range of elastic

properties that can be obtained with the DDEM model. Wave propagation characteristics

of the DDEM model are studied in chapter 5 in order to show its potential in areas such

as seismic studies in geotechnics and impact problems in civil engineering. With chapter

6, this thesis’ work is concluded, original elements are discussed and possible future

directions have been outlined.



Chapter 2

Formulation of the deformable discrete
element model

Introduction
This chapter provides a succinct outline of the underlying concept of the discrete

element method with deformable particles which is introduced in [127]. This new formu-

lation of the discrete element method is called as the DDEM (deformable discrete element

method). The standard formulation of the discrete element method has been outlined first

for completeness. Underlying equations of motion are presented, followed by explicit

time integration scheme and contact modelling in the standard DEM. A comprehensive

description of the DEM can be found in [85, 109, 121]. The idea and basic assumptions of

the DDEM has been presented next, followed by the formulation of the additional steps

required to evaluate particle deformation within discrete element framework. A better

understanding of DDEM concept has been aided by conducting a theoretical analysis of

a simple DDEM model. Furthermore, a more precise analysis of particle deformation

under uniaxial compression of two particles in contact has been conducted using FEM

and results are compared with corresponding DDEM solution.

27



2.1 Standard framework of the discrete element method 28

2.1 Standard framework of the discrete element method

2.1.1 Equations of motion

In this work, a 2D formulation of the discrete element method is considered employ-

ing cylindrical particles (cylindrical discs) following main assumptions of Cundall and

Strack [27]. The translational and rotational motion of the discrete elements is described

by means of the Newton-Euler equations of rigid body dynamics. For the i-th element,

miüi = Fi , (2.1)

Jiω̇ωωi = Ti , (2.2)

where ui is the element centroid displacement in a fixed (inertial) coordinate frame x, ωωωi
– the angular velocity, mi – the element mass, Ji – the moment of inertia which is given

as:

Ji =
1

2
miR

2
i , (2.3)

for a cylinder and

Ji =
2

5
miR

2
i , (2.4)

for a sphere. Fi is the resultant force and Ti is the resultant moment about the central

axes. Vectors Fi and Ti are respectively composed of the forces and moments due to the

external load F ext
i , due to the contact interaction with adjacent particles, f c

ij and t c
ij , and

due to the external damping, Fdamp
i and Tdamp

i :

Fi = F ext
i +

nc
i∑

j=1

f c
ij + F damp

i , (2.5)

Ti =

nc
i∑

j=1

tc
ij +

nc
i∑

j=1

sc
ij × f c

ij + T damp
i , (2.6)

where nci is the number of elements in contact with the i-th discrete element, and sc
ij is the

vector connecting the centre of mass of the i-th element with the contact point with the

j-th element (Fig. 2.1). In the present work, only the force-type contact interaction will

be considered, resulting in zero values for the interaction moments t c
ij of Eq. (2.6). The

damping terms F damp
i and T damp

i used in equations (2.5) and (2.6) are of a non-viscous

type:

F damp
i = −αt‖F ext

i +

nc
i∑

j=1

f c
ij‖

u̇i
‖u̇i‖

, (2.7)
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Figure 2.1. Definition of the inter-particle interaction.

T damp
i = −αr‖

nc
i∑

j=1

tc
ij +

nc
i∑

j=1

sc
ij × f c

ij‖
ωωωi
‖ωωωi‖

. (2.8)

where αt and αr, are the respective damping factors for translational and rotational mo-

tion. The terms given by Eqs. (2.7) and (2.8) represent the so-called background damping

working against the existing velocity (linear and angular) with magnitude proportional to

the existing force and moment, respectively. An additional damping dependent on the

relative velocities at the contact points is included in the contact interaction.

2.1.2 Time integration scheme

An explicit central difference scheme is employed to integrate Eqs.(2.1) and (2.2).

For translation motion, the time integration operator at the n-th time step is given as:

üni =
Fni
mi

, (2.9)

u̇
n+1/2
i = u̇

n−1/2
i + üni ∆t, (2.10)

un+1
i = uni + u̇

n+1/2
i ∆t. (2.11)

Similarly, the time integration scheme for the rotational motion is identical to the first

two steps given by Eqs. (2.9) and (2.10):

ω̈ni =
Tn
i

mi

, (2.12)

ω̇
n+1/2
i = ω̇

n−1/2
i + ω̈ni ∆t, (2.13)

If required the rotational configuration can be determined, however for the disc ele-

ments used in this work, the evaluation of rotational configuration is not essential.



2.1 Standard framework of the discrete element method 30

The explicit time integration scheme used in DEM imposes a limitation on the time

step due to the conditional numerical stability. The time step ∆t must not be larger than

the critical time step ∆tcr,

∆t ≤ ∆tcr , (2.14)

which is determined by the highest natural frequency of the system, νmax as,

∆tcr =
2

νmax
. (2.15)

The highest frequency νmax can be evaluated by solving the eigenvalue problem defined

for the entire system of connected particles, however, this would be computationally ex-

pensive. Analogously to the standard simplification proposed for the explicit FEM [11],

the maximum frequency of the full system in the DEM can be estimated by natural fre-

quencies of subsets of connected particles surrounding each particle, cf. [110],

νmax ≤ max ν(i)
max (2.16)

where ν(i)
max is the maximum natural frequency of the system of connected particles sur-

rounding the i-th particle. The problem of the critical time evaluation can be simplified

further by considering equivalent single degree mass–spring systems with the natural fre-

quency

ν(i) =

√
k

(i)
eff

mi

(2.17)

where k(i)
eff is the effective stiffness governing the motion of the i-th particle. Hence, the

limit on the time step can be given by

∆t ≤ min 2

√
mi

k
(i)
eff

(2.18)

The effective stiffness k(i)
eff depends on the normal and tangential contact stiffnesses, the

number of particles connected to the i-th particle as well as contact directions, cf. [110].

In practice, the time step can be estimated approximately taking, cf. [112]

∆t ≤ α

√
mmin

kmax

(2.19)

where mmin is the minimum mass and kmax is the largest normal or tangential contact

stiffness and α is the user specified parameter accounting for multiple contacts for each

mass. For regular packings of equal particles with the same stiffness for all the contacts

the parameter α can be determined analytically [110]. For irregular packing a safe value

of the parameter α can be based on the results of numerical simulations [112].
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2.1.3 Contact modelling

The formulation of the contact model employs the decomposition of the contact force

between two elements1 f c into the normal and tangential components, fn and f t, respec-

tively:

f c = fn + f t = fnn + f t , (2.20)

where n is the unit normal vector at the contact point (Fig. 2.1). The normal and tan-

gential contact forces can be evaluated assuming different models [71, 72]. Granular

materials are usually modelled assuming cohesionless frictional contact [39], while rock-

like materials, as well as various other materials, require cohesive contact models [84].

The present work has been focused on the elastic behaviour of the materials modelled

with bonded particles, therefore a cohesive contact model is presented. Nevertheless, the

formulation presented is valid for a cohesionless contact model, as well.

An initial bonding between the neighbouring particles has been assumed as shown in

Fig. 2.1. The bonds are established between the particles i and j satisfying the condition:

g0 = g(t = 0) = ‖xj − xi‖ −Ri −Rj ≤ g0
max (2.21)

where Ri and Rj are the particle radii, g0 is the gap at the contact point at the time t = 0,

and g0
max is a tolerance in the contact verification. In the soft contact approach used here,

the impenetrability condition is satisfied approximately and a certain overlap between the

contact particles h is allowed such that,

h = −g > 0 , (2.22)

kt

kn

cn

ct

Figure 2.2. Rheological scheme of the bonded particle interaction model.

The normal and tangential particle interactions are modelled by linear springs con-

nected in parallel with dashpots (Fig. 2.2) providing an additional mechanism to dissipate

contact oscillations. Thus, the normal and tangential contact forces are decomposed into

1From this point further on, the indices denoting the elements will be omitted.
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the elastic, fne and f te, and damping parts, fnd and f td, respectively:

fn = fne + fnd (2.23)

f t = f te + f td (2.24)

The elastic contact force components are evaluated assuming linear constitutive relation-

ships. The elastic normal force is given by

fne = kng if g < 0 , (2.25)

or considering Eq. (2.22),

fne = −knh , (2.26)

where kn is the interface stiffness in the normal direction. The tangential elastic force is

given by the relationship

f t = kt ut , (2.27)

where kt is the interface stiffness in the tangential direction, ut – the relative displacement

at the contact point in the tangential direction. The relative tangential displacement ut

must be evaluated incrementally, cf. [110]:

ut = uold
t + ∆ut (2.28)

where uold
t is the vector of the relative tangential displacement from the previous time

step rotated to the present contact plane and ∆ut is the incremental relative tangential

displacement

∆ut = vrt∆t (2.29)

with vt being the relative tangential velocity at the contact point determined as

vrt = vc
r − vrnn (2.30)

where vc
r is the relative velocity at the contact point and vrn its projection on the normal

direction:

vrn = vc
r · n (2.31)

The relative velocity at the contact point is evaluated as follows:

vc
r = (u̇j + ωj × sc

ji)− (u̇i + ωi × sc
ij) (2.32)

where u̇a and ωa (a = i, j) are the particle translational and angular velocities.
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The contact damping forces in the normal and tangential directions are given by

fnd = cnvrn (2.33)

f td = ctvrt (2.34)

respectively, where cn and ct are the damping coefficients. The damping coefficients, cn

and ct, can be related to the critical damping in the normal and tangential direction, ccr
n

and ccr
t , by means of certain scaling factors, ξn and ξt:

cn = ξnc
cr
n (2.35)

ct = ξtc
cr
t (2.36)

For the system of two rigid bodies with masses mi and mj , connected with a spring of

the stiffness k, the critical damping ccr is given by, cf. [141]

ccr = 2

√
mimjk

mi +mj

(2.37)

By taking k = kn or kt in Eq. (2.37) the critical damping ccr
n and ccr

t is obtained.

The critical damping separates the oscillatory (overdamped) and non-oscillatory (under-

damped) solutions in the damped mass-spring systems. It ensures the fastest return to

equilibrium without oscillations which is important in the solution of quasistatic prob-

lems.

kt

kn

cn

μ

Figure 2.3. Rheological scheme of the particle interaction after decohesion.

Cohesive bonds are broken instantaneously when the interface strength is exceeded in

the tangential direction by the tangential contact force or in the normal direction by the

tensile contact force

‖fn‖ ≥ φn (2.38)

‖f t‖ ≥ φt (2.39)
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where φn – interface strength in the normal direction, φt – interface strength in the tan-

gential direction. After decohesion, the contact is treated assuming a standard contact

model with Coulomb friction cf. Fig.2.3. The normal contact force can be compressive

only (fn ≤ 0) and the tangential contact force is limited by µ|fn|

‖f t‖ ≤ µ|fn| (2.40)

where µ is the Coulomb friction coefficient. The general DEM framework presented

here remains equally valid irrespective of rigid or deformable elements. However, some

additional steps are required in the DEM algorithm to include deformability of the discrete

elements, which is the focus of the following sections.

2.2 Idea and basic assumptions of the deformable
discrete element method

The new original formulation of DEM in which particles are treated as deformable

was introduced by Rojek et al. [127] and is presented here in brief. The new formulation

of the discrete element method i.e. DDEM (the deformable discrete element method) is

based on the following assumptions [127]:

• The particles are treated as deformable. The particle deformation is composed of

the global deformation mode and local deformation modes.

• The global deformation mode of each particle is induced by uniform (homogenous)

stresses assumed for the particles. The stresses derived by averaging over the par-

ticle volumes in terms of the contact forces acting on each particle are taken as the

particle stresses.

• The uniform particle strain is obtained via the inverse constitutive relationship from

the uniform averaged particle stress. The linear elastic material model is assumed

for the particle global deformation mode.

• The deformed shape (global deformation) of the particle is obtained by integration

of the particle strain.

• The local deformation modes are assumed at contact zones and they are represented

by the overlaps of the globally deformed particles. The normal contact forces will

be determined as functions of the overlaps.

The idea of the DDEM is illustrated with a simple example in Fig. 2.4. Enhancement

of the DEM formulation is accomplished by introduction of the additional (global) defor-

mation mode, which in turn changes the particle interaction and the distribution of forces
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Figure 2.4. The idea of the deformable discrete element method [127].

in the discrete element assembly. For example, consider interactions between the parti-

cles shown in Fig. 2.4. In the standard DEM formulation, there would be no contact force

developing between the particles i and k or l (the circles k and l plotted with continuous

lines are not in contact with the circle i). However, the shape change of the particle i under

compression with forces F leads to an active contact between the particles i and k, and i

and l. In this way, a nonlocal contact model has been achieved. The contact interaction

between the particles i and j influences indirectly (through the change of the shape of the

particle i) the contact between the particle i and the other particles, and vice versa. As a

result, the non-local interactions are expected to affect the macroscopic response of the

aggregate, in particular, it should broaden the range of the Poisson’s ratio which can be

reproduced in the discrete element method. Under the assumptions of the DDEM model

listed above, the algorithm of DDEM proceeds as follows.

2.3 Evaluation of particles stresses

Particle stresses σ̄p are derived by averaging over the particle volumes Vp (Fig. 2.5)

in terms of the contact forces f c acting on each particle using the following formula [82]:

σ̄p =
1

Vp

np c∑
c=1

sc ⊗ f c , (2.41)

where np c is the number of particles being in contact with the p-th particle, sc – vector

connecting the element center with the contact point (see Fig. 2.5), f c – contact force, and

the symbol ⊗ denotes the outer (tensor) product. The averaging formula (2.41) should

also include reaction forces and other external surface forces, cf. [122]. In the 2D formu-

lation, the stress is represented by the matrix

σ̄p =

 (σp)xx (σp)xy 0

(σp)yx (σp)yy 0

0 0 (σp)zz

 for plane strain, (2.42)
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Figure 2.5. Vectors used in the particle stress evaluation.

or

σ̄p =

[
(σp)xx (σp)xy

(σp)yx (σp)yy

]
for plane stress. (2.43)

It must be noted that the stress tensor given by Eq. (2.41) is derived under the as-

sumption that particle is in equilibrium and the forces acting on it are taken into consid-

eration. However, because this assumption of the equilibrium is usually satisfied only

approximately, stress tensor can be unsymmetrical. It can be made symmetric by taking

arithmetic mean of the tensor evaluated by Eq.(2.41) and its transpose. The symmetric

tensor will be then given as:

σp =
1

2

(
σ̄p + σ̄Tp

)
, (2.44)

or

(σp)ij =
1

2Vp

(
scif

c
j + f cj s

c
i

)
. (2.45)

2.4 Evaluation of particle strains

The uniform particle strain εp is obtained from the uniform averaged particle stress

σp via the inverse constitutive relationship:

εp = Dp : σp (2.46)

where Dp is the elastic compliance tensor. In the matrix notation formula (2.46) can be

rewritten as

ε̃p = D̃pσ̃p (2.47)

where, in 2D, the strain and stress tensors are represented by the vectors ε̃p =

[(εp)xx, (εp)yy, 2(εp)xy]
T , σ̃p = [(σp)xx, (σp)yy, (σp)xy]

T respectively, and D̃p is the ma-

trix representation of the elastic compliance tensor. Two dimensional DEM models can
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be assumed to represent either plane stress or plane strain conditions [35, 158]. For plane

strain conditions, the elastic compliance matrix becomes

D̃p =
1 + νp
Ep

 1− νp −νp 0

−νp 1− νp 0

0 0 2

 (2.48)

and for plane stress the compliance matrix takes following form,

D̃p =
1

Ep

 1 −νp 0

−νp 1 0

0 0 2(1 + νp)

 (2.49)

where νp is particle Poisson’s ratio and Ep is particle Young’s modulus.

2.5 Particle global deformation mode

The deformed shape (global deformation) of the particle can be determined using the

displacement field u(x), where x ∈ Vp, obtained by integration of the particle strain.

The displacement field, however, can be determined up to rigid modes. Assuming zero

rotations and fixing zero displacements at the particle centre xp one can get the solution

for the displacement of an arbitrary point x of the particle as

u(x) = εp(x− xp) (2.50)

where εp is strain matrix

εp =

[
(εp)xx (εp)xy

(εp)yx (εp)yy

]
(2.51)

The calculations according to Eq. (2.50) can be performed for the contact points, only.

