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Abstract

In this work we study a mathematical model proposed in reference [16] to describe processes of
pattern formation in morphogenesis. In fact, the model is dedicated to bone formation phenomena
in vertebrate embryos. The first equation of the considered system does not fall into any of the three
basic classes of partial differential equations. To be more precise, this equation is parabolic in time
and space and hyperbolic with respect to time and a pair of auxiliary independent variables describing
the state of the cells. This fact does not allow us to use, at least straightforwardly, the usual methods
of analysis assigned either to strictly parabolic or strictly hyperbolic problems and, according to our
knowledge based on literature search and private communications, there are no theorems guaranteeing
the existence of such equations even the homogeneous case. Similar difficulties occur when we attempt
to carry out the numerical simulations of the model.

Our study of the problems connected with the analysed system is divided into two parts. In first
part, see Part II, we consider a scalar equation retaining the basic difficulties of the system. We
do not take into account the non-local terms (which are the source of aggregation phenomena), but
concentrate on the existence of solutions to linear equations, homogeneous as well as inhomogenous
ones. We manage to construct the solutions by means of appropriately defined solution kernels, both
in the spatially unbounded as well as bounded case. We prove that the constructed solutions are
unique in appropriate spaces of functions. We can also show the validity of the expressions defining
solutions to homogeneous equations, when the initial data are given in the product form and the
problem can be solved starightforwardly. In second part, see Part III, we deal with the whole system
of three equations describing the analysed system, however we use another approach to prove the
existence of its solutions. The approach consists in assigning to this system a modified version of the
Rothe numerical scheme with time interval discretized into intervals of the lenght ∆t. By deriving a
series of a priori estimates, we are able to prove that the proposed numerical scheme produces, in the
limit ∆t → 0, a solution to the system, in which, similarly to Part II we replace the non-local term
by local functions.
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Part I

Introduction

1 Background and motivation

Morphogenesis is one of the most interesting phenomenon in biology. It is extremely intriguing to

explain, how from an initially homogeneous set of identical cells, spatial patterns composed of differ-

entiated cells, leading to the formation of tissues organs and finally whole organisms can be created.

One of the important example of morphogenetic processes is the vertebrate limb formation. The

formation of the skeletal pattern in vertebrate limbs received particular attention by the researchers.

To be more precise, the mechanism of cellular and molecular interactions during the growth of the

avian forelimb, for example, spatio-temporal differentiation of cartilage, such that the number of bone

primordial changes in time from one (humerus), to two (radius and ulna) and to three (digits) get

significant attention. Here we should keep in mind that the mechanism of chondrogenesis may differ

from species to species, but its main features are common to all the vertebrates. In the experimental

context the bone formation process is most often described for mice or chickens. At the initial stages

of embryo development, limb mesenchymal cells started to condense to so called precartilage. After

then the precartilage mesenchymal cells organize themselves into spot- or rod-like condensations of

nearly uniform size [8, 7, 22], which are then turn into definite cartilage, followed by bone. These

phenomena, together with appropriate geometry of the limb bud have been the subjects of many

biological as well as mathematical models (see e.g. the reviews [33] , [27], [28]). In Appendix B (after

the References), we attach a review by P. Chatterjee, T. Glimm & B. Kazmierczak [5], submitted to

the journal of Mathematical Biosciences, which, among others, relates the considered model to other

models of pattern formation, especially to the one presented in [2]. (However, let us emphasize that [5]

is not a part of this dissertation and has been appended only for completeness.) The nature of the bone

pattern formation, especially in its initial stages is still being not fully recognized and there are different

candidates for proteins responsible for the onset of this process. In an experimental paper [3], Bhat

et al. suggested that two members of a class of glycan-binding proteins CG(chicken galectin)-1A and

CG-8 play a crucial role in cell condensation in the developing chicken limb. During the experiment,

it was observed by Bhat et al. that, in vitro, CG-1A promotes supernumerary condensation formation

and in vivo, it induces digit formation, while CG-8 inhibits both of these processes. Also, CG-1A

induces the expression of the receptor, which binds both of CG-1A and CG-8 (the shared receptor).

In [16], Glimm et al., proposed a mathematical model describing the interactions of CG-1A and

CG-8, based on the above mentioned experiment. It was verified in [16], that the proposed model

reproduces well the experimental findings.

Mathematical formulation of the considered model

The model describes the spatio-temporal evolution of the following quantities:

1. cu1 = cu1 (t,x) - concentration of freely diffusible CG-1A (that is, CG-1A not bound to receptors

on cell membranes),

2. cu8 = cu8 (t,x) - concentration of freely diffusible CG-8 (that is, CG-8 not bound to receptors on

cell membranes)

3. R = R(t,x, c1, c
8
8, c

1
8, `1, `8) - cell density.

Let us note that the cell density R depends on several variables representing various chemical

concentrations besides to time and space, that is to say: c1 - concentration of CG-1A proteins bound

to shared receptors on cell membranes, c88 - concentration of CG-8 proteins bound to CG-8 receptors on

cell membranes, c18 - concentration of CG-8 proteins bound to shared receptors on cell membranes, `1
- concentration of shared receptors (not bound to galectins) on cell membranes and `8 - concentration

of CG-8 receptors (not bound to galectins) on cell membranes.

In [16] the following system of equations is proposed for t ∈ (0, T ), x from some bounded domain

Ω ⊂ IRnΩ , nΩ ≥ 1, (c1, c
8
8, c

1
8, `1, `8) ∈ (0,∞)5:
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∂R

∂t
= DR∇2R︸ ︷︷ ︸

cell diffusion

− ∇ · (RK(R))︸ ︷︷ ︸
cell-cell adhesion

− ∂

∂c1
(αR)− ∂

∂c88
(β8R)− ∂

∂c18
(β1R)︸ ︷︷ ︸

binding/unbinding of galectins to receptors

− ∂

∂`1
[(λ− α− β1)R]− ∂

∂`8
[(δ − β8)R]︸ ︷︷ ︸

change in receptors

(1.1)

∂cu1
∂t

= D1∇2cu1︸ ︷︷ ︸
diffusion

+ν

∫
c88RdP︸ ︷︷ ︸

pos. feedback of CG-8
on prod. of CG-1A

−
∫
αRdP︸ ︷︷ ︸

binding of CG-1A
to its receptor

−π1c
u
1︸ ︷︷ ︸

degradation

(1.2)

∂cu8
∂t

= D8∇2cu8︸ ︷︷ ︸
diffusion

+µ c1RdP︸ ︷︷ ︸
pos. feedback of CG-1A

on prod. of CG-8

−
∫
β1RdP −

∫
β8RdP︸ ︷︷ ︸

binding of CG-8
to receptors

−π8c
u
8︸ ︷︷ ︸

degradation

(1.3)

subject to the following initial and boundary conditions:

R(0,x, c1, c
8
8, c

1
8, `1, `8) = R0(x, c1, c

8
8, c

1
8, `1, `8) (1.4)

∂R

∂n
= 0 for x ∈ ∂Ω, R

∣∣
c1=0

= R
∣∣
c88=0

= R
∣∣
c18=0

= R
∣∣
`1=0

= R
∣∣
`8=0

= 0 (1.5)

∂cu1
∂n

=
∂cu8
∂n

= 0 for x ∈ ∂Ω, (1.6)

where n = n(x) denotes the unit outward vector to the boundary ∂Ω and

∂

∂n
:= n · ∇x .

Remark Let us emphasize that in Eqs. (1.1)-(1.6), the quantities c1, c
8
8, c

1
8, `1, `8 are treated as

independent variables similarly to time t and space x . 2

The cell-cell adhesion term is assumed to have the form:

K = Ψ
(
ν; dist(x, ∂Ω)

)
αK c1

∫ ∫
Dρ0 (x)

c̃1 σ(R(t,x + r, c̃1, c̃
8
8, c̃

1
8,

˜̀
1, ˜̀

8)) dP̃
r

|r|
dr (1.7)

Here αK is a constant which represents the strength of the adhesion, whereas for some ν > 0

sufficiently small, Ψ(ν; ·) is a smooth, monotone cut-off function such that Ψ(ν; y) ≡ 1 for y ≥ 2ν and

Ψ(ν; y) ≡ 0 for y ≤ ν. For example, we can take

Ψ(ν; y) :=



0 y ∈ (0, ν]

Ψ∗(y − ν)

Ψ∗(y − ν) + Ψ∗(2ν − y)
y ∈ (ν, 2ν)

1 y ≥ 2ν ,

(1.8)

where

Ψ∗(s) =


e−

1
s , s > 0

0, s ≤ 0 .

The function σ(R) describes the dependence of the adhesion forces on the cell density.
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We concentrate here only on showing the structure of the proposed equations. The precise expressions

of the terms entering the above system can be found in [16].

Model modifications

As we noted above, the independent variables of system (1.1)-(1.2)-(1.3) are t,x, c1, c
8
8, c

1
8, `1 and

`8. In [16], using time scale separation, a simpler set of equations based on the assumption of fast

receptor binding and unbinding has been proposed.

Let T1 denote the total concentration of CG-1A receptors (whether unbound or bound to CG-1A

or CG-8), i.e.

T1 = c1 + c18 + `1. (1.9)

Similarly, the total concentration of CG-8 receptor can be defined as:

T8 = c88 + `8. (1.10)

Under the assumption that the process of ’galectin binding’ is very fast, we obtain (after non-

dimensionalization procedure) the following system of equations presented in [16]:

∂R

∂t
=dR∇2R−∇ · (RK(R))− ∂

∂T1
(γ̃(cu1 , c

u
8 , T1)R)− ∂

∂T8

(
δ̃(cu8 , T8)R

)
(1.11)

∂cu1
∂t

=∇2cu1 + ν̃

∫ ∞
0

∫ ∞
0

c88RdT1 dT8 − cu1 (1.12)

∂cu8
∂t

=∇2cu8 + µ̃

∫ ∞
0

∫ ∞
0

c1RdT1 dT8 − π̃8 c
u
8 (1.13)

with

c88 = c88(t,x, T8) =
cu8T8

1 + cu8
, c1 = c1(t,x, T1) =

cu1T1

1 + fcu8 + cu1
(1.14)

γ̃(cu1 , c
u
8 , T1) =

 2cu1
cu1T1

cu1 +fcu8 +1 + c̃1
− γ̃2

 T1

cu1 + fcu8 + 1
, δ̃(cu8 , T8) = 1− δ̃2

T8

1 + cu8
(1.15)

K(t,x, T1, R(t; ·)) =

Ψ
(
δ; dist(x, ∂Ω)

)
α̃K c1(t,x, T1)

∫ ∞
0

∫ ∞
0

∫
Dr0 (x)

c1(t, s, T̃1)σ̃(R(t, s, T̃1, T̃8))
s

|s|
ds dT̃1 dT̃8

(1.16)

Here one can either use a linear σ̃(R) = R or logistic form for σ̃ in the expression for the adhesion

flux

σ̃(R) = ησ max

(
1− 1

R̃m

∫ ∞
0

∫ ∞
0

RdT1 dT8, 0

)
, (1.17)

where ησ and R̃m are positive constants. According to (1.5), the following boundary conditions hold:

∂R

∂n
= 0 for x ∈ ∂Ω, R

∣∣
T1=0

= R
∣∣
T8=0

= 0. (1.18)

System (1.11)-(1.13) was analysed numerically in [16]. It was shown that the system is possible to

generate periodic structures.

In system (1.11)-(1.13), the quantity R denotes the concentration of cells at time t and at a given

point in Ω×IR2
T1T8

. Hence the spatial concentration of cells at a given point x ∈ Ω should be calculated

as an integral over the whole IR2
T1T8

, in fact over its non-negative quadrant P18 of this space. That is

to say:

Rx(t,x) =

∫
P18

R(t,x, T1, T8)dT1dT8. (1.19)

3



2 Specificity of the system and the objective of the disserta-

tion

As T1 and T8 are independent variables, then even for given functions cu1 and cu8 , Eq.(1.11) is not

parabolic. Due to the form in which T1 and T8 enter this equation, we can say that it is of mixed

parabolic-hyperbolic type. According to our best knowledge, as well as to the opinions of the leading

specialists in partial differential equations expressed in private communications, there is no general

theory of such equations. Thus we cannot ’a priori’ guarantee the existence and uniqueness of solutions

even locally in time. The situation is complicated by the presence of the non-local adhesion term. It

should be noticed that the simplified system given by Eqs (1.11)-(1.13) inherit qualitatively the same

difficulties as the full system (1.1)-(1.3).

The presence of the hyperbolic terms in Eq.(1.11) can be formally justified by means of the conti-

nuity equation

∂ρ

∂t
+∇x · (ρv) = 0

applied to the flow in the space (T1, T8). Let us start from the continuity equation in the space T1.

Identifying density ρ with R and T1 with the spatial variable x1, and v with
∂T1

∂t
, we can write the

continuity equation in the form:

∂R

∂t
+
∂
(
R∂T1

∂t

)
∂T1

= 0.

As the speed of the flow in the space T1,
∂T1

∂t
can be interpreted as the rate of production of T1.

Likewise, in the space (T1, T8) we can write the continuity equation in the form:

∂R

∂t
+∇T1,T8

·
(
R
(∂T1

∂t
,
∂T8

∂t

))
= 0,

where the components of the vector
(∂T1

∂t
,
∂T8

∂t

)
can be interpreted as the rates of production of T1

and T8 quantities. The validity of these arguments can be seen by noticing the correspondence of the

terms
∂

∂T1
(γ̃(cu1 , c

u
8 , T1)R) and

∂

∂T8

(
δ̃(cu8 , T8)R

)
in the Eq.(1.11) with the terms in the second line

of Eq.(1.1). In Eq.(1.11), these rates are denoted as γ̃ and δ̃ and depend additionally on the quantities

cu1 and cu8 . In a sense, the presence of the hyperbolic like terms is similar as in equations describing

population dynamics models.

The objective of this dissertation is to prove at least local in time existence theorems for system

(1.11)-(1.13). To be more precise, in our study we will concentrate on further simplified forms of

system (1.11)-(1.13). The main simplification consists in the fact that the integral term will be either

ignored (as in Part II) or replaced by a local terms depending on R and its gradient ∇R. This

approach can be justified by the fact that the existence problem of Eq.(1.11) without the hyperbolic

like terms were considered in the papers [9], [10]. Moreover, having the local existence theorems for

the equation without the non-local integral terms ∇ · (RK(R)), we can study the existence of system

(1.11)-(1.13) in its full generality.

The analysis of system (1.11)-(1.13) is divided into two parts, which are distinguished according to

the approaches used. In Part II we confine ourselves to a scalar equation, representing the considered

system with the non-local integral term replaced by a given function of (t, x, T1, T8). Beside to this, to

obtain an initial insight, in sections 3-9, we introduce additional simplification consisting in modelling

the investigated biological object representing the limb bud by the whole space. (Of note, this kind

of approach has been used in the papers [9], [10].) For technical reasons, we also restrict ourselves

to the functions γ̃ and δ̃ depending mainly only on T1 and T8 respectively and independent of t. (In

sections 4 and 12, we allow the function Γ and B to depend also on t.) The advantage of introducing

these simplifying conditions are mainly manifested in the fact that we are able to obtain solutions in

4



explicit form, which can be relatively easy to analyse. In section 11, using section 10, we formulate

the existence results in bounded regions. In section 4, we discuss the uniqueness of solutions Eq.(3.1)

and its inhomogeneous counterpart. In section 12, we establish natural generalizations of the obtained

results to the case of any number of T -variables.

The strong simplifying conditions imposed on equations of system (1.11)-(1.13) are essentially

relaxed in the Rothe method approach applied in Part III. In fact, in Part III we analyse system

(15.2)-(15.4), which differs from (1.11)-(1.13) only by replacement of the non-local (integral) term by

a given function of R and the components of ∇R. For such a system of differential equations, it is

possible to prove the existence of solutions to system (15.2)-(15.4) by showing the convergence of the

solutions to the systems with discretized time as the time step ∆t→ 0. The precise description of the

methods applied in Part III is given in section 15.2 and we will not repeat it here.
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Part II

Linearized scalar equation representing

system (1.11)–(1.13). The Green’s

function approach

3 The case of γ̃ and δ̃ independent of x and t

As we mentioned above, due to the presence in Eq.(1.11) of the convective terms with respect to T1 and

T8, we cannot a priori guarantee the existence and uniqueness of solutions to system (1.11)-(1.13) even

for small times. To get some preliminary insight, we will consider in this section linear scalar equations,

which can be regarded as linearised forms of Eq.(1.11). We start from the simplest equation retaining

the parabolic-hyperbolic features of Eq.(1.11), i.e. for Γ and B being linear functions of T1 and T8

respectively, but then consider more general cases. In subsection 5 we consider weak asymptotics of

solutions to homogeneous equations of the form (3.1) with respect to a scaling parameter λ describing

the magnitude of the functions Γ and B (see subsection 5.1, in particular Lemma 5.5), as well as similar

weak asymptotics of solutions to non-homogeneous equations of the form (3.55) (see subsection 5.2).

Lemma 5.5 can be considered as a partial justification of the reduced system proposed formally in [16]

as a radical approximation of system (1.11)-(1.13). These results are rewritten in section 6, where

weak formulation of Eq.(3.1) has been considered.

It seems that the main result of Part II is the construction of the solution to Eq.(3.1) and its

inhomogeneous version (3.55). This solution corresponds to a convolution of the two semigroups. As

we mentioned above, to establish this fact, we examined a couple of cases, starting from the simplest

possible case and then increasing the generality of the functions Γ and B, but we allowed ourselves

to retain these cases in the dissertation. The second important result concerns the possibility of

arriving at the solution to Eq.(3.55) from a parabolic equation obtained by adding small diffusional

terms with respect to T1 and T8. To be more precise, in section 9 we state that adding diffusional

terms ε2(R,T1T1 +R,T8T8) does not change the properties of the solutions, which tend in the space of

smooth functions to the solutions for ε = 0.

If γ̃ and δ̃ do not depend on cu1 and cu8 , i.e. when γ̃(cu1 , c
u
8 , T1) = Γ(T1), δ̃(cu8 , T8) = B(T8)

and K(R) = 0, then the first equation of system (1.11)-(1.13) becomes separated. Let us suppose

additionally, for convenience, that Ω ≡ IR3. In this case, Eq.(1.11) takes the form

∂R

∂t
= dR∇2R− ∂

∂T1
(Γ(T1)R)− ∂

∂T8
(B(T8)R) (t,x, (T1, T8)) ∈ (0, T ]× IR3 × IR2

+, (3.1)

together with the boundary conditions

R(t,x, T1, T8) = 0 for {(t, x, T1, T8) : T1 = 0 ∨ T8 = 0}.

Above and below we use the following denotations of the positive (non-negative) subsets of the

real axis and the plane:

IR+ := {r ∈ IR : r > 0}, IR+ := {r ∈ IR : r ≥ 0},

and

IR2
+ := {(r1, r8) ∈ IR2 : r1 ≥ 0, r8 ≥ 0}, IR2

+ := {(r1, r8) ∈ IR2 : r1 ≥ 0, r8 ≥ 0}. (3.2)

Before proceeding, let us formulate an obvious conservation law.
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Lemma 3.1. Let the initial data R0(x, T1, T8) satisfy the equality∫
IR3

∫
IR2

+

R0(x, T1, T8)dT1dT8 dx = M0.

Suppose that a solution R : [0, T ]× IR3× IR2
+ to Eq.(3.1) satisfies the conditions R(t, x, T1, T8) ≡ 0 for

T1 = 0 or T8 = 0 and that ∇xR = o(‖x‖−2) as ‖x‖ → ∞ and R = o((|T1|+|T8|)−1) as |T1|+|T8| → ∞.

Then for all t ∈ [0, T ] ∫
IR3

∫
IR2

+

R(t, x, T1, T8)dT1dT8 dx = M0.

Proof Let us note that The proof follows by considering the improper integrals over the set IR3×IR2 3
(x, T1, T8) of the both sides of Eq.(3.1) using Fubini’s and Gauss-Ostrogradskii theorems. In fact, the

integration of the left hand side gives

∂

∂t

∫
IR3

∫
IR2

+

R(t, x, T1, T8)dT1dT8 dx,

whereas the values of the integrals of the right hand sides over the sets B3(0, r) ×
(
B2(0, r) ∩R2

+

)
,

where Bk(0, r) denotes a k=dimensional open ball with centre at 0 and the radius r, tend to 0 as

r →∞. 2

Similarly to Eq.(1.11), Eq.(3.1) is of mixed type. It is parabolic in the direction of spatial variables

x = (x1, x2, x3) and hyperbolic in the direction (T1, T8). To begin with, let us analyse the possible

characteristic curves of Eq.(3.1). Our discussion will be based upon [32, chapter 2]. The principal

part of the operator

P (t, x1, x2, x3, T1, T8;D) := −∂R
∂t

+ dR∇2R− ∂

∂T1
(Γ(T1)R)− ∂

∂T8
(B(T8)R)

(acting on R) is equal to

dR∇2 = dR

(( ∂

∂x1

)2

+

(
∂

∂x2

)2

+

(
∂

∂x3

)2 )
.

Let, at a given point (t, x1, x2, x3, T1, T8) ∈ [0, T ]× IR3 × IR2,

σ(t, x1, x2, x3, T1, T8) = (σt, σx1 , σx2 , σx3 , σT1 , σT8)(t, x1, x2, x3, T1, T8), σ2 = 1,

denote a unit vector orthogonal to a characteristic surface of Eq.(3.1), i.e. a vector tangent locally to

a characteristic curve. The characteristic equation for the operator P reads

dR (σ2
x1

+ σ2
x2

+ σ2
x3

) = 0,

which implies that σxk = 0, k = 1, 2, 3. Thus along each of the characteristic curves the tangent vector

has the form (σt, 0, 0, 0, σT1
, σT8

)). This implies that x = const, hence by Eq.(3.1) we conclude that,

on each of the characteristic curves, the equation

∂R

∂t
= − ∂

∂T1
(Γ(T1)R)− ∂

∂T8
(B(T8)R) (3.3)

is satisfied. It follows that the characteristic curve assigned to a point (x, T10, T80) ∈ IR3× IR2 is given

by the mapping:

[0, T ] 3 t 7→ (t,x, T1(T10, t), T8(T80, t)), (3.4)

where the functions (T1(T10, t), T8(T80, t)) are solutions to the initial ode problem:

dT1

dt
(t) = Γ(T1),

dT8

dt
(t) = B(T8), T1(0) = T10, T8(0) = T80. (3.5)

As the functions Γ(·) and B(·) are independent of x, then the time courses of the functions T1(t) and

T8(t) are also independent of x.
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t

x

T1

T 1
10(0)

x1 x2

T 1
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10(x2)
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Figure 1: The schematic display of characteristic curves determined by system (3.5). To be able to
illustrate properly the features of the problem, we confine ourselves to the case x ∈ IR1 and consider
only T1-variable instead of (T1, T8). Each curve lies in the plane x = const. In the picture, there
are three groups of curves lying in the planes x = 0, x = x1 and x = x2. In the case shown, the
characteristic curves depend only on the initial value for t = 0 and do not depend on x, i.e. the
function Γ depends only on T1 and not on x. In general, the characteristic curves depend also on the
point x as in Fig. 2.