Taking x = xC , see Fig. 2.5,

uc = εp(xc − xp) = εps
c (2.52)
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2.6 Contact detection and contact force evaluation

The overlap hc between the deformed particles i and j (Fig. 2.6) can be evaluated as

follows:

hc ≈ h+ uic · nic + ujc · njc (2.53)

where the overlap h between the circular particles in the standard DEM is modified by

projecting the vectors of displacements of the contact points of both particles uic and ujc,

evaluated according to Eq. (2.52), on the outward normal unit vectors nic and njc (see Fig.

2.6), having in mind that nic = −njc = nc.
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Figure 2.6. Contact of two deformable particles a) overview b) detail.

A more exact evaluation of the overlap between deformed particles can be performed

using an algorithm to determine the contact between the elliptical bodies, cf. [103, 143].

Here, an approximate formula according to Eq. (2.53) has been used assuming a relatively

small deformation of the two particles in contact. Furthermore, it has been assumed that

the contact point between the deformed particles is close to the contact point between the

undeformed circles and the normal and tangential directions at the contact are unaffected

by the deformation.

Now that, the overlap between the deformed particles is evaluated, the normal contact

force fn can be calculated as:

fn = −knhc , (2.54)

where kn is the normal contact stiffness. The normal force fn combines with the tan-

gential contact force ft yielding the total contact force between the considered pair of

particles f c cf. Eq. (2.20).

Figure 2.7 shows the flowchart of the DDEM algorithm. The tasks written in bold

are either new or extended tasks with respect to the standard DEM algorithm. It must

be noted though that the tangential contact force is assumed here to be unaffected by the

particle deformation and it is calculated taking any model used in the standard DEM.
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Figure 2.7. Flowchart of the DDEM algorithm.

2.7 Energy balance considerations

According to the principle of conservation of mechanical energy, the total work done

by the external forces Wext during a certain interval from 0 to t acting on particles should

be equal the change in kinetic energy of the particles Ek, the strain (elastic) energy Eel of

the particle system and the dissipated energy Ediss [146]:

W t
ext = ∆Ek + ∆Eel + Ediss . (2.55)

The change of the kinetic and elastic energies

∆Ek = Et
k − E0

k , (2.56)
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∆Eel = Et
el − E0

el , (2.57)

are considered with respect to the initial energies E0
k and E0

el due to the initial velocities

and initial interparticle interactions, respectively. The kinetic energy of the system of Np

particles at the time instant τ ∈< 0, t > can be expressed as the sum of the translational

and rotational parts [70, 146]:

Eτ
k =

Np∑
i=1

(
mi(v

τ
i )2

2
+
Ji(ω

τ
i )2

2

)
, (2.58)

where mi is the particle mass, Ji – the moment of inertia, vi and ωi – the translational

and rotational particle velocities, respectively. In the standard DEM, the strain energy is

equal to the energy stored at the contacts due to the work of the elastic components of the

normal and tangential contact forces, fne and f te, respectively [70]:

Eτ
el =

Nc∑
i=1

(
(fne)

2
i

kn
+

(‖f te‖)2
i

kt

)
, (2.59)

where Nc is the number of contacting pairs of particles. The dissipated energy Ediss

represents the work of non-conservative forces, the friction and the damping ones.

In the DDEM formulation, the elastic deformation of particles provides a new contri-

bution to the strain energy:

Eτ
el = Eτ

el,c + Eτ
el,p , (2.60)

where Eτ
el,c represents the elastic energy stored at the contacts given by Eq. (2.59) and

Eτ
el,p denotes the elastic energy of the deformed particles calculated in terms of the aver-

age particle stresses and strains

Eτ
el,p =

1

2

Np∑
i=1

Vp(σp)ij(εp)ij . (2.61)

The deformability of the particles does not contribute to the kinetic or dissipated energy,

because there is no inertial term associated with the deformation of particles, nor are

there any dissipative properties assumed for the deformation of the particles. The energy

balance criteria described here will be used further as an additional measure of model

correctness for DDEM formulation, using a selected case of particle configuration.
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2.8 Theoretical analysis of DDEM model

Consider a row of N equal sized, disc shaped discrete elements in contact under uni-

axial compression. Assuming that the particles are constrained in the lateral direction

such that no buckling occurs, the column of particles is compressed with constant load f

from right and left cf. Fig. 2.8.

Figure 2.8. A row of N same sized disc elements under uniaxial compression.

The problem of the static equilibrium of this system can be solved analytically. In

accordance with the illustration of contact between two deformable particles presented in

Fig. 2.6, the overlap h can be decomposed into the deflection of the particles 2hp and the

overlap of the deformed particles hc :

h = hc + 2hp (2.62)

Consistently with this decomposition, the system of two deformable particles in con-

tact can be modelled by three springs connected in series as shown in Fig. 2.9.

kpkkp n

Figure 2.9. Equivalent rheological model for two deformable particles in contact.

The force transmitted through the elastic elements connected in series can be ex-

pressed as:

f = −knhc (2.63)

or

f = −kphp (2.64)

where kp is the equivalent stiffness for the elastic particle subjected to compression along

the diameter. The force f transferred through the row of the particles can also be given in

terms of the effective stiffness k and the overlap h:

f = −kh (2.65)
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Substituting relationships (2.63)–(2.65) into Eq. (2.62), factoring out and cancelling −1

from both the sides,
1

k
=

1

kn
+

2

kp
(2.66)

Finally, the effective stiffness can be expressed as follows:

k =
knkp

2kn + kp
=

kn
2kn/kp + 1

=
kp

2 + kp/kn
. (2.67)

It can be seen from Eq. (2.67) that if one of the stiffness parameters, kn or kp becomes

much larger than its counterpart, the effective stiffness is determined by the smaller of

the two stiffness parameters, if kp → ∞, then k → kn, and if kn → ∞, then k →
kp/2, respectively. Knowing the effective stiffness k, the contact force f can be obtained

from Eq. (2.65), however, in order to calculate the effective stiffness k the knowledge

of the stiffness kp is necessary. This can be determined from the strain–displacement

relationship for the particle under plane strain or plane stress condition. For instance,

under plane strain, using Eqs. (2.47), (2.48) for the considered problem: εxx

εyy

0

 =
1 + νp
Ep

 1− νp −νp 0

−νp 1− νp 0

0 0 2


 σxx

0

0

 (2.68)

Calculating the stress from Eq. (2.41)

σxx =
2f

πRl
(2.69)

l being the depth of the sample (l = 1 m), and taking

εxx = −hp
R

(2.70)

one gets

f = − πEpl

2(1− ν2
p)
hp . (2.71)

Hence, by comparison of equations (2.64) and (2.71),

kp =
πEpl

2(1− ν2
p)
. (2.72)

Substituting relationships (2.72) and (2.67) into Eq. (2.65) one can obtain the analytical

solution for the contact force in the problem under consideration. Using Eq. (2.68),

particle strains in the axial and lateral direction will be given as:

εxx =
(1− ν2

p)

Ep
σxx , (2.73)
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εyy =
−νp(1 + νp)

Ep
σxx . (2.74)

For the N no. particles considered in this problem, the total no. of contacts will be

given as (N − 1), which means that the row of particles shown in Fig. 2.8 can be viewed

as (N − 1) elastic springs each of stiffness k under uniaxial compression. Therefore, the

total displacement ∆H of the row assembly of N particles can be determined as:

∆H =
(N − 1)f

k
(2.75)

The analytical expressions derived here will be used further in the verification of nu-

merical results for selected DDEM models.

2.9 FEM analysis of two particle DDEM model

The purpose of this test is to investigate the relation of the DDEM model to that in

which deformability of the particles is treated more precisely using the finite element

method. Assuming that two halves of cylindrical discs with dimensions and properties,

R = 1 mm, Young’s modulus Ep = 2 · 1011 Pa, Poisson’s ratio νp = 0.35 have been

subjected to a uniaxial compression along the y axis cf. Fig. 2.10a. The loading has

LE, LE22
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-2.949e-03
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Figure 2.10. FEM simulation of uniaxial compression of two particles: a) FEM model,

b) simulation results – distribution of strain εyy for contact force of 10 kN.

been applied kinematically by prescribing equal and opposite velocities 0.125 m/s in the

y direction for the nodes in the top and bottom planes. The motion in the direction trans-

verse to the loading has not been restrained. Frictionless contact conditions have been

assumed. The problem has been analysed for plane stress and quasistatic conditions us-

ing the Abaqus/Explicit software.

The contact force between the cylinders (per 1 m) is plotted in Figure 2.11 as a func-

tion of the relative displacement of the top and bottom planes h. The spatial distribution
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of the strain component εyy in the cylinders for the contact force 10 kN is shown in Fig-

ure 2.10b. The distribution of the strain εyy along the y axis (taking y = 0 at the cylinder

centre) is plotted in Figure 2.12. Figures 2.10b and 2.12 demonstrate a significant con-

centration of deformation near the contact zone while most of the particle volume is much

less deformed. This effect in a certain manner supports the idea of the DDEM, in which

a global deformation due to average uniform stress and local deformation concentrated

at the contact zone represented by the overlap of globally deformed particles has been

assumed.
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Figure 2.11. Contact force as a function of relative displacement.
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Figure 2.12. Distribution of strain εyy along the y axis at contact force of 10 kN.
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A quantitative relationship between the DDEM model and the FEM solution has been

investigated. This study has been illustrated graphically in Figure 2.13. Figure 2.13a

presents the initial configuration of the two halves of discs, and Figure 2.13b shows

schematically the deformed configuration obtained in the FEM simulation where the dis-

tance between the disc centres has been decreased by h (for 10 kN h = −3.65 · 10−07

m). The approach of the disc centres h is used in the standard DEM contact models as

equal to the particle overlap. It should be mentioned that the contact in the FEM analysis

has been enforced by the penalty method, however, the penalty parameter was sufficiently

high so that the particle penetration was negligible with respect to the displacements of

cylinder centres.

Figure 2.13c shows a hypothetic configuration of the discs deformed under averaged

strains without any overlap. The approach of the centres 2hp for this case can be evaluated

using the relationships presented earlier in this chapter. Using Eq. (2.41) for the whole

cylinder (together with the symmetrical half not considered explicitly in the model) the

stress σavgyy for the compressive contact force of magnitude f = 10 kN is obtained as

σavgyy = − 2fR

πR2L
= − 20000

π · 0.001 · 1
Pa = −6.37 MPa

Then, the average strain component is evaluated as

εavgyy =
σavgyy

Ep
=
−6.37 · 106

2 · 1011
= −3.18 · 10−05 ,

The averaged strain εavgyy has been plotted for comparison in Figure 2.12. The change of

the distance between the particle centres is equal to the change of the particle diameter

2hp = 2Rεavgyy = −2 · 0.001 · 3.18 · 10−05 m = −6.37 · 10−08 m

The absolute value of this approach without any particle overlap is smaller than that ob-

tained in the FEM analysis, the difference being

hc = h− 2hp = −3.65 · 10−07 m− (−6.37 · 10−08) m = −3.01 · 10−07 m .

Assuming now that the overlap hc between the uniformly deformed particles (Figure

2.13d) is allowed by introducing a spring at the contact points with such stiffness kn
that the contact force will be unchanged

kn =
f

hc
=

−10000

−3.01 · 10−07
= 3.32 · 1010 N/m

In this way, it has been shown that the DDEM model with an appropriate contact stiffness

yields an equivalent response in the loading direction to that obtained in the FEM analysis.
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Figure 2.13. Equivalence between the FEM and DDEM solution for the contact of two

particles compressed uniaxially: a) initial configuration without loading, b) deformed

configuration in the FEM solution, c) deformed configuration under averaged stress, d)

deformed configuration in the DDEM.

Additionally, the particle deformation in the lateral direction in both models can be

compared. The averaged strain component εavgxx and the corresponding change of the

particle diameter in the x direction havgx can be obtained as follows

εavgxx =
−νσavgyy

Ep
=

0.35 · 6.37 · 106

2 · 1011
= 1.11 · 10−05 .

havgx = 2Rεavgxx = 2 · 0.001 · 1.11 · 10−05 m = 2.23 · 10−08 m

There is a certain difference with the FEM solution 3.11 · 10−08 m. This relatively small

difference can be eliminated by taking slightly different value of the Poisson’s ratio for

the particle in the DDEM.

Summary

The underlying concept for the deformable discrete element model has been pre-

sented. By introducing the concept of global deformation, it has been illustrated that

in DDEM the non-locality of the particle deformation results in new additional contacts

in contrast to the standard formulation of DEM. The simplified way used in DDEM for

contact detection has been described. The standard algorithmic structure of DEM remains

intact in DDEM formulation. DDEM model of a row of N equal sized discrete elements

has been examined theoretically. The results obtained with the theoretical analysis will

be useful in verification of numerical results of DDEM model for selected cases. It has

been shown that by using appropriate contact parameters in DDEM model, an equivalent

FEM response can be obtained in loading direction for two particle model.



Chapter 3

Convergence and stability analysis of
the deformable discrete element model

Introduction
This chapter delves into the study of numerical properties of the solution scheme em-

ployed in the DDEM which is detailed in [127] and outlined in Chapter 2. As described

previously, in the DDEM formulation the volume averaged stress derived in terms of

contact forces is taken as particle stress from which strains are evaluated using the in-

verse constitutive relationship. The contact forces are evaluated in terms of overlap of

the globally deformed particles, which in turn determines the particle deformation, hence

implying an implicit relationship for the contact forces. This implicit problem could be

solved iteratively, however, this would be inconsistent with an efficient time step solution

of the standard DEM. Therefore, the DDEM algorithm has been adapted to the explicit

time integration scheme. In the present chapter, the stability of the explicit DDEM algo-

rithm has been investigated. Firstly, the stability requirements for the micromechanical

parameters related to the convergence criterion of the iterative solution of the implicit

DDEM formulation has been studied. Secondly, the stability limits on the time step in the

DDEM have been investigated and compared with the critical time step in the standard

DEM.

The convergence criteria of the iterative solution scheme have been determined an-

alytically for three simple regular geometries of equal size particles, namely, an infinite

row of discs, infinite arrays of discs arranged in simple cubic (SC) and a hexagonal closed

packing (HCP) configurations. The convergence criterion for the infinite row of particles

has been verified by the numerical iterative solution of the row of particles under the

step compressive loading. The analytical convergence criteria for the SC and HCP ar-

rays have been used to establish relationships between the convergence of the iterative

47
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DDEM scheme and the stability of the explicit DDEM solution. Numerical studies have

comprised simulations of uniaxial compression of rectangular samples discretized with

particles arranged in the regular SC and HCP configurations. The results have allowed to

establish the criteria for choosing microscopic parameters in the calibration of the DDEM

models, cf. [127], ensuring a stable solution. The results presented in this chapter are

some of the major achievements of this thesis and published in [88].

3.1 Implicit relationship for the contact forces in DDEM

Analysing the procedure of the contact force evaluation in the DDEM defined by

Eqs. (2.41)–(2.54) one can easily notice that the contact force for any interacting pair of

particles depend on the positions of contacting particles and their deformation. This in

turn depends on the contact forces acting on these particles as well as indirectly on all the

contact forces in the particle assembly since the contact forces depend on the deformation

of all the particles. Such a dependence can be written in the form of a general implicit

relationship for all the contact forces in the particle system

Fc = FFF (X,E(Fc)) , (3.1)

where Fc, X and E are the global vectors containing all the contact forces f jc , particle

positions xip and particle strains ε̃ip:

Fc = {f jc , . . . , fNc
c }T , (3.2)

X = {xip, . . . ,xNp
p }T , (3.3)

E = {ε̃ip, . . . , ε̃Np
p }T , (3.4)

where Np is the number of particles, and Nc is the number of contacts in the particle

assembly.

3.2 Iterative procedure of the DDEM

Evaluation of the contact forces using the implicit relationship given by Eq. (3.1)

would require an iterative solution at each time step

F(n,k+1)
c = FFF(X(n),E(F(n,k)

c )) (3.5)

where the superscript n denotes the n-th time step, and the superscripts k and k + 1

subsequent iterations. Given the particle positions X(n) obtained for the n-th time step
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from the explicit time integration of the equations of motion, the iterative solution scheme

to determine the interparticle contact forces F(n)
c can be outlined as follows:

1. For the k-th iteration, taking the contact forces from the previous iteration F
(n,k−1)
c

calculate the particle stresses σ(n,k)
p according to Eq. (2.41). The contact forces for

the first iteration (k = 1) can be taken from the previous time step

F(n,0)
c = F(n−1)

c . (3.6)

2. Calculate the particle strains ε(n,k)
p using the constitutive relationship (2.47).

3. Evaluate the particle deformation at the contact points due to the strains ε(n,k)
p ac-

cording to Eq. (2.52).