Remark From what we said above, it follows that we can expect two different ways of information

transfer connected with the initial data. Thus, in the x-space, the initial distribution is spread by

diffusion, whereas in the space (T1, T8) it can be transduced along the projection of the characteristic

curves onto the (T1, T8)-space. Motivated by this reasoning, we will construct a solution to an initial

value problem corresponding to Eq.(3.1). This solution is composed of the heat kernel in IR3 and the

curves defined in (3.4). It is given by equality (3.52) in Lemma 3.8 or equality (3.27) in the case of

linear Γ and B. 2

Remark Although, from the biological point of view, T1 and T8 can attain only non-negative values,

so in principle Γ and B are defined only on the non-negative half-lines, for technical reasons, we will

treat the functions Γ and B as defined on the whole real line. This extension can be done, if these

functions are sufficiently smooth. For simplicity the extended functions, will be denoted in the same

way. 2

Assumption 3.2. Assume that Γ(T1) and B(T8) are of Ck+1 class, k ≥ 2, and that for all (T10, T80)

system (3.5) has a unique Ck+1 solution (T1(·), T8(·)) satisfying the initial conditions T1(0) = T10,

T8(0) = T80, defined for all t ≥ 0. Suppose that there exists a positive number ρ18, such that

Γ(T1) ≥ 0 for |T1| ≤ ρ18

B(T8) ≥ 0 for |T8| ≤ ρ18.

Remark Below, for simplicity, the symbol x will be reduced to x. 2
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t

x

T1

T 1
10(0)

x1 x2

T 1
10(x1) T 1

10(x2)

T 2
10(0) T 2

10(x1) T 2
10(x2)

T 3
10(0) T 3

10(x1) T 3
10(x2)

Figure 2: The schematic display of characteristic curves determined by system (3.5). Each curve lies
in the plane x = const. In the picture, there are three groups of curves lying in the planes x = 0,
x = x1 and x = x2. In contrast to Fig. 1, the characteristic curves depend also on x. In this case, the
function Γ depends not only on T1 but also on x.

Assumption 3.3. Assume that for all x ∈ Ω, R0(x, T1, T8) 6≡ 0 only for (T1, T8) from some open

precompact set in IR2
+.

The idea applied in this approach is to construct the solution to the boundary initial value problem

corresponding to Eq.(3.1) by means of the Green’s function of the parabolic part of this equation and

the reversed in time solutions to system (3.5).

We have:

dT1

dt
= Γ(T1), T1(0) = T10. (3.6)

hence ∫ T1

T10

(Γ(s))−1ds = t. (3.7)

Thus for Int(y) :=

∫ y

(·)
(Γ(s))−1ds, we obtain

Int(T1)− Int(T10) = t.

According to Assumption 3.2, given T10 we can uniquely determine the value of T1(T10, t), for any

t ≥ 0. On the other hand, fixing T1 and t ≥ 0, we can ask about the initial condition T10 such that

the value of solution to the initial problem (3.6) at time t is equal to T1. This initial condition will be

denoted below by T10(T1, t).

It follows by differentiation of (3.7) with respect to t, treating T1 as given, that T10(T1, t) is a

solution to the initial value problem:

∂T10

∂t
· (Γ(T10))−1 = −1, T10(T1, 0) = T1
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so
∂T10

∂t
= −Γ(T10), T10(T1, 0) = T1. (3.8)

whereas, for fixed t ≥ 0, by differentiation of (3.7) with respect to T1 we obtain:

∂T10

∂T1
=

Γ(T1)−1

Γ(T10)−1
=

Γ(T10)

Γ(T1)
, (3.9)

which should be written in a detailed form as

∂T10

∂T1
(t) =

Γ(T1)−1

Γ(T10(T1, t))−1
=

Γ(T10(T1, t))

Γ(T1)
. (3.10)

In the similar way, we can prove that

∂T80

∂t
= −B(T80), T80(T8, 0) = T8. (3.11)

and

∂T80

∂T8
(t) =

B(T1)−1

B(T80(T8, t))−1
=
B(T80(T8, t))

B(T8)
. (3.12)

Remark For completeness we derived relation (3.9) explicitly, but it is a special case of [18, Corollary

3.1, Chapter V], according to which

∂T1

∂T10
(t) = exp

(∫ t

0

∂Γ(T1(T10, s))

∂T1
ds
)

= exp
(∫ t

0

∂Γ(T1(T10, s))

∂T1

[
Γ(T1(T10, s)

]−1

dT1

)
hence at T1 = T1(T10, t)

∂T10

∂T1
(t) = exp

(
−
∫ t

0

∂Γ(T1(T10, s))

∂T1
ds
)

= exp
(
−
∫ t

0

∂Γ(T1(T10, s))

∂T1

[
Γ(T1(T10, s)

]−1

dT1

)
.

On the other hand, using [18, Corollary 3.1, Chapter V] to Eq.(3.9), we obtain obvious equivalent

expressions:

∂T10

∂T1
(t) = exp

(
−
∫ t

0

∂Γ(T10(T1, σ))

∂T10
dσ
)

= exp
(
−
∫ t

0

∂Γ(T10(T1, σ))

∂T10

[
− Γ(T10(T1, σ))

]−1

dT10

)
and at T10 = T10(T1, t)

∂T1

∂T10
(t) = exp

(∫ t

0

∂Γ(T10(T1, σ))

∂T10
dσ
)

= exp
(∫ t

0

∂Γ(T10(T1, σ))

∂T10

[
− Γ(T10(T1, σ))

]−1

dT10

)
.

These identities hold also for the function Γ depending on T1 and t. To obtain (3.9) (in the case

of Γ independent explicitly on t), we use the change of variables ds = dT (Γ(T (T10, s)))
−1, by which∫ t

0

∂Γ(T1(T10, s))

∂T1
ds =

∫ T1

T10

∂ log(Γ(T ))

∂T
dT.

2

Similar remarks concerns the relation (3.12).

Having the family of curves determined by system (3.6), we can define a candidate for a solution to

Eq.(3.1):

R(t, x, T1) =

∫
IR3

GΓ(t, x; 0, ξ)R0(ξ, T10(T1, t))dξ (3.13)
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where R0(·, ·, ·) is the initial concentration of the cells,

GΓ = exp
(
−
∫ t

0

∂Γ

∂T1

(
T1(T10, τ)

)
dτ
)
·G0(t, x; 0, ξ), (3.14)

or, equivalently:

GΓ = exp
(∫ t

0

∂Γ

∂T10

(
T10(T1, τ)

)
dτ
)
·G0(t, x; 0, ξ),

and

G0(t, x; τ, ξ) =
1

(4πdR(t− τ))3/2
e
−
|x− ξ|2

4dR(t− τ) (3.15)

is the Green’s function for the heat equation in IR3.

∂R

∂t
= dR∇2R (3.16)

In particular, for t ≥ τ ≥ 0, it satisfies the equation

∂G

∂t
− dR∇2G = δ(t− τ)δ(x− ξ). (3.17)

Below, we will often use use the following properties of the fundamental solution for the heat equations

in IRn.

Lemma 3.4. Let n ≥ 1, τ ≥ 0 and

Gn0 (t, x; τ, ξ) =
1

(4πdH(t− τ))n/2
e
−
|x− ξ|2

4DH(t− τ) . (3.18)

Then the following statements hold:

1. For any t > τ , x ∈ IRn: ∫
IRn

Gn0 (t, x; τ, ξ)dξ = 1

2. If g(·) ∈ C0(IRn) ∩ L∞(IRn), then, for all x ∈ IRn:

lim
t→τ

∫
IRn

Gn0 (t, x; τ, ξ)g(ξ)dξ = g(x).

3. If g(·) ∈ C0(IRn) ∩ L∞(IRn), then, for all t > τ , the integral∫
IRn

Gn0 (t, x; τ, ξ)g(ξ)dξ

is a C1,2 solution to the homogeneous heat equation

∂H

∂t
= dH∇2H

with the initial condition H(τ, x) = g(x).

4. If f ∈ Cα/2,αt,x ([0, T ]× IRn) ∩ L∞x (IRn), uniformly with respect to t ∈ [0, T ], then the function

H(t, x) =

∫ t

τ

(∫
IRn

Gn0 (t, x;σ, ξ)f(σ, ξ)dξ
)
dσ.

is a C1,2 solution to the inhomogeneous heat equation

∂H

∂t
= dH∇2H + f
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with the initial condition H(τ, x) = 0.

Proof Points 2 and 3 are stated in Theorem 1 of Section 2.3.1 in [13], whereas point 1 in the preceding

lemma. Point 4 is stated in Theorem 2 of Section 2.3.1 in [13]. 2

In the simplest possible case, let us assume that

Γ(T1) = sT1 + s0. (3.19)

Then

T1(T10, t) = (T10 +
s0

s
)est − s0

s
, T10(T1, t) = (T1 +

s0

s
)e−st − s0

s
(3.20)

and it is seen that the ratio

Γ(T10(T1, t))

Γ(T1)
= e−st, (3.21)

thus does not depend on T1.

According to the assumed linearity of the function Γ(·), the equation

dT1

dt
= Γ(T1),

has a stable positive singular point (−s0

s
), if and only if s < 0 and s0 > 0, whereas it has an unstable

positive singular point if and only if s > 0 and s0 < 0. 2

As Γ does not depend on x (and t), then

exp
(
−
∫ t

0

∂Γ

∂T1

(
T1(T10, τ)

)
dτ
)

= exp(−st)

so

GΓ = exp(−st) ·G0(t, x; 0, ξ),

Thus, in this case, (3.13) takes the form:

R(t, x, T1) =

∫
IR3

exp(−st) ·G0(t, x; 0, ξ)R0(ξ, T10(T1, t))dξ . (3.22)

To show that this function satisfies Eq.(3.1), let us note that

R · ∂Γ

∂T1
(T1) = R · s

and by (3.9)

∂R

∂T1
· Γ(T1) =

(∫
IR3

GΓ(t, x; 0, ξ)R0,T10(ξ, T10(T1, t))dξ

)
· ∂T10

∂T1
(T1, t) · Γ(T1) =(∫

IR3

GΓ(t, x; 0, ξ)R0,T10
(ξ, T10(T1, t))dξ

)
· Γ(T10(T1, t))

Γ(T1)
· Γ(T1) =

∂

∂T10

(∫
IR3

GΓ(t, x; 0, ξ)R0(ξ, T10(T1, t))dξ

)
· Γ(T10(T1, t)).

In view of the last equality, calculating the time derivative of the function R defined by (3.22), we

obtain
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∂R

∂t
= dR∇2R− sR+

dT10

dt

∂

∂T10

∫
IR2

GΓ(t, x; 0, ξ)R0(ξ, T10(T1, t))dξ =

dR∇2R− sR− Γ(T10(T1, t))
∂T1

∂T10

∂

∂T1

∫
IR2

GΓ(t, x; 0, ξ)R0(ξ, T10(T1, t))dξ =

dR∇2R−R∂Γ(T1)

∂T1
− Γ(T1)

∂R

∂T1
.

We have thus shown that the function given by (3.22) satisfies Eq.(3.1).

This construction can be generalized to the case of nonzero linear function B. Let us take:

B = rT8 + r0. (3.23)

Then

T8 = (T80 +
r0

r
)ert − r0

r
, T80 = (T8 +

r0

r
)e−rt − r0

r
, (3.24)

dT80

dt
= −B(T80), (3.25)

and
∂B

∂T8
= r,

so does not depend on T8. Also, the ratio

B(T80(T8, t))

B(T8)
= e−rt, (3.26)

thus does not depend on T8. In this way, repeating the arguments concerning the function Γ, we

obtain

R(t, x, T1, T8) =

∫
IR3

GΓB(t, x; 0, ξ)R0(ξ, T10(T1, t), T80(T8, t))dξ . (3.27)

with

GΓB = exp(−(s+ r)t) ·G0(t, x; 0, ξ). (3.28)

The function GΓB is a solution of the equation

∂G

∂t
− dR∇2G+ (s+ r)G = δ(t)δ(x− ξ). (3.29)

Let us note that in the considered linear case, GΓB depends neither on T1 nor on T8. For R defined

by (3.27), we have, by means of (3.8) and (3.11)

∂R

∂t
= dR∇2R−

(
Γ′(T1) +B′(T8)

)
R− ∂R

∂T1
· Γ(T1(t))− ∂R

∂T8
·B(T8(t)),

where

Γ′(T1) :=
∂Γ(y)

∂y

∣∣∣
y=T1

= s, B′(T8) :=
∂B(y)

∂y

∣∣∣
y=T8

= r.

As

∂R

∂T1
· Γ(T1) =

∂

∂T10

(∫
IR3

GΓB(t, x; 0, ξ)R0(ξ, T10(T1, t), T80(T8, t))dξ

)
· Γ(T10(T1, t))

Γ(T1)
Γ(T1).

and

∂R

∂T8
·B(T8) =

∂

∂T80

(∫
IR3

GΓB(t, x; 0, ξ)R0(ξ, T10(T1, t), T80(T8, t))dξ

)
·B(T8)

B(T80(T8, t))

B(T8)
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we conclude that R defined by (3.27) satisfies Eq.(3.1).

Before proceeding to nonlinear Γ and B, let us consider a non-homogeneous case. By considering

the function exp ((s+ r)t)u(t, x) and using point 4 of Lemma 3.4 with τ = 0, we conclude that the

solution to the initial value problem

∂u

∂t
= dR∇2u− su− ru+ f(t, x), u(0, x) = 0, (3.30)

has the form

u(t, x) =

∫ t

0

(∫
IR3

GΓB(t, x; τ, ξ)f(τ, ξ)dξ
)
dτ. (3.31)

Note that u given by (3.31) does not depend on T1, T8 hence
∂u

∂T1
≡ 0,

∂u

∂T8
≡ 0. It follows that

∂R

∂T1
Γ(T1) +

∂R

∂T8
B(T8) =

∂(R+ u)

∂T1
Γ(T1) +

∂(R+ u)

∂T8
B(T8).

In consequence, R+ u, where R is given by (3.27) and u by (3.31) satisfies the equation

∂Y

∂t
= dR∇2Y − ∂

∂T1
(Γ(T1)Y )− ∂

∂T8
(B(T8)Y ) + f(t, x) (3.32)

with the initial condition Y (0, x, T1, T8) = R0(0, x, T1, T8).

Remark Note that fixing T10 we have

exp
(
−
∫ t

0

∂Γ

∂T1

(
T1(T10, τ)

)
dτ
)

=
Γ(T10(T1, t))

Γ(T1)
. (3.33)

This identity can be proved by the change of integration variables τ 7→ T1(T10, τ) with dT1 = Γ(T1)dτ ,

namely ∫
t

0

∂Γ

∂T1

(
T1(T10, τ)

)
dτ =

∫
T1(T10,t)

T10

∂Γ

∂T1

(
T1

)
Γ(T1)−1 dT1 =∫

T1(T10,t)

T10

∂

∂T1
log
(

Γ(T1)
)
dT1 = log

( Γ(T1(T10, t))

Γ(T1(T10, 0))

)
= log

( Γ(T1)

Γ(T10(T1, t))

) (3.34)

which gives (3.33). Likewise, for fixed T1, by changing of integration variables τ 7→ T10(T1, τ) we have∫
t

0

∂Γ

∂T10

(
T10(T1, τ))dτ = −

∫
T10(T1,t)

T1

∂

∂T10
Γ(T10)

(dT10

dτ

)−1

dT10 =

−
∫

T10(T1,t)

T1

(Γ(T10))−1 ∂

∂T10
Γ(T10) dT10 = −

∫
T10(T1,t)

T1

∂

∂T10
log(Γ(T10)) dT10 =

− log
(Γ(T10(T1, t))

Γ(T1)

)
= log

( Γ(T1)

Γ(T10(T1, t))

)
hence

exp
(
−
∫ t

0

∂Γ

∂T10

(
T10(T1, τ)

)
dτ
)

=
Γ(T10(T1, t))

Γ(T1)
. (3.35)

By using the second equality in (3.20), we check that for Γ(T1) = sT1 + s0,

Γ(T10(T1, t))

Γ(T1)
= exp(−st) (3.36)

in agreement with (3.21). Similarly,

exp
(
−
∫ t

0

∂B

∂T8

(
T8(T80, τ)

)
dτ
)

=
B(T80(T8, t))

B(T8)
= exp

(∫ t

0

∂B

∂T80

(
T80(T8, τ)

)
dτ
)
. (3.37)
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Equalities (3.33),(3.35) and (3.37) will be confirmed by the form of the right hand side of (3.52) in

Lemma 3.8. 2

Let us consider the general form of Γ and B. To this end, let us first set:

S = ΓBR. (3.38)

Then Eq.(3.1) changes to

∂S

∂t
= dR∇2S − Γ(T1)

∂S

∂T1
−B(T8)

∂S

∂T8
. (3.39)

It seen that the (t, T1, T8)-projections of characteristics of the hyperbolic part of Eq.(3.39) are still

determined by Eqs (3.5). Hence, as it can be easily checked, the solution to the initial value problem

for Eq. (3.39) is given by the formula

S(t, x, T1, T8) =

∫
IR3

G0(t, x; 0, ξ)S0(ξ, T10(T1, t), T80(T8, t))dξ . (3.40)

Instead of proving it explicitly, we will prove in Lemma 3.8 that the function R corresponding to

the solution given by (3.52) via the transformation (3.38) satisfies Eq.(3.1). To do this, we need the

following auxiliary results.

Lemma 3.5. Let Assumption 3.2 be satisfied. Suppose that the function Γ(·) : IR→ IR is (k+1)-times

continuously differentiable. Let k1 ≥ 0 and k2 ≥ 0. Then for all T1 ≥ 0 and for all t > 0, the function

K1(T1; t) :=
Γ(T10(T1, t))

Γ(T1)
(3.41)

is continuously differentiable k1 and k2 times with respect to t and T1 respectively, iff k1 + s(k2)(k2 +

1) ≤ k + 1, where s(k2) = 1, if k2 ≥ 1 and s(0) = 0.

Proof By (3.9) we have

Γ(T10(T1, t))

Γ(T1)
=
∂T10

∂T1
(3.42)

and

d

dτ

(∂T10

∂T1

)
=

∂

∂T1

(dT10

dτ

)
= − ∂

∂T1
Γ(T10(T1, τ)) = −

( ∂

∂T10
Γ(T10(T1, τ))

)(∂T10

∂T1

)
(3.43)

Thus in accordance with Remark after (3.9)

L0(T1, t) :=
∂T10

∂T1
(t) = exp(−

∫ t

0

∂Γ(T10(T1, τ))

∂T10
dτ) (3.44)

because for t = 0 and Γ(T1) 6= 0, we have

∂T10

∂T1
(0) = Γ(T10(T1, 0))Γ(T1)−1

∣∣∣
T10=T1

= 1. (3.45)

Next, if T1∗ is such that Γ(T1∗) = 0, then in the representation (3.44), the limit T1 → T1∗ exists for

all t ≥ 0 and has the form

exp
(
−
∫ t

0

∂Γ(T1)

∂T1
dτ
) ∣∣∣

T1=T1∗

which in the case of Γ(T1) = sT1 + s0 is equal to exp(−st) in accordance with (3.21). (Let us note

that applying de l’Hospital rule to find the limit as T1 → T1∗ of L0(T1, t) gives no answer, because we

obtain the relation L0(T1∗, t) = 1 · L0(T1∗, t).) Thus, by means of L0(T1, t), the function (3.41) can

be well determined for all T1 in the considered region.

Now, we can show the differentiability of the ratio
Γ(T10(T1, t))

Γ(T1)
for finite t ≥ 0. We have, according

to (3.44),
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L1(T1, t) :=
∂

∂T1
K1(T1; t) =

∂

∂T1
L0(T1, t) =

∂

∂T1

Γ(T10(T1, t))

Γ(T1)
=

∂

∂T1
exp(−

∫ t

0

∂Γ(T10(T1, s))

∂T10
ds) =

∂

∂T1

(
−
∫ t

0

∂Γ(T10(T1, s))

∂T10
ds
)

exp(−
∫ t

0

∂Γ(T10(T1, s))

∂T10
ds) =

(
−
∫ t

0

∂2Γ(T10(T1, s))

∂T 2
10

L0(T1, s)ds
)

exp(−
∫ t

0

∂Γ(T10(T1, s))

∂T10
ds),

(3.46)

Likewise:

L2(T1, t) :=
∂2

∂T 2
1

K1(T1; t) =

∂

∂T1
L1(T1, t) =

∂

∂T1

[(
−
∫ t

0

∂2Γ(T10(T1, s))

∂T 2
10

L0(T1, s)ds
)

exp(−
∫ t

0

∂Γ(T10(T1, s))

∂T10
ds)
]

=

(
−
∫ t

0

∂3Γ(T10(T1, s))

∂T 3
10

L0(T1, s)ds
)

exp(−
∫ t

0

∂Γ(T10(T1, s))

∂T10
ds) +

(
−
∫ t

0

∂2Γ(T10(T1, s))

∂T 2
10

L1(T1, s)ds
)

exp(−
∫ t

0

∂Γ(T10(T1, s))

∂T10
ds) +

(
−
∫ t

0

∂2Γ(T10(T1, s))

∂T 2
10

L0(T1, s)ds
)
L1(T1, t).

(3.47)

It follows that L1(T1, 0) = 0, L2(T1, 0) = 0 and L1(T1, t) together with L2(T1, t) = 0 is bounded as

long as T10(T1, t) is bounded. In general, it is seen that if Γ is (k+1) times continuously differentiable,

then

Lk(T1, t) :=
∂k

∂T k1
K1(T1; t)

can be expressed by the derivatives of Γ up till the (k + 1)-order, and Lk(T1, t) is bounded as long as

T10(T1, t) is bounded. Now, by (3.43) and (3.44), one can see that

∂K1

∂t
(T1; t) = −

( ∂

∂T10
Γ(T10(T1, t))

)
L0(T1, t),

∂2K1

∂t∂T1
(T1; t) =

∂

∂t
L1(T1, t) =

L0(T1, t)
[
− L0(T1, t)

∂2Γ(T10(T1, t))

∂T 2
10

+
∂Γ(T10(T1, t))

∂T10

∫ t

0

∂2Γ(T10(T1, s))

∂T 2
10

L0(T1, s)ds
]

and

∂2K1

∂t2
(T1; t) = − ∂

∂t

(
L0(T1, t)

∂

∂T10
Γ(T10(T1, t))

)
=

L0(T1, t)
[( ∂

∂T10
Γ(T10(T1, t))

)2

+
∂2Γ(T10(T1, t))

∂T 2
10

Γ(T10(T1, t))
]
.

By induction, we can show that the derivatives of the form

∂kK1

∂tk1∂T k2
1

(T1; t)

exist and are bounded, iff the function Γ(·) is k1 + s(k2)(k2 + 1)-times differentiable, where s(k2) = 1,

if k2 ≥ 1 and s(0) = 0. 2

In the same way we can prove:
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Lemma 3.6. Let Assumption 3.2 be satisfied. Suppose that the function B(·) : IR → IR is (k + 1)-

times continuously differentiable. Let k1 ≥ 0 and k2 ≥ 0. Then for all T8 ≥ 0 and for all t > 0, the

function

K8(T8; t) :=
B(T80(T8, t))

B(T8)
(3.48)

is continuously differentiable k1 and k2 times with respect to t and T8 respectively, iff k1 + s(k2)(k2 +

1) ≤ k + 1, where s(k2) = 1, if k2 ≥ 1 and s(0) = 0.

Finally, the following auxiliary lemma holds.

Lemma 3.7. For any function F̃ (T1, T10(T1, t−τ)) = F (T10(T1, t−τ))/Γ(T1) we have for all τ ∈ [0, t]:

∂

∂t
F̃ (T1, T10(T1, t− τ)) = − ∂

∂T1

(
Γ(T1)F̃ (T10(T1, t− τ)) = − ∂

∂T1
F (T10(T1, t− τ)) (3.49)

and, likewise, for any function H̃(T8, T80(T8, t− τ)) = H(T80(T8, t− τ))/B(T8),

∂

∂t

H̃(T80(T8, t− τ))

B(T8)
= − ∂

∂T8

(
B(T8)H̃(T80(T8, t− τ))

)
= − ∂

∂T8
H(T80(T8, t− τ)) (3.50)

Proof Let us show the first of these equalities. We have

∂

∂t

F (T10(T1, t− τ))

Γ(T1)
=

1

Γ(T1)

∂

∂t
F (T10(T1, t− τ)) =

1

Γ(T1)

[ ∂

∂T10
F (T10(T1, t− τ))

]
· ∂T10(T1, t− τ)

∂t
=

1

Γ(T1)

[ ∂

∂T1
F (T10(T1, t− τ))

]
· ∂T1

∂T10
· ∂T10(T1, t− τ)

∂t
=

− 1

Γ(T1)
· Γ(T1)

Γ(T10(T1, t− τ))
· Γ(T10(T1, t− τ))

[ ∂

∂T1
F (T10(T1, t− τ))

]
= − ∂

∂T1
F (T10(T1, t− τ))

(3.51)

Thus (3.49) is proved. Similarly we prove the validity of (3.50). 2

Lemma 3.8. The function

R(t, x, T1, T8) =

∫
IR3

G0(t, x; 0, ξ)K(T1, T8; t)R0(ξ, T10(T1, t), T80(T8, t))dξ , (3.52)

where

K(T1, T8; t) :=
Γ(T10(T1, t))

Γ(T1)

B(T80(T8, t))

B(T8)
, (3.53)

is a solution to equation

∂R

∂t
= dR∇2R− ∂

∂T1
(Γ(T1)R)− ∂

∂T8
(B(T8)R) (3.54)

with the initial condition

R(0, x, T1, T8) = R0(x, T1, T8).

If R0 ∈ Cα,2,2x,T1,T8
, α ∈ (0, 1), whereas Γ and B are of C3 class of their arguments in IR2

+, then R given

by (3.52) is of C2(R2) class with respect to (T1, T8) and C
1+α/2,2+α
t,x ([0, T ]× IR3).

Proof The part of the time derivative of u(t, x, T1, T8) taken with respect to t inside G0 is equal to:

(∂R
∂t

)0

=

∫
IR3

G0,t(t, x; 0, ξ)K(T1, T8; t)R0(ξ, T10(T1, t), T80(T8, t))dξ = dR∇2R(t, x, T1, T8).

Now, let us consider the t-differentiation of the function
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S = K(T1, T8; t)R0(ξ, T10(T1, t), T80(T8, t)) =

1

Γ(T1)B(T8)

[
Γ(T10(T1, t))B(T80(T8, t))R0(ξ, T10(T1, t), T80(T8, t))

]
.

We have:

∂S
∂t

=
B(T80(T8, t))

B(T8)

{ ∂
∂t

[Γ(T10(T1, t))

Γ(T1)
R0(ξ, T10(T1, t), Y )

]}∣∣∣
Y=T80(T8,t))

+

Γ(T10(T1, t))

Γ(T1)

{ ∂
∂t

[B(T80(T8, t))

B(T8)
R0(ξ, Y, T80(T8, t)))

]}∣∣∣
Y=T10(T1,t)

Thus, due to Lemma 3.7

∂S
∂t

= −B(T80(T8, t))

B(T8)

{ ∂

∂T1

[
Γ(T10(T1, t))R0(ξ, T10(T1, t), Y )

]}∣∣∣
Y=T80(T8,t))

−

Γ(T10(T1, t))

Γ(T1)

{ ∂

∂T8

[
B(T80(T8, t))R0(ξ, Y, T80(T8, t)))

]}∣∣∣
Y=T10(T1,t)

=

− ∂

∂T1

[B(T80(T8, t))

B(T8)
Γ(T10(T1, t))R0(ξ, T10(T1, t), Y )

]
−

∂

∂T8

[Γ(T10(T1, t))

Γ(T1)
B(T80(T8, t))R0(ξ, Y, T80(T8, t)))

]
= − ∂

∂T1
(Γ(T1)S)− ∂

∂T8
(B(T8)S)

It follows that∫
IR3

G0(t, x; 0, ξ)
∂S
∂t
dξ =

∫
IR3

G0(t, x; 0, ξ)
{
− ∂

∂T1
(Γ(T1)S)− ∂

∂T8
(B(T8)S)

}
dξ =

− ∂

∂T1

{
(Γ(T1)

∫
IR3

G0(t, x; 0, ξ)S)dξ
}
− ∂

∂T8

{
(B(T8)

∫
IR3

G0(t, x; 0, ξ)S)dξ
}

which proves that the function defined by (3.52) satisfies the homogeneous version of Eq.(3.1). The

smoothness properties follow from Lemma 3.5, Lemma 3.6 and the properties of the fundamental

solution G0 (see points 3,4 of Lemma 3.4). 2

Now, we will find an expression for the solution to the inhomogeneous equation

∂R

∂t
= dR∇2R− ∂

∂T1
(Γ(T1)R)− ∂

∂T8
(B(T8)R) + f(t, x, T1, T8). (3.55)

Lemma 3.9. The function

u(t, x, T1, T8) =

∫ t

0

(∫
IR3

K(T1, T8; t−τ)G0(t, x; τ, ξ)f(τ, ξ, T10(T1, t−τ), T80(T8, t−τ))dξ
)
dτ (3.56)

where

K(T1, T8; t) :=
Γ(T10(T1, t))

Γ(T1)

B(T80(T8, t))

B(T8)
(3.57)

is a solution to Eq.(3.55) with zero initial condition at t = 0. If f ∈ Cα/2,α,2,2t,x,T1,T8
, α ∈ (0, 1), whereas

Γ and B are of C3 class of their arguments (in IR2
+), then u given by (3.56) is of C2(IR2

+) class with

respect to (T1, T8) and C
1+α/2,2+α
t,x ([0, T ]× IR3).

Proof The part of the time derivative of u(t, x, T1, T8) taken with respect to t inside G0 and in the

upper limit of the integral is, by means of s 2 and 3 Lemma 3.4, equal to:
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(∂u
∂t

)0

=

∫ t

0

(∫
IR3

K(T1, T8; t− τ)G0,t(t, x; τ, ξ)f(τ, ξ, T10(T1, t− τ), T80(T8, t− τ))dξ
)
dτ +

limτ→t

∫
IR3

K(T1, T8; t− τ)G0(t, x; τ, ξ)f(τ, ξ, T10(T1, t− τ), T80(T8, t− τ))dξ

= dR∇2u(t, x, T1, T8) + f(t, x, T1, T8)

because T10(T1, t − τ)|τ=t = T1 and T80(T8, t − τ)|τ=t = T8. Thus f(τ, ξ, T10(T1, t − τ), T80(T8, t −
τ))|τ=t = f(τ, ξ, T1, T8) and K(T1, T8; t− τ)|τ=t = 1.

Now, let us consider the derivative(
K(T1, T8; t− τ)f(τ, ξ, T10(T1, t− τ), T80(T8, t− τ))

)
,t

The differentiated expression can be written as (Γ(T1)B(T8))−1Ψ(τ, ξ, T10(T1, t−τ), T80(T8, t−τ)).

We have:

d

dt

(
(Γ(T1)B(T8))−1Ψ(τ, ξ, Y1(t− τ), Y8(t− τ))

)
=

B(Y8)

B(T8)

∣∣∣
Y8=T80(T8,t−τ)

d

dt

( 1

Γ(T1)
· Γ(T10(T1, t− τ))f(τ, ξ, T10(T1, t− τ), Y8)

)∣∣∣
Y8=T80(T8,t−τ)

+

Γ(Y1)

Γ(T1)

∣∣∣
Y1=T10(T1,t−τ)

d

dt

( 1

B(T8)
·B(T80(T8, t− τ))f(τ, ξ, Y1, T80(T8, t− τ))

)∣∣∣
Y1=T10(T1,t−τ)

.

Using Lemma 3.7 with

F (T10(T1, t− τ)) = Γ(T10(T1, t− τ))f(τ, ξ, T10(T1, t− τ), Y8)

with Y8 fixed and

H(T80(T8, t− τ))) = B(T80(T8, t− τ))f(τ, ξ, Y1, T80(T8, t− τ))

with Y1 fixed, one notes, as in the proof of Lemma 3.8, that:

∫ t

0

∫
IR3

G0(t, x; τ, ξ)
(
K(T1, T8; t− τ)f(τ, ξ, T10(T1, t− τ), T80(T8, t− τ))

)
,t
dξdτ = −

∫ t

0

∫
IR3

[B(T80(T8, t− τ))

B(T8)

∂

∂T1
F (T10(T1, t− τ))

+
Γ(T10(T1, t− τ))

Γ(T1)

∂

∂T8
H(T80(T8, t− τ))

]
G0(t, x; τ, ξ)dξdτ

= − ∂

∂T1

(
Γ(T1)

∫ t

0

∫
IR3

G0(t, x; τ, ξ)K(T1, T8; t− τ)f(τ, ξ, T10(T1, t− τ), T80(T8, t− τ))dξ dτ
)

− ∂

∂T8

(
B(T8)

∫ t

0

∫
IR3

G0(t, x; τ, ξ)K(T1, T8; t− τ)f(τ, ξ, T10(T1, t− τ), T80(T8, t− τ))dξ dτ
)

=

− ∂

∂T1
(Γ(T1)u)− ∂

∂T8
(B(T8)u).

The smoothness properties follow from Lemma 3.4 (points 3 and 4) together with Lemma 3.5 and

Lemma 3.6. The lemma is proved. 2

Remark An important note should be made concerning the construction of the solution. As can be

seen from the proof of Lemma 3.8 and Lemma 3.9, it is crucial that in the expression for the solution

there is a term (Γ(T1)B(T8))−1. Otherwise, the last expression in the sequence of equalities (3.51)

would have a form [−Γ(T1)
∂

∂T1
F (T10(T1, t− τ))], so Eq.(3.1), so could not be written as a derivative
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with respect to T1. The same concerns the derivative with respect to T8. In consequence, Eq.(3.55)

could not be fulfilled. 2

The last remark touches the problem of uniqueness of solutions.

4 Uniqueness of solutions

In this section, we will present two theorems concerning the uniqueness of solutions to different gener-

alizations equations of Eq.(3.55) under the assumption that they exist. In these generalizations,

we will assume that the functions Γ and B may additionally depend on t and x. Assuming the de-

pendence on t is justified by the fact that in section 8.4 we show that in the case of the product

initial data, the existence of solutions to the homogeneous equation (3.1) is implied by the existence

to the assigned hyperbolic equation. At the end of section 8.4, we also give an example of solution to

Eq.(3.1) in the case of the general initial data.

In the first uniqueness lemma we will consider the equation:

∂R

∂t
= dR∇2R− ∂

∂T1
(Γ(T1, t)R)− ∂

∂T8
(B(T8, t)R) + f(t, x, T1, T8). (4.1)

Similarly to the case of Γ and B not depending explicitly on t, the characteristic curves assigned

to the hyperbolic part of Eq.(4.1) are given by the system of odes for t ∈ [0, T ]:

dT1

dt
(t) = Γ(T1, t),

dT8

dt
(t) = B(T8, t), T1(0) = T10, T8(0) = T80. (4.2)

Let

W1 = {u : [0, T ]× IR3 × IR2
+ 7→ IR} = C1

(
[0, T ], L2(IR3)

)
∩BC

(
[0, T ],W 2,2

x (IR3) ∩ C1,1
T1,T8

(IR2
+)
)
.

The following uniqueness result holds.

Lemma 4.1. Suppose that the functions Γ and B are of C2 class of their arguments and that for

t ∈ [0, T ] the characteristic curves given by solutions to system (4.2) fill out the whole IR2
+ and that for

t ∈ [0, T ] the set IR2
+ is positively invariant with respect to system (4.2). Then, solutions to Eq.(4.1)

are unique in the space W1 (defined above) such that their derivatives with respect to x behaving like

o(|x|−2) as |x| → ∞.

Proof Suppose that the thesis of the lemma is not true. Let D denote the difference between any of

two solutions to Eq.(3.55). We thus have:

∂D

∂t
= dR∇2D − ∂

∂T1
(Γ(T1, t)D)− ∂

∂T8
(B(T8, t)D) (4.3)

and D(0, x, T1, T8) ≡ 0. Multiplying Eq.(4.3) by D, we obtain

1

2

∂

∂t
D2 = dR∇ ·

(
D∇D

)
− 1

2
dR(∇D)2 − ∂

∂T1

(
Γ(T1, t)D

2
)

+
1

2
Γ(T1, t)

∂

∂T1
D2 − ∂

∂T8

(
B(T8, t)D

2
)

+
1

2
B(T8, t)

∂

∂T8
D2

(4.4)

what can be written as

∂

∂t
D2 = dR∇ ·

(
∇D2

)
− dR(∇D)2

−2
∂

∂T1
(Γ(T1, t)) D

2 − Γ(T1, t)
∂

∂T1
D2 − 2

∂

∂T8
(B(T8, t)) D

2 −B(T8, t)
∂

∂T8
D2.

(4.5)
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Integrating, for each (t, T1, T8) with respect to x over the whole IR3 (by integrating over the finite radius

balls and passing to the limit), using the Gauss-Ostrogradskii theorem and denoting Q =

∫
IR3

D2dx,

we obtain

∂

∂t
Q = −2

∂

∂T1
(Γ(T1, t)) Q− Γ(T1, t)

∂

∂T1
Q− 2

∂

∂T8
(B(T8, t)) Q−B(T8, t)

∂

∂T8
Q− G(D)(t, T1, T8),

(4.6)

where Q(0, T1, T8) ≡ 0 and G(D) is a functional, which attains positive values for all D 6≡ 0. Suppose

that D 6≡ 0. Then G(D) can be considered as a given function of (t, T1, T8) ∈ C0 such that it is

strictly positive. Let us consider an auxiliary equation

∂

∂t
Q = 2

∂

∂T1
(Γ(T1, t)) Q− Γ(T1, t)

∂

∂T1
Q− 2

∂

∂T8
(B(T8, t)) Q−B(T8, t)

∂

∂T8
Q (4.7)

Using the uniqueness result for hyperbolic equations, we conclude that this equation can be satisfied

only for Q = 0. Now, if Q 6≡ 0, then
∂Q

∂t
> 0 for some t > 0, which leads to a contradiction.

To show this, let us note that, according to equalities (21) in [13, 3.2.2], the characteristic curves

for Eqs (4.7) and (4.6) are the same, so can be parametrized in the same way. Let us consider an

arbitrary characteristic curve starting for t = 0 at a point (T10, T80) ∈ IR2
+ (parametrized with time):

t 7→ (t, T1(T10, t), T8(T8(T80)). Thus, using the second equation of (21) [13, 3.2.2], we obtain for

t ∈ (0, T ):

d

dt
Q(t, T1(t), T8(t)) = −2

∂

∂T1
(Γ(T1(t), t))Q(t, T1(t), T8(t))− 2

∂

∂T8
(B(T8(t), t))Q(t, T1(t), T8(t))

and

d

dt
Q(t, T1(t), T8(t)) =

−2
∂

∂T1
(Γ(T1(t), t))Q(T1(t), T8(t), t)− 2

∂

∂T8
(B(T8(t), t))Q(t, T1(t), T8(t))− G(D)(t, T1(t), T8(t)).

Both of these equations are supplemented by the initial condition at t = 0 equal to 0, i.e. Q(0, T10, T80) =

0 and Q(0, T10, T80) = 0. Let us define:

w(t) := 2
∂

∂T1
(Γ(T1(t))) + 2

∂

∂T8
(B(T8(t)))

Q∗ := Q · exp(

∫ t

0

w(s)ds), Q∗ := Q · exp(

∫ t

0

w(s)ds).

In this way, the equations for Q and Q along the characteristics can be transformed to:

d

dt
Q∗(t, T1(t), T8(t)) = 0

and

d

dt
Q∗(t, T1(t), T8(t)) = −G(t, T1(t), T8(t)) · exp(

∫ t

0

w(s)ds).

It follows that Q∗(t, T1(t), T8(t)) = 0 hence Q(t, T1(t), T8(t)) = 0 for all t ∈ [0, T ]. Finally, if

G(t, T1(t), T8(t)) 6≡ 0, then
dQ∗
dt
≤ 0 for t ∈ (0, T ]. Thus, as Q∗ ≥ 0, we must have Q∗ ≡ 0, so

G ≡ 0, in contradiction to our assumption. 2

In Lemma 4.1 we assumed the integrability of solutions with respect to x, however, for each x ∈ IR3,

we could assume only their boundedness with respect to (T1, T8). In contrast, in the next lemma we
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will only assume integrability with respect to (T1, T8). Moreover, in this approach, we are able to

consider the dependence of the functions Γ and B on x. Besides, to obtain uniqueness, we do not

have to assume anything about the behaviour of the characteristic curves.

Thus, in the next lemma we will consider the equation

∂R

∂t
= dR∇2R− ∂

∂T1
(Γ(T1, t;x)R)− ∂

∂T8
(B(T8, t;x)R) + f(t, x, T1, T8). (4.8)

Let

W2 = {u : [0, T ]× IR3 × IR2
+ 7→ IR}

be the space of functions satisfying the following conditions:

1. u is uniformly bounded with respect to (t, x, (T1, T8))

2. u ∈ L2(IR2
+) ∩W 1,2

,T1
(IR2

+) ∩W 1,2
,T8

(IR2
+), u = o(|(T1, T8)|−2) as |(T1, T8)| → ∞.

3. the first and second derivatives of u with respect to the components of x belong to the space

L2(IR2
+), i.e. are integrable with respect to (T1, T8).

Lemma 4.2. Suppose that the functions Γ and B are of C2 class with respect to t, T1 and T8 and of

C1 class with respect to x. Then, solutions to Eq.(3.55) are unique in the space W2.

Proof The proof will resemble the proof of Lemma 4.1, however this time we will carry out the

integration with respect to T1T8 instead of x. As in the previous case, the difference of solutions D

satisfies the equation:

1

2

∂

∂t
D2 =

1

2
dR∇ ·

(
∇D2

)
− 1

2
dR(∇D)2

− ∂

∂T1

(
Γ(T1, t;x)D2

)
+

1

2
Γ(T1, t;x)

∂

∂T1
D2 − ∂

∂T8

(
B(T8, t;x)D2

)
+

1

2
B(T8, t;x)

∂

∂T8
D2.

(4.9)

Let us note that

− ∂

∂T1

(
ΓD2

)
+

1

2
Γ
∂

∂T1
D2 = − ∂

∂T1

(
ΓD2

)
+

1

2

∂

∂T1
(ΓD2)− 1

2
D2 ∂

∂T1
Γ = −1

2

∂

∂T1
(ΓD2)− 1

2
D2 ∂

∂T1
Γ.

Thus, omitting for brevity the arguments of the functions Γ and B, we obtain

∂

∂t
D2 = dR∇ ·

(
∇D2

)
− dR(∇D)2 − ∂

∂T1

(
ΓD2

)
−D2 ∂

∂T1
Γ− ∂

∂T8

(
B(T8)D2

)
−D2 ∂

∂T8
B

(4.10)

Now, let

P (t, x) := max
T1,T8∈IR2

+

{
− ∂

∂T1
Γ(T1, t;x)− ∂

∂T8
B(T8, t;x)

}
.

It is seen that P (t, x) is a bounded function of (t, x) ∈ [0, T ]× IR3. Then

∂

∂t
D2 ≤ dR∇ ·

(
∇D2

)
− dR(∇D)2 − ∂

∂T1

(
Γ(T1)D2

)
− ∂

∂T8

(
B(T8)D2

)
+ P (t, x)D2. (4.11)

Next, integrating the both sides with respect to T1 and T8, over the sets B2(0, ρ18)
⋃

IR2
+ using

the assumptions of the lemma and auxiliary Lemma 9.3, we obtain, by passing to the limit ρ18 →∞,

∂

∂t
Q ≤ dR∇2Q+ PQ− G(D)(t, x), (4.12)

where G(D)(t, x) = dR

∫
IR2

+

(∇D)2dT1dT8 can be treated as a given function, which is non-negative

and not equivalent to 0 only, if D ≡ 0. Due to the boundedness of the function Q at x-infinity and the

22



boundedness of the function P , we note that the conditions of [30, Theorem 10, Section 6] (Phragmen-

Lindelöf principle) are satisfied. It follows that, as Q(0, x) ≡ 0, then Q(t, x) ≤ 0 for t ∈ [0, T ]. As

Q ≥ 0 by definition, it follows that Q ≡ 0 and D ≡ 0. The lemma is proved. 2

For the convenience of the reader, we present the Phragmen-Lindelöf principle in the form of [30,

Theorem 10, Section 6].

Lemma 4.3. (Phragmen-Lindelöf principle) Let Ω be an unbounded domain in n-dimensional

space and let E be the domain (0, T ) × Ω. Suppose that u satisfies (L + h)[u] ≥ 0 in E with L a

uniformly parabolic operator of the form

L ≡
n∑

i,j=1

aij(t, x)
∂2

∂xi∂xj
+

n∑
i=1

bi(t, x)
∂

∂xi
− ∂

∂t

with bounded coefficients and with h(t, x) bounded from above in E. Assume that u satisfies the growth

condition

lim inf
r−→∞

e−cr
2

 max
x2

1+x2
2+···+x2

n=r2

0≤t≤T

u(t, x)

 ≤ 0

for some positive constant c. If u ≤ 0 for t = 0 and u ≤ 0 on (0, T )× ∂Ω, then u ≤ 0 in E.

5 Asymptotics of the solution given by Lemmas 3.8 and 3.9

Let us consider the asymptotics of the functions given by Lemmas 3.8 and 3.9. The asymptotics will

be understood either with respect to t >> 1 or with respect to a parameter scaling the strength of

convective (hyperbolic) terms. This parameter will be denoted below by λ.

In this section we will assume the uniqueness of solutions to the system (Γ(T1), B(T8)) = (0, 0) or

at least that there is a unique solution to this system in the support of R (with respect to (T1, T8)))

for all t ∈ [0, T ] and all x ∈ IR3 (see Assumption 5.3).

Let us consider the volume of the support of the function R(t, x, T1, T8) with respect to (T1, T8)

as a function of time. (Let us emphasize that we consider the case of Γ and B independent of x.) In

view of the right hand side of (3.52), we have thus to consider the 2-d volume of the form:∫
IR2

χt(T1, T8; ξ)dT1dT8,

where χt(T1, T8; ξ) = 1, iff (T10(T1, t), T80(T1, t)) ∈ suppR0(ξ, ·, ·). Fixing t and changing the variables

in the above integral:

T1 → T10(T1, t) = T10, T8 → T80(T8, t) = T80,

we obtain

dT1 = dT10
dT1

dT10
= dT10

Γ(T1)

Γ(T10)
,

dT8 = dT80
dT8

dT80
= dT80

B(T8)

B(T80)

(5.1)

and, due to Assumptions 3.2 and 3.3,

∫
IR2

χt(T1, T8; ξ)dT1dT8 =

∫
IR2

χ0(T10, T80; ξ) det(J(T1, T8; t))dT10dT80

=

∫
IR2

+

χ0(T10, T80; ξ) det(J(T1, T8; t))dT10dT80

=
∫

IR2
+
χ0(T10, T80; ξ)

Γ(T1(T10, t))

Γ(T10)

B(T8(T80, t))

B(T80)
dT10dT80

(5.2)
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where J(T1, T8; t) is the Jacobian matrix of the mapping (T10, T80) 7→ (T1(T10, t), T8(T80, t)), i.e.