4. Calculate the overlap between the deformed particles according to Eq. (2.53). De-

termine the contact between the deformed particles for given particle positions x(n).

5. Calculate new values of the contact forces F(n,k)
c with the normal components eval-

uated according to Eq. (2.20)

6. Check the convergence of the solution. The convergence criterion can be defined in

terms of a difference of contact forces from the present and previous iterations. If

the convergence criterion is satisfied

F(n)
c = F(n,k)

c , (3.7)

otherwise, repeat the steps 1–6 until the convergence is reached.

Assuming a linear constitutive contact model as given by Eq. (2.54), it is possible to

construct for the whole discrete system the following recursive relationship corresponding

to the above iterative scheme:

F(n,k)
c = AX(n) + BF(n,k−1)

c , k >= 1 , (3.8)

where A and B are certain matrices. Rewriting the formula (3.8) replacing k by k + 1:

F(n,k+1)
c = AX(n) + BF(n,k)

c , k >= 0 . (3.9)

Subtracting Eq. (3.8) from Eq. (3.9) the recursive relationship for the successive differ-

ences is obtained

F(n,k+1)
c − F(n,k)

c = B (F(n,k)
c − F(n,k−1)

c ) , k >= 1 . (3.10)

The iterative solution may not always converge. In general, the convergence requires that

for a certain matrix norm ‖ · ‖, cf. [66]:

‖B‖ < 1 (3.11)



3.3 Explicit solution algorithm of the DDEM 50

then the ratio of the norms of successive differences

‖F(n,k+1)
c − F

(n,k)
c ‖

‖F(n,k)
c − F

(n,k−1)
c ‖

< 1 , (3.12)

which indicates that the iterative error decreases. However, the norm of B could be small

in some norms and quite large in others. A more stringent convergence condition can be

expressed in terms of the matrix spectral radius ρ(B), cf. [66]:

ρ(B) < 1 (3.13)

The spectral radius of the iteration matrix B is defined as

ρ(B) = max
λ∈Φ(B)

|λ| (3.14)

with λ being the eigenvalue of B and Φ(B) denoting the set of eigenvalues of B. For a

symmetric matrix B the spectral radius ρ(B) is equivalent to the 2-norm ‖B‖2, cf. [1]:

ρ(B) = ‖B‖2 , (3.15)

with the 2-norm defined as:

‖B‖2 = (µmax)1/2 , (3.16)

where µmax is the largest eigenvalue of BTB.

The explicit forms of the iterative relationship (3.10) and of the iteration matrix B

will be obtained for simple cases further on. This will allow to estimate theoretically the

convergence of the iterative scheme and compare it with the convergence limit obtained

in numerical simulations.

3.3 Explicit solution algorithm of the DDEM

The iterative solution within the explicit time integration which is used in the discrete

element method would spoil its major advantage of yielding an efficient solution for a

single time step. Therefore the solution algorithm proposed in [127] employs an explicit

dependence which can be written generally as follows:

F(n)
c = FFF(X(n),E(F(n−1)

c )) (3.17)

The contact forces at the n-th time step are evaluated taking the strains obtained for the

contact forces from the previous time step. The algorithm for the deformable discrete

elements is incorporated into the explicit time integration solution. No iterations are

performed at time steps, convergence is achieved along with time stepping.
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The 2D DDEM algorithm has been implemented in the discrete element program

DEMPack validated earlier in different applications, cf. [123, 125]. With respect to the

standard DEM formulation, the new algorithm additionally requires calculation of the

particle stresses and strains. Before the contact detection, the particle stresses σ(n)
p are

evaluated according to Eq. (2.41) taking the contact forces from the previous time step

F
(n−1)
c . Then, the particle strains ε(n)

p are calculated using the constitutive relationship

(2.47). The contact detection and contact force evaluation in the new algorithm is mod-

ified with respect to the standard DEM. The contact between the particles is established

accounting for the particle deformation under the uniform strain ε(n)
p induced by the con-

tact forces. The overlap (or in the case of the cohesive contact, it may be also a gap)

between the deformed particles is taken for the contact evaluation.

In this chapter, the stability of the solution scheme in the DDEM will be investigated.

The critical time step will be evaluated and compared with that of the standard DEM.

One may expect that owing to the added global deformation mode, the effective contact

stiffness in the normal direction in DDEM decreases w.r.t. standard DEM and as a con-

sequence, the critical time step can be decreased as predicted by Eq. (2.18) or (2.19). On

the other hand, the stability of the explicit solution scheme can be affected by the limita-

tions established for the iterative solution. These questions will be investigated through

the analytical derivations and numerical simulations presented in the following sections.

3.4 Infinite row of particles

An infinite row of particles (discs) subjected to compression, as shown in Figure 3.1,

has been studied in order to verify the convergence criterion of the iterative solution.

Equal particles of radii R = 1 mm under the plane strain conditions have been assumed.

The local contact stiffness kn = 7 · 1010 N/m has been taken.

R

h

R

d

f

h

c

f f f f f

Figure 3.1. Compression of an infinite row of particles.
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The kinematically controlled step loading has been introduced. The distance between

the particle centres d = 1.99 mm has been prescribed. Thus, the overlap between the

undeformed particles h = 2R−d amounts to 0.01 mm. The solution is aimed to determine

the deformation of the particles and the contact force between the deformed particles. The

system of the connected particles has been studied for different ratios of the local (contact)

and global (particle) stiffness. The global particle stiffness has been given in terms of the

elastic moduli, Ep and νp.

It can be seen that the analytical solution for the contact force in the problem under

consideration can be obtained on the basis of the theoretical analysis presented in Sec. 2.8.

The numerical solution should converge to the value obtained by substituting relationships

(2.72) and (2.67) into Eq. (2.65). Since the positions of the particles do not change

during the analysed period the solution is equivalent to the iterative procedure presented

in Section. 3.2. Rewriting it here for the problem under consideration:

1. Calculate the particle stress for the k-the iteration σ(k)
xx taking the contact force from

the previous iteration f (k−1)

σ(k)
xx =

2f (k−1)

πRl
(3.18)

2. Calculate the particle strain

ε(k)
xx =

1− ν2
p

Ep
σ(k)
xx (3.19)

3. The semiaxis of the deformed particle is given by

a(k) = R(1 + ε(k)
xx ) (3.20)

4. The particle overlap is calculated as follows

h(k)
c = 2R(1 + ε(k)

xx )− d = h+ 2Rε(k)
xx (3.21)

5. The new value of the contact force is calculated as

f (k) = −knh(k)
c (3.22)

Substituting Eqs. (3.19) and (3.21) into Eq. (3.22) the following relationship is ob-

tained

f (k) = −knh(k)
c = −kn(h+ 2Rε(k)

xx ) = −knh− 2knR
1− ν2

p

Ep
σ(k)
xx (3.23)

and taking into account (3.18)

f (k) = −knh− 2kn
2(1− ν2

p)

πEpl
f (k−1) = knh−

2kn
kp

f (k−1) (3.24)
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The recursive relationship (3.24) is a specific form of the relationship (3.8). The relation-

ship between successive differences corresponding to the relationship (3.10) can be easily

obtained as:

f (k+1) − f (k) = −2kn
kp

(f (k) − f (k−1)) (3.25)

The respective convergence criterion corresponding to the inequality (3.11) takes the

form: ∣∣∣∣−2kn
kp

∣∣∣∣ < 1 (3.26)

which gives

2kn
kp

< 1 (3.27)

The convergence criterion limits the use of the DDEM algorithm to the particles, whose

global stiffness is sufficiently large with respect to the local contact stiffness, nevertheless

this corresponds to many real applications in which local deformations due to the contact

are quite large and the global deformations are relatively small.

The studies have been performed for the Poisson’s ratio νp = 0.35 and selected values

of the Young’s modulus Ep in the range limited by the criterion (3.27). The results of the

analytical calculations are given in Table 3.1. Having assumed the Young’s modulus Ep,

the particle stiffness kp has been obtained from Eq. (2.72). The ratio 2kn/kp allows to

verify the criterion given by Eq. (3.27). It can be noted that the lowest considered value

of the Young’s modulus gives the ratio 2kn/kp close to unity. Further on, the effective

Table 3.1. Analytical predictions for the infinite row of particles

No. Ep (Pa) kp (N/m) 2kn/kp k (N/m) f (kN)

1 5.00 · 1011 8.946 · 1011 0.16 6.053 · 1010 6.053 · 102

2 4.00 · 1011 7.157 · 1011 0.19 5.855 · 1010 5.855 · 102

3 3.00 · 1011 5.368 · 1011 0.26 5.552 · 1010 5.552 · 102

4 2.00 · 1011 3.578 · 1011 0.39 5.031 · 1010 5.031 · 102

5 1.00 · 1011 1.789 · 1011 0.78 3.927 · 1010 3.927 · 102

6 8.00 · 1010 1.431 · 1011 0.98 3.539 · 1010 3.539 · 102

stiffness k and the force f have been calculated from Eqs. (2.67) and (2.65), respectively.

The effective stiffness k has been plotted as a function of the ratio 2kn/kp in Fig. 3.2.
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Figure 3.2. Effective stiffness as a function of the contact–particle stiffness ratio.

Numerical simulations have been performed using a model consisting of a pair of

particles with fixed positions yielding the prescribed initial overlap h = 0.01 mm. The

interaction with the other particle neighbours has been taken into account assuming the

same contact force as that determined between the two considered particles. Thus, the

particle stresses have been calculated correctly.

Iterative solutions for the contact force in 4 selected cases are shown in Fig. 3.3. The

plots show that the solution converges to the theoretical values of the contact force if

2kn/kp < 1 (Fig. 3.3a-c). The numerical values of the forces f are exactly the same as

those given in Table 3.1, which confirms the correct behaviour of the algorithm.

The rate of convergence depends on the value of the stiffness ratio 2kn/kp. The so-

lution converges very fast for lower values of the ratio 2kn/kp (Fig. 3.3a) and the con-

vergence is quite slow for the ratio 2kn/kp close to 1 (Fig. 3.3c). When 2kn/kp ≥ 1 the

solution does not converge (Fig. 3.3d). Thus, the tests have confirmed the convergence

criterion (3.27) which has been derived theoretically.
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Figure 3.3. Iterative solution for the contact force in the row of spheres under com-

pression for different stiffness of spheres: a) Ep = 3 · 1011 Pa (2kn/kp = 0.260),

b) Ep = 1 · 1011 Pa (2kn/kp = 0.782), c) Ep = 7.9 · 1010 Pa (2kn/kp = 0.992) d)

Ep = 7.5 · 1010 Pa (2kn/kp = 1.043).
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3.5 Simple cubic configuration

Convergence and stability of the DDEM applied to a regular simple cubic (SC) con-

figuration of particles have been investigated analytically and numerically. Numerical

simulations have been performed for the uniaxial compression of the rectangular sample

shown in Fig. 3.4a. The theoretical convergence analysis has been carried considering a

unit SC cell shown in 3.4b.

fc
1

fc
2

fc
3

fc
4

a) b)

Figure 3.4. Unconfined uniaxial compression of a simple cubic specimen – a) DEM

model b) a unit cell.

Assuming that the SC unit cell belongs to an infinite grid of equal particles of radii R

with prescribed spacing between the columns and rows, dx and dy, respectively, inducing

the interparticle interaction due to initial overlaps:

hx = 2R− dx (3.28)

hy = 2R− dy (3.29)

where hx, hy > 0. Let the contact forces acting on a particle be represented as f ic , i =

1, . . . , 4. In terms of their magnitudes fi, i = 1, . . . , 4, contact force vectors are given as,

f1
c =

[
−f1 0

]T
, f2
c =

[
0 −f2

]T
, f3
c =

[
f3 0

]T
, f4
c =

[
0 f4

]T
. Making use of

the symmetry of the pattern and loading with respect to the x and y axes, f1 = f3 = fx and

f2 = f4 = fy.
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To obtain a relationship for convergence, the iterative procedure presented in section

3.2 for the SC contact configuration shall be rewritten. Analogous to the procedure for

compression of an infinite row of particles as presented in section 3.4 iterative procedure

is as follows (superscript n denotes the time step and k−1, k, k+1 represent the successive

iterations):

1. Calculate the stress components at n-th time step and k-th iteration in terms of

corresponding force components at the same time step n and previous iteration

k − 1 [
σ

(n,k)
xx

σ
(n,k)
yy

]
= − 2

πRl

[
f

(n,k−1)
x

f
(n,k−1)
y

]
(3.30)

where l is the length of particle in a direction perpendicular to its plane assumed to

have a unit dimension (l = 1 m).

2. Calculate the particle strain components at time step n and k-th iteration for the

assumed plane-strain condition[
ε

(n,k)
xx

ε
(n,k)
yy

]
=

1 + νp
Ep

[
(1− νp) −νp
−νp (1− νp)

][
σ

(n,k)
xx

σ
(n,k)
yy

]
(3.31)

3. The semiaxes of the deformed particle are given by[
a

(n,k)
xx

a
(n,k)
yy

]
= R

[
1 + ε

(n,k)
xx

1 + ε
(n,k)
yy

]
(3.32)

4. The particle overlaps in x and y direction are determined as follows[
h

(n,k)
cx

h
(n,k)
cy

]
= 2R

[
1 + ε

(n,k)
xx

1 + ε
(n,k)
yy

]
−

[
dx

dy

]
=

[
hx

hy

]
+ 2R

[
ε

(n,k)
xx

ε
(n,k)
yy

]
(3.33)

5. The new values of contact force components is calculated as follows[
f

(n,k)
x

f
(n,k)
y

]
= −kn

[
h

(n,k)
cx

h
(n,k)
cy

]
(3.34)

Substituting Eqs. (3.33) and (3.31) into Eq. (3.34) one obtains[
f

(n,k)
x

f
(n,k)
y

]
= −kn

[
hx

hy

]
−

2Rkn (1 + νp)

Ep

[
(1− νp) −νp
−νp (1− νp)

][
σ

(n,k)
xx

σ
(n,k)
yy

]
(3.35)
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and taking into account (3.30)[
f

(n,k)
x

f
(n,k)
y

]
= −kn

[
hx

hy

]
+

4kn (1 + νp)

πEpl

[
(1− νp) −νp
−νp (1− νp)

][
f

(k−1)
x

f
(k−1)
y

]
(3.36)

The recursive relationship (3.36) is a particular form of the relationship (3.8). The

relationship between successive differences corresponding to the relationship (3.10)

can be easily obtained as:[
f

(n,k+1)
x − f (n,k)

x

f
(n,k+1)
y − f (n,k)

y

]
=

4kn(1 + νp)

πEpl

[
(1− νp) −νp
−νp (1− νp)

][
f

(n,k)
x − f (n,k−1)

x

f
(n,k)
y − f (n,k−1)

y

]
(3.37)

The iteration matrix B now takes the form:

B =
4kn(1 + νp)

πEpl

[
(1− νp) −νp
−νp (1− νp)

]
(3.38)

6. In order to evaluate the convergence criterion (3.13), calculate the spectral radius

of matrix B using Eq. (3.14):

ρ(B) = max
λ∈Φ(B)

|λ| (3.39)

where Φ(B) is the set of eigenvalues of iteration matrix B, cf. Eq.(3.38), which is

evaluated as

Φ(B) =

{
4kn(1 + νp)

πEpl
,
4kn(1 + νp)(1− 2νp)

πEpl

}
(3.40)

Since νp > 0, the absolute maximum eigenvalue is represented by the first element

of the set Φ(B)

ρ(B) = max
λ∈Φ(B)

|λ| = 4kn(1 + νp)

πEpl
(3.41)

Hence, it can be concluded that the convergence criterion for the iterative scheme

is:
4kn(1 + νp)

πEpl
< 1 (3.42)

Inserting l = 1m in Eq. (3.42) and rewriting, a relationship for the particle Poisson’s

ratio νp in terms of the ratio kn/Ep is obtained in the following form:

νp <
π/4

kn/Ep
− 1 (3.43)
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Figure 3.5. Comparison of displacement time curves for the unconfined uniaxial com-

pression of SC specimen for a stable solution: Ep = 1.19 · 1011 Pa (kn/Ep = 0.588) and

unstable solutions: Ep = 1.18 · 1011 Pa (kn/Ep = 0.593) and Ep = 1.17 · 1011 Pa (kn/Ep
= 0.598).

The relationship between the convergence of the iterative scheme and stability of the

explicit solution scheme have been investigated by simulating unconfined uniaxial com-

pression of a rectangular specimen discretized with bonded discs as it is shown in Fig.