J(T1, T8; t) =


∂T1(T10, t)

∂T10
0

0
∂T8(T80, t)

∂T80

 =


Γ(T1(T10, t))

Γ(T10)
0

0
B(T8(T80, t))

B(T80)

 . (5.3)

If Γ and B are linear and given by (3.19) and (3.23), then, similarly to (3.36), we can show straight-

forwardly that det(J(t)) = exp(st) exp(rt). It follows that in this case∫
IR2

χt(T1, T8; ξ)dT1dT8 = exp((s+ r)t)

∫
IR2

+

χ0(T10, T80; ξ)dT10dT80

hence for s, r < 0 the support of the function R with respect to T1 and T8 decreases in volume as

exp(−(|s|+ |r|)t) and, in fact, tends to a stable singular point (−s0/s,−r0/r).

To consider more general form of the functions Γ and B, let us suppose the following.

Assumption 5.1. Suppose that for all ξ ∈ IR3, for all (T10, T80) from some open neighbourhood of

suppR0(ξ, ·, ·) in (T10, T80) space, the solutions (T1(T10, t), T8(T80, t) to system (3.5) tend, as t→∞,

to a unique attracting stationary point (A1, A8) such that Γ(A1) = 0, B(A8) = 0.

Lemma 5.2. Suppose that Assumption 3.2 and 5.1 are fulfilled. Then, for each x ∈ Ω, the support

of R(t.x, T1, T8) tends to a point (A1, A8) as t→∞.

Proof The proof follows from the form of the right hand side of (5.2). Thus for fixed (A1, A8) 6=
(T10, T80) ∈ suppR0(x, T10, T80), (T10, T80) 6= (A1, A8),

det(J(T1(T10, t), T8(T80, t); t)) =
Γ(T1(T10, t)

Γ(T10)

B(T8(T80, t)

B(T80)
→ 0

as t→∞. 2

Remark In Lemma 5.5, instead of the limit t→∞, similar behaviour is derived with respect to the

asymptotics λ|s|, λ|r| → ∞. 2

5.1 Asymptotic weak limit of the terms
∂

∂T1
Γ(T1)R and

∂

∂T8
B(T8)R with R

given by Lemma 3.8

By means of (5.2), we can analyse also the asymptotic weak limit of the terms
∂

∂T1
Γ(T1)R and

∂

∂T8
B(T8)R with R given by the right hand side (3.52).

Suppose that R0(x, T1, T8), for each x ∈ Ω, has a compact support Sx inside the positive quadrant

of the space (T1, T8). Suppose also that

0 ≤ sup
(T1,T8)∈Sx

R0(x, T1, T8) ≤ ρx < ρ̄. (5.4)

Let us multiply the right hand side of (3.52) by a smooth function φ(T1, T8) of compact support

inside the non-negative quadrant IR2
+ = {T1 ≥ 0, T8 ≥ 0}. Integrating by parts with respect to T1 and

using (1.18), we obtain:∫
IR2

+

∂

∂T1

(
Γ(T1)R

)
φdT1dT8 =

∫
IR2

+

Γ(T1)R
∂

∂T1
φdT1dT8.

Using (3.52), we obtain the estimate
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∣∣∣ ∫
IR2

+

Γ(T1)R
∂

∂T1
φdT1dT8

∣∣∣ ≤ φ1

∫
IR3

G0(t, x; 0, ξ) ρξ

[∫
IR2

+

∣∣∣Γ(T1)K(T1, T8; t)
∣∣∣χξt (T1, T8) dT1dT8

]
dξ,

where φ1 := supT1,T8

∣∣∣ ∂φ
∂T1

∣∣∣, K(T1, T8; t) is given by (11.2) and χxt (T1, T8) = 1, iff (T10(T1, t), T80(T8, t)) ∈
Sx.

Assumption 5.3. Suppose that there exists a compact set SM in the space (T1, T8) such that Sx b SM

for all x ∈ IR3,

∫
SM

dT1dT8 = VM . Suppose that inside SM there exists a unique singular point

A = (A1, A8) of system (3.5) which is attractive. Let

sup
(T1,T8)∈SM

∣∣∣T1 −A1

∣∣∣ ≤ d1, sup
(T1,T8)∈SM

∣∣∣T8 −A8

∣∣∣ ≤ d8,

To proceed, we will consider times t >> 1 or assume that away of the singular points the absolute

value of Γ and B are relatively large. Thus, let us rescale the functions Γ and B by writing

Γ(T1) = λΓ̃(T1), B(T8) = λB̃(T8), (5.5)

where λ ∈ (0,∞) will be a parameter at our disposal.

Assumption 5.4. Suppose that ‖Γ̃(·)‖C1(IR) = b1 and ‖B̃(·)‖C1(IR) = b8, where b1 and b8 are inde-

pendent of λ. Assume that inside the set SM we have, for s < 0, r < 0,

Γ̃(T1) ≤ s(T1 −A1), for T1 −A1 > 0, Γ̃(T1) ≥ s(T1 −A1), for T1 −A1 < 0,

B̃(T8) ≤ r(T8 −A8), for T8 −A8 > 0, B̃(T8) ≥ r(T8 −A8), for T8 −A8 < 0.

Assumption 5.4 implies that solutions to system (3.5) satisfy the inequalities:

|T1(T10, t)−A1| ≤ |T10 −A1| exp(λst), |T8(T80, t)−A8| ≤ |T80 −A8| exp(λrt). (5.6)

The same assumption implies that

|Γ(T1(T10, t)| ≤ λ|s||T10 −A1| exp(λst), and B(T8(T80, t) ≤ λ|r||T80 −A8| exp(λrt). (5.7)

Note that, according to (5.3),

detJ(T1, T8; t) = (K(T1, T8; t))−1. (5.8)

We thus have

∣∣∣ ∫
IR2

+

Γ(T1)K(T1, T8; t)χξt (T1, T8) dT1dT8

∣∣∣ =

∣∣∣ ∫
IR2

+

Γ(T1(T10, t))detJ(T1(T10, t), T8(T80, t); t)K(T1(T10, t), T8(T80, t); t))χ
ξ
0(T10, T80) dT10dT80

∣∣∣ =

∣∣∣ ∫
IR2

+

Γ(T1(T10, t))χ
ξ
0(T10, T80) dT10dT80

∣∣∣ =

∣∣∣ ∫
IR2

+

λ|s||T10 −A1| exp(λst)χξ0(T10, T80) dT10dT80

∣∣∣ ≤ λ|s| exp(λst)d1VM ,

(5.9)

hence taking into account the integrability of the fundamental solution G0, we conclude that∣∣∣ ∫
IR2

+

Γ(T1)R
∂

∂T1
φdT1dT8

∣∣∣ ≤ ρ̄φ1λ|s| exp(λst)d1VM → 0 (5.10)
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P2(T10(T1,t2),T80(T8,t2))

P1(T10(T1,t1),T80(T8,t1))

A(A1,A8)

Sx

(T1,T8)

t2 > t1

Figure 3: Backward trajectory starting from (T1,T8). For t2 sufficiently large the point (T1, T8) escapes
from the initial support.

as λs→ −∞ for any finite t > 0. Likewise,∣∣∣ ∫
IR2

+

B(T8)R
∂

∂T8
φdT1dT8

∣∣∣ ≤ ρ̄φ1λ|r| exp(λrt)d8VM → 0 (5.11)

as λr → −∞ for any finite t > 0. In view of the fact that the function φ was arbitrary, it follows that

the terms

∂

∂T1

(
Γ(T1)R

)
and

∂

∂T8

(
B(T8)R

)
vanish weakly asymptotically as λ tends to infinity. Similarly, for fixed λ, s and r, the relations (5.10)

and (5.11) hold as t→∞. The last case is shown in Fig.5.1.

Now, let us note that, according to (3.52) and (5.8), we obtain as in (5.9):∫
IR2

+

R(t, x, T1, T8)dT1dT8 =

∫
IR3

G0(t, x; 0, ξ)
[ ∫

IR2
+

R0(ξ, T10, T80)dT10dT80

]
dξ =:∫

IR3

G0(t, x; 0, ξ)
[
ρ0(ξ)

]
dξ.

Due to the properties of the function G0, we infer that, for each t > 0 and x ∈ IR3, we have for

nonzero initial data

lim
λ|r|,λ|s|→∞

∫
IR2

+

R(t, x, T1, T8)dT1dT8 = R(t, x) > 0.

As for each (t, x) ∈ (0, T ) × IR3, the volume of the support of R(t, x, T1, T8) with respect to (T1, T8)

tends to 0 (and is concentrated around the point (A1, A8)) the following lemma has been shown.

Lemma 5.5. Suppose that Assumptions 3.2, 3.3, 5.3 and 5.4 are satisfied. Then, for all (t, x) ∈
(0, T ]× Ω, as λ|s| → ∞ and λ|r| → ∞,

R(t, x, T1, T8)→ R(t, x) · δ(T1 −A1)δ(T8 −A8).

5.2 Asymptotic weak limit of the terms
∂

∂T1
Γ(T1)R and

∂

∂T8
B(T8)R with R

given by Lemma 3.9

Assumption 5.6. Suppose that for each (t, x) ∈ [0, T ]× IR3 the support Sftx of the function f(t, x, ·, ·)
is a compact set. Let Sf =

⋃
(x,t)∈[0,T ]×IR3 S

f
tx. Suppose that Sf ⊂ SMf , where SMf is compact and its

2-dimensional measure satisfies
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|SMf | < WM .

and that

sup
t∈[0,T ],x∈IR3,(T1,T8)∈IR2

+

|f(t, x, T1, T8)| < F (5.12)

for some constants WM and F .

Let us note that by changing the integration variable from τ to η = t − τ , the right hand side of

(3.56) can be written as

u(t, x, T1, T8) =

∫ t

0

(∫
IR3

K(T1, T8; η)G0(t, x; t− η, ξ)f(t− η, ξ, T10(T1, η), T80(T8, η))dξ
)
dη

Proceeding as in the case of the right hand side of (3.52), i.e. multiplying the expression
∂(B(T8)u)

∂T8
,

by a function φ1(T1, T8) of compact support in IR2
+, integrating by parts using Assumption 5.6, we

obtain:

∣∣∣∣∣
∫

IR2
+

Γ(T1)u
∂

∂T1
φdT1dT8

∣∣∣∣∣
≤ Fφ1

∫
IR3

{∫ t

0

G0(t, x; t− η, ξ)

[∫
IR2

+

|Γ(T1)K(T1, T8; η)|χfη(T1, T8) dT1dT8

]
dη

}
dξ,

where φ1 =: supT1,T8

∂φ

∂T1
, and

χft (T1, T8) =


1 if (T10(T1, t), T80(T8, t)) ∈ Sf

0 if (T10(T1, t), T80(T8, t)) 6∈ Sf

Now, we can proceed as in the proof of Lemma 3.8. First, according to (5.7) with t replaced by η, we

have

∫
IR2

+

|Γ(T1)K(T1, T8; η)|χft (T1, T8) dT1dT8 =

∫
IR2

+

|Γ(T1(T10, η))|χf0 (T10, T80) dT10dT80 ≤∫
IR2

+

λ|s||T10 −A1| exp(λsη)χf0 (T10, T80) dT10dT80

∣∣∣ ≤ λ|s| exp(λsη)d1WM < λ|s| exp(λsη)d1VM .

It follows that for ∆η = (
√
λ)−1 << 1 we have, in view of the properties of the function G0 (see

Lemma 3.4, point 2),

∫ {∫
IR3

[ ∫ t

0

(
Γ(T1)K(T1, T8; η)G0(t, x; t− η, ξ)f(t− η, ξ, T10(T1, η), T80(T8, η))

)
dη
]
dξ
}
dT1dT8 =

∫ {∫
IR3

[ ∫ t

∆η

(
Γ(T1)K(T1, T8; η)G0(t, x; t− η, ξ)f(t− η, ξ, T10(T1, η), T80(T8, η))

)
dη
]
dξ
}
dT1dT8+

∫ ∆η

0

[ ∫
IR3

(∫ {
Γ(T10(T1, η))G0(t, x; t− η, ξ)f(t− η, ξ, T10(T1, η), T80(T8, η))

}
dT1dT8

)
dξ
]
dη =

O((exp(−λ|s|t)− exp(−∆ηλ|s|)) +

∫ ∆η

0

[ ∫
IR3

(∫ {
Γ(T10(T1, η))G0(t, x; t− η, ξ)f(t− η, ξ, T10(T1, η), T80(T8, η))

}
dT1dT8

)
dξ
]
dη −→

n→∞

O(exp(−∆ηλ|s|)) +W (n),
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where

W (n) =
∣∣∣ lim
n→∞

∫
IR3

[ ∫ ∆η

∆η/n

(∫ {
Γ(T10(T1, η))G0(t, x; t−η, ξ)f(t−η, ξ, T10(T1, η), T80(T8, η))

}
dT1dT8

)
dη
]
dξ
∣∣∣

According to the mean value theorem, the integral inside [ ] can be estimated as

lim
n→∞

G0(t, x; t− η∗, ξ)f(t− η∗, ξ, T10(T1, η∗), T80(T8, η∗))

∫ ∆η

∆η/n

(
(Γ(T1(T10, η))χf0 (T10, T80) dT10dT80

)
dη,

where η∗ ∈ (∆η/n,∆η). Using (5.7) we infer that, independently of how small is ∆η, we have for

n→∞

∫ ∆η

∆η/n

(
(Γ(T1(T10, η))χf0 (T10, T80) dT10dT80

)
dη ≤ Sf · CT1 ·

∫ ∆η

∆η/n

λ|s| exp(λst)dη ≤ Sf · CT1 ,

where

CT1
= sup
T10∈SM

|T10 −A1|.

Using the fact that for any continuous function ψ(ξ),
∫

IR3 G0(t, x; t − η∗, ξ)ψ(ξ)dξ → ψ(x) pointwise

as η∗ → 0, we have

∣∣∣ lim
η∗→0

∫
IR3

G0(t, x; t− η∗, ξ)f(t− η∗, ξ, T10(T1, η∗), T80(T8, η∗))dξ
∣∣∣→ f(t, x, T10(T1, 0), T80(T8, 0))

= f(t, x, T1, T8).

In particular, due to (5.12),

limn→∞W (n) ≤ F · CT1 .

Similar estimates can be obtained for the weak limit of the expression

∂

∂T8
(B(T8)u).

We can thus conclude the validity of the following lemma.

Lemma 5.7. Suppose that Assumptions 3.2, 3.3, 5.3, 5.4 and 5.6 are satisfied. Then, asymptotically

as λ→∞, the weak limit of the expression

[
∂

∂T1
(Γ(T1)u(t, x, T1, T8))] + [

∂

∂T8
(B(T8)u(t, x, T1, T8))]

at time t > 0, with u determined by (3.56), does depend only on the value of the function f at time t

and does not depend on the values of this function at smaller times τ ∈ [0, t).

6 Weak formulation of Eq.(3.1)

As above, we consider the case Ω = IR3. In the previous section, we proved that in some sense, the

solution R(t, x, T1, T8) of (3.1) may converge to a generalized function R(t, x)·δ(T1−A1)δ(T8−A8). In

fact, we may consider the weak version of Eq. (3.1) by looking for solutions in the space of distributions

D′((0,∞)× Ω× R2
+).

Lemma 6.1. Suppose R(t, x) is a classical solution of the equation Rt = dR∇2R. Suppose that the

functions Γ(T1) and B(T8) have isolated zeros A1 and A8. Then R(t, x, T1, T8) = R(t, x) · δ(T1 −
A1)δ(T8 −A8) is a solution to (3.1) in the space C1,2

t,x ([0, T )× Ω) ∩ ×D′(IR2
+).
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Proof Let us write Eq.(3.1) in the form

∂R

∂t
− dR∇2R = − ∂

∂T1
(Γ(T1)R)− ∂

∂T8
(B(T8)R) .

Multiplying the both sides of this equation by a test function ψ(T1, T8) ∈ D(R2
+), takingR(t, x, T1, T8) =

R(t, x) · δ(T1 − A1)δ(T8 − A8) and integrating over R2
+, we conclude that the left hand side becomes

equal to 0, whereas the right hand side, in view of (1.18) is equal to:

〈− ∂

∂T1
(Γ(T1)R)− ∂

∂T8
(B(T8)R) , ψ〉 =

R(t, x) ·
(∫

IR2
+

Γ(T1) δ(T1 −A1)δ(T8 −A8) · ψT1
(T1, T8)dT1dT8+∫

IR2
+

B(T8) δ(T1 −A1)δ(T8 −A8) · ψT8
(T1, T8)dT1dT8

)
= 0.

(6.1)

This proves the lemma. 2

Lemma 6.2. Suppose that Assumptions (5.3) and (5.4) hold. Let R(t, x, T1, T8) be a nonegative

solution of (3.1) for initial data R0(t, x, T1, T8) as given in (5.4) and Assumption 5.3. Let

R(t, x) =

∫
IR2

+

R(t, x, T1, T8)dT1dT8.

Suppose also that for all t ∈ [0, T ] the ’total mass’ integral is finite, i.e.∫
IR3

R(t, x)dx = Mt <∞.

Then

R(t, x, T1, T8)−R(t, x)δ(T1 −A1) δ(T8 −A8)→ 0

in the weak sense in D′(Rn × R2
+) as t→∞ (for fixed λ) or λ→∞ (for fixed t > 0).

Proof For a test function ψ(x, T1, T8) ∈ D(Rn×R2
+) of compact support, we have by means of (3.52),

(11.2) and (5.3):

Dδ = 〈R(t, x, T1, T8)−R(t, x)δ(T1 −A1) δ(T8 −A8), ψ〉

=

∫
R3

∫
R2

+

R(t, x, T1, T8) (ψ(x, T1, T8)− ψ(x,A1, A8)) dT1 dT8 dx =∫
R3

∫
R2

+

[ ∫
IR3

G0(t, x; 0, ξ)R0(ξ, T10(T1, t), T80(T8, t))dξ
]
×(

ψ(x, T1, T8)− ψ(x,A1, A8)
)
K(T1, T8; t) dT1 dT8 dx .

(6.2)

Now, using Assumption 5.3 we have

|Dδ| =
∣∣∣ ∫

Rn

∫
SM

[ ∫
IR3

G0(t, x; 0, ξ)R0(ξ, T10, T80)dξ
]
×(

ψ(x, T1(T10, t), T8(T80, t))− ψ(x,A1, A8)
)
K(T1, T8; t) · det(J(T1, T8; t) dT10 dT80 dx

∣∣∣ ≤
sup(T10,T80)∈SM ,x∈IR3

∣∣∣ψ(x, T1(T10, t), T8(T80, t))− ψ(x,A1, A8)
∣∣∣×∫

R3

∫
SM

[ ∫
IR3

G0(t, x; 0, ξ)R0(ξ, T10, T80)dξ
]
dT10 dT80 dx.

(6.3)

Note that by Assumption 5.4 we have
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|ψ(x, T1(T10, t), T8(T80, t))−ψ(x,A1, A8))|
≤ ‖∇ψ‖∞(|T10 −A1| exp(λst) + |T80 −A8| exp(λrt)).

In addition, one computes, by means of (3.52), (5.1) and (5.8),∫
R3

∫
SM

[ ∫
IR3

G0(t, x; 0, ξ)R0(ξ, T10, T80)dξ
]
dT10 dT80 dx =∫

R3

∫
SM

[ ∫
IR3

G0(t, x; 0, ξ)R0(ξ, T10(T1, t), T80(T8, t))
(

det(J(T1, T8; t)
)−1

dξ
]
dT1 dT8 dx =∫

R3

∫
SM

[ ∫
IR3

G0(t, x; 0, ξ)R0(ξ, T10(T1, t), T80(T8, t))K(T1, T8; t)dξ
]
dT1 dT8 dx =∫

R3

R(t, x)dx = Mt <∞.

Thus putting everything together, we obtain

|〈R(t, x, T1, T8)−R(t, x)δ(T1 −A1) δ(T8 −A8), ψ〉| ≤ ‖∇ψ‖∞Mt×

(sup(T10,T80)∈SM |T10 −A1|eλst + sup(T10,T80)∈SM |T80 −A8|eλrt).
(6.4)

This expression clearly converges to zero as t→∞ (for fixed λ) or λ→∞ (for fixed t). 2

Remark In the above proof we did not take into account that ψ has a compact support with respect to

x. If this fact is taken into account, the lemma could be proved without the assumption of compactness

of R0 with respect to ξ, because the integral

∫
R3

∫
SM

[ ∫
IR3

G0(t, x; 0, ξ)R0(ξ, T10, T80)dξ
]
dT1dT8dx can

be replaced by the integral

∫
Sxψ

∫
SM

[ ∫
IR3

G0(t, x; 0, ξ)R0(ξ, T10, T80)dξ
]
dT1dT8dx, where Sxψ denotes

the support of ψ with respect to x. This integral is finite. 2

7 Integral equality satisfied by the function given by (3.52)

In this section we establish a conservation equality satisfied by the function determined by the right

hand side of Eq.(3.52), similarly to Lemma 3.1. Next, we demonstrate that the integral of this function

with respect to T1 and T8 is equal to a product of a constant and the solution R : [0, T ] × IR3 7→ IR

to the heat equation Rt = dR∇2R. We thus show that the function defined by (3.52) satisfies a

necessary condition of being a solution to Eq.(3.1). This property is shown in Lemma 7.2.

Lemma 7.1. Suppose that the functions Γ, B and R0 are of C2 class of their arguments. Suppose

that the support of R0 is compact, both with respect to (T1, T8) ∈ IR2
+ and x ∈ IR3. Then the right

hand side of equality (3.52) satisfies the conservation law∫
R3

∫
IR2

+

[ ∫
IR3

G0(t, x; 0, ξ)R0(ξ, T10(T1, t), T80(T8, t))K(T1, T8; t)dξ
]
dT1 dT8 dx = M0

where M0 is a constant independent of t ∈ [0, T ].

Proof It suffices to show that the assumptions of Lemma 3.1 are fulfilled. The proof follows from

the properties of the fundamental solution G0(t, x; 0, ξ). Let S∗ξ =
⋃
T1,T8

Suppξ(T1, T8), where

Suppξ(T1, T8) denotes the support of R0 with respect to ξ for (T1, T8) ∈ IR2
+. Note that differentiation

with respect to the components of x can be replaced by differentiation with respect to corresponding

components of ξ, hence
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∇x
[ ∫

IR3

G0(t, x; 0, ξ)R0(ξ, T10(T1, t), T80(T8, t))K(T1, T8; t)dξ
]

=

−
∫
S∗ξ

∇ξG0(t, x; 0, ξ)R0(ξ, T10(T1, t), T80(T8, t))K(T1, T8; t)dξ

−
∫
S∗ξ

G0(t, x; 0, ξ)∇ξR0(ξ, T10(T1, t), T80(T8, t))K(T1, T8; t)dξ.

Thus if R0 is of C1 class with respect to ξ, then, in view of (3.15) with τ = 0, ‖∇xR(t, x, T1, T8)‖,
vanishes as fast as exp(−d2

x/(4dRt)), where dx denotes the distance of x from the set S∗ξ . In view of

Lemma 3.1, the lemma is proved. 2

Lemma 7.2. Suppose that R(t, x, T1, T8) satisfies Eq.(3.1). Suppose that for all t ∈ [0, T ] the support

of R(t, x, T1, T8) is compact with respect to (T1, T8), i.e. R(t, x, T1, T8) ≡ 0 if |T1|+ |T8| is sufficiently

large (independently of t ∈ [0, T ] and x ∈ IR3). Then the function

R(t, x) =

∫
IR2

+

R(t, x, T1, T8)dT1dT8

satisfies the diffusion equation

∂R
∂t

= dR∇2R.

Proof The proof follows by considering the improper integral over IR2
+ of the both sides of Eq.(3.1)

as a limit of integrals over the sets B(0, r) ∩ IR2
+. Proceeding as in the proof of Lemma 3.1), that is

to say, writing the sum of the last two terms of Eq.(3.1) as [−∇ · (Γ(T1)R,B(T8)R)]. and using the

the Gauss-Ostrogradskii theorem, we conclude that the integral of this sum vanishes. 2

From Lemma 7.2, we conclude that if the function defined by the right hand side of Eq.(3.52) is

in fact a solution to Eq.(3.1), then it should satisfy the identity

∫
IR2

+

[ ∫
IR3

G0(t, x; 0, ξ)R0(ξ, T10(T1, t), T80(T8, t))K(T1, T8; t)dξ
]
dT1dT8 = C ·

∫
IR3

G0(t, x; 0, ξ)R0(ξ)dξ

for some function R0 independent of t and (T1, T8). To show this, let us note that due to (5.8) we

have

∫
IR2

+

R0(ξ, T10(T1, t), T80(T8, t))K(T1, T8; t)dT1dT8 =

∫
IR2

+

R0(ξ, T10, T80) dT10dT80 := R0(ξ).

8 The case of the product initial data

In this section, we will consider the specific case of the initial data, which can be expressed as a

product of the functions depending on x and (T1, T8). In this case, in principle, we can give explicit

expressions for solutions also in for Eq.(3.1) with the functions Γ and B depending explicitly on t.

This section can serve as a test for the validity of Lemma 3.8.

We will thus consider the equation:

∂R

∂t
= dR∇2R− ∂

∂T1
(Γ(T1, t)R)− ∂

∂T8
(B(T8, t)R) . (8.1)

Let us seek the function R satisfying Eq.(3.1) in the form of the product

R(t, x, T1, T8) := Rp(t, x) ·Rh(t, T1, T8)

where the function Rp satisfies the associated heat equation, i.e.
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∂Rp
∂t

= dR∇2Rp (8.2)

and Rh satisfies the hyperbolic equation (3.3), i.e.

∂Rh
∂t

= − ∂

∂T1
(Γ(T1, t)Rh)− ∂

∂T8
(B(T8, t)Rh) (8.3)

As, by assumption, Rp does not depend on T1 and T8 and Rh does not depend on x, then by

calculating the partial derivative, we obtain:

∂(RpRh)

∂t
= Rh∇2

x(Rp)−Rp ·
( ∂

∂T1
(ΓRh) +

∂

∂T8
(BRh)

)
=

∇2
x(RpRh)−

( ∂

∂T1
(ΓRpRh) +

∂

∂T8
(BRpRh)

)
= 0.

Thus, if the initial data for R have a product form, namely

R0(0, x, T1, T8) = Rp0(x) ·Rh0(T1, T8) (8.4)

then Rp ·Rh satisfies Eq.(1.11). We have thus shown the following lemma.

Lemma 8.1. Suppose that the initial data satisfy condition (8.4) and that the functions Γ and B

do not depend on t and x. Then there exists a solution to Eq.(8.1) having the form R(t, x, T1, T8) =

Rp(t, x) ·Rh(t, T1, T8), where Rp satisfies Eq.(8.2) and Rh satisfies Eq.(8.3).

In the simple example, let us consider the case of linear Γ and B functions, which seems to be the

simplest example expressing the characteristic features of the analysed equation. First, let us solve the

hyperbolic counterpart of Eq.(3.1), i.e. Eq.(3.3). To begin with, note that in the linear case defined

by (3.19) and (3.23), Eq.(3.3) takes the form

∂Rh
∂t

= −(s+ r)Rh − Γ(T1)
∂

∂T1
Rh −B(T8)

∂

∂T8
Rh (8.5)

hence by defining

R̂h := exp((s+ r)t) ·Rh. (8.6)

we obtain

∂R̂h
∂t

= −Γ(T1)
∂

∂T1
R̂h −B(T8)

∂

∂T8
R̂h (8.7)

To simplify the example as much as possible, let us suppose that

s = r, s0 = r0. (8.8)

According to equalities (17) in [13, 3.2.2], the function R̂h is invariant along the trajectories of the

associated flow, i.e.

dR̂h
dt

= 0

from where it follows that

R̂(t, T1(T10, t), T8(T80, t)) = R̂0(T10, T80)

hence

R̂h(t, T1, T8) = R̂h0(T10(T1, t), T80(T1, t)),

where the functions T10(T1, t) and T80(T1, t) are determined by (3.8) and (3.11). Now, inverting (8.6),

we obtain:
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Rh(t, T1, T8) = exp(−(s+ r)t)R̂h(t, T1, T8) = exp(−(s+ r)t)R̂h0(T10(T1, t), T80(T1, t)) =

exp(−(s+ r)t)Rh0(T10(T1, t), T80(T1, t)).

Suppose now that the condition (8.4) is satisfied. Then, according to Lemma 8.1, the solution has the

form

Rp(t, x) · exp(−(s+ r)t)Rh0(T10(T1, t), T80(T1, t)). (8.9)

Let us compare this expression with the equality (3.27), i.e.

R(t, x, T1) =

∫
IR3

exp(−(s+ r)t) ·G0(t, x; 0, ξ)R0(ξ, T10(T1, t), T80(T8, t))dξ =

(∫
IR3

G0(t, x; 0, ξ)Rp0(ξ)dξ
)
· exp(−(s+ r)t)Rh0(T10(T1, t), T80(T8, t)) = Rp(t, x) ·Rh(t, T1, T8),

where we used point 4 of Lemma 3.4. Thus, in the considered case Lemma 8.1 and formula (3.27)

give the same results.

Suppose that the support of the initial distribution is equal to the circle CS0 = B2((−s0/s,−r0/r), p0).

Thus, let us assume that, for p0 < −s0/s, R̂h0(T1, T8) = cos4
(

(π
√

(T1 + s0/s)2 + (T8 + r0/r)2 (2p0)−1
)

for (T1, T8) ∈ CS0 and identically equal to 0 otherwise. For simplicity, let us suppose that r = s and

r0 = s0. The projections of the characteristic curves of Eq.(8.7) on the (T1, T8) space, determined by

system (3.5), are straight half-lines originating from the point (T1, T8) = (−s0

s
,−s0

s
). According to

(3.20), (3.26), we have

(T10(T1, t) + s0/s) = (T1 + s0/s) exp(−st), and (T80(T8, t) + s0/s) = (T8 + s/s0) exp(−st). (8.10)

In the course of time, the support of the the function Rh(t, T1, T8) (corresponding to the support of the

function Rh0(T10(T1, t), T80(T8, t))) changes to a closure of the ball B2((−s0/s,−r0/r), p(t)) =: CSt,

where p(t) = p0 · exp(st). It follows that the area of the support behaves as πp2
0 exp(2st). On the

other hand, using (8.10) and the fact that 2π

∫ 1

0

cos4(π/2 s)sds =
−16 + 3π2

8π
∼= 0.54, we obtain

∫
IR2

+

Rh(t, T1, T8)dT1dT8 = exp(−(s+ r)t) ·
∫
CSt

Rh0(T1, T8)dT1dT8 =

exp(−(s+ r)t)

∫
CSt

cos4
(

(π
√

(T10(T1, t) + s0/s)2 + (T80(T8, t) + r0/r)2 (2p(0))−1
)
dT1dT8 =

exp(−(s+ r)t)

∫
CS0

cos4
(

(π
√

(T10 + s0/s)2 + (T80 + r0/r)2 (2p0)−1
) dT1

dT10
(t)

dT8

dT80
(t)dT10dT80 =

exp(−(s+ r)t) exp((s+ r)t)

∫
CS0

cos4
(

(π
√

(T10 + s0/s)2 + (T80 + r0/r)2 (2p0)−1
)
dT10dT80 =

2π

∫ p0

0

cos4
(
πh(2p0)−1

)
hdh = p2

0

(
2π

∫ 1

0

cos4(π/2s)sds
)
∼= 0.54p2

0.

Summing up, the support of the function Rh becomes exponentially in time concentrated around

the point (−s0/s,−r0/r) and its area is equal to exp((s + r)t)πp2
0. On the other hand, the inte-

gral

∫
IR2

+

Rh(t, T1, T8)dT1dT8 is constant and equal approximately to 0.54p2
0. It follows that, in the

considered case

Rh(t, T1, T8) −→
t→∞

0.54p2
0δ(−s0/s,−r0/r).
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This is in agreement with the fact that, according to (8.10)

Rh(t, T1, T8) = exp(−2st)cos4
(

(π
√

(T1 + s0/s)2 exp(−2st) + (T8 + s0/s)2 exp(−2st) (2p(0))−1
)

(8.11)

if
√

(T1 + s0/s)2 exp(−2st) + (T8 + s0/s)2 exp(−2st) ≤ p(0) and 0 otherwise. Thus the maximal value

of Rh grows as fast as exp(−2st). The cross sections of the graphs of the function Rh as given by the

right hand side of (8.11) for s = −2, s0 > 2 and p(0) = 1 for three times t = 0, t = 0.5 and t = 1

are shown in Fig.4. By cross sections we mean here cross sections with planes perpendicular to the

(T1, T8)-plane passing through the point (−s0/s,−r0/r).

Figure 4: Cross sections of the graphs of Rh defined by (8.11) with s = −2, s0 = 3, p(0) = 1 for
t = 0 (the flattest curve), t = 0.5 and t = 1 (the steepest curve).

.

Now, the two remarks should be made.

Remark It should be emphasized that the factorization property concerns only solutions to the

homogeneous equation. 2

Remark It should be noted that for Γ and B independent of t, the result of Lemma 8.1 can be

recovered via the analysis of equality (3.52). Thus, it follows from the assumption (8.4) that

R(t, x, T1, T8) =
(∫

IR3

G0(t, x; 0, ξ)Rp0(x)dξ
)
· K(T1, T8; t)Rh0(T10(T1, t), T80(T8, t)) (8.12)

Let us note, as before, that we can write

∂Rh
∂t

= −
(∂Γ(T1)

∂T1
+
∂B(T8)

∂T8

)
Rh − Γ(T1(s))

∂

∂T1
Rh −B(T8)

∂

∂T8
Rh. (8.13)

Let us consider the above equation on the characteristic curves [0, T ] 3 t 7→ (t, T1(t), T8(t)). Using

the second equation of (21) [13, 3.2.2], we obtain for t ∈ (0, T ]:

dRh
dt

= −
(∂Γ(T1(t))

∂T1
+
∂B(T8(t))

∂T8

)
Rh. (8.14)

Considering the characteristic curve starting for t = 0 from (T10, T80) and defining

R̂h := exp
(∫ t

0

∂Γ(T1(s))

∂T1
ds
)
· exp

(∫ t

0

∂B(T8(t))

∂T8(s)
ds
)
·Rh, (8.15)

34



we obtain the equation

dR̂h
dt

= 0 (8.16)

with the initial condition R̂h(0) = Rh0(T10, T80). We thus obtain:

Rh(t, T1(t), T8(t)) = exp
(
−
∫ t

0

∂Γ(T1(s))

∂T1
ds
)
· exp

(
−
∫ t

0

∂B(T8(t))

∂T8(s)
ds
)
·Rh0(T10, T80).

Using Remark after (3.32), we have

exp
(
−
∫ t

0

∂Γ

∂T1

(
T1(T10, τ)

)
dτ
)

=
Γ(T10(T1, t))

Γ(T1)
,

and

exp
(
−
∫ t

0

∂B

∂T8

(
T8(T80, τ)

)
dτ
)

=
B(T80(T1, t))

B(T8)
.

It follows that

Rh = K(T1, T8, t) ·Rh0(T10(T1, t), T80(T8, t))

in agreement with (8.12). 2

Now, referring to the second sentence of this section, we will give a very simple example of a

solution to the hyperbolic counterpart of Eq.(3.1). Now, starting from (8.13), we can generalize this

analysis to the case of Γ and B depending on t. In this case we have

∂Rh
∂t

= −
(∂Γ(T1, t)

∂T1
+
∂B(T8, t)

∂T8

)
Rh − Γ(T1(s), t)

∂

∂T1
Rh −B(T8, t)

∂

∂T8
Rh. (8.17)

Not to lose conciseness, we tacitly assume that Assumption 3.2 is satisfied for all t ∈ [0, T ].

Let us consider the above equation on the characteristic curves [0, T ] 3 t 7→ (t, T1(t), T8(t)). This

time they are given by the equations:

dT1

dt
= Γ(T1, t), T1(0) = T10,

dT8

dt
= B(T8, t), T80(0) = T80.

(8.18)

Using the second equation of (21) [13, 3.2.2], we obtain for t ∈ (0, T ]:

dRh
dt

= −
(∂Γ(T1(t), t)

∂T1
+
∂B(T8(t), t)

∂T8

)
Rh. (8.19)

Considering the characteristic starting for t = 0 from (T10, T80) and defining

R̂h := exp
(∫ t

0

∂Γ(T1(T10, s), s)

∂T1
ds
)
· exp

(∫ t

0

∂B(T8(T80, s), s)

∂T8
ds
)
·Rh (8.20)

we obtain the equation

dR̂h
dt

= 0 (8.21)

with the initial condition R̂h(0) = Rh0(T10, T80). Consequently

Rh(t, T1(t), T8(t)) = exp
(
−
∫ t

0

∂Γ(T1(s), s)

∂T1
ds
)
· exp

(
−
∫ t

0

∂B(T8(t), s)

∂T8(s)
ds
)
·Rh0(T10, T80).

Below, we will consider the simple but relatively general case:
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Γ(T1, t) = p1(t)Γ∗(T1) and B(T8, t) = p8(t)B∗(T8) (8.22)

with p1(t) > 0, p8(t) > 0 for all t ∈ [0, T ].

Under this assumption, we have, by means of (8.18) and (8.22),

exp
(
−
∫ t

0

∂Γ(T1(s), s)

∂T1
ds
)

= exp
(
−
∫ t

0

∂Γ∗(T1(s))

∂T1
p1(s)ds

)
=

exp
(
−
∫ t

0

∂Γ∗(T1(s))

∂T1
dT1

)
=

Γ∗(T10(T1, t))

Γ∗(T1)
=
∂T10

∂T1
(t)

(
=

Γ∗(T10(T1, t))p1(t)

Γ∗(T1)p1(t)
=

Γ(T10(T1, t), t)

Γ(T1, t)

)
,

(8.23)

where we took into account that T1(0) = T10. Likewise,

exp
(
−
∫ t

0

∂B(T8(s), s)

∂T8
ds
)

= exp
(
−
∫ t

0

∂B∗(T8(s))

∂T8
p8(s)ds

)
=

exp
(
−
∫ t

0

∂B∗(T8(s))

∂T8
dT1

)
=
B∗(T80(T8, t))

B∗(T8)
=
∂T80

∂T8
(t)

(
=
B∗(T80(T8, t))p1(t)

B∗(T8)p8(t)
=
B(T80(T8, t), t)

B(T8, t)

)
,

(8.24)

To show that the function

R(t, x, T1, T8) =

∫
IR3

G0(t, x; 0, ξ) · Γ∗(T10(T1, t))

Γ∗(T1)

B∗(T80(T8, t))

B∗(T8)
R0(ξ, T10(T1, t), T80(T8, t)) dξ, (8.25)

we can use the modification of the proof of Lemma 3.7. The modification consists in taking into

account the fact that in the considered case, according to (8.23),(8.24), we have:

1

Γ∗(T1)
· dT1

dT10
· ∂T10(T1, t)

∂t
= −p1(t)

and

1

B∗(T8)
· ∂T8

∂T80
· dT80(T8, t)

dt
= −p8(t).

9 Extension to the equation with added diffusion terms

Let us consider the equation with additional diffusional terms with respect to T1 and T8:

∂R

∂t
= dR∇2R+ ε2

(∂2R

∂T 2
1

+
∂2R

∂T 2
8

)
− ∂

∂T1
(Γ(T1)R)− ∂

∂T8
(B(T8)R) + f(t, x, T1, T8) (9.1)

where ε ≥ 0.

The following lemmas generalize Lemma 3.8 and 3.9 to the case of Eq.(9.1).

Lemma 9.1. The function

R(t, x, T1, T8; ε) =∫
IR2

+

∫
IR3

G0(t, x; 0, ξ)Q1ε(t, T1; 0, T1)Q8ε(t, T8; 0, T8)K(T1, T8; t)R0(ξ, T10(T1, t), T80(T8, t))dξdT1dT8,

(9.2)
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where K(T1, T8; t) is defined by (11.2) is a solution to Eq. (9.1) with f ≡ 0 with the initial condition

R(0, x, T1, T8) = R0(x, T1, T8)

and with the boundary conditions

R(t, x, T1 = 0, T8) = 0, R(t, x, T1, T8) = 0

Here G0 is given by (3.15), whereas G1 and G8 are Green’s functions of the heat equation for the half

lines T1 ≥ 0 and T8 ≥ 0, i.e. solutions to the equations

∂Gkε
∂t
− ε2 ∂

2G

∂2Tk
Gkε = δ(t)δ(Tk − Tk)

with Tk ≥ Tk and k = 1, 8.

The proof follows by simple extension of the arguments used in the proof of Lemma 3.8.

Remark The explicit form of the functions Qkε can be found, e.g. in [29, Section 7.1]

Qkε(t, Tk; τ, Tk) = (4πε2(t− τ))−1/2exp
(
− |Tk − Tk|

2

4ε2(t− τ)

)
− (4πε2(t− τ))−1/2exp

(
− |Tk + Tk|2

4ε2(t− τ)

)
:=

Q−kε −Q
+
kε.

(9.3)

2

In the similar way the extension of Lemma 3.9 can be shown.

Lemma 9.2. The function

u(t, x, T1, T8; ε) =

∫ t

0

∫
IR2

+

∫
IR3

G0(t, x; τ, ξ)×

Q1ε(t, T1; τ, T1)Q8ε(t, T8; τ, T8)K(T1, T8; t− τ)f(τ, ξ, T10(T1, t− τ), T80(T8, t− τ))dξdT1dT8 dτ
(9.4)

is a solution to Eq.(9.1) with zero initial condition.

Now, let us note that

limε→0

∫
IR2

+

Q1ε(t, T1; 0, T1)Q8ε(t, T8; 0, T8)K(T1, T8; t)R0(ξ, T10(T1, t), T80(T8, t))dT1dT8 =

K(T1, T8; t)R0(ξ, T10(T1, t; ξ), T80(T8, t)).

(9.5)

Remark It is worthwhile to emphasize that we do not pass to the limit τ → t at the left hand side

of (9.5). Instead, while considering the convergence of solution to its initial data, is replaced by the

equivalent limit ε→ 0. This passage guarantees that the product ε2(t− τ)→ 0. 2

From (9.5), it is seen that for every (T1, T8) ∈ IR2
+

limε→0R(t, x, T1, T8; ε) =∫
IR3

G0(t, x; 0, ξ)K(T1, T8; t)R0(ξ, T10(T1, t), T80(T8, t))dξ = R(t, x, T1, T8).

(9.6)

Likewise, using the fact that for every function J (t, τ, ξ, T1, T8) of C1 class with respect to its argu-

ments, we have
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limε→0

∫
IR2

+

Q1ε(t, T1; τ, T1)Q8ε(t, T8; τ, T8)J (t, τ, ξ, T1, T8)dT1dT8 → J (t, τ, ξ, T1, T8), (9.7)

it is seen that for every (T1, T8) ∈ IR2
+

lim
ε→0

u(t, x, T1, T8; ε) = u(t, x, T1, T8). (9.8)

In (9.6) and (9.8) denote the functions provided by Lemma (3.8) and (3.9) respectively.

Now, we will consider the behaviour of the derivatives of the functions R and u. First, let us

present a convenient auxiliary result, which can be derived from the Gauss-Ostrogradskii theorem,

but is more general. For convenience of the reader, its proof will be presented below.

Lemma 9.3. Let G be a bounded region in IRm, m ≥ 1, whose boundary SG is a closed, piecewise

smooth surface which is positively oriented by a unit normal vector n directed outward from G. If

f = f(y) is a scalar function with continuous partial derivatives at all points of G (determined by

appropriate limits as y → SG). Then∫
SG

n(s)f(s)ds =

∫
G
∇f(y)dy.

In particular, if nj denotes the j-th component of the normal vector n, then∫
SG

nj(s)f(s)ds =

∫
G

∂

∂yj
f(y)dy.

Proof Let ej , j = 1, . . . ,m, denote the unit versors of the Cartesian system in IRm. We have:

∇f(y) =

n∑
j=1

ej ∇ · (f(y)ej),

where ∇f denotes the gradient of a scalar function f and ∇ · g denotes the divergence of a vector

function g. In this way, be means of the Gauss theorem,∫
G
∇f(y)dy =

n∑
j=1

ej

∫
G
∇ · (f(y)ej)dy =

∑n
j=1 ej

∫
SG

(f(y)ej) · n ds =

∫
SG

f(s)

n∑
j=1

ej [ej · n] ds =

∫
SG

nf(s)ds.

The lemma has been proved. 2

Note, that using (9.3) we can write, for k = 1, 8,

∂Qkε
∂Tk

= −
∂Q−kε
∂Tk

−
∂Q+

kε

∂Tk
hence

∂

∂Tk
R(t, x, T1, T8; ε) =

−
∫

IR3

G0(t, x; 0, ξ)

∫
IR2

+

∂

∂Tk

(
Q−kε(t, Tk; 0, Tk) +Q+

kε(t, Tk; 0, Tk)
)
Qk∗ε(t, Tk∗; 0, Tk∗)×

K(T1, T8; t)R0(ξ, T10(T1, t), T80(T8, t))dT1dT8 dξ

(9.9)

where k∗ is an index complementary to k, i.e.
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k∗ =


8 if k = 1,

1 if k = 8.