3.4a. The rectangular sample contained total 180 (20 by 9) disc elements each of radius

R = 1 mm, resulting in a total height H = 40 mm and a width A = 18 mm. Microscopic

properties are as follows: density ρ = 2000 kg/m3, normal contact stiffness kn = 7 · 1010

N/m. Numerical studies have been carried out for different values of the particle Pois-

son’s ratio νp and the particle Young’s modulus Ep aiming to determine their effect on the

stability of the solution.

The sample has been uniaxially compressed under a uniform load represented by

equal forces applied at the particles in the top and bottom row as shown in Fig. 3.4a.

The particles in the middle column have been constrained horizontally to avoid any buck-

ling effects. The loading has been applied by increasing each force linearly from 0 to 10

kN during 0.1 µs. The total maximum force F is 90 kN.

Numerical stability has been investigated assuming a certain value of the particle Pois-

son’s ratio νp and studying the solutions for different values of the particle Young’s mod-

ulus Ep. The solutions for νp = 0.35 and three values of Ep have been presented in Fig.

3.5 by the displacement vs. time curves. The stable solution corresponding to the particle

Young’s modulus Ep = 1.19 · 1011 Pa is close to the linear quasistatic solution. It is char-

acterized by small oscillations around the quasistatic solution since no damping has been

used. The theoretical quasistatic change of the sample height for the DDEM model has

been obtained using the theoretical relationship for the row of particles presented in Sec.
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Table 3.2. Comparison between analytical predictions and numerical results for the con-

vergence and stability limits for SC configuration with different particle Poisson’s ratio

νp and a constant normal contact stiffness kn = 7 · 1010 N/m.

νp kn/Ep kn/Ep

(analytical) (numerical)

0.05 0.748 0.761

0.10 0.714 0.722

0.15 0.683 0.693

0.20 0.654 0.667

0.25 0.628 0.636

0.30 0.604 0.614

0.35 0.582 0.588

0.40 0.561 0.569

0.45 0.542 0.551

2.8. It can be clearly seen in Fig. 3.5 that the particle Young’s moduliEp = 1.17·1011 and

Ep = 1.18 · 1011 Pa lead to unstable solutions. Therefore, for the particle Poisson’s ratio

νp = 0.35, the particle Young’s modulus Ep = 1.19 · 1011 Pa (kn/Ep = 0.588) determines

the numerical stability limit. In the same way, the numerical stability limits have been

evaluated for the Poisson’s ratio values from 0.05 to 0.45. The results are given in Table

3.2 in comparison to the theoretical convergence limits for the iterative solution scheme

determined according to Eq. (3.42).

The numerical stability limit and analytical convergence limit for the SC configuration

are compared graphically in Fig. 3.6. It can be observed that the stability limits achieved

in the numerical simulations for different values of the particle Poisson’s ratio are in

a close agreement with the theoretical predictions for the convergence limit. It can be

deduced that the convergence criterion for the iterative scheme also controls the stability

of the explicit transient solution.

The stability of the explicit dynamic solution is also limited by the critical time step,

cf. Eq. (2.14). The critical step in the DDEM solution for the SC configuration has been

investigated empirically by numerical simulations and compared with the critical time

step obtained in the standard DEM simulations. Both stability limits have been compared

to the critical time step predicted theoretically.

The theoretical evaluation of the critical time step has been based on the assumption

that the behaviour of each column of the model in the y direction is equivalent to that of

the chain of particles. The eigenfrequencies of the chain of N masses m connected with
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Convergent Non-convergent

Figure 3.6. Comparison of the numerical stability and analytical convergence limits for

SC configuration for constant normal stiffness kn = 7 · 1010 N/m.

springs of stiffness k are given as [130]:

νi = 2

√
k

m
sin

πi

2(N + 1)
, (3.44)

where i is the mode number. The maximum eigenfrequency in the chain of 20 particles

is obtained taking i = 20 as

νmax = ν20 = 2

√
k

m
sin

20π

42
≈ 2

√
k

m
(3.45)

Hence, introducing Eq. (3.45) into Eq. (2.15) the critical time step is estimated as

∆tcr ≈
√
m

k
. (3.46)

Taking the contact stiffness k = kn = 7 · 1010 N/m and the particle mass m = ρπR2l =

6.283 · 10−3 kg for assumed particle density ρ = 2000 kg/m3 and radius R = 1 mm, the

critical time step for the standard DEM is obtained as,

∆tcr ≈
√

6.283 · 10−3

7 · 1010 = 2.9959 · 10−7s (3.47)

The stability limits on the time step in the DEM and DDEM have been investigated by

simulating an unconfined uniaxial compression under the loading conditions defined pre-

viously. Axial displacement of the discrete sample w.r.t. time obtained using the standard

DEM and DDEM models has been plotted to observe the behaviour of the system for two

different time steps in Fig. 3.7. The standard DEM and DDEM results have been obtained

for the time step ∆t equal to the analytically obtained value of the critical time step and

a value 2% higher. For DDEM model, particle Young’s moduli Ep = 2 · 1011 Pa, particle
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Poisson ratio νp = 0.35 is used. It can be clearly seen in Fig. 3.7 that in the standard

DEM case time step ∆t = 2.9959 · 10−7s leads to a stable solution converging to the

analytical one. With even slightly higher time step ∆t = 3.0559·10−7 s, the simulations

rapidly goes into an unstable mode. It can be observed in Fig. 3.7 that the stable solution

in the DDEM can also be obtained with the time step ∆t = 2.9959 · 10−7s. Similarly to

the standard DEM, even a slightly higher value of time step ∆t = 3.0559 · 10−7 s leads

to unstable simulation. Hence, it can be concluded that the critical time step remains the

same for standard and deformable DEM models. This can be attributed to the fact that

incremental force evaluation in the DDEM algorithm is dependent on the normal stiffness

at the contact kn and the overlap increment ∆h, which imposes the same stability limit as

in the standard DEM.

0.0

1.0⋅10-6

2.0⋅10-6

3.0⋅10-6

4.0⋅10-6

5.0⋅10-6

6.0⋅10-6

7.0⋅10-6

8.0⋅10-6

0.0 2.0⋅10-5 4.0⋅10-5 6.0⋅10-5 8.0⋅10-5 1.0⋅10-4 1.2⋅10-4 1.4⋅10-4 1.6⋅10-4

∆y
  (

m
) 

time (s)

SDEM ∆ t = ∆ tcr
SDEM = 2.9959⋅10-07 s

SDEM  ∆ t = 3.0559⋅10-07 s

DDEM ∆ t = 2.9959⋅10-07 s

DDEM ∆ t = 3.0559⋅10-07 s
SDEM - Analytical

DDEM - Analytical

Figure 3.7. Comparison of displacement–time curves for the unconfined uniaxial com-

pression of SC specimen for standard DEM and DDEM and different time steps.
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3.6 A hexagonal closed packing configuration

The methodology used above to study the SC configuration has been applied to a

hexagonal close packing (HCP) configuration. Convergence and stability of the DDEM

applied to the HCP configuration of particles have been investigated analytically and nu-

merically. Numerical simulations have been performed for the uniaxial compression of

the rectangular sample shown in Fig. 3.8a. The theoretical convergence analysis has been

carried considering a unit HCP cell shown in 3.8b.

B
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A Afc
1

fc
2

fc
3

fc
4

fc
5
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6

R

a) b)

Figure 3.8. Unconfined uniaxial compression of an HCP specimen – a) DEM model b) a

unit cell.

Assuming that the HCP unit cell belongs to an infinite lattice of equal particles of radii

R with prescribed initial displacements inducing interparticle interaction. The contact

forces acting on the central particle are denoted by f ic , i = 1, . . . , 6. It is assumed that the

lattice is uniformly contracted along x and y axes. The contractions in x and y directions

can be different. Such deformation imposed on the pattern with geometrical symmetry

leads to the symmetry of the overlaps between contacting particles and contact forces

with respect to the planes A–A and B–B (Fig. 3.8b).

The system is analysed under plane strain conditions with previously defined parame-

ters and tangential contact stiffness, kt = 0 N/m. The iterative scheme defined in previous

sections is now rewritten for the HCP configuration as below. Superscript n denotes the

time step and k − 1, k, k + 1 represent the successive iterations as before. Magnitudes of

contact force vectors are denoted as fi for i = 1, . . . , 6.
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1. Calculate the stress components at time step n and k-th iteration in terms of corre-

sponding force components at the same time step n and previous iteration k − 1.

Consider an arbitrary unit cell as shown in Fig. 3.9 from an infinite HCP lattice of

2D particles of equal radiusR. As mentioned above, the geometry pattern and parti-

cle displacements are symmetrical with respect to the planes A–A and B–B aligned

along the x and y axes. The vectors of contact forces acting on the central particle

are denoted as f ic and their magnitudes as fi, i = 1, . . . , 6. The interaction is in the

B
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fc
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fc
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fc
4

fc
5

fc
6
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x

y

Figure 3.9. An HCP unit cell with contact forces and planes of symmetry AA and BB.

normal direction, only, therefore the contact force vectors can be defined in terms

of their components as follows: f1
c =

[
−f1 0

]T
, f2
c =

[
−f2/2 −

√
3f2/2

]T
,

f3
c =

[
f3/2 −

√
3f3/2

]T
, f4

c =
[

f4 0
]T

, f5
c =

[
f5/2

√
3f5/2

]T
and

f6
c =

[
−f6/2 −

√
3f6/2

]T
.

Using Eq. (2.41) determine the volume averaged stress in the central particle under

the action of contact forces as follows, first the outer (tensor) product of branch

vector si and force vector f ic for each particle in contact with the particle at centre

is calculated,

s1 ⊗ f1
c =

[
R

0

]
·
[
−f1 0

]
=

[
−Rf1 0

0 0

]
(3.48)

s2 ⊗ f2
c =

[
R/2
√

3/2

]
·
[
−f2/2 −

√
3f2/2

]
=
R

4

[
−f2 −

√
3f2

−
√

3f2 −3f2

]
(3.49)

s3 ⊗ f3
c =

[
−R/2
√

3/2

]
·
[

f3/2 −
√

3f3/2
]

=
R

4

[
−f3

√
3f3√

3f3 −3f3

]
(3.50)
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s4 ⊗ f4
c =

[
−R
0

]
·
[

f4 0
]

=

[
−Rf4 0

0 0

]
(3.51)

s5 ⊗ f5
c =

[
−R/2
−
√

3/2

]
·
[

f5/2
√

3f5/2
]

=
R

4

[
−f5 −

√
3f5

−
√

3f5 −3f5

]
(3.52)

s6 ⊗ f6
c =

[
R/2

−
√

3/2

]
·
[
−f6/2 −

√
3f6/2

]
=
R

4

[
−f6

√
3f6√

3f6 −3f6

]
(3.53)

due to symmetry along plane B–B, f1 = f4, f2 = f3, f5 = f6 and along plane A–

A, f2 = f6, f5 = f3. Therefore, it can be implied that Eqs. (3.48), (3.51) can be

written in terms of force magnitude f1 and Eqs. (3.49), (3.50), (3.52) and (3.53)

can be written in terms of force magnitude f2. After rewriting and substituting the

summation of Eqs. (3.48) – (3.53) in Eq. (2.41),

σp =
1

Vp

np i∑
i=1

si ⊗ f ic = − 1

πRl

[
2f1 + f2 0

0 3f2

]
(3.54)

where, Vp = πR2l, is the volume of a 2D disc particle with l being its depth. Hence,

the stress tensor σ̃p in vector form (cf. Eq. (2.47)) for this case becomes,

σ̃p =

[
σxx

σyy

]
= − 1

πRl

[
2f1 + f2

3f2

]
(3.55)

and rewriting in a simplified form,

σ̃p =

[
σxx

σyy

]
= − 1

πRl

[
2 1

0 3

][
f1
f2

]
(3.56)

which relates the stress components σxx, σyy in current time step n and current

iteration k to the contact forces f1, f2 from the current time step n and previous

iteration k − 1, i.e. [
σ

(n,k)
xx

σ
(n,k)
yy

]
= − 1

πRl

[
2 1

0 3

][
f1

(n,k−1)

f2
(n,k−1)

]
(3.57)

.

2. Calculate the particle strain components at time step n and k-th iteration for the

assumed plane-strain condition[
ε

(n,k)
xx

ε
(n,k)
yy

]
=

1 + νp
Ep

[
(1− νp) −νp
−νp (1− νp)

][
σ

(n,k)
xx

σ
(n,k)
yy

]
(3.58)
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3. The particle overlaps in direction of contact forces f1
c and f2

c are evaluated by con-

sidering an HCP unit cell from an infinite lattice of disc particles with equal radii

R as in the previous step. The individual particles of HCP unit cell are now num-

bered 0, . . . , 6 as shown in Fig. 3.10 and assumed to be in plane strain condition.

The 2D strains in the particle at the centre, i.e. particle no. 0, are represented by

the components εxx and εyy. The initial (standard DEM) overlap between circular

disks is denoted by hi for contact interaction 0− i, where i = 1, . . . , 6. The aim is

to determine the overlaps hci between the particles deformed under the known con-

tact forces f ic . Since, due to symmetry, the particle stresses have been expressed in

terms of the magnitudes of two contact forces, f1
c and f2

c , it will be necessary to de-

termine the corresponding overlaps hc1 and hc2, only. The overlaps are determined

as follows,

R

R

R R
0 1

23

4

5 6

60
o

Figure 3.10. An HCP unit cell with individual particles numbered 0− 6.

For the contact between particles 0 and 1 as shown in Fig. 3.10, the unit normal

vector n1
c is given as,

n1
c = [1, 0]T (3.59)

The branch vector s1 i.e. the vector connecting centre of the particle 0 and contact

point becomes,

s1 = n1
cR = [R, 0]T (3.60)

Displacement vector for particle 0 at the contact point due to force f ic in accordance

with Eq. (2.52) can be written as,

uc = εps
1 (3.61)

or in matrix form,

uc =

[
εxx 0

0 εyy

][
R

0

]
(3.62)
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The modified overlap hc1 between particles 0 and 1 is given as follows, cf.

Eq.(2.53),

hc1 = h1 + 2Rεxx (3.63)

Similarly, for the contact between particles 0 and 2 as shown in Fig. 3.10, the unit

normal vector takes the form,

n2
c =

[
1/2,
√

3/2
]T

(3.64)

resulting in branch vector,

s2 = n2
cR =

[
R/2, R

√
3/2
]T

(3.65)

and displacement vector,

uc =

[
εxx 0

0 εyy

][
R/2

R
√

3/2

]
(3.66)

hence, the modified overlap hc2 between particles 0 and 2 is as follows cf. Eq.

(2.53),

hc2 = h2 +
R

2
(εxx + 3εyy) (3.67)

Therefore, the modified normal overlaps in vector form can be written as follows,[
hc1

hc2

]
=

[
h1

h2

]
+R

[
2εxx

(εxx + 3εyy)/2

]
(3.68)

=

[
h1

h2

]
+R

[
2 0

1/2 3/2

][
εxx

εyy

]
(3.69)

=

[
h1

h2

]
+
R

2

[
4 0

1 3

][
εxx

εyy

]
(3.70)

which relates the modified overlaps hc1, hc1 in current time step n and current

iteration k to the strains εxx, εyy from the current time step n and previous iteration

k − 1, i.e. [
h

(n,k)
c1

h
(n,k)
c2

]
=

[
h1

h2

]
+
R

2

[
4 0

1 3

][
ε

(n,k)
xx

ε
(n,k)
yy

]
(3.71)
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4. The new values for magnitudes of contact forces are calculated as follows[
f1

(n,k)

f2
(n,k)

]
= −kn

[
h

(n,k)
c1

h
(n,k)
c2

]
(3.72)

Substituting Eqs. (3.71) and (3.58) into Eq. (3.72) and taking into account (3.57)

one obtains[
f1

(n,k)

f2
(n,k)

]
= −kn

[
h1

h2

]

+
kn (1 + νp)

πEpl

[
4(1− νp) 2(1− 4νp)

(1− 4νp) (5− 8νp)

][
f1

(n,k−1)

f2
(n,k−1)

]
(3.73)

The recursive relationship (3.73) is a particular form of the relationship (3.8). The

relationship between successive differences corresponding to the relationship (3.10)

can be easily obtained as:[
f(n,k+1)
1 − f(n,k)

1

f(n,k+1)
2 − f(n,k)

2

]
=

kn (1 + νp)

πEpl

[
4(1− νp) 2(1− 4νp)

(1− 4νp) (5− 8νp)

][
f(n,k)
1 − f(n,k−1)

1

f(n,k)
2 − f(n,k−1)

2

]
(3.74)

The iteration matrix B now takes the form:

B =
kn (1 + νp)

πEpl

[
4(1− νp) 2(1− 4νp)

(1− 4νp) (5− 8νp)

]
(3.75)

5. In order to evaluate the convergence criterion (3.13) the spectral radius of matrix B

is calculated using Eq. (3.14), for which the set of eigenvalues Φ(B) of the iteration

matrix B given by Eq. (3.75) is obtained as:

Φ(B) =

{
3kn(1 + νp)

πEpl
,
6kn(1 + νp)(1− 2νp)

πEpl

}
(3.76)

Now, it can be noticed that the maximum absolute eigenvalue, max |λ|, within the

set of eigenvalues in Eq.(3.76) depends upon the particle Poisson’s ratio νp. There-

fore,

ρ(B) = max
λ∈Φ(B)

|λ| =


3kn(1 + νp)

πEpl
for νp ≥ 0.25

6kn(1 + νp)(1− 2νp)

πEpl
for νp < 0.25

(3.77)
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Hence it can be concluded that the convergence criterion for the iterative scheme

is: 
3kn(1 + νp)

πEpl
< 1 for νp ≥ 0.25

6kn(1 + νp)(1− 2νp)

πEpl
< 1 for νp < 0.25

(3.78)

The convergence criteria obtained for the HCP configuration, i.e. Eq. (3.78), have

been used for comparison with the stability limit estimated in numerical simulations. Nu-

merical studies of the stability limit for the HCP configuration has been conducted in a

manner similar to the SC configuration as described in section 3.5. An unconfined uniax-

ial compression of a rectangular sample has been simulated using the DDEM formulation.

A total of 110 same sized, bonded disc particles are arranged in the HCP pattern to dis-

cretize the rectangular specimen as shown in Fig. 3.8a. Each particle is assumed to have

radius R = 1 mm, which results in sample size, height H = 27.71 mm by width A = 12

mm. Microscopic properties and loading conditions are kept same as that for the SC con-

figuration in section 3.5. The total maximum value force F has achieved is 60 kN in this

case, cf. Fig. 3.8a.

The numerical limit value of particle Young’s modulus Ep for a given particle Pois-

son’s ratio νp has been obtained in a manner similar to that for the simple cubic config-

uration – analysing the response of the specimen. The analysis of the selected case is

presented in Fig. 3.11, showing the plots of the total displacement in loading direction (y

axis) with respect to time for a fixed particle Poisson’s ratio νp = 0.35 and three different
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Figure 3.11. Comparison of displacement time curves for the unconfined uniaxial com-

pression of HCP specimen for a stable solution: Ep = 8.83 · 1010 Pa (kn/Ep = 0.792) and

unstable solutions: Ep = 8.82 · 1010 Pa (kn/Ep = 0.793) and Ep = 8.81 · 1010 Pa (kn/Ep
= 0.795).
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Young’s moduli, Ep = 8.81 · 1010 Pa, Ep = 8.82 · 1010 Pa and 8.83 · 1010 Pa. As it can

be observed in Fig. 3.11 the particle Young’s modulus Ep = 8.83 · 1010 Pa leads to a

stable numerical solution characterized by small oscillations (no damping has been used)

about the static solution. The theoretical value of total displacement is evaluated consid-

ering an equivalent HCP lattice with the effective normal contact stiffness k between the

particles in contact obtained from Eq. (2.67). Contrary to the case of Ep = 8.83 · 1010

Pa, an unstable behaviour is obtained with the particle Young’s moduli Ep = 8.81 · 1010

Pa and Ep = 8.82 · 1010 Pa. Hence, the particle Young’s modulus Ep = 8.83 · 1010 Pa

or kn/Ep = 0.793 can be considered as the stability limit for the particle Poisson’s ratio

νp = 0.35. Similarly, the stability limit in terms of microscopic elastic parameters has

been determined for other values of particle Poisson’s ratios.

Table 3.3. Comparison between analytical predictions and numerical results for the HCP

configuration with different particle Poisson’s ratio νp and a constant normal contact stiff-

ness kn = 7 · 1010 N/m.

νp Ep (Pa) kn/Ep kn/Ep

(analytical) (numerical)

0.05 1.23 · 1011 0.554 0.569

0.10 1.14 · 1011 0.595 0.614

0.15 1.04 · 1011 0.650 0.673

0.20 9.32 · 1010 0.727 0.751

0.22 8.85 · 1010 0.766 0.791

0.25 8.24 · 1010 0.838 0.850

0.30 8.51 · 1010 0.806 0.823

0.35 8.83 · 1010 0.776 0.793

0.40 9.16 · 1010 0.748 0.764

0.45 9.48 · 1010 0.722 0.738



3.6 A hexagonal closed packing configuration 71

The results of the numerical stability analysis are given in Table 3.3 in comparison

with the theoretical predictions of the convergence limit according to Eq. (3.78). It can be

noticed that the respective results are very close to each other. A graphical representation

of the stable (convergent) and unstable (non-convergent) zones in terms of microscopic

properties is shown in Fig. 3.12. A very good agreement between the analytical numer-

ical results can be observed. This proves that the convergence criterion for the iterative

solution determines also the stability of the explicit DDEM algorithm.

Convergent Non-convergent

Figure 3.12. Comparison of the numerical stability and analytical convergence limits for

HCP configuration for constant normal stiffness kn = 7 · 1010 N/m.

Similarly to the SC configuration, stability limit on the time step in the standard DEM

and DDEM has been studied by numerical simulations. The critical time step for the

HCP configuration has been determined to analyse the stability of the solution changing

the time step. Figure 3.13 shows the plots of the axial displacement w.r.t. time obtained

in the standard DEM and DDEM simulations with two different but close time steps,

∆t = 2.4567 · 10−7 s and ∆t = 2.5166 · 10−7. It can be clearly seen in Fig. 3.13 that in

both standard and deformable DEM case time step ∆t = 2.4567·10−7 s leads to a stable

solution converging to the corresponding analytical one. With even a slightly higher time

step ∆t = 2.5166·10−7 s, the simulations rapidly goes into the unstable mode. Hence, as

observed previously in SC configuration case, also in HCP configuration the critical time

step in the deformable DEM model remains the same as in the standard DEM model.
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Figure 3.13. Comparison of displacement–time curves for the unconfined uniaxial com-

pression of HCP specimen for standard DEM and DDEM stable (∆t = 2.4567 · 10−7

s) and unstable (∆t = 2.5166 · 10−7 s) solutions. For DDEM model, particle Young’s

moduli Ep = 2 · 1011 Pa, particle Poisson ratio νp = 0.35 is used.

Summary
The investigations presented in this chapter have shown that there are two restrictions

on the stability of the DDEM algorithm implemented in the explicit dynamics framework.

Except for the limit imposed on the time step in the explicit time integration, the stability

of the DDEM is controlled by the convergence limit of the iterative solution of an im-

plicit relationship between contact forces and particle displacements. The stability limits

obtained in numerical simulations for problems with regular SC and HCP coincide very

well with the convergence limits deduced theoretically.

The convergence criterion and consequently the stability limits for the DDEM are

given in terms of microscopic properties, namely, the particle Poisson’s ratio, the particle

Young’s modulus and the normal contact stiffness. The respective limiting relationships

should be taken into account in the DDEM model calibration based on the micro-macro

relationships presented in [127]. The other restriction on the stability of the DDEM,

the critical time step of the explicit time integration scheme has been shown to remain

the same as in the standard DEM formulation. The studies have shown that the DDEM

algorithm is robust and stable provided the stability limits are respected. The stability

limits can be assessed very well using the theoretical criteria derived in this chapter.



Chapter 4

Micro-macro relationships for the
deformable discrete element model

Introduction

Microscopic quantities and relationships used in the discrete element method can be

transferred to the macroscopic scale giving an equivalent macroscopic material model.

In the macroscale, we deal with equivalent continuous medium characterized by fields

of macroscopic variables, the stress tensor σ̄ij and the strain tensor ε̄ij . The macroscopic

stress and strain tensors are related to microscopic quantities with a certain constitutive re-

lationship. The present chapter is aimed to establish equivalent constitutive relationships

for the DDEM in the elastic range. Firstly, the averaging procedures adopted in this work

to determine macroscopic stress and strain tensor for a particulate sample has been de-

scribed. Next, the constitutive relationship between microscopic material parameters and

macroscopic elastic parameters obtained via averaging procedures has been established

using the dimensionless analysis. Further on, constitutive parameters based on Voigt

hypothesis has been described for analytical verification of the dimensionless relation-

ships. Subsequently, energy balance equations for a discrete particle assembly has been

framed, which provides an additional method to verify the DDEM. First a simple test case

namely, a rectangular configuration with simple cubic particle arrangement, have been

used to compare the numerical results with derived analytical results and those obtained

with finite element method (FEM) simulations. Upon verification of DDEM model, the

dimensionless constitutive relationships between macroscopic and microscopic elastic pa-

rameters have been established. Next, the constitutive relationships are established for a

more representative packing with particles of non-uniform size distribution. The results

presented within this chapter have been published in [127].

73
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4.1 Macroscopic stress and strain tensor

Macroscopic average stress σ̄ij in the specimen can be calculated by averaging particle

stresses (σp)ij calculated according to Eq. (2.45) in the specimen volume V , cf. [82]:

σ̄ =
1

V

∑
p∈V

Vp(σp)ij . (4.1)

where Vp is the particle volume. Inserting Eq. (2.45) into Eq. (4.1) one gets

σ̄ =
1

2V

∑
p∈V

npc∑
c=1

(
sciF

c
j + F c

i s
c
j

)
, (4.2)

which can be presented in an equivalent form as [73]:

σ̄ =
1

2V

Nc∑
c=1

(
LciF

c
j + F c

i L
c
j

)
, (4.3)

where the summation is over the number of all the contacts Nc in the volume V , and Lci
is the so called branch vector connecting the centres of two particles in the contact c.

The macroscopic strain tensor for the discrete element assembly has been calculated

using the procedure proposed by Bagi [3]. Averaging is performed over a triangular (in

3D tetrahedra would be used) mesh generated over the centres of the particles forming

the specimen. This is a two level averaging procedure. First, a constant strain εkij in all

the triangles are determined using the formula derived from the averaging equation:

εkij =
1

Sk

∫
Sk

εijdS , (4.4)

where Sk is the area of an elementary cell.

Applying the divergence theorem the surface integral in Eq. (4.4) can be transformed

into the line integral ∫
Sk

εijdS =
1

2

∫
Lk

(uinj + niuj)dL , (4.5)

where Lk is the closed boundary of the triangular element, ui – the displacement field

and ni – the unit normal vector outward to the element. The line integral in Eq. (4.5) is

evaluated in terms of nodal displacements and geometric parameters characterizing the

triangular element. The details of this procedure can be found in [3]. Having determined

the strain εkij in each element the average strain tensor in the whole specimen is obtained

by the weighted averaging

ε̄ij =
1

S

∑
k

Skε
k
ij . (4.6)
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4.2 Dimensionless constitutive relationships

A suitable framework for the analysis of micro-macro constitutive relationships in the

DEM is provided by the dimensional analysis [35, 53, 158]. The dimensionless functional

relationships for the Young’s modulus E and the Poisson’s ratio ν in the standard DEM

can be assumed in the following form, cf. [53, 158]:

E = knΦE

(
kt

kn

, n

)
, (4.7)

ν = Φν

(
kt

kn

, n

)
, (4.8)

The elastic constants are assumed to be functions of the ratio of the contact tangential

and normal stiffness kt/kn and the porosity n. In the deformable DEM two additional

parameters, namely, the particle Poisson’s ratio νp and the particle Young’s modulus Ep
should be included in the dimensional analysis. Now, the dimensionless relationships can

be written as follows:

E = knΦE

(
kt

kn

,
kn

Ep
, νp, n

)
, (4.9)

ν = Φν

(
kt

kn

,
kn

Ep
, νp, n

)
, (4.10)

The specific form of the relationships (4.9) and (4.10) will be obtained further on by

performing numerical simulations of the unconfined uniaxial compression test.

Elastic properties can be defined alternatively in terms of the bulk and shear moduli,

K and G, respectively, related to the Poisson’s ratio ν and the Young’s modulus E by

K =
E

3(1− 2ν)
, (4.11)

G =
E

2(1 + ν)
. (4.12)

The respective dimensionless relationships for the bulk and shear moduli can be written

analogously to Eqs. (4.9) and (4.10) as follows

K = knΦK

(
kt

kn

,
kn

Ep
, νp, n

)
, (4.13)

G = knΦG

(
kt

kn

,
kn

Ep
, νp, n

)
, (4.14)

The new formulation is expected to manifest its advantages in the enhancement of the

Poisson’s effect, therefore the results will be presented mainly in terms of the Poisson’s

ratio ν and the Young’s modulus E, however, the consistency of the elastic constants
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will be verified for selected cases by a comparison of the bulk and shear moduli, K and

G, obtained from the relationships (4.9) and (4.10) by means of Eqs. (4.12) and (4.11)

with the relationships (4.13) and (4.14) determined directly by simulation of the biaxial

isotropic compression and shear tests.

4.3 Macroscopic constitutive parameters based on the
Voigt hypothesis

Using the uniform strain Voigt’s hypothesis for the assembly of cylindrical discs of

the same size and same material properties with isotropic packing structure the analytical

formulae for the elastic moduli can be obtained in the following form [8, 79]:

E=
4NcR

2kn
V

· kn + kt
3kn + kt

(4.15)

ν=
kn − kt
3kn + kt

(4.16)

K=
NcR

2

V
kn (4.17)

G=
NcR

2(kn + kt)

2V
(4.18)

where Nc is the total number of inter-particle contacts in the volume V , R is the particle

radius, kn and kt are the contact stiffness in the normal and tangential direction, respec-

tively. The relationships (4.15)–(4.18) will be used to verify respective dimensionless

relationships obtained numerically by means of the standard DEM.

4.4 Micro-macro relationships for DDEM model with
regular configuration

An unconfined uniaxial compression of a rectangular specimen discretized with

bonded discs as it is shown in Fig. 4.1a has been simulated using the standard DEM

and DDEM formulation. It has been assumed that the discrete model represents an elastic

solid material. The rectangular sample contained 180 (9 by 20) disc elements each of

radius R = 1 mm, resulting in a total height H = 40 mm and a width A = 18 mm.

Microscopic properties are as follows: density ρ = 2000 kg/m3, normal contact stiffness

kn = 7 · 1010 N/m. The problem has been investigated for different values of the particle

Poisson’s ratio νp and the particle Young’s modulus Ep. A comparison with the FEM

model (Fig. 4.1b) for an equivalent continuous body is also provided in order to ver-

ify the original formulation of the discrete element methods with deformable particles.
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a) b)

Figure 4.1. Unconfined uniaxial compression of a rectangular specimen – a) DEM model

b) equivalent FEM model.

Additionally, comparisons are made with an analytical solution of a quasistatic problem

obtained on the basis of the theoretical analysis presented in Sec. 2.8.

In simulations, the sample has been uniaxially compressed under a uniform load rep-

resented by equal forces applied at the particles in the top and bottom row as shown in

Fig. 4.1a. The particles in the middle column have been constrained horizontally to avoid

any buckling effects. The loading has been applied by increasing each force linearly from

0 to 10 kN during 0.1 ms and then kept constant during 0.05 ms. The total maximum

force f of 90 kN has been achieved.

Figure 4.1b shows a 2D FEM model of an equivalent continuous body (a bar) with

the same dimensions as those of the standard DEM model, H = 40 mm by A = 18 mm.

A regular mesh of 9 by 20 elements is used to discretize the continuous body. Taking

porosity of the DEM model into account the equivalent density for the FEM model is

ρFEM = 1570.8 kg/m3. The total load of 90 kN distributed over an area of 0.018 m2 in

DEM model is applied in terms of pressure 5 MPa on both the ends in the FEM model.

The FEM simulations have been performed using the ANSYS software.

Figure 4.2 shows the results of the simulations for the standard DEM and equivalent

FEM models. The specimen response has been characterized by the average axial strain

εyy evaluated as the ratio ∆H/H , where ∆H is the change of the sample height. The

axial strain has been plotted as a function of time for the undamped and damped models.