It follows that

∂

∂Tk
R(t, x, T1, T8; ε) =

−
∫

IR3

G0(t, x; 0, ξ)

∫
IR2

+

∂

∂Tk

( [
Q−kε(t, Tk; 0, Tk) +Q+

kε(t, Tk; 0, Tk)
]
Qk∗ε(t, Tk∗; 0, Tk∗)×

K(T1, T8; t)R0(ξ, T10(T1, t), T80(T8, t))
)
dT1dT8 dξ+∫

IR3

G0(t, x; 0, ξ)×
∫

IR2
+

[
Q−kε(t, Tk; 0, Tk) +Q+

kε(t, Tk; 0, Tk)
]
Qk∗ε(t, Tk∗; 0, Tk∗)×

∂

∂Tk

(
K(T1, T8; t)R0(ξ, T10(T , t), T80(T8, t))

)
dT1dT8dξ

(9.10)

Above, the formal integrals over IR2
+, can be understood as as the limit of the integrals∫

IR2
+

(·)dT1dT8 = lim
r→∞

∫
IC(r)

(·)dT1dT8,

over the region IC comprised within the contours C composed of the lines {T1 = 0, {0 ≤ T8 ≤ r},
{T8 = 0, {0 ≤ T1 ≤ r}, and the quarter-circle {T1 ≤ 0, T8 ≥ 0, T 2

1 + T 2
8 = r2}. Let us note that

due to the fact that the initial support R0 of the function R with respect to (T1, T8) is compact

independently of ξ ∈ Ω thus, for given t > 0, there exists r(t) > 1 sufficiently large such that

R0(ξ, T10(T1, t), T10(T1, t)) ≡ 0 if T 2
1 + T 2

8 ≥ r(t). It follows that for fixed t > 0 and ξ ∈ IR3:

[
Q−kε(t, Tk; 0, Tk) +Q+

kε(t, Tk; 0, Tk)
]
Qk∗ε(t, Tk∗; 0, Tk∗)K(T1, T8; t)R0(ξ, T10(T1, t), T80(T8, t)) ≡ 0

together with its derivatives for T 2
1 + T 2

8 ≥ r(t). Next, the function R0(ξ, T10(T1, t), T80(T8, t)) vanish

for T1 = 0 or T8 = 0, the last expression is equal to zero also on the axes T1 = 0 and T8 = 0. Thus,

using the second identity in Lemma 9.3 with m = 2 and nj = nk, we obtain

∫
IR2

+

∂

∂Tk( [
Q−kε(t, Tk; 0, Tk) +Q+

kε(t, Tk; 0, Tk)
]
Qk∗ε(t, Tk∗; 0, Tk∗)K(T1, T8; t)R0(ξ, T10(T1, t), T80(T8, t))

)
dT1dT8

= limr→∞

∫
IC(r)

∂

∂Tk( [
Q−kε(t, Tk; 0, Tk) +Q+

kε(t, Tk; 0, Tk)
]
Qk∗ε(t, Tk∗; 0, Tk∗)K(T1, T8; t)R0(ξ, T10(T1, t), T80(T8, t))

)
dT1dT8

=
∫
C(r)

[
Q−kε(t, Tk; 0, Tk) +Q+

kε(t, Tk; 0, Tk)
]

×Qk∗ε(t, Tk∗; 0, Tk∗)K(T1, T8; t)R0(ξ, T10(T1, t), T80(T8, t))nkds(r),

where ds(r) is the infinitesimal arc length over the circle C(0, r). It follows from (9.10) that

∂

∂Tk
R(t, x, T1, T8; ε) =

∫
IR3

G0(t, x; 0, ξ)

∫
IR2

+

[
Q−kε(t, T1; 0, T1) +Q+

kε(t, T1; 0, T1)
]
Qk∗ε(t, T8; 0, T8)×

∂

∂Tk

(
K(T1, T8; t)R0(ξ, T10(T1, t), T80(T8, t))

)
dT1dT8 dξ

(9.11)
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Likewise, we can show that

∂

∂Tk
u(t, x, T1, T8; ε) =

∫ t

0

∫
IR3

∫
IR2

+

G0(t, x; τ, ξ)
[
Q−kε(t, Tk; 0, Tk) +Q+

kε(t, Tk; 0, Tk)
]
Qk∗ε(t, Tk∗; 0, Tk∗)

× ∂

∂Tk

(
K(T1, T8; t− τ)f(τ, ξ, T10(T1, t− τ), T80(T8, t− τ))dT1dT8

)
dξ dτ

Finally, using the identities (9.6) and (9.8) one can prove that

limε→0
∂

∂Tk
R(t, x, T1, T8; ε) =

∂

∂Tk
R(t, x, T1, T8) (9.12)

and

limε→0
∂

∂Tk
u(t, x, T1, T8; ε) =

∂

∂Tk
u(t, x, T1, T8). (9.13)

This follows from the form of the functions Q1ε, Q8ε given by (9.3), the Remark after (9.5), point

2 of Lemma 3.4 resulting in the following simple lemma.

Lemma 9.4. Suppose that the support of the function g(T1, T8) ∈ C0(IR2) is compact and contained

in IR2
+. Then

limε→0

∫
IR+

∫
IR+

×(
G−1ε(t, T1; 0, T1)±G+

1ε(t, T1; 0, T1)
)(
G−8ε(t, T1; 0, T1)±G+

8ε(t, T1; 0, T1)
)
g(T1, T8)dT1dT8 =

= g(T1, T8).

Proof Due to the compactness of the support of the function g we can write

limε→0

∫
IR+

∫
IR+

×(
G−1ε(t, T1; 0, T1)±G+

1ε(t, T1; 0, T1)
)(
G−8ε(t, T1; 0, T1)±G+

8ε(t, T1; 0, T1)
)
g(T1, T8)dT1dT8 =

limε→0

∫
IR+

(
G−8ε(t, T1; 0, T1)±G+

8ε(t, T1; 0, T1)
)
×

[
limε→0

∫
IR+

(
G−1ε(t, T1; 0, T1)±G+

1ε(t, T1; 0, T1)
)
g(T1, T8)dT1

]
dT8

As g(T1, T8) ≡ 0 for T1 ≤ 0 and all T8 ∈ IR, we have H(−T1)g(T1, T8) = H(T1)g(−T1, T8) ≡ 0 hence

by point 2 of Lemma 3.4

limt→0

∫
IR+

(
G−1ε(t, T1; 0, T1)±G+

1ε(t, T1; 0, T1)
)
g(T1, T8)dT1 =

limt→0

∫
IR

(
G−1ε(t, T1; 0, T1)±G+

1ε(t, T1; 0, T1)
)
H(T1)g(T1, T8)dT1 =

H(T1)g(T1, T8)±H(T1)g(−T1,K8) = g(T1, T8).

Similarly, as g(T1, T8) ≡ 0 for T8 ≤ 0 and all T1 ∈ IR, we have H(−T8)g(T1, T8) = H(T8)g(T1,−T8) ≡ 0

hence
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limt→0

∫
IR+

(
G−8ε(t, T8; 0, T8)±G+

8ε(t, T8; 0, T8)
)
g(T1, T8)dT8 =

limt→0

∫
IR

(
G−8ε(t, T8; 0, T8)±G+

8ε(t, T8; 0, T8)
)
H(T8)g(T1, T8)dT8 =

H(T8)g(T1, T8)±H(T8)g(T1,−T8) = g(T1, T8).

The lemma is proved. 2

The same analysis can be carried out in case of the second derivatives with respect to Tk, k = 1, 8.

Then repeating twice the analysis presented above we obtain:

∂2

∂T1∂T8
R(t, x, T1, T8; ε) =∫

IR3

G0(t, x; 0, ξ)

∫
IR2

+

[
Q−1ε(t, T1; 0, T1) +Q+

1ε(t, T1; 0, T1)
] [
Q−8ε(t, T1; 0, T1) +Q+

8ε(t, T1; 0, T1)
]
×

∂2

∂T1∂T8

(
K(T1, T8; t)R0(ξ, T10(T1, t), T80(T8, t))

)
dT1dT8 dξ.

(9.14)

Next, due to the fact that, for k = 1, 8,

∂2Qkε
∂T 2

k

=
∂2Qkε
∂T 2

k

,

we obtain

∂2

∂T 2
k

R(t, x, T1, T8; ε) =

∫
IR3

G0(t, x; 0, ξ)

∫
IR2

+

Q1ε(t, T1; 0, T1) ·Q8ε(t, T1; 0, T1)×

∂2

∂T1∂T8

(
K(T1, T8; t)R0(ξ, T10(T1, t), T80(T8, t))

)
dT1dT8 dξ.

(9.15)

Likewise

∂2

∂T1∂T8
u(t, x, T1, T8; ε) =∫

IR3

G0(t, x; 0, ξ)

∫
IR2

+

[
Q−1ε(t, T1; 0, T1) +Q+

1ε(t, T1; 0, T1)
] [
Q−8ε(t, T1; 0, T1) +Q+

8ε(t, T1; 0, T1)
]
×

∂2

∂T1∂T8

(
K(T1, T8; t− τ)f(τ, ξ, T10(T1, t− τ), T80(T8, t− τ))dT1dT8

)
dT1dT8 dξ.

(9.16)

and

∂2

∂T 2
k

u(t, x, T1, T8; ε) =

∫
IR3

G0(t, x; 0, ξ)

∫
IR2

+

Q1ε(t, T1; 0, T1) ·Q8ε(t, T1; 0, T1)×

∂2

∂T 2
k

(
K(T1, T8; t− τ)f(τ, ξ, T10(T1, t− τ), T80(T8, t− τ))dT1dT8

)
dT1dT8 dξ.

(9.17)

Similarly to (9.12) and (9.13) we have, for k, l = 1, 8,

limε→0
∂2

∂Tk∂Tl
R(t, x, T1, T8; ε) =

∂2

∂Tk∂Tl
R(t, x, T1, T8) (9.18)

and
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limε→0
∂2

∂Tk∂Tl
u(t, x, T1, T8; ε) =

∂2

∂Tk∂Tl
u(t, x, T1, T8). (9.19)

Consequently, the following lemma holds.

Lemma 9.5. Let R(t, x, T1, T8; ε) and u(t, x, T1, T8; ε) denote the functions defined in (9.2) and (9.4),

whereas R(t, x, T1, T8) and R(t, x, T1, T8) the corresponding functions defined by 3.8 and 3.9. Then,

for every t ∈ [0, T ),

R(t, x, T1, T8; ε)→ R(t, x, T1, T8) and u(t, x, T1, T8; ε)→ u(t, x, T1, T8)

as ε→ 0, in the C2(Ω× IR2
+) norm.

Remark It follows straightforwardly from Eq.(9.1) that also the time derivatives of the functions

R(t, x, T1, T8; ε) and u(t, x, T1, T8; ε) tend the time derivatives of R(t, x, T1, T8) and u(t, x, T1, T8) as

ε→ 0 for each (x, T1, T8) ∈ Ω× IR2
+. 2

10 Remarks on the existence of the Green’s function for the

Neumann problems in bounded regions

The explicit form of the Green’s function with homogeneous boundary conditions of Robin type has

been found for many specific bounded regions, like an interval, a sphere [26], or a rectangle [14].

However, in many standard books in the theory of parabolic differential equations, the existence of

Green’s function for Neumann problems is not stated. (In [15] such an existence is only mentioned as

a result of [15, Problem 5, chapter 5]. Instead, in [15] or [29] (which in the context of Green’s function

approach is based on the results in [15]) another form of integral representation of the solution to

the Neumann (second type) initial boundary value problem is presented (see (3.5) in [15, section 3,

chapter 5]).

Let Ω ⊂ IRm be a bounded domain with the boundary of class C2+υ, υ ∈ (0, 1). For τ ≥ 0, T > τ ,

let us consider the linear parabolic equation:

Au = f(t, x) in (τ, T )× Ω,

u(τ, x) = ψ(x) on Ω,

∂u(t, x)

∂ν(t, x)
= 0 on (τ, T )× ∂Ω,

(10.1)

where ψ and f given,

A := L− ∂u

∂t
, (10.2)

and

L :=

m∑
i,j=1

aij(t, x)
∂2

∂xi∂xj
+

m∑
j=1

bj(t, x)
∂

∂xj
+ c(t, x) (10.3)

is a second order uniformly elliptic operator with sufficiently smooth coefficients depending on (t, x).

ν(t, x) denotes the vector with components νi(t, x) =
∑
aij(t, x)nj(x), where n(x) = (n1(x), . . . , nm(x))

is the unit outward vector normal to ∂Ω at x. Thus

∂u(t, x)

∂ν(t, x)
= ν(t, x) · ∇u(t, x) =

∑
aij(t, x)nj(x)

∂u

∂xj
(t, x). (10.4)

In fact, the left hand side of (10.4) denotes the diffusional flux through the boundary at point x ∈ ∂Ω.

Let Γ(t, x; τ, ξ) denotes the fundamental solution to the first equation of system (10.1). We thus assume
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that Γ satisfies the equation Au = 0 as a function of (t, x) in Ω×(0, T ) for all (τ, ξ) ∈ Ω×(0, T )∩{τ < t}
and that for any ψ ∈ C0(Ω) and any x ∈ Ω, we have

lim
t↘τ

∫
Ω

Γ(t, x; τ, ξ)ψ(ξ)dξ = ψ(x). (10.5)

In particular, if L is equal to dR∆, then Γ is given by the right hand side of (3.15), i.e.

Γ(t, x; τ, ξ) =
1

(4πdR(t− τ))3/2
e
−
|x− ξ|2

4dR(t− τ) .

Basing on the representation of solution to system (10.1), given by (3.5) in [15, section 3, chapter

5], it is proved in [6] the existence of the Green’s function for problem (10.1). Moreover, in a sense,

the Green’s function is defined explicitly. Thus, let

M1(t, x; τ, ξ) = −2
∂Γ(t, x; τ, ξ)

∂ν(t, x)

and

Mρ+1(t, x; τ, ξ) =

∫ t

τ

∫
∂Ω

M1(t, x;σ, η)Mρ(σ, η; τ, ξ)dηdσ.

Having shown the convergence of the series

sρ∑
ρ=1

Mρ(t, x; τ, ξ)

as sρ →∞, it is proved in [6, Section 3] that the Green’s function for (10.1) can be constructed, in a

way, explicitly. Thus, if

N (t, x; τ, ξ) = −2
∂

∂ν(t, x)
Γ(t, x; τ, ξ)− 2

∞∑
ρ=1

∫ t

τ

∫
∂Ω

Mρ(t, x;σ, η)
∂

∂ν(σ, η)
Γ(σ, η; τ, ξ)dηdσ, (10.6)

then the following lemma holds.

Lemma 10.1. The Green’s function for problem (10.1) is equal to

G(t, x; τ, ξ) =

∫ t

τ

∫
∂Ω

Γ(t, x;σ, η)N (σ, η; τ, ξ)dηdσ + Γ(t, x; τ, ξ). (10.7)

This function satisfies the identity

G(t, x; τ, ξ) =

∫
Ω

G(t, x;σ, η)G(σ, η; τ, ξ)dη τ < σ < t

and if c(t, x) = 0, then ∫
Ω

G(t, x; τ, ξ)dξ = 1.

The solution to problem (10.1) can be represented in the form:

u(t, x) =

∫
Ω

G(t, x; τ, ξ)ψ(ξ)dξ +

∫ t

τ

(∫
Ω

G(t, x; ξ, s)f(x, s)dξ

)
ds.

Remark It follows from Lemma 10.1 and (10.5) that the Green’s function for the bounded region Ω

(with sufficiently smooth boundary) satisfies the properties corresponding to points 1,2,3,4 of Lemma

3.4. 2

Remark Suppose that for all ξ ∈ Ω, t > τ , the fundamental solution Γ(t, x; τ, ξ) of the equation

Au = 0 (which is, in general, different than the heat kernel given by (3.18)) satisfies the boundary

conditions
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∂Γ(t, x; τ, ξ)

∂ν(t, x)
= 0 on (0, T )× ∂Ω.

Then, according to (10.6) and (10.7), G(t, x; τ, ξ) = Γ(t, x; τ, ξ). 2

Remark Let us note that, in the case aij = δijdR, then, due to definition (10.4)), the condition
∂u(t, x)

∂ν(t, x)
= 0 implies the homogeneous Neumann boundary condition

∂ u

∂n
= 0 for n = n(x), x ∈ ∂Ω.

2

11 The case of bounded regions

In view of section 10, we can generalize our previous results to bounded regions. To be more precise,

the following statement holds.

Theorem 11.1. Let Ω ⊂ IRj, 1 ≤ j ≤ 3 be a bounded domain with sufficiently smooth boundary.

Then Lemma 3.8, Lemma 3.9, uniqueness results in section 4, and the convergence statements in

section 9 remain valid.

Proof The proof of this statement is due to the fact that all the expressions exploited in above can

be used modulo the formal change of G0 7→ G, where G is the Green’s function for the problem (10.1)

for L = dR∇2. To prove it suffices to apply the previous analysis to the integrals over finite space

regions Ω. 2

In particular, the unique solution to the initial value problem for the homogeneous and inhomo-

geneous equation corresponding to (3.1) is given in the following lemma.

Theorem 11.2. Let m = 1, 2, 3. Let Ω be a bounded region with the boundary ∂Ω in C2+υ class. Let

G denotes the Green’s function for the problem (10.1) with L = dR∇2. Suppose that Assumption 3.3

holds for all x ∈ Ω, and that for all (T1, T8) ∈ IR2
+, the function R0 : Ω× IR2

+, satisfies

∂

∂n(x)
R0(x, T1, T8) = 0 for x ∈ ∂Ω.

Then, the function

R(t, x, T1, T8) =

∫
Ω

G(t, x; 0, ξ)K(T1, T8; t)R0(ξ, T10(T1, t), T80(T8, t))dξ , (11.1)

where

K(T1, T8; t) :=
Γ(T10(T1, t)

Γ(T1)

B(T80(T8, t)

B(T8)
, (11.2)

is a solution to the equation

∂R

∂t
= dR∇2R− ∂

∂T1
(Γ(T1;x)R)− ∂

∂T8
(B(T8;x)R) (11.3)

with the initial condition

R(0, x, T1, T8) = R0(x, T1, T8)

and the homogeneous Neumann boundary conditions

∂

∂n(x)
R(t, x, T1, T8) = 0 for x ∈ ∂Ω.

Next, the function

u(t, x, T1, T8) =

∫ t

0

(∫
Ω

K(T1, T8; t− τ)G(t, x; τ, ξ)f(τ, ξ, T10(T1, t− τ), T80(T8, t− τ))dξ
)
dτ (11.4)
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is the solution to the non-homogeneous equation

∂R

∂t
= dR∇2R− ∂

∂T1
(Γ(T1)R)− ∂

∂T8
(B(T8)R) + f(t, x, T1, T8). (11.5)

with zero initial conditions and the homogeneous Neumann boundary conditions. If R0 ∈ Cυ,2,2x,T1,T8
and

f ∈ Cυ/2,υ,2,2t,x,T1,T8
, whereas Γ and B are of C3 class of their arguments (in the corresponding domains),

then the functions given by the right hand sides of (11.1) and (11.4) are bounded in the norm of the

space C
1+υ/2,2+υ,2
t,x,(T1,T8) ([0, T ]×Ω× IR2

+). These solutions are unique in the space of functions W2B which

is defined similarly to the space W2 before Lemma 4.2 by replacing IR3 with Ω.

12 Final remarks

12.1 Generalization to bigger dimensions

The obtained results can be extended to equations for the spatial sets Ω ⊆ IRn with arbitrary n <∞
and arbitrary number s of T variables, that is to say to equations of the form:

∂R

∂t
= dR∇2R−

s∑
κ=1

∂

∂Tκ
(Γ(Tκ)R) + f(t, x, T1, . . . , Ts). (12.1)

Assumption 12.1. Assume that Γ1(T1), . . . ,Γs(Ts) are of Ck+1 class, k ≥ 2, and that for all

(T10, . . . , Ts0) the system

dT1

dt
(t) = Γ1(T1), . . . ,

dTs
dt

(t) = Γs(Ts), T1(0) = T10, . . . , Ts(0) = Ts0. (12.2)

has a unique Ck+1 solution (T1(·), T8(·)) satisfying the initial conditions T1(0) = T10, . . ., Ts(0) = Ts0,

defined for all t ≥ 0. Suppose that there exists a positive number ρ1−s, such that

Γ1(T1) ≥ 0 for |T1| ≤ ρ1−s,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Γs(Ts) ≥ 0 for |Ts| ≤ ρ1−s.

Assumption 12.2. Assume that for all x ∈ Ω, R0(x, T1, . . . , Ts) 6≡ 0 only for (T1, . . . , Ts) from some

open precompact set in IR2
+.

Let Ω = IRn or let Ω be a bounded open subset of IRn with the boundary ∂Ω belonging to C2+υ

class, υ ∈ (0, 1). Then the unique solution to the homogeneous version of Eq.(12.1) (with f ≡ 0),

satisfying the homogeneous Neumann boundary conditions if Ω is bounded, can be expressed in the

form

R(t, x, T1, . . . , Ts) =

∫
Ω

G(t, x; 0, ξ)K(T1, . . . , Ts; t)R0(ξ, T10(T1, t), . . . , Ts0(Ts, t))dξ .

Here G is either equal to Gn0 specified in Lemma 3.4 (if Ω = IRn), or G is equal to the Green’s function

for the homogeneous Neumann boundary value problem discussed in section 10, whereas

K(T1, . . . , Ts; t) :=

s∏
k=1

Γk(Tk0(Tk, t))

Γ(Tk)
.

Next, the unique solution to the inhomogeneous problem with zero initial condition is equal to

u(t, x, T1, . . . , Ts) =

∫ t

0

(∫
Ω

K(T1, . . . , Ts; t−τ)G(t, x; τ, ξ)f(τ, ξ, T10(T1, t−τ), . . . , Ts0(Ts, t−τ))dξ
)
dτ.
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IfR0 and f are of C2 class and Γk, k = 1, . . . , s are of C3 class of their arguments (in the correspond-

ing domains), then the functions R and u are bounded in the norm of the space C
1+υ/2,2+υ,2
t,x,(T1,...,Ts)

([0, T ]×
Ω× IRs

+). These solutions are unique in the space of functions W2B which is defined similarly to the

space W2 before Lemma 4.2 by replacing IR3 with Ω.

12.2 Convolution notation

Let us note that the obtained expressions can be written in a bit more abstract form. Namely, if P

denote the solution operator we have for the hyperbolic equation acting on the initial data function

R0, i.e. P (R0)(t, x, T1, T8) is a solution at time t. Then (3.52) can be written

R(t, x, T1, T8) =

∫
Ω

G(t, x; 0, ξ)P (R0)(t, ξ, T1, T8)dξ =: G(t, x; 0, ξ) ~ P (R0)(t, ξ, T1, T8). (12.3)

The last expression can be interpreted as a kind of convolution of the solution to the hyperbolic

equation Eq.(3.3) with the Green’s function G for the diffusion equation. Moreover, if G depends only

on x− ξ, as it is for Ω = IRn (see Lemma 3.4), then this expression is a usual convolution with respect

to ξ, i.e.

R(t, x, T1, T8) = G(t, x; 0, ξ) ?ξ P (R0)(t, ξ, T1, T8). (12.4)

Let us note that the above formula can be generalized to initial data at time t = τ > 0. In this case,

R0 should be treated as a function of τ also, i.e.

R0(τ) = R0(τ, x, T1, T8).

Then the above equalities should be written as

R(t, x, T1, T8) =

∫
Ω

G(t, x; τ, ξ)P (R0(τ))(t, ξ, T1, T8)dξ, (12.5)

and

R(t, x, T1, T8) = G(t, x; τ, ξ) ~ P (R0(τ))(t, ξ, T1, T8), (12.6)

where τ is fixed. In this notation

P (R0(τ))(t, ξ, T1, T8) = K(T1, T8; t− τ) ·R0(τ, ξ, T10(T1, t− τ), T80(T8, t− τ)).