The solution without damping is characterized by vibrations which are attenuated when
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Figure 4.2. Axial strain as a function of time for undamped and damped models – com-

parison of the standard DEM solution with the equivalent FEM solution.

adequate damping is introduced. Different damping values have been tried in order to

find the damping which ensures quasistatic loading conditions and a linear response. The

standard DEM damped solution presented in Fig. 4.2 has been obtained with the damping

coefficient ξn = 5. The damping coefficient ξn introduced in Eq. (2.35) defines the

damping parameter cn with respect to the critical damping ccr
n for a pair of particles given

by Eq. (2.37). The applied damping allows obtaining the steady state solution. The axial

deformation corresponding to the steady state solution in Fig. 4.2 agrees very well with

the theoretical prediction based on the methodology presented above for obtaining the

analytical solution of the quasistatic problem.

Figure 4.3 shows the results obtained with the standard DEM formulation in the form

of the contours of displacements along the y and x axes at the final stage. It can be

seen that all the elements have zero x displacements. This means that the macroscopic

effective Poisson’s ratio is zero in this model under the loading along the y axis. The zero

Poisson’s ratio has been assumed for the FEM model equivalent to the standard DEM

model. The equivalent Young’s modulus assumed for the FEM model has been evaluated

as the ratio

EFEM = EDEM =
∆σyy
∆εyy

(4.19)

where the stress and strain increments

∆σyy =
∆f

AL
, ∆εyy =

∆H

H
(4.20)
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a) b)

Figure 4.3. Simulation results obtained with the damped model using the standard DEM

formulation – contours of displacements (in meters) along: a) the y-axis, b) the x-axis at

t = 0.15 ms.

have been calculated for the range of the load producing a linear response, namely from

0.4 to 0.8 of the maximum load f = 90 kN. The stresses have been obtained taking

A = 0.018 m and L = 1 m. The equivalent Young’s modulus obtained is EDEM =

69.995 GPa. The FEM simulations have been performed without and with damping. The

damping in the FEM code is of Rayleigh type:

C = αM + βK (4.21)

where C is the damping matrix, M – the mass matrix, K – the stiffness matrix and α

and β – Rayleigh damping coefficients. The response obtained with the FEM model

has been compared with the standard DEM solution in Fig. 4.2. A perfect agreement

between the two numerical models for both the undamped and damped solutions can be

easily noticed. The damped FEM solution has been obtained with the Rayleigh damping

coefficients α = 0 and β = 2 · 10−6 s. The damping coefficients ensuring quasistatic

response in the DEM and FEM models have been used in further simulations.

Further simulations have comprised selected cases of the DDEM models with dif-

ferent particle elastic properties and the FEM models with the properties equivalent to

the analysed DDEM models. Figure 4.4 shows the results of the simulations for the un-

damped and damped DDEM models with the elastic particle properties defined by the

Young’s modulus Ep = 2·1011 Pa and Poisson’s ratio νp = 0.35. The solution with zero

damping is characterized by vibrations with a period longer than that of the standard

DEM model in Fig. 4.2 which indicates a lower stiffnes. This is also confirmed by a

higher axial strain achieved under the same loading. The response of the damped model
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Figure 4.4. Axial strain as a function of time for undamped and damped models – com-

parison of the DDEM solution (elastic properties: νp = 0.35, Ep = 2 ·1011 Pa) with the

equivalent FEM solution.

is close to linear which indicates that the quasistatic conditions have been reproduced

correctly. The steady solution for the damped model is in a very good agreement with the

theoretical prediction according to the analytical solution presented before. Figures 4.5a

and 4.5b present the contours of x and y displacements at the steady state obtained for

this case. One can notice non-zero displacements in the x direction which implies a non-

zero Poisson’s ratio. This shows that the new formulation allows capturing the Poisson’s

effect even in such configuration of discs. This confirms new capabilities of the DDEM

formulation with respect to the standard DEM.

The results obtained with the DDEM model have been used to determine the equiva-

lent effective macroscopic properties of the FEM model. The effective Young’s modulus

EFEM has been evaluated according to Eqs. (4.19) and (4.20). The effective Poisson’s

ratio has been determined as

νDDEM = νFEM = −∆εxx
∆εyy

(4.22)

where ∆εxx has been determined from the lateral displacements of the particles on the

sides of the sample. The results of the FEM simulations with the elastic constants

EFEM = 50.32 GPa and νFEM = 0.151 evaluated in this way have been shown in

Figs. 4.4 and 4.5c, d. The response of the equivalent FEM model agrees perfectly with

the DDEM solution presented in Fig. 4.4 for both the undamped and damped case.
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a) b)

c) d)

Figure 4.5. Displacement contours Simulation results obtained with: new DEM formula-

tion (Ep = 2 · 1011 Pa, νp = 0.35, kn = 7 · 1010 N/m, ξn = 5) – contours of displacements

(in meters) along: a) the y-axis, b) the x-axis at t = 0.15 ms; equivalent FEM model

(EFEM = 50.32GPa, νFEM = 0.151, β = 2 · 10−6 s) at t = 0.15 ms.

The quasistatic response of the DDEM has been investigated and compared with the

FEM solution for other particle properties as well. Figure 4.6 compares the response of

the specimen for different values of the particle Young’s modulus Ep = 2·1011 N/m2 ,

4·1011 N/m2 , 8·1011 N/m2 (kn/Ep = 0.350, 0.175, 0.0875) with a fixed particle Poisson’s

ratio νp = 0.35. The response obtained with the standard DEM has also been shown. The

axial deformation obtained numerically at the maximum loading again agrees very well

with the theoretical predictions.
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Figure 4.6. Axial strain as a function of time for different particle Young’s modulus.

Comparison between standard DEM solution and FEM solution (kn = 7·1010 N/m, νp =

0.35, damping ratio ξ = 5.0).

Table 4.1. Effective elastic properties evaluated from DDEM simulations (kn = 7·1010

N/m, νp = 0.35, damping ratio ξ = 5.0).

kn/Ep EDDEM (Pa) νDDEM

0.087 6.377·1010 0.048

0.175 5.855·1010 0.088

0.350 5.032·1010 0.151

The effective elastic properties evaluated from DDEM simulations, given in Table 4.1,

have been used in respective equivalent FEM models. The results of the FEM simulations

have been presented by the plots in Fig. 4.6. A very good agreement of the DDEM

and equivalent FEM solutions confirms a good and expected performance of the new

formulation of the DEM.

Figure 4.6 shows the effect of the particle properties on the effective stiffness. The

lower the particle Young’s modulus Ep (or equivalently, the higher the ratio kn/Ep) the

lower the global stiffness in the DDEM. The dependence of the effective elastic properties

on the microscopic parameters obtained by numerical DDEM simulations for different

combinations of the particle properties is shown in Fig. 4.7. Figure 4.7a presents the

macroscopic Young’s modulus in the DDEM normalized with respect to the macroscopic
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Young’s modulus in the standard DEM as functions of the ratio kn/Ep for different values

of the particle Poisson’s ratio νp. A similar dependence for the macroscopic Poisson’s

ratio in the DDEM is shown in Fig. 4.7b. It can be noticed that the influence of the

particle Poisson’s ratio νp on macroscopic Poisson’s ratio νDDEM is much greater and

much more important than its influence on the global stiffness expressed in terms of the

Young’s modulus EDDEM . The numerical relationships plotted in Fig. 4.7 have been

compared with the analytical solutions obtained on the basis of the theoretical analysis

presented in Sec. 2.8. Global Young’s modulus EDDEM is determined by rewriting Eq.

2.65 as,

f

2RL
=
k

L

h

2R
(4.23)

where R – the particle radius, L – the depth of the particle (L = 1 m). Recognising the

Hooke’s law in Eq. (4.23) with the macroscopic stress and strain given by

σyy =
f

2RL
(4.24)

εyy =
h

2R
(4.25)

yields,

EDDEM =
k

L
(4.26)

macroscopic Poisson’s ratio is given as the negative ratio of the transverse (lateral) and

longitudinal (axial) macroscopic strains. Evaluating lateral and axial strains for the given

problem corresponding to Eqs. (2.70), (2.74) and using relationships (2.67), (2.69),

(2.72), gives following relationship upon algebraic transformation,

νDDEM =
4νp(1 + νp)kn

4(1− ν2
p)kn + πEpL

. (4.27)

The analytical and numerical values coincide very well. The analytical results ob-

tained for the particle Poisson’s ratio νp = 0.35 and different values of the particle Young’s

modulus Ep are also shown in Table 4.2. It can be verified that the analytical values of

the effective Young’s modulus and the effective Poisson’s ration given in Table 4.2 agree

very well with numerical estimations of these parameters presented in Table 4.1.
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Table 4.2. Analytical evaluation of macroscopic elastic parameters for a fixed particle

Poisson’s ratio νp = 0.35 and normal contact stiffness, kn = 7.0 · 1010 N/m.

kn/Ep kp (N/m) ∆H theo (m) ∆Hsim(m) νDDEM EDDEM (GPa) EDDEM/EDEM

0.087 1.432 · 1012 2.9796 · 10−6 2.9796 · 10−6 0.048 63.77 0.911

0.175 7.160 · 1011 3.2450 · 10−6 3.2450 · 10−6 0.088 58.55 0.836

0.350 3.580 · 1011 3.7757 · 10−6 3.7757 · 10−6 0.151 50.32 0.719

The quasistatic numerical solutions for the cases presented in Tables 4.1 and 4.2 have

been taken for approximate estimation of energy balance discussed in Sec. 2.7. Assuming

quasistatic conditions, neglecting the kinetic energy and dissipation, the work done by

external force Wext should be equal to the sum of the elastic energy stored in the contacts

Eel,c and strain energy of the deformed particles Eel,p.

Wext = Eel,c + Eel,p . (4.28)

Total work due to the external force increasing linearly from 0 to F and inducing the

deformation ∆H can be calculated as:

Wext =
1

2
f∆H (4.29)

The calculations have been performed for the final force value f = 90 kN (10 kN in

each column) and the final deformation ∆H at t = 0.15 ms. The energy stored in the

contacts Eel,c has been calculated according to Eq. (2.59) and the strain energy stored in

the particles – according to Eq. (2.61). Particle average strains and stresses have been

calculated according to Eqs. (2.73) and (2.69), respectively. The contact forces have been

evaluated assuming that the forces transmitted through the particles in series are equal

and they are in equilibrium with the total external load.

The results of the energy balance estimations have been given in Table 4.3. It can be

seen that the condition of energy balance assumed in Eq. (4.28) is quite well satisfied,

which is another evidence of the correctness of the DDEM formulation and implemented

algorithm. It is worth noticing that the energy stored at the contacts is the same in all the

three cases, since the contact forces and contact stiffness are the same. The strain energy

due to particle deformation changes – it increases with an increase of the ratio kn/Ep
(which means an increase of particle compliance). In case of rigid particles (kn/Ep → 0)

the strain energy in the particles would disappear. The standard DEM (with rigid particles

and deformable contact) would be recovered within the DDEM formulation.
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Table 4.3. Energy balance estimation for fixed particle Poisson’s ratio νp = 0.35 and

different kn/Ep ratios (∆H presented here is taken from the simulations).

kn/Ep ∆H (m) F (kN) Wext (J) Eel,c (J) Eel,p (J) Eel,c + Eel,p (J)

0.087 2.9796 · 10−6 90.0 0.1341 0.1221 0.0126 0.1347

0.175 3.2450 · 10−6 90.0 0.1460 0.1221 0.0251 0.1472

0.350 3.7757 · 10−6 90.0 0.1699 0.1221 0.0503 0.1724

4.5 Micro-macro relationships for DDEM model with
irregular configuration

A regular configuration of equal particles yields a model with direction dependent

properties. The discrete element method when applied to isotropic materials requires ir-

regular configurations of non-uniform size particles. Performance of the deformable dis-

crete element method for such 2D models has been studied here. An unconfined uniaxial

compression of a square sample 50 mm by 50 mm shown in Fig. 4.8 has been analysed.

The 2D system comprised 4979 disc shaped discrete elements of nonuniform size with

an average radius of 0.370 mm, the maximum and minimum radii being 0.652 mm and

0.218 mm, respectively. The particle assembly has been densely packed with the average

coordination number 5.8. The loading has been introduced by the flat plates moving with

a constant velocity of 5 mm/s and compressing the specimen through the contact with its

top and bottom sides.

Figure 4.8. 2D model – irregular configuration of nonuniform size particles.
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Figure 4.9. Contact force vs. time curve for the unconfined uniaxial compression of an

irregular specimen using particle Young’s moduli Ep = 1.05 · 1011 Pa (kn/Ep = 0.667)

and Ep = 1.06 · 1011 Pa (kn/Ep = 0.660), particle Poisson’s ratio νp = 0.45.

The microscopic parameters used in these simulations have been the following: par-

ticle density ρ = 2000 kg/ m3, normal contact stiffness kn = 7 · 1010 N/m. A non-viscous

damping defined by Eqs. (2.7) and (2.8) has been used assuming the damping factors

αt = αr = 0.2. Firstly, the convergence and stability of the irregular configuration have

been examined following the procedure introduced in Ch.3. Subsequently, numerical re-

sults are presented with the main objective to determine micro–macro relationships for

the model parameters.

Convergence limit and its predictability using analytical relationship given by Eqs.

(3.43) and (3.78) has been investigated for irregular configuration cf. Fig.4.8. The effect

of the deformability of particles on the time step limit has also been studied similarly as

for the regular configurations. In addition to the aforementioned microscopic parame-

ters, the tangential interaction has not been included in the interaction model. Cohesive

bonds with very high strength φn = 1 · 1030 N have been imposed on contacting pairs in

order to prevent multiple bond breaking during simulation and hence facilitating precise

determination of convergence limit.

Stability of the DDEM has been estimated analysing the response of the sample as-

suming a fixed value of the Poisson’s ratio and changing the Young’s modulus of par-

ticles. Comparison of contact force evolution in time has been plotted in Fig. 4.9 for

particle Young moduli, Ep = 1.05 · 1011 Pa and Ep = 1.06 · 1011 Pa for a particle Pois-

son’s ratio νp = 0.45. It can be deduced from this plot that the particle Young’s modulus

Ep = 1.06 · 1011 Pa leads to a stable simulation in contrary to the particle Young’s mod-

ulus Ep = 1.05 · 1011 Pa, so Ep = 1.06 · 1011 Pa (kn/Ep = 0.660) can be considered as

the stability limit for νp = 0.45. In the same way, maximum values of the ratio kn/Ep
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ensuring a stable solution have been determined for other values of the particle Poisson’s

ratio. The results have been presented in Table. 4.4.

Table 4.4. Numerical results for the irregular configuration with different particle Pois-

son’s ratio νp and a constant normal contact stiffness kn = 7 · 1010 N/m

νp Ep (Pa) kn/Ep

(numerical)

0.05 1.32 · 1011 0.530

0.10 1.24 · 1011 0.565

0.15 1.14 · 1011 0.614

0.20 1.05 · 1011 0.667

0.25 9.89 · 1010 0.708

0.30 9.76 · 1010 0.717

0.35 9.92 · 1010 0.706

0.40 1.02 · 1011 0.686

0.45 1.06 · 1011 0.660

The numerical stability limit for the irregular configuration has been compared with

the convergence limit for the regular HCP configuration given by Eq. (3.78) in Fig. 4.10.

It can be observed that the convergence limit of an irregular configuration shows a be-

haviour similar to that of an HCP configuration. Since the convergence limit for an ir-

regular discrete sample cannot be determined analytically, convergence limit of an HCP

sample allows to define an upper bound of the convergence and stability limit for a DDEM

model.

The critical time step for irregular configuration has been obtained numerically using

the standard DEM (cf. Fig. 4.11) and deformable DEM model (cf. Fig.4.12). The

stable evolution of contact force-time curves is obtained for ∆t = 6.0993 · 10−8 s and

∆t = 6.0141 · 10−8 s for standard DEM and deformable DEM, respectively, which is a

difference of ≈ 1.42 %. Therefore, it can be deduced that in this case, the critical time

step practically remains the same for both standard DEM and deformable DEM model.

It is convenient to estimate the stable time step in terms of the coefficient α defined by

Eq. (2.19). Taking the critical time step ∆tcr = 6.0993 · 10−8 s, the minimum mass in the

assemblymmin = 3.0132 ·10−4 kg for the smallest particle of radius rmin = 2.1899 ·10−4

m and the normal contact stiffness kn = 7 · 1010 N/m,

αcr = ∆tcr/

√
mmin

kmax

= 6.0993 · 10−8/6.5609 · 10−8 = 0.929 (4.30)
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N/m, kt/kn = 0).

It should be remarked that in practice, the critical time step is estimated with a certain

safety factor, therefore a smaller value of the parameter α should be used in the evaluation

of a stable time step.
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Figure 4.11. Contact force vs. time curve for the unconfined uniaxial compression of an

irregular sample using time step ∆t = 6.0993 · 10−08 s and 6.1124 · 10−08 s for standard

DEM (SDEM) model.

Micro–Macro relationships for irregular configuration has been determined by using

the simulation setup described earlier. The microscopic parameters used in these sim-

ulations have been the same, except the ratio of tangential to normal contact stiffness,

kt/kn = 0.5, interface strength in the normal and tangential direction. φn = φt = 2.9 ·104
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DEM (DDEM) model. kn = 7 · 1010 N/m, Ep = 2 · 1011 Pa and kt/kn = 0.0.

N and Coulomb friction coefficient µ = 0.83. Deformable model specific parameters have

been: particle Young’s modulus Ep = 2 · 1010 Pa, particle Poisson’s ratio νp = 0.35.

a) b)

Figure 4.13. Failure mode in the simulation of the unconfined uniaxial compression: a)

the standard DEM model, b) the deformable DEM model.

Failure modes obtained using the standard and deformable DEM models are shown

in Figs. 4.13a) and 4.13b), respectively. The corresponding stress–strain diagrams have

been given in Fig. 4.14. The macroscopic stress for this plot has been calculated using

Eq. (4.3) and the strain employing the procedure proposed by Bagi [3] and outlined in

Sec. 4.1. The mean stresses and strains have been chosen as being suitable to evaluate

the elastic moduli. In principle, these measures are not appropriate for the fractured

specimens, therefore the stress–strain curves have been constructed in the precritical and

small post-critical ranges, and actually, the precritical parts of the curves have been only

used in the calculation of the elastic moduli.
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Figure 4.14. Comparison of the stress-strain curves for the standard and deformable

DEM.

Comparison of the failure modes in Fig. 4.13 and stress–strain diagrams in Fig. 4.14

indicates that the deformable model reproduces a brittle failure, similarly as the standard

DEM. The peak value of the stress has changed only slightly. A visible difference be-

tween the two curves in Fig. 4.14 is in their slope in the elastic range. This confirms

the expected response that the deformability of the particles will allow the modification

in the elastic behaviour of the material model. Further on, a detailed investigation of the

effect of microscopic model parameters on macroscopic elastic properties will be car-

ried out. Relationships between the macroscopic elastic parameters, Young’s modulus E,

Poisson’s ratio ν, and microscopic model parameters will be searched.

The specific form of the relationships (4.9) and (4.10) have been obtained by perform-

ing numerical simulations of the unconfined uniaxial compression test defined above for

different combinations of the dimensionless parameters: kt/kn, kn/Ep, νp. The macro-

scopic Young’s modulus has been determined from Eq. (4.19) taking the stress range

from 0.2 to 0.5 of the maximum stress level in a considered simulation. The macroscopic

Poisson’s ratio has been calculated as

ν = −∆εxx
∆εyy

(4.31)

where the increments of the strain components correspond to the range used in the de-

termination of the Young’s modulus. The micro-macro relationships for the deformable

DEM have been compared with the relationships (4.7) and (4.8) determined for the stan-

dard DEM model.

The simulations have been performed taking the ratio kt/kn in the range from 0 to 1,

the particle Poisson’s ratio νp from 0 to 0.35 and the ratio kn/Ep has been assumed in

the range from 0 to 0.35. Selected cases have been run additionally for νp = 0.45 and

kt/kn = 1.25.
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The results of the numerical simulations aiming to determine the micro-macro rela-

tionships for the DDEM have been given in Figs. 4.15–4.18. The relationships (4.9)

involving the Young’s modulus have been presented in Figs. 4.15 and 4.16. The relation-

ships (4.10) defining the macroscopic Poisson’s ratio have been plotted in Figs. 4.17 and

4.18.

The results of the DDEM have been confronted with the predictions of the standard

DEM, and these, in turn, have been compared with the analytical estimations given by

Eqs. (4.15) and (4.16) based on the Voigt hypothesis. Evaluation of the Young’s modulus

according to Eq. (4.15) using the following parameters characterizing the particle assem-

bly: number of interparticle contactsNc = 14435, volume of the sample (RVE) V = 0.05

m ×0.05 m ×1 m, normal contact stiffness kn = 7·1010 N/m, average square radius

R2 =
1

Np

Np∑
i=1

R2
i = 1.49 · 10−7 m2 (4.32)

where the number of particles Np = 4979. Figures 4.15–4.18 demonstrate a very good

agreement of the numerical results obtained with the DEM models and analytical predic-

tions based on the Voigt hypothesis, which confirms a correct performance of the models

and DEM implementation.

The macroscopic Young’s modulus E normalized with respect to the contact stiffness

kn has been plotted as a function of the stiffness ratio kt/kn for different kn/Ep and for

fixed values of the particle Poisson’s ratio νp in Fig. 4.15, and as a function of the stiffness

ratio kt/kn and the particle Poisson’s ratio νp for fixed values of the ratio kn/Ep in Fig.

4.16. Figures 4.15 and 4.16 allow to analyse the effect of the microscopic parameters on

the macroscopic stiffness. The conclusions which can be drawn are in principle similar

to the observations made in the previous section for the regular configuration of discrete

elements. The macroscopic stiffness in the DDEM is lower than in the standard DEM.

The lower the particle Young’s modulus Ep (the higher the ratio kn/Ep) is the lower the

macroscopic stiffness represented by the dimensionless parameter E/kn. The influence

of the particle Poisson’s ratio νp on the macroscopic stiffness is smaller than that of the

particle Young’s modulus Ep. If the ratio kn/Ep is close to zero the DDEM solution gets

close to the standard DEM solution.

The macroscopic Poisson’s ratio as a function of the stiffness ratios kt/kn for different

values of the particle Poisson’s ratio νp for the fixed ratio kn/Ep = 0.35 has been plotted

in Fig. 4.17. Figure 4.18 gives the macroscopic Poisson’s ratio as a function of the

stiffness ratio kt/kn for different ratios kn/Ep and fixed values of the particle Poisson’s

ratio νp. For comparison, the numerical results obtained with the standard DEM and

analytical predictions based on the Voigt hypothesis according to Eq. (4.16) are given in

Figs. 4.17 and 4.18.
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Figure 4.15. Micro-macro relationships between ratio E/kn and stiffness ratio kt/kn for

different kn/Ep and fixed νp: a) νp = 0.05, b) νp = 0.25, c) νp = 0.35.
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When the tangential stiffness is greater than the normal stiffness (kt/kn > 1) Eq.

(4.16) predicts a negative Poisson’s ratio [9]. In order to check this effect numerically

the range of the ratio kt/kn has been extended to 1.25 for the case shown in Fig. 4.17

(kn/Ep = 0.35). It can be observed in Fig. 4.17 that the Poisson’s ratio obtained using

the standard DEM model coincides very well with the theoretical prediction including the

range kt/kn > 1 with the negative value of the Poisson’s ratio.

The plots in Figs. 4.17 and 4.18 demonstrate that the DDEM model allows to modify

the effective macroscopic Poisson’s ratio with respect to the value obtained with the stan-

dard DEM. The curves representing the results from the DDEM simulations are off set

with respect to the curve obtained with the standard DEM. It can also be noticed that the

DDEM can give either a higher or lower value of the Poisson’s ratio than that obtained

with the standard DEM. The curves corresponding to νp > 0.25 lie above the DEM curve,

while those corresponding to νp < 0.25 below. The DDEM model with νp = 0.25 gives

the Poisson’s ratio practically the same as the standard DEM, cf. Fig. 4.18b. Such vari-

ation of the effective macroscopic Poisson’s ratio with a change of the particle Poisson’s

ratio can be explained as follows. The DDEM model introduces two contradictory effects

as far as the Poisson’s ratio is concerned. On one side, the deformability of the particles

with their Poisson’s ratio should increase the overall Poisson’s ratio. On the other side,

the particle deformability decreases the resultant stiffness in the normal direction, cf. Eq.

(2.67), thus increasing the ratio of the tangential and normal contact stiffness. With the

increase of this ratio the global Poisson’s ratio decreases. If the particle Poisson’s ratio
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is small (νp < 0.25), the latter effect dominates, and the macroscopic Poisson’s ratio is

smaller than that from the standard DEM. With the increase of the particle Poisson’s ra-

tio above 0.25 the former effect dominates and it yields an increase of the macroscopic

Poisson’s ratio.

The level of the macroscopic Poisson’s ratio change also depends on the ratio kn/Ep
which is shown in Fig. 4.18. Given a fixed value of the particle Poisson’s ratio νp, the

higher the ratio kn/Ep, the larger is the change of the macroscopic Poisson’s ratio with

respect to that obtained in the standard DEM, cf. Figs. 4.18a and 4.18c.
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Figure 4.17. Micro-macro relationships between the macroscopic Poisson’s ratio ν and

the stiffness ratio kt/kn for different values of the particle Poisson’s ratio νp for the fixed

ratio kn/Ep = 0.35.

Deformation of the specimen at the uniaxial compression test can be decomposed into

two pure deformation modes – an isotropic compression mode and a pure deviatoric (vol-

ume conserving) mode. A superposition of the isotropic compression and pure deviatoric

deformation modes in granular materials in case of large strains is associated with a de-

velopment of anisotropy [87]. In this work, a relatively small strain of cohesive granular

sample is considered, so an isotropic behaviour is assumed. In order to verify if the pure

deformation modes can be extracted properly from the unconfined uniaxial compression

additional simulations have been performed.

For the specimen with irregular configuration of particles considered above, additional

simulations of the isotropic biaxial compression and pure shear tests have been performed

in order to determine the bulk modulus K and shear modulus G, respectively. Afterwards

the obtained values are compared with the respective moduli, determined from the uncon-
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c) νp = 0.35.



4.5 Micro-macro relationships for DDEM model with
irregular configuration 97

fined uniaxial compression test. The DEM and DDEM simulations have been performed

for different ratios kt/kn. Only one case of the deformable DEM model using particle

Young’s modulus Ep = 2·1011 (kn/Ep = 0.35) and particle Poisson’s ratio νp = 0.35 has

been investigated.

a) b)

Figure 4.19. Displacement contours for irregular configuration: a) under isotropic mode

b) under deviatoric mode.

Figure 4.19 shows the displacement contours for the biaxial isotropic compression

and pure shear test. The isotropic compression (Figure 4.19a) has been introduced by 4

rigid plates being in contact with the sample and compressing the sample biaxially with

prescribed velocity. The pure shear deformation has been obtained by the appropriate

kinematic constraints applied to the boundary particles: the particles at the bottom have

been fixed, a certain horizontal velocity has been prescribed to the particles at the top side,

the particles at the left and right sides have been prescribed the horizontal velocity with

the value varying linearly along the sides from zero at the bottom to the value prescribed

at the top (as it is presented schematically in Figure 4.19b). The zero vertical velocity for

all the boundary nodes has been imposed. The rotations of the boundary particles have

not been constrained.

The bulk and shear moduli have been evaluated using the macroscopic stresses calcu-

lated according to Eq. (4.3) and the strain evaluated employing the procedure proposed by

Bagi presented in Sec. 4.1. The bulk modulus K has been evaluated from the following

relationship:

K =
∆σh
∆εvol

, (4.33)

where σh is the hydrostatic stress

σh =
σxx + σyy

2
(4.34)

and εvol is the volumetric strain

εvol = εxx + εyy . (4.35)
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The shear modulus G has been calculated from the following relationship:

G =
∆σxy
2∆εxy

. (4.36)

The results for the bulk and shear moduli, K and G have been presented in the form

of dimensionless relationships K/kn vs. kt/kn and G/kn vs. kt/kn in Figures 4.20a) and

4.20b), respectively.
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Figure 4.20. Normal contact stiffness normalized macroscopic elastic properties as a

function of ratio kt/kn : a) bulk modulus b) shear modulus.

The dimensionless relationships from the biaxial isotropic compression and pure shear

tests have been compared with the results obtained from the unconfined uniaxial compres-

sion tests. The Young’s modulus E and Poisson’s ratio ν from the unconfined uniaxial

compression tests have been used to calculate the bulk and shear moduli by means of

Eqs. (4.12) and (4.11). Figures 4.20a and 4.20b show that the bulk and shear moduli

determined in different ways agree very well. Additionally, for the standard DEM, a

comparison with the theoretical predictions according to Eqs. (4.17) and (4.18) based

on the Voigt’s kinematic hypothesis is provided in both the cases. Again, a very good

agreement of the DEM results with Voigt’s hypothesis can be observed. Similarly, as for

the Young’s modulus and Poisson’s ratio the volume averaged square radius given by Eq.

(4.32) has been used in Eqs. (4.17) and (4.18).

The main result of these comparisons is the demonstration that the isotropic compres-

sion and pure shear modes can be extracted from the unconfined uniaxial compression

tests. Nevertheless, the fact that the uniaxial compression case actually comprises the

other two compression modes viz. isotropic (ISO) and deviatoric (DEV), has been ver-

ified for the model by comparing bulk modulus and shear modulus of an unconfined

uniaxial case with that of isotropic (ISO) compression and deviatoric (DEV) compression

respectively.
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Summary

The theoretical basis for the constitutive relationship between microscopic and macro-

scopic elastic parameters has been discussed. A dimensionless framework for the consti-

tutive relationships developed here has been used to compare the DDEM model with

standard DEM model. It has been confirmed in numerical tests that DDEM algorithm

shows a good performance. The finite element simulations employing equivalent FEM

models as well as available analytical solutions have been used to verify the algorithm.

A quantitative investigation of the relationship between the DDEM model and the FEM

solution has shown that the DDEM model with appropriate parameters can produce a

response equivalent to that obtained in a detailed FEM analysis of deformable particles.

Enhanced modelling capabilities of the DDEM in comparison to the standard DEM

are illustrated through conducted numerical studies. Numerical tests have demonstrated

the ability of the DDEM to broaden the range of the macroscopic Poisson’s ratio in com-

parison to the values achievable in the standard DEM. The induced nonlocal contact in-

teractions due to the change of the shape (global deformation) of the discrete particles

produce the Poisson’s effect even in such configurations when the standard DEM fails to

capture the Poisson’s effect.

The capability to obtain an appropriate Poisson’s ratio is important in different appli-

cations, for instance, in problems of wave propagation. The Poisson’s ratio influences the

ratio of compressional to shear wave speed, which is very important, for instance in ge-

ological applications. The DDEM formulation also affects the elastic Young’s modulus.

The macroscopic elastic stiffness is decreased with respect to the standard DEM. The re-

lationships between the macroscopic effective elastic moduli and microscopic parameters

of the new DEM model determined from a series of numerical simulations can be used in

the calibration of the DDEM model for given macroscopic properties of a material in real

applications of the new model.

The failure and post-failure behaviour has not been analysed here in details, how-

ever, stress-strain curves and fractured specimens do show that the new formulation can

reproduce a brittle failure. In the present work, attention is limited to the elastic range

only in which decohesion does not occur. The 2D formulation of the DDEM, which has

investigated in this thesis, can be easily extended to 3D problems.



Chapter 5

Simulation of wave propagation using
DDEM model

Introduction

The wave propagation characteristics such as wave velocity, which is particularly im-

portant in areas of DEM applications such as geotechnical engineering, are studied in this

chapter for the DDEM model. Underlying relationships between wave velocities and the

elastic parameters of a solid body are outlined first. Subsequently, the current state of the

research on DEM modelling of wave propagation phenomena and its limitation has been

presented. A numerical example has been used in order to examine the wave propagation

properties of DDEM model w.r.t. standard DEM algorithm. A solid elastic bar shaped

sample, discretized with bonded irregular sized disc elements has been used to simulate

propagation of longitudinal and shear waves using standard DEM and DDEM models.

By using selected combinations of microscopic elastic properties, the ratio of longitudi-

nal to shear velocity, which is the direct measure of macroscopic Poisson’s ratio, has been

compared for the standard DEM and DDEM models.