Recall that T10(T1, t−τ) denotes the value of T1 on the characteristic curve at time τ and T80(T8, t−τ)

denotes the value of T8 on the characteristic at time τ .

Let us note, that (12.3) and (12.4) are also valid, if Γ = Γ(T1, t) and B = B(T8, t), if P denotes

the solution operator for Eq.(3.3). This follows from the first part of the proof of Lemma 3.52 and

the fact that if P (R0)(t, ξ, T1, T8) satisfies Eq.(3.1), with Γ = Γ(T1, t) and B = B(T8, t), then(
P (R0)(t, ξ, T1, T8)

)
,t

= − ∂

∂T1

(
Γ(T1, t)P (R0)

)
− ∂

∂T8

(
B(T8, t)P (R0)

)
.

Now, as G(t, x; 0, ξ) does not depend on T1 and T8, we conclude that

R(t, x, T1, T8) =

∫
Ω

(
G(t, x; 0, ξ)P (R0)(t, ξ, T1, T8)

)
,t
dξ =

− ∂

∂T1

(
Γ(T1, t)

∫
Ω

G(t, x; 0, ξ)P (R0)(t, ξ, T1, T8)dξ
)

− ∂

∂T8

(
B(T8, t)

∫
Ω

G(t, x; 0, ξ)P (R0)(t, ξ, T1, T8)dξ
)

=

− ∂

∂T1

(
Γ(T1, t)R(t, x, T1, T8)

)
− ∂

∂T8

(
B(T8, t)R(t, x, T1, T8)

)
.

.
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This fact is in agreement with the results of section 8.4. An example of a solution to Eq.(3.1) in

the case of Γ and B depending also explicitly on t is given at the end of section 8.4.

Now, in the case of Γ and B not depending explicitly on t, as it follows from (3.56), the solution

to the inhomogeneous equation (3.55) can be written as

R(t, x, T1, T8) =

∫
Ω

∫ t

0

G(t, x; τ, ξ)P (f(τ))(τ, ξ, T1, T8)dτdξ, (12.7)

what can be displayed in the convolution form:

R(t, x, T1, T8) = G(t, x; τ, ξ) ? P (f(τ))(τ, ξ, T1, T8).

It seems that in the case of Γ and B depending explicitly on t, equality corresponding to (12.7)

do not hold. Similarly, in the case of Γ and B depending explicitly on x, we have not been able to

derive the corresponding expressions for the solution even in the homogeneous case.

To obtain stronger results in the analysis of (1.1)-(1.3), in the remaining sections, we will propose

a discrete time method, which can at least partially overcome these difficulties and study the existence

of solutions to system (1.11)-(1.13).

47



Part III

Existence theorems via the Rothe method

13 Modified discrete Rothe method

The formulation of the discrete Rothe method for system (1.11)-(1.13) has been proposed in paper

[19]. It was shown in [19] that, after some essential modifications taking into account the existence

of characteristic curves for the hyperbolic counterpart in the first equation, the Rothe method can

be used effectively to study the existence of solutions and well-disposed of the initial boundary value

problem.

As it was noticed in the previous section, system (1.11)-(1.13) can neither be studied by means

of classical methods dedicated exclusively to systems of parabolic equations, nor by the methods

dedicated exclusively to hyperbolic ones. The method proposed in [19] consists in a combined dis-

cretization of the variables t, T1, T8. In this setting, an implicit difference scheme exploits essentially

in the form of the characteristic curves. The resulting sequence of elliptic PDE’s is well posed and

inherit, in a way, the basic properties of the original system (1.11)-(1.13).

Let h = (∆t,∆T1,∆T8), ti = i∆t, T j1 = j∆T1, T k8 = k∆T8 and

Zh =
{

(ti, T j1 , T
k
8 ) : i, j, k = 0, 1, . . .

}
, Z ′h =

{
(T j1 , T

k
8 ) : j, k = 0, 1, . . .

}
.

Let Ri,j,k(x) = R(ti, x, T j1 , T
k
8 ). Given any function v : Z ′h → R, an interpolation operator Ih acting

on v, can be defined informally by:

Ihv(T1, T8) = piecewise linear interpolation

for T1 ∈ [T j−1
1 , T j1 ], T8 ∈ [T k−1

8 , T k8 ], j, k = 1, 2, . . . In particular, we write below IhR
i−1(x;T1, T8) for

the interpolation Ihv where vj,k := Ri−1,j,k(x).

Thus the following numerical scheme for solving system (1.11)-(1.13) was proposed in [19]:

Ri,j,k − IhRi−1(x; τ j,k1 (x), τ j,k8 (x))

∆t
= dR∇2Ri,j,k −∇ · (Ri,j,k Ki−1(Ri−1))

−Ri,j,k
[
∂

∂T1

(
γ̃(cu;i−1

1 , cu;i−1
8 , IhT

j
1 )
)

+
∂

∂T8

(
δ̃(cu;i−1

8 , IhT
k
8 )
)] (13.1)

cu;i
1 − c

u;i−1
1

∆t
=∇2cu;i

1 + ν̃

∫ ∞
0

∫ ∞
0

Ihc
8;i−1
8 IhR

i−1 dT1 dT8 − cu;i
1 (13.2)

cu;i
8 − c

u;i−1
8

∆t
=∇2cu;i

8 + µ̃

∫ ∞
0

∫ ∞
0

Ihc
i−1,j
1 IhR

i−1 dT1 dT8 − π̃8 c
u;i
8 . (13.3)

where, for each x ∈ Ω, τ j,k1 , τ j,k8 are computed from the equations:

T j1 − τ
j,k
1 (x)

∆t
= γ̃(cu;i−1

1 (x), cu;i−1
8 (x), T j1 ), (13.4)

T k8 − τ
j,k
8 (x)

∆t
= δ̃(cu;i−1

8 (x), T k8 ). (13.5)

Since
dT1

dt
≈ ∆T1

∆t
,
dT8

dt
≈ ∆T8

∆t
the above equations are finite difference approximations of the

equations determining the characteristics of the hyperbolic part of Eq.(1.11)

∂R

∂t
= − ∂

∂T1
(γ̃(cu1 , c

u
8 , T1)R)− ∂

∂T8

(
δ̃(cu8 , T8)R

)
that is, by the equations:
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dT1

dt
= γ̃(cu1 , c

u
8 , T1) (13.6)

dT8

dt
= δ̃(cu8 , T8). (13.7)

2

In section 15 we propose a different numerical scheme, where x ∈ Ω, T1 and T2 are treated as

a continuous variable. This change is dictated by the fact that we will concentrate mainly on the

existence of solutions, putting aside the qualitative results of numerical simulations.

14 Preliminary lemmas and properties

In this section we establish some of the properties of the coefficient functions in system (1.11)-(1.13),

and find some a priori estimates of its solutions.

14.1 Preliminary lemmas

Below, we will make use of the following formulation of the maximum principle for elliptic equations.

Lemma 14.1. Let Ω ∈ IRmΩ , mΩ ≥ 1, be a bounded domain with ∂Ω of C2+α class, α ∈ (0, 1). Let

aij, i, j ∈ {1, . . . ,mΩ} and bj, j ∈ {1, . . . ,mΩ} be of C1+α(Ω) class. Let

Lw =

mΩ∑
i,j=1

aij(x)
∂2w

∂xi∂xj
+

mΩ∑
j=1

bj(x)
∂w

∂xj

be a uniformly elliptic operator. Suppose that w satisfies the equation

Lw − c(x)w + f(x) = 0 in Ω, (14.1)

∂w

∂n
(x) for x ∈ ∂Ω, (14.2)

where c(x) > 0 for x ∈ Ω and f are non-negative in Ω. Then w ≥ 0 in Ω and w > 0 in Ω unless

w ≡ 0. In particular w > 0 in Ω, if f 6≡ 0. Suppose that w attains a non-negative maximum at

x = x0 ∈ Ω. Then

w(x0) ≤ f(x0)

c(x0)
. (14.3)

In general, for all x ∈ Ω,

0 ≤ w(x) ≤ sup
x∈Ω

[f(x)

c(x)

]
. (14.4)

2

Proof The proof follows from the fact that, thanks to boundary condition (14.2), the constant func-

tions w ≡ 0 and w ≡ supx∈Ω

[f(x)

c(x)

]
are respectively sub and supersolution of Eq.(14.1) (see, e.g.

[29, section 3.2]). The positivity of w(·) in Ω follows from [29, Lemma 4.2, section 1.4]. Also, (14.3)

follows from the proof of inequality (1.5) in [24, chapter III]. 2

Below, we will also use the following generalization of Lemma 14.1 not assuming the non-negativity

of the function f .

Lemma 14.2. Let the assumptions of Lemma 14.1 be satisfied except for the assumption that f(·) ≥ 0.

Then
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inf
y∈Ω

[f(y)

c(y)

]
≤ w(x) ≤ sup

y∈Ω

[f(y)

c(y)

]
. (14.5)

14.1.1 The uniqueness of solutions

Lemma 14.3. Positive solutions to problem (14.1)-(14.2) are unique.

Proof Let r ∈ C1(Ω) and r(x) > 0 for x ∈ Ω. Consider the eigenvalue problem:

(L− c(x) + λr(x))φ = 0 (14.6)

for φ satisfying homogeneous boundary conditions. By means of Theorem 1.2 of chapter 3 in [29] and

the assumption c(x) > 0 for x ∈ Ω, the principal eigenvalue λ∗, i.e. the eigenvalue λ(r) satisfying

Eq.(14.6) with the smallest real part, is real and positive λ∗ > 0. Moreover, the corresponding

eigenfunction φ∗ is positive in Ω. Finally, using Theorem 3.2 of chapter 3 in [29], and noting that

the upper solution and lower solutions can be taken in the form K∗ > 0 and (−K∗) < 0 respectively

satisfying

K∗ ≥ sup
x∈Ω

[f(x)

c(x)

]
.

we conclude that solutions to problem (14.1)-(14.2) are unique. 2

Remark Lemma 14.3 can be also proved straightforwardly by means of the maximum principle applied

to the homogeneous equation Lw = 0. (Any extremum cannot be attained at the boundary, unless

w is constant, which for c(x) ≥ 0, must be equal to zero. On the other hand and internal extremum

must be also equal to zero.) 2

Below, we will extensively use the following differentiability property for linear elliptic second

order equations. This theorem is provided by general Schauder estimates in [1]. (See Theorem 7.3 for

U = D.)

Lemma 14.4. Suppose that Ω is bounded open subset of IRmΩ , mΩ ≥ 1, l ≥ 2 and that ∂Ω ∈ Cl+β
for some β ∈ (0, 1). Suppose that the coefficients of the elliptic operator

L =

mΩ∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

mΩ∑
j=1

bj(x)
∂

∂xj
− c(x)

have their C(l−2)+β norms bounded. Suppose that U satisfies the system

LU = F (x) in Ω (14.7)

n(x) · ∇U = Φ(x) on ∂Ω. (14.8)

Then U satisfies the estimate

‖U‖Cl+β(Ω) ≤ Cl
(
‖F‖Cl−2+β(Ω) + ‖Φ‖Cl−1+β(∂Ω) + ‖U‖C0(Ω)

)
.

The term ‖U‖C0(Ω) can be omitted if the homogeneous problem has no nontrivial solutions.

Remark Similar estimate in the case of Dirichlet boundary conditions is given by inequality (1.11)

of Section 1 of ch. 3 in [24]. 2

An Lp version of the above property is given by the following lemma.

Lemma 14.5. (Theorem 15.2 in [1]) Suppose that l ≥ 2 and that ∂Ω ∈ Cl+β for some β ∈ (0, 1).

Suppose that the coefficients of the elliptic operator L have their Ll−2 norms bounded. Then, for any

p > 1:

‖U‖W l
p
≤ Cl

(
‖F‖W l−2

p
+ ‖Φ‖W l−1−(1/p)(∂Ω) + ‖U‖C0(Ω)

)
,

50



where the constant Cl does not depend on the functions F , Φ and u0. The term with ‖U‖C0 can be

omitted, if the corresponding homogeneous problem (with F ≡ 0) has no nontrivial solutions.

Similar property concerning linear parabolic equation is given by corresponding Schauder esti-

mates.

Lemma 14.6. (See, [23, Section IV, Theorem 5.3]) Let Ω is bounded open subset of IRmΩ and

L =

mΩ∑
i,j=1

aij(t, x)
∂2

∂xi∂xj
+

mΩ∑
j=1

bj(t, x)
∂

∂xj
− c(t, x).

Let T > 0, mΩ > 0 be a non-integer number, ∂Ω ∈ CmΩ+2, and the coefficients of the operator L belong

to the class CmΩ/2,mΩ(Ω). Then, for any f ∈ CmΩ/2,mΩ(Ω), and φ = U(o, x) and Φ ∈ CmΩ+1(∂Ω),

which satisfy compatibility conditions of order
[mΩ + 1

2

]
, the problem

∂u

∂t
= Lu+ f(t, x) in (0, T )× Ω

u(0, x) = φ(x) in Ω

n(x) · ∇u = Φ(x) on ∂Ω

has a unique solution from C1+mΩ/2,2+mΩ(Ω) satisfying the estimate

‖u‖C1+mΩ/2,2+mΩ ≤ c
(
‖f‖CmΩ/2,mΩ ((0,T )×Ω) + ‖φ‖CmΩ+2(Ω) + ‖Φ‖CmΩ+1(∂Ω)

)
,

where, for given T > 0, the constant c can be taken as independent of t ∈ (0, T ).

Remark In the case of homogeneous Neumann boundary conditions, that is to say, for Φ ≡ 0, the

compatibility conditions mentioned in Lemma 14.6, and defined explicitly before Theorem 5.1 in

Section IV.5 of [23], are satisfied. 2

15 Discrete-continuous numerical scheme for the simplified

system

As we mentioned above, we propose a modified version of the numerical scheme (13.1)-(13.3). In this

section, to get a preliminary insight into the properties of the considered system, we will put aside

the proposed numerical method, discrete in the variables t, T1 and T8, and replace it by the iterative

system (15.5)-(15.7). Instead of considering the complicated convective term, we will mimick it by

adding appropriate terms proportional to R and the components of ∇R. We will assume that these

terms are equal identically to zero close to the boundary of Ω (see Assumption 15.2). For simplicity,

we will also change the notation and denote γ̃ and δ̃ by γ and δ. Thus, below:

γ(cu1 , c
u
8 , T1) :=

 2cu1
cu1T1

cu1 +fcu8 +1 + c̃1
− γ̃2

 T1

cu1 + fcu8 + 1
= γ̃(cu1 , c

u
8 , T1),

δ(cu8 , T8) := 1− δ2
T8

1 + cu8
= δ̃(cu8 , T8).

(15.1)

For simplicity, we have also denoted δ2 := δ̃2 in the definition of the function δ.

In this part, we will deal with the further simplified system, which differs from (1.11)-(1.13) only

by replacement of the non-local (integral) term by a given function of R and the components of ∇R.

We will thus consider the system:
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∂R

∂t
=dR∇2R− ∂

∂T1
(γ(cu1 , c

u
8 , T1)R)− ∂

∂T8
(δ(cu8 , T8)R)−

(
R · F1(t, x, T1, T8)− F0(t, x) · ∇R

)
(15.2)

∂cu1
∂t

=∇2cu1 + ν̃

∫ ∞
0

∫ ∞
0

c88RdT1 dT8 − cu1 (15.3)

∂cu8
∂t

=∇2cu8 + µ̃

∫ ∞
0

∫ ∞
0

c1RdT1 dT8 − π̃8 c
u
8 . (15.4)

To study the above system, we will use the following recurrence scheme:

dR∇2Ri −
{
Ri
[
∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−1

8∗ , T8)
)

+ F1((i− 1)∆t, x, T1, T8) +
1

∆t

]

−R
i−1(x; τ i−1

1 , τ i−1
8 )

∆t
− F0((i− 1)∆t, x) · ∇Ri

}
= 0

(15.5)

∂cu;i
1

∂t
= ∇2cu;i

1 + ν̃

∫ ∞
0

∫ ∞
0

c8;i−1
8∗ Ri−1 dT1 dT8 − cu;i

1 for t ∈ ((i− 1)∆t, i∆t] (15.6)

∂cu;i
8

∂t
= ∇2cu;i

8 + µ̃

∫ ∞
0

∫ ∞
0

ci−1
1∗ Ri−1 dT1 dT8 − cu;i

8 π8 for t ∈ ((i− 1)∆t, i∆t] (15.7)

As in the previous scheme, for each x ∈ Ω, τ i−1
1 , τ i−1

8 are computed from the equations:

T1 − τ i−1
1

∆t
= γ(cu;i−1

1∗ (x), cu;i−1
8∗ (x), T1), (15.8)

T8 − τ i−1
8

∆t
= δ(cu;i−1

8∗ (x), T8). (15.9)

For all the considered i ≥ 0, we assume that the functions Ri, cu;i
1 and cu;i

8 satisfy, according to a

(1.5) and (1.6), the homogeneous Neumann boundary conditions.

In Eq.(15.5), cu;0
1∗ (x) = cu10(x), cu8∗(x) = cu80(x), whereas for i ∈ {1, . . . , n+ 1} we denoted:

cu;i−1
1∗ (x) := cu1∗((i− 1)∆t, x), cu;i−1

8∗ (x) := cu8∗((i− 1)∆t, x). (15.10)

In Eqs (15.6)-(15.9), for i ∈ {1, 2, . . . , n+ 1} we denoted:

ci−1
1∗ (x, T1, T8) :=

cu;i−1
1∗ (x)T1

1 + fcu;i−1
8∗ (x) + cu;i−1

1∗ (x)
, c8;i−1

8∗ (x, T1, T8) :=
cu;i−1
8∗ (x)T8

1 + cu;i−1
8∗ (x)

. (15.11)

Eqs.(15.6),(15.7) are solved sequentially on each of the interval [(i − 1)∆t, i∆t) by assuming the

initial conditions at t = (i− 1)∆t:

cu;i
1 ((i− 1)∆t, x) = cu;i−1

1 ((i− 1)∆t, x) = cu1,∗(x), cu;i
8 ((i− 1)∆t, x) = cu;i−1

8 ((i− 1)∆t, x) = cu8,∗(x).

(15.12)

15.1 Main assumptions

Below, we will suppose that the following conditions are satisfied.

Assumption 15.1. Ω is a bounded domain (open and connected) in IR3, with the boundary ∂Ω of

C3+β class with β ∈ (0, 1).
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Remark In general, the analysis which is carried out below hold also for Ω ⊂ IRmΩ , with mΩ ≥ 1. 2

Assumption 15.2. The function F1 : [0, T ]×Ω× IR2 7→ IR is of C1 class with respect to t and all of

its derivatives up to the order of 4 with respect to the components of x and (T1, T8) are continuous and

bounded. Let ‖F1‖ denote the sum of the suprema of |F1|, |F1,t| and all the derivatives with respect to

the components of x and (T1, T8) up to order 4. Let

f1 := ‖F1‖.

The function F0 = (F01, F02, F03) : [0, T ]× Ω 7→ IR3 is of Ct,x1,4([0, T ]) class. Let

f0 := ‖F0‖Ct,x1,4 ([0,T ]×Ω.

There exists a number δ > 0 such that F1(t, x, T1, T8) ≡ 0, F0(t, x) ≡ 0 for all (t, T1, T8) ∈ [0, T ]× IR2,

if only dist(x, ∂Ω) < δ.

Note that the last assumption is in accordance with the cutting off properties of the function Ψ

in definition (1.7). Additionally, we assumed that the function F0 does not depend on T1, T8. This

assumption significantly simplifies the problem of obtaining ’a priori’ estimates.

In our analysis, we will fix finite T > 0 and consider the above scheme for t ∈ [0, T ], and i ∈ {1, n},
with n sufficiently large, and ∆t satisfying the condition

T = n∆t. (15.13)

It means that n depends on ∆t, n = n(∆t) =
T

∆t
.

Remark The right hand side of Eqs (15.6)-(15.7) depend on the function Ri−1 which, in general, is

discontinuous as a function of the index i− 1. However, on each of the open set ((i− 1) ∆t, i∆t) one

can treat these equations as a system of two parabolic equations depending in a non-local way on the

function Ri−1(x), which is smooth with respect to x ∈ Ω. 2

Remark Due to the uniqueness of solutions to the considered parabolic initial boundary value prob-

lems, we can treat Eqs (15.6)-(15.7) as defined on the whole of the time interval [0, T ]. In this approach,

let us define:

cu1 (t, x) :=

n∑
i=1

χic
u;i
1 (t, x), cu8 (t, x) :=

n∑
i=1

χic
u;i
8 (t, x) (15.14)

where χi denotes the characteristic function of the interval [(i− 1)∆t, i∆t). 2

From the definition (15.8)-(15.9) we can extract a simple fact, which will be the basis of our

estimates below.

Lemma 15.3. Suppose that the functions cu;i−1
1∗ (·) and cu;i−1

8∗ (·) are of C1(Ω) class. Then, for k ∈
{1, 2, 3}, i = {2, . . . , n+ 1} and all ∆t > 0, we have for each fixed T1 and T8:

∂τ i−1
1

∂xk
= −∂(T1 − τ i−1

1 )

∂xk
= −∂γ(cu;i−1

1∗ (x), cu;i−1
8∗ (x), T1)

∂xk
·∆t,

∂τ i−1
8

∂xk
= −∂(T8 − ∂τ i−1

8 )

∂xk
= −∂δ(c

u;i−1
8∗ (x), T8)

∂xk
·∆t.

These derivatives are thus of the order O(∆t) as ∆t→ 0 and of class C0(Ω).

Likewise, if the functions cu;i−1
1∗ (·) and cu;i−1

8∗ (·) are of Cp(Ω) class, then the p-th order derivatives

of τ i−1
m with respect to the components of x are of class C0(Ω) and are products of ∆t and functions

independent of ∆t.

Our analysis are based on the assumption of smoothness of the initial data as well as of the

compactness of the initial data with respect to the variables T1 and T8. In reference to system (15.5)-

(15.7), this assumption can be expressed in the following form.
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As in section 3 (see (3.2)), let us define

IR2
+ := {(r1, r8) ∈ IR2 : r1 ≥ 0, r8 ≥ 0}.

Assumption 15.4. Suppose that:

1. R0 ∈ C4(Ω × IR2
+) is compactly supported, with the support contained in Ω × [0, T 0

1∗] × [0, T 0
8∗]

and that

R0 satisfies conditions (1.18)

2. cu;0
1 , cu;0

8 ∈ C4(Ω)

3. R0(x, T1, T8) ≥ 0, cu;0
1 (x), cu;0

8 (x) ≥ 0, for all (x, T1, T8) ∈ ∂Ω× IR2
+.

Remark The smoothness demands of the initial data R0, cu;0
1 , cu;0

8 are implied by the method of

obtaining a priori estimates used below, which are established by consecutive differentiation. 2

15.2 Description of the method of proving the existence of solutions to a

variation of system (1.11)-(1.13)

The solutions to system (15.5)-(15.7), (15.8)-(15.9) will be used to obtain solutions to system (1.11)-

(1.13) with the term ∇ · (RK(R)) replaced by the term (R · F1(t, x, T1, T8)− F0(t, x) · ∇R). By this

replacement we fix our attention on the problems connected with the lack of diffusion terms of the

variables T1 and T8, and put aside the difficulties connected with the term ∇· (RK(R)). These issues

have been undertaken and, at least partially solved, for a scalar equation corresponding to Eq.(1.11)

in the papers [9], [10], where in contrast the hyperbolic like terms
∂

∂T1
(γ R) and

∂

∂T8
(δ R) are not

present. Below, by studying the properties of the numerical scheme (15.5)-(15.7), (15.8)-(15.9), we

will be interested in establishing the existence classical solutions to system (15.2)-(15.4).

The method of proving the existence of solutions to system (15.2)-(15.4) is based on deriving a

series of a priori estimates for solutions to system (15.5)-(15.7), (15.8)-(15.9), i.e. the functions Ri,

cu;i
1 , cu;i

8 in the spaces of differentiable functions. According to this, we estimate the derivatives of the

functions Ri both with respect to the components of the space variable x as well as with respect to

T1 and T8. These estimates stay bounded for all i and keep their validity for ∆t→ 0.

In the preliminary step we modify the function γ in the region T < 0. The objective of such a

modification is to guarantee that the support of the functions Ri does not contain points (x, T1, T8)

with negative values of T1.

Thus in section 15.5 we establish a priori bounds of the absolute values of the functions Ri. These

bounds can be found due the appropriate structure of the function δ and the modified function γ,

implying agreeable properties of their derivatives (examined and listed in Lemma 15.7). An additional

assumption necessary to establish the bounds for Ri is the non-negativity of the functions cu;i
1 , cu;i

8 .

However, this feature is inherited at every step of the iterative sequence, so is implied by the initial

data. In the same section, using the properties of the functions γ and δ, we find the bounds for the

increase of the support of the functions Ri with respect to (T1, T8) (see Lemma 15.9). In the next step,

we examine differential properties of the functions cu1 and cu8 defined in (15.45) as functions of t ∈ [0, T ]

and x ∈ Ω. Interestingly enough, these functions are of C
(1+β)/2,1+β
t,x class, i.e. they are Hölder

continuous in t with exponent (1 + β)/2, β ∈ (0, 1), and have continuous in t first derivatives with

respect to x (see Lemma 15.11). Having the uniform (with respect to i) boundedness of the functions

cu;i
1 , cu;i

8 in C1(Ω) norm, which can be obtained only on the condition that ‖Ri‖C0 is uniformly

bounded, we can establish the uniform boundedness of the derivatives of the functions Ri. In section

15.8 we find the estimates for the first derivatives of Ri with respect to Tl, l = 1, 8, in section 15.11 the

second order derivatives RiTlTm , whereas in section 15.12 for the third order derivatives RiTlTmTp . In

sections 15.9 and 15.10, we obtain the estimate for the first order derivatives of Ri with respect to the

components of x. In section 15.14 we find a priori estimates for the mixed second order derivatives of

the form RixkTm . The bounds of the first derivatives Rixk and RiTl allow us to prove Lemma 15.12. By

means of these estimates, in section 15.15, we are able to analyse the difference between the functions

corresponding to subsequent values of i. To be more precise, we analyse the functions Zi = Ri−Ri−1

and the functions Hi
j = RiTj − R

i−1
Tj

. This result empowers us to demonstrate, in section 15.16, the

54



uniform with respect to i boundedness of C1+β
x norms of the functions Ri. Using the last conclusion,

we show in section 15.17 the higher order differentiability of the functions cu;i
1 and cu;i

8 , in particular

the fact that the differences between the corresponding derivatives of these functions with respect to

the components of x on adjacent intervals, i.e. [(i − 1)∆t, i∆t] and [i∆t, (i + 1)∆t] are of the order

of O(∆t). This finding is crucial to obtaining in section 15.18, estimates of first order derivatives of

Zi with respect to xk, together with the differences of the mixed second derivatives RixkTj − R
i−1
xkTj

,

and bounds for the C2+β
x norm of Ri in section 15.19. In the same section we use the refined version

of the Gagliardo-Nirenberg inequality from [4] and obtain additionally some Hölder estimates for the

derivatives of the functions Zi. Finally in section 16, using the functions Ri, cu1 and cu8 , we construct

an approximate solution to system (15.2)-(15.4) and consider its convergence to a classical solution as

∆t→ 0.

The method of the existence proof can thus be displayed schematically in a graphical form as

below.

1 Subsection 15.3. Modification of the function γ aimed to guarantee that R(t, x, T1, T8) ≡ 0

in the region {(T1, T8) : T1 < 0 ∨ T8 < 0} (proved in lemma 15.5).

2 Subsection 15.4. A priori bounds of the functions γ and δ and their derivatives established

in Lemma 15.6 and Lemma 15.7.

3 Subsection 15.5. Estimates for the upper bound of the function Ri for sufficiently small

∆t > 0.

(Based on 2.)

4 Subsection 15.5. Estimates of the support of Ri with respect to (T1, T8).

(Based on 2 and 3.)

5 Subsection 15.7. Estimates for the upper bounds of the C
(1+β)/2,1+β
t,x norms of the functions

cu1 (t, x) :=

n∑
i=1

χic
u;i
1 (t, x), and cu8 (t, x) :=

n∑
i=1

χic
u;i
8 (t, x)

(Lemma 15.11). (Based on 3 and 4.)

6 Subsection 15.8. A priori estimates of the first derivatives of the function Ri(x, T1, T8) with

respect to Tm, m = 1, 8.

7 Subsection 15.9. Interior estimates of the first derivatives of the function Ri(x, T1, T8) with

respect to xr, r = 1, 2, 3.

8 Subsection 15.10. Estimates of the first derivatives of the function Ri(x, T1, T8) with respect

to xr, r = 1, 2, 3, at the boundary of Ω. (Based on 6.)

9 Subsections 15.11 and 15.12. Estimates of the second and third order derivatives of functions

Ri(x, T1, T8) with respect to T1 and T8. (Based on 6.)

10 Subsection 15.13. Estimates of the mixed second order derivatives of function Ri(x, T1, T8)

with respect to xr and Tm for r = 1, 2, 3 and m ∈ {1, 8}. (Based on 6, 7 and 8.)
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11 Subsection 15.14. Estimates for the mixed third order derivatives of RixrTlTm(x, T1, T8).

12 Subsection 15.15. Estimates of the differences Zi between the functions Ri corresponding

to subsequent values of i.

13 Subsection 15.16. Estimates of C1+β
x norms of the functions Ri:

‖Ri‖C1+β(Ω) ≤ C1β .

(Based on 12.)

14 Subsection 15.17. Estimates of higher order derivatives of the functions cu;i
1 and cu;i

8 on the

subintervals [(i− 1)∆t, i∆t]. (Based on 13.)

15 Subsection 15.18. Estimates of the first derivatives of the functions Zi with respect to xk.

16 Subsection 15.19. Estimates of C2+β
x norms of the functions Ri:

‖Ri‖C2+β(Ω) ≤ C2β .

These estimates enable us to use the refined version of Gagliardo-Nirenberg inequality to obtain

Hölder estimates for the derivatives of the functions Zi. (Based on 15.)

17 Subsection 15.20. Estimates of the differences Zi − Zi−1 via a version of the Gagliardo–

Nirenberg interpolation inequality. (Based on 12 and 15.)

18 Section 16. Convergence of the approximate solutions to solutions to system (15.2)-(15.4).

15.3 Modification of the function γ

To begin with, let us note that, from the biological point of view, the probability of finding cells char-

acterized by negative values of T1 and T8 should be identically equal to zero, i.e. R(t, x, T1, T8) = 0

for (t, x) ∈ [0, T ] × Ω, if only T1 < 0 or T8 < 0. In general, the support of R with respect to T1 and

T8 can change during the evolution, and after some time comprise points with negative values of T1

or T8, even if such points are outside the support of R for t = 0.

According to the form of the function δ, for ∆t ≥ 0 and all cu;i−1
8∗ such that cu8∗ ≤ cu;i−1

8∗ (x) ≥ 0

for x ∈ Ω, we have, for each i ∈ {2, . . . , n},

τ i−1
8 (cu;i−1

8∗ (x), T8) < T8 −∆t+ ∆t
T8 δ2

1 + cu8∗
= T8

(
1 + ∆t

δ2
1 + cu8∗

)
−∆t

hence

τ i−1
8 (x, T8) < 0

if T8 ≤ 0 independently of ∆t ≥ 0. As it will be shown in the proof of Lemma 15.5, this inequality

implies that Ri−1(x, T1, T8) ≡ 0 for all T8 < 0, if only R0(x, T1, T8) satisfies the same condition.

However, to guarantee that our numerical scheme implies the similar property with respect to the

variable T1, we will consider system (15.5)-(15.7) with appropriately modified function γ.

56



Let

γ∗ = γ ·Ψγ(T1),

where

Ψγ(T1) :=



0 T1 ∈ (−∞,−1/2˜̄c1]

Ψ∗(T1 + 1/2˜̄c1)

Ψ∗(T1 + 1/2˜̄c1) + Ψ∗(−1/4˜̄c1 − T1)
T1 ∈ (−1/2˜̄c1,−1/4˜̄c1)

1 T1 ≥ −1/4˜̄c1 ,

(15.15)

and Ψ∗(s) is given after (1.8). As a result, the function γ∗ is smooth everywhere in the region

{(cu1 , cu8 , T1) : cu1 ≥ 0, cu8 ≥ 0, T1 ∈ IR}. Next, we will show that for such a modified function

γ = γ∗, we can find a global estimate of the maximal values of the functions cu1 (t, x) and cu8 (t, x)

for (t, x) ∈ [0, T ]×Ω. This will imply that the function γ∗ is bounded for all (t, x, T1) ∈ [0, T ]×Ω× IR.

Consequently, in this set

τ i−1
1 (x, T1) = T1 − γ∗(x, T1)∆t, (15.16)

where by γ∗(x, T1) we denoted γ∗(c
u;i−1
1∗ (x), cu;i−1

8∗ (x), T1). Due to the form of γ∗, γ∗(x, T1 = 0) = 0

τ i−1
1 (x, T1)− T1 = −γ∗,T1∗T1 ∆t,

where T1∗ ∈ (0, T1), hence for T1 > 0. Now, due to the estimates provided by Lemma 15.7 (see (15.22)

below the derivative of γ∗ with respect to T1 is uniformly bounded, i.e. | − γ∗,T1
| < C1γ , thus for

∆t <
1

2C1γ
we have for T1 ≥ 0:

τ i−1
1 (x, T1) > T1 −

1

2
T1 =

1

2
T1 ≥ 0. (15.17)

Likewise, for T1 < 0, we have for ∆t <
1

2C1γ
by means of (15.16):

τ i−1
1 (x, T1) < T1 +

1

2
|T1| =

1

2
T1 < 0. (15.18)

It follows that for ∆t > 0 sufficiently small the regions T1 > 0 and T1 < 0 do not mix under the action

of system (15.8)-(15.9). In view of the above, the following lemma holds.

Lemma 15.5. Suppose that for all i ∈ {0, 1, . . . , n} and all (t, x) ∈ [0, T ]× Ω the functions cu;i
1 (t, x)

and cu;i
8 (t, x) are non-negative and uniformly bounded in their absolute value by a (finite) constant.

Suppose that R0(x, T1, T8) = 0 in the region {T1 < 0}∪ {T8 < 0}. Then, for ∆t ≥ 0 sufficiently small,

Ri(x, T1, T8) = 0 for all i ∈ {1, . . . , n} in the region {T1 < 0} ∪ {T8 < 0}. (15.19)

Proof The proof follows by induction. Thus, suppose that, for i ∈ {1, . . . , n− 1}, Ri−1(x, T1, T8) ≡ 0

in the set {T1 < 0} ∪ {T8 < 0}, hence by what noted above, in particular, by (15.18),

Ri−1(x, τ i−1
1 (x, T1), τ i−1

1 (x, T8)) = 0 Then, by means of estimate (14.4) in Lemma 14.1 and the sub-

section 14.1.1, Ri(x, T1, T8) ≡ 0 in the region {T1 < 0} ∪ {T8 < 0}. 2

Lemma 15.5 implies a strategy to guarantee that R(t, x, T1, T8) ≡ 0 in the region {(T1, T8) : T1 <

0 ∨ T8 < 0}. Then, due to the fact that the modification of γ takes place in the region {T1 < 0}, we

will be able to conclude that we have obtained a solution for the system with non-modified function

γ.

15.4 Properties of the function δ and the modified function γ∗

As it is seen from Eq. (1.11), crucial for the analysis of the considered system are the properties of

the functions γ∗ and δ.
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Lemma 15.6. The values of the functions γ and δ are bounded from above and below for any compact

subset of the set {(T1, T8, c
u
1 , c

u
8 ) : (T1, T8) ≥ 0, (cu1 , c

u
8 ) ≥ 0}. Given the values of cu1 and cu8

δ(cu8 , T8) < 0 for δ2T8 > (1 + cu8 ).

Similarly,

γ∗(c
u
1 , c

u
8 , T1) < 0 for T1 > max

{
0,

(2cu1 − c̃1γ2)(cu1 + fcu8 + 1)

cu1γ2

}
.

Finally, for all (T1, T8, c
u
1 , c

u
8 ) ∈ {(T1, T8, c

u
1 , c

u
8 ) : (T1, T8) ≥ 0, (cu1 , c

u
8 ) ≥ 0}, we have:

γ∗(c
u
1 , c

u
8 , T1) ≤ 2 and δ(cu8 , T8) ≤ 1. (15.20)

Next, the following lemma holds.

Lemma 15.7. For cu8 ≥ 0

∂

∂T8
δ(cu8 , T8) = −δ2

1

1 + cu8
< 0. (15.21)

The partial derivative

∂

∂T1
γ∗(c

u
1 , c

u
8 , T1)

is bounded from above and below uniformly with respect to (T1, T8) ∈ IR2 and (cu1 , c
u
8 ) ≥ (0, 0), i.e.

there exist finite positive constants A− and A+ such that

−A− ≤
∂

∂T1
γ∗(c

u
1 , c

u
8 , T1) ≤ A+ (15.22)

and

−A− ≤
∂2

∂T 2
1

γ∗(c
u
1 , c

u
8 , T1) ≤ A+. (15.23)

Also,

−δ2 T8 ≤
∂2

∂cu8
δ(cu8 , T8) < 0,

−δ2 ≤
∂2

∂cu8∂T8
δ(cu8 , T8) < 0,

(15.24)

and there exists a non-negative constant M, depending on c̃1, f , and γ2, such that

−MT1 ≤
∂

∂cu1
γ∗(c

u
1 , c

u
8 , T1),

∂

∂cu8
γ∗(c

u
1 , c

u
8 , T1) ≤MT1 (15.25)

−M ≤ ∂2

∂cu1∂T1
γ∗(c

u
1 , c

u
8 , T1),

∂2

∂cu8∂T1
γ∗(c

u
1 , c

u
8 , T1) ≤M (15.26)

together with

−M ≤ ∂3

∂cuk∂c
u
m∂T1

γ∗(c
u
1 , c

u
8 , T1) ≤M, k,m = 1, 8,

−MT1 ≤
∂2

∂cuk∂c
u
m

γ∗(c
u
1 , c

u
8 , T1) ≤MT1, k,m = 1, 8,

(15.27)

and

− 2 ≤ ∂3

∂cu8∂c
u
8∂T8

δ(cu8 , T8) < 0. (15.28)

for all non-negative T1, T8, cu1 and cu8 .
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Proof The proof follows from straightforward differentiation. For example, we have:

∂

∂T1
γ∗(c

u
1 , u3, T1) =

2cu1 c̃1(cu1 + fcu8 + 1)

(̃c1(cu1 + fcu8 + 1) + cu1T1)2
− γ2

1

cu1 + fcu8 + 1

from where follow the first two claims of the lemma. The remaining statements are proven in the

similar way. 2

15.5 Estimate of the upper bound of the functions Ri

Let us start from deriving an estimate of the norm ‖Ri‖L∞ , i = 1, . . . , n, where

‖Ri‖L∞ = sup
x∈Ω,T1∈IR,T8∈IR

|Ri(x, T1, T8)|.

These estimates will be obtained by means of Lemma 14.1, hence the sine qua non property of

system (15.5)-(15.7) allowing for their establishing is the boundedness of the expression[
∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−1

8∗ , T8)
)

+ F1((i− 1)∆t, x, T1, T8)

]
for all (t, x) ∈ [0, T ]× Ω and all non-negative values of cu;i−1

1∗ , cu;i−1
8∗ , T1, T8.

Remark Below, for simplicity, we will denote the function γ∗ by γ. 2

Lemma 15.8. For all sufficiently small ∆t > 0 and all i ∈ {1, . . . , n}

‖Ri‖L∞ ≤ ‖R0‖L∞
1(

(1−AT
n )n

) i
n

<
3

2
‖R0‖L∞ exp(Ai∆t), (15.29)

where

A := −A− − δ2 − f1− (15.30)

with A− and δ2 defined in Lemma 15.7 and

f1− := inf
t∈[0,T ],x∈Ω,T1∈IR,T8∈IR

F1(t, x, T1, T8).

Proof By means of Lemma 15.7 and the fact that the parameter ∆t can be taken sufficiently small,

we can derive, using Lemma 14.1, the following recurrence inequalities:

‖Ri‖L∞ ≤
‖Ri−1‖L∞/∆t

1/∆t−A

hence

‖Ri‖L∞ ≤
‖Ri−1‖L∞
1−A∆t

.

By composing the above inequalities for i ≤ n, we obtain

‖Ri‖L∞ ≤
‖R0‖L∞

(1−A∆t)i
.

Thus for i = n and with n sufficiently large

‖Rn‖L∞ ≤
‖R0‖L∞

(1−A∆t)n
=
‖R0‖L∞

(1−AT
n

)n
<

3

2
‖R0‖L∞ exp(An∆t). (15.31)

It follows that for ∆t > 0 sufficiently small:

‖Ri‖L∞ ≤ ‖R0‖L∞
1(

(1−AT
n )n

) i
n

<
3

2
‖R0‖L∞ exp(Ai∆t). (15.32)
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2

Remark Let NA := AT and let, for IN 3 n > dNae, IR 3 κn := n/NA, where dNAe denotes the least

integer that is greater than or equal to NA. Then

1

(1− AT
n )n

=

 1(
1− 1

κn

)κn
NA .

It follows that to analyse the left hand side of this relation it suffices to consider the sequence inside

the square bracket at the right hand side. We have

log

(
1

(1− 1
y )y

)
= log

(
yy

(y − 1)y

)
= y log

(
1 +

1

y − 1

)
.

As the Taylor expansion of log(1 + z) around z = 0 is an alternating series with the first element

equal to z, then, according to the Leibniz theorem for alternating series, its sum is smaller than z. It

follows that the last expression is smaller than
y

y − 1
. It follows that for every W > 1 there exists y

so large that

y

y − 1
≤ log(W + exp(1)) = log(W) + 1.

This holds for y ≥ 1 + 1/log(W). Consequently, for κn ≥ 1 + 1/log(W)

1(
1− 1

κn

)κn ≤ W exp(1),

and  1(
1− 1

κn

)κn

NA

≤ WNA exp(NA).

Suppose that

WNA ≤ mA. (15.33)

(In our choice mA = 3/2.) Then W ≤ (mA)
1
NA and log(W) ≤ log(mA)/NA, hence

κn ≥ 1 +
NA

log(mA)
,

so

n =
⌈
NA · κn

⌉
≥ NA ·

(
1 +

NA
log(mA)

)
.

Note, that we can also write

WNA exp(NA) = exp (NA(1 + log(W))) ≤ exp (NA + log(mA)) .

2

Lemma 15.8 will be the basis of our subsequent estimates.

15.6 Bounds for the evolution of the support of the function Ri

To proceed, let us consider the increase the support of the function Ri with respect to T1 and T8 in

subsequent iterations. Let us denote
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Suppi(T1, T8) := ∪x∈ΩSuppxR
i, (15.34)

where

SuppxR
i := {(T1, T8); (x, T1, T8) ∈ SuppRi}

and SuppRi is the support of the function Ri in the space Ω× IR2. The following lemma holds.

Lemma 15.9. Suppose that, given i ≥ 1, for all x ∈ Ω we have Ri−1(x, T1, T8) = 0 for T1 > T i−1
1

and T8 > T i−1
8 . Then Ri(x, T1, T8) ≡ 0 for 0 > T1 > T i1 = T i−1

1 + 2∆t and 0 > T8 > T i8 = T i−1
8 + ∆t.

Proof By means of Lemma 15.7, for ∆t > 0 sufficiently small, the expression inside the square bracket

multiplying Ri in Eq.(15.5) is positive in Ω, so by Lemma 14.1, we conclude that Ri(x, T1, T8) ≡ 0, if

Ri−1(x, τ i−1(x, T1), τ i−1
8 (x, T8)) = 0

for all x ∈ Ω. By (15.20), we have

τ i−1
1 (x, T1) = T1 − γ(x, T1)∆t > T1 − 2∆t

so

τ i−1
1 (x, T1) > T i−1

1 for T1 > T i−1
1 + 2∆t.

Likewise,

τ i−1
8 (x, T8) > T i−1

8 for T8 > T i−1
8 + ∆t.

The lemma is proved. 2

15.7 Estimates of the a priori bounds of the functions cu;i1 and cu;i8

For each x ∈ Ω, we thus have, according to (1.14) and Lemma 15.9∫∞
0

∫∞
0
c8;i−1
8∗ Ri−1 dT1 dT8 ≤ ‖Ri−1‖

∫∫
Suppi−1

T8 dT1 dT8 ≤

≤ ‖Ri−1‖ (T 0
1∗0 + 2(i− 1)∆t) · (T 0

8∗ + (i− 1)∆t)2/2 =:

‖R0‖
(1−A∆t)i−1

W1(T 0
1∗, T

0
8∗, (i− 1)∆t) =: Ki−1

1

(15.35)

and ∫∞
0

∫∞
0
ci−1
1∗ Ri−1 dT1 dT8 ≤ ‖Ri−1‖

∫∫
Suppi−1

T1 dT1 dT8 ≤

≤ ‖Ri−1‖(T 0
1∗ + 2(i− 1)∆t)2/2 · (T 0

8∗ + (i− 1)∆t) =:

‖R0‖
(1−A∆t)i−1

W8(T 0
1∗, T

0
8∗, (i− 1)∆t) =: Ki−1

8

(15.36)

where ‖ · ‖ = ‖ · ‖L∞ . In (15.35) and (15.36), in accordance with the definition (15.34)

T 0
1∗ := sup

Supp0(T1,T8)

T1, T 0
8∗ := sup

Supp0(T1,T8)

T8. (15.37)

Using the inequalities (15.35) and (15.36), we will find a bound for absolute values of the functions

cu;i
1 and cu;i

8 on the interval [(i − 1)∆t, i∆t] for all i ∈ {1, . . . , n}. These estimates take into account

Lemma 15.5 and the inequalities preceding this lemma, where we assumed the non-negativity of the

functions cu;i
1 and cu;i

8 . The non-negativity property is inherited by the functions with index i ≥ 1

from the functions with index i − 1 via the relation Suppi−1(T1, T8) ⊂ IR2
+ (see (15.34)) implied by
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Lemma 15.5. In view of this, let us note that, given non-negative cu;i−1
1 and cu;i−1

8 , the equations for

cu;i
1 and cu;i

8 can be written as

dcu;i
1

dt
= ∇2cu;i

1 + ν̃ Ci1(x)− cu;i
1 (15.38)

with the function Ci1(x) ≥ 