5.1 Fundamentals of wave propagation modelling

Elastic wave propagation is a fundamental phenomenon experienced commonly in

various natural processes such as earthquakes, and engineering problems such as impact

loading of civil structures. In a solid body, elastic waves can propagate in two modes,

in the longitudinal mode where material points move in the direction of propagation and

shear mode where material points move in a plane perpendicular to the direction of propa-

gation. The wave propagation velocities of longitudinal and shear waves in elastic solids,

100
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cl and cs, respectively, depend upon material properties and are given as:

cl =

√
E

ρ
(5.1)

cs =

√
G

ρ
(5.2)

where E is Young’s modulus, G is shear modulus and ρ is bulk density. It must be noted

that longitudinal velocity given by Eq. (5.1) is valid for a bar, which is considered in this

research. The shear modulus can be defined in terms of Young’s modulusE and Poisson’s

ratio ν using the following relationship:

G =
E

2(1 + ν)
(5.3)

The ratio of longitudinal to shear wave velocity, cl/cs is one of the prime parameters

used in characterizing waves, which upon dividing Eq. (5.1) by Eq. (5.2) and using Eq.

(5.3) is given as:

cl
cs

=
√

2(1 + ν) (5.4)

The numerical methods such as the discrete element method (DEM) are commonly

used for analysis of different problems of geomechanics or civil engineering involving

wave propagation. However, not so many published research focus in detail on the re-

lationship between wave velocities and local contact stiffness between the particles. In

[132], Sadd et al. studied the effects of contact laws on wave attenuation and dispersion

behaviour of granular material, whereas in [131] Sadd et al. mainly focused on studying

the influence of material microstructure on wave propagation behaviour. Mouraille and

Luding [98] investigated dispersion and frequency dependence of wave propagation prop-

erties of a regular granular media by exploiting "micro-macro" transition [82] between

particle level interactions and global behaviour. In [108], O’Donovan and O’Sullivan

presented the detailed study of the wave velocities and inter-particle contact stiffness,

however, used an ideal and relatively simple hexagonal assembly of uniform sized par-

ticles only with a stiffness ratio kt/kn = 1. O’Donovan et al. compared experimental

results on a model cubical cell of soil with DEM and continuum analysis in [107] and

hence was limited only for the particular material properties. The more realistic and

practical application of DEM in wave propagation for the problems of geomechanics and

civil engineering would require an investigation of a continuous system discretized with

non-uniform discrete elements. Additionally, it would be necessary to determine the re-

lationship between microscopic particle interactions and macroscopic wave propagation
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Figure 5.1. Typical ranges of values of Poisson’s ratio for some rock types [41].

characteristics for the entire range of stiffness ratio kt/kn in order to establish the suit-

ability of DEM for a wider spectrum of problems. However, due to limitations of DEM

in its current form as described previously, it can not be used to simulate wave propaga-

tion phenomena in materials where maximum Poisson’s ratio can reach unto 0.40, e.g. in

sandstone (cf. Fig.5.1) and even up to 0.45 in Neagha rock formation.

The present chapter investigates the capability of the DDEM model to properly model

the wave propagation phenomenon in solid materials especially in the range of elastic

properties beyond the limitations of standard formulation of DEM and for the entire scope

of the ratio kt/kn from 0 to 1.0. A numerical example has been presented in order to

illustrate the wave propagation phenomenon in an elastic solid discretized with discs (2D

discrete elements). The ratio of longitudinal to shear wave velocity, cl/cs which is related

to the sample’s Poisson ratio through Eq. (5.4) has been evaluated for DDEM model and

compared with that for the standard DEM model.
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5.2 Numerical example

Wave propagation phenomenon has been simulated using a rectangular sample (cf.

Fig. 5.2) discretized with 682 bonded disc elements with parameters shown in Table 5.1.

Simulations are performed for the ratio kt/kn ranging between 0.0 to 1.0. Waves in DEM

sample have been triggered by defining initial displacements of the particles in x and

y directions to generate longitudinal and shear waves respectively using the following

function:

u0
x, u

0
y = A cos

(
2πx

L
+ 1

)
(5.5)

where position of the particles in x-direction is bounded within, 0 ≤ x ≤ L/2 in reference

to the left edge of the sample. An amplitude A = 0.01 mm and wavelength L = 10

mm is assumed. In case of the longitudinal wave, particles at the top and bottom edge

are unconstrained in x and y directions which allows to treat particle assembly as a bar.

Periodic boundary conditions are applied in case of the shear wave on top and bottom

edges. Particles on the right edge are fixed in x - direction.

l

w

fixed in

x-direction

A

input displacements - ux, uy

node A node B

x
0 0

Figure 5.2. A 2D elastic solid discretized with disc elements used to simulate wave

propagation characteristics of DDEM model.
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Table 5.1. Parameters of DEM sample used in numerical studies (cf. Fig.5.2).

symbol parameter value units

Np no. of particles 682 -

Rmax. max. radius 0.145 mm

Rmin. min. radius 0.1 mm

l sample length 16.54 mm

w sample width 2.3 mm

e porosity 0.11 -

ρp particle density 2000.0 kg/m3

ρavg. sample average density 1784.26 kg/m3

kn normal contact stiffness 1·1010 N/m

Figure 5.3 illustrates the longitudinal wave propagation through the DEM sample in

terms of x displacement vectors of particles at different time steps. Peak to peak method

is used on the displacement-time curve to evaluate velocity of the wave between two

nodes with known longitudinal distance between them. For instance, time evolution of x

displacements for two nodes viz. node A and node B (cf. Fig. 5.2) is shown in Fig. 5.4

for standard DEM and DDEM model. Time between peak to peak of displacement time

curve for these nodes is evaluated as, ∆t = 2.021 · 10−6 s and ∆t = 2.283 · 10−6 s for

standard DEM and DDEM respectively.
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a)

b)

c)

d)

Figure 5.3. Longitudinal wave propagation through DEM sample. Snapshots of particle

displacement vectors in x-direction have been captured at time – a) t = 0 s, b) t =

3.305 · 10−6 s, c) t = 6.397 · 10−6 s, d) t = 8.822 · 10−6 s. DDEM parameters –

kn/Ep = 0.18, νp = 0.45.
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Figure 5.4. Time evolution of x-displacement for node A and node B (cf. Fig. 5.2) with

longitudinal wave propagation – the time ∆t taken by wave to travel between chosen

nodes using standard DEM model and deformable DEM is also shown.

Similarly, the shear wave propagation through DEM bar is shown in Fig. 5.5 and in

terms of y displacement vectors of elements. Time evolution of y displacements for the

nodes A and B is presented in Fig. 5.6 for standard DEM and DDEM model, where a

peak to peak time difference, ∆t = 3.543 · 10−6 s and ∆t = 3.591 · 10−6 s is obtained

respectively. Wave velocity for a given kt/kn ratio is determined as an average of wave

velocities obtained through displacement-time curve for 5 pairs of node highlighted (in

green colour) in Fig. 5.2.

Likewise, the averaged longitudinal and shear wave velocity is determined numeri-

cally for discrete samples with different kt/kn ratio varying between 0 and 1.0 using stan-

dard DEM and DDEM models. For DDEM model, selected combinations of microscopic

parameters are chosen to examine their influence on the wave velocities and consequently

on their ratio, cl/cs. In consistency with the dimensionless framework for elastic param-

eters described in Sec. 4.2, two values of ratio kn/Ep = 0.18, 0.35 for a constant value of

particle Poisson’s ratio, νp = 0.45, are combined, resulting in two cases which have been

investigated, compared and shown in Figs. 5.7 and 5.8. The analytical relationship be-

tween the ratios cl/cs and kt/kn for standard DEM is obtained by substituting Eq. (4.16)

in Eq. (5.4).
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a)

b)

c)

d)

Figure 5.5. Shear wave propagation through DEM sample. Snapshots of particle dis-

placement vectors in y-direction have been captured at time – a) t = 0 s, b) t =

6.635 · 10−6 s, c) t = 1.329 · 10−5 s, d) t = 1.615 · 10−5 s. DDEM parameters –

kn/Ep = 0.18, νp = 0.45.
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Figure 5.6. Time evolution of y-displacement for node A and node B (cf. Fig.5.2) with

shear wave propagation – the time ∆t taken by wave to travel between chosen nodes using

standard DEM model and deformable DEM is shown.
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Figure 5.7. Shear wave velocity as a function of ratio kt/kn – comparison between stan-

dard DEM and DDEM models. Poisson’s ratio of particles in DDEM model, νp = 0.45.
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Figure 5.8. Comparison of longitudinal to shear wave velocity ratio, cl/cs for standard

DEM and DDEM model as a function of ratio kt/kn. Different combinations of mi-

croscopic parameters are used for DDEM model: a) 2.857·1010 Pa (kn/Ep = 0.35), b)

5.556·1010 Pa (kn/Ep = 0.18). Poisson’s ratio of particle, νp = 0.45 is used.
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It can be deduced clearly from the results that the wave propagation behaviour of the

DDEM model can greatly depend upon the chosen microscopic parameters. It introduces

a flexibility in tuning the wave propagation behaviour of the discrete assembly by choos-

ing appropriate microscopic parameters. Consequently, DDEM formulation invokes a

capability to address a wider range of practical problems involving wave propagation

using the discrete element framework.

However, the unexpected values of cl/cs in each of the two combinations studied here,

especially for the initial values of kt/kn = 0.0, 0.1 are mainly introduced by the anomalies

in shear wave velocities for these two values of kt/kn, cf. Fig. 5.7b and may be attributed

to the relatively smaller length of the discrete sample used in this study. Additionally, it

must be mentioned that wave propagation in discrete media is also dependent on other

characteristics of discrete assembly such as microstructure or fabric and wavelength of

the input signal. Evidently, a detailed research is required to address these aspects and

may be taken as future work on DDEM. The linear fit indicated on the plots is used to

facilitate the comparison between all the cases and is derived on the basis of data points

except kt/kn = 0.0, 0.1 for each case.

Summary

The wave propagation characteristics of the DDEM model has been illustrated, which

extends its modelling capabilities to the problems related to dynamic processes such as

earthquake or impact loading of civil structures. The non-locality of the contact model in

DDEM formulation manifests its influence in the dynamic problems as well and provides

enhanced flexibility in tuning the DEM model beyond its current limitations. Peak to peak

method on displacement time curves seems to present an appropriate method to determine

wave velocities numerically. An in-depth study can be foreseen to investigate the shear

wave propagation phenomena in the lower values of kt/kn ratio.



Chapter 6

Concluding remarks

6.1 Summary

Proposed thesis has presented a numerical and analytical investigation on the possi-

bility to alleviate the limitations of standard DEM formulation by appropriately including

the deformability of discrete elements in such a manner that its efficiency remains pre-

served. A summary of the main results and achievements of this thesis is presented as

follows:

• A new original formulation of the discrete element method with deformable cylin-

drical particles, called DDEM (deformable discrete element method) has been stud-

ied in this work. Basic idea of DDEM and an outline of its formulation has been

presented. In DDEM, the deformability of the particles has been considered in a

simple way by introducing the concept of the so-called global deformation mode of

the particle. Uniform strains are obtained using the inverse constitutive relationship

from the volume averaged stress expressed in terms of the contact forces acting on

the particle assuming that the deformation of the particles is induced by a uniform

stress field. The contact forces are evaluated as functions of the particle overlap

representing the local deformation mode. The global deformation mode is taken

into account in determination of the particle overlap, and consequently, in evalua-

tion of contact forces. In this way, due to deformation of the particles the contact

in one point influences the contact interaction at other points, which is a feature of

a nonlocal contact model. This marks the difference with respect to the standard

DEM in which the contacts are independent and do not influence one another.

• An accurate computation of the contact forces in the DDEM formulation requires

an iterative solution of the implicit relationship between the contact forces and par-

ticle displacements. For preserving the efficiency of discrete element methodology,
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the new formulation has been adapted to the explicit time integration since em-

ploying iterative solution of an implicit relationship within explicit DEM scheme

would spoil its major advantage of efficient solution at a single time step. A rigor-

ous analysis of the convergence and stability of the DDEM formulation has been

conducted. A numerical framework for proper selection of microscopic elastic pa-

rameters leading to stable solution for a DDEM model has been established. It has

been shown that infact DDEM is robust and stable given that obtained limits are

respected.

• A good performance of the new algorithm has been confirmed in numerical tests.

The algorithm has been verified by comparison with the finite element simulations

employing equivalent FEM models as well as available analytical solutions. A

quantitative investigation of the relationship between the DDEM model and the

FEM solution has shown that the DDEM model with appropriate paramters can

produce a response equivalent to that obtained in a detailed FEM analysis of de-

formable particles.

• Conducted numerical studies have shown enhanced modelling capabilities of the

DDEM in comparison to the standard DEM. Numerical tests have demonstrated

the ability of the DDEM to broaden the range of the macroscopic Poisson’s ratio

in comparison to the values achievable in the standard DEM. The induced nonlocal

contact interactions due to the change of the shape (global deformation) of the

discrete particles produce the Poisson’s effect even in such configurations when the

standard DEM fails to capture the Poisson’s effect.

• The DDEM formulation also affects the elastic Young’s modulus. The macroscopic

elastic stiffness is decreased with respect to the standard DEM. The relationships

between the macroscopic effective elastic moduli and microscopic parameters of

the DDEM model determined from a series of numerical simulations can be used in

its calibration of for given macroscopic properties of a material in real applications.

• In discrete element framework, the capability to obtain a complete representation

of Poisson’s ratio is important in different applications, for instance, in problems of

wave propagation. The Poisson’s ratio influences the ratio of longitudinal to shear

wave speed, which is very important, for instance in geotechnical and civil engi-

neering. Wave propagation phenomena has been simulated and it has been shown

that the DDEM model expands the range of cases for a given practical problem that

can be simulated using DEM.
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6.2 Original contributions of the thesis

The original contributions of the presented study on the background of the current

state of the art presented in Ch.1, are as follows:

• Micro-macro constitutive relationships for discrete element framework with de-

formable particles. Contrary to the other discrete element methods with deformable

elements, in presented thesis a dimensionless scheme has been used to investigate

the significance of particle deformability on macroscopic response of the discrete

system. The dimensionless framework used in this work provides a flexibility and

ease in calibrating the numerical model with experimental results whereas some ex-

perimental data is a pre-requisite in other methods in order to obtain the numerical

results.

• Extent of the validity of DEM model with deformable elements. Unlike other

discrete element models, presented work addresses the model validity for a much

wider range of material parameters rather than experiment specific parameters. In

addition to simple configurations with uniform particle size distribution, the model

in this work has also been verified for a close to realistic discrete sample with non-

uniform particle size distribution. Thus, the validity of the model is examined in a

more general sense in this work as compared to others.

• Convergence and stability analysis of the investigated discrete model. In contrast

to the models found in literature, a rigorous analysis on convergence and stability

of the studied model has been presented in this thesis. A very good estimation

on convergence and stability of the model can be drawn using this analysis, even

prior to simulating a problem using DDEM model. Whereas other models such

as presented in [48], would require considerable simulation experience in order to

evaluate the appropriate parameters leading to converged solution, specially for a

broader particle size distribution.

• Wave propagation characteristics for a discrete particle assembly with non-uniform

sized deformable elements. In presented work the wave propagation phenomenon

is examined for the entire spectrum of normal to tangential contact stiffness ratio.

Both the modes of wave propagation i.e. longitudinal and shear mode have been

studied. Simulation results are obtained in the form of the wave velocity ratio cl/cs,

which is the parameter primarily used in the experimental studies for the problems

of geomechanics. Whereas, in [64] wave propagation has been studied only in

the longitudinal mode using a regular configuration with same sized elements of a

particular material.
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6.3 Suggested future work

Based on the results obtained in the presented thesis, the suggested future research

may include:

• Extension of the DDEM algorithm in 3D domain with elastic spheres. Extension of

the DDEM formulation to the spherical elements would present a natural next step

after having obtained a profound confidence in capabilities of DDEM formulation

using disc elements. For validating the DDEM model using experimental results,

the verification and theoretical validation of 3D DDEM would be pre-requisite.

Benchmark uniaxial compression tests can be used for this purpose in a manner

similar to the 2D case. Micro-macro constitutive relationships for the DDEM model

in the elastic range must be determined. Additionally, the convergence and stability

analysis would also be needed.

• Experimental validation of the DDEM. Validation of the DDEM model could be

possibly performed by checking its performance in the problem of powder com-

paction and elastic wave propagation for instance in the sintered porous material.

The experimental data obtained can then be used to validate performance of the

DDEM model. A series of simulations would be required to compare the numeri-

cal results with experimental ones.

• Adaptation of DDEM formulation for the use of plastic discrete elements. Further

adaptation of DDEM to model discrete assembly of plastic particles can be used to

address problems in the area of powder metallurgy. Suggested path to follow would

be on similar lines as taken in this thesis and previous two points. First, addressing

formulation, implementation and verification using 2D elements and subsequently

using 3D elements and validating the model using laboratory tests.
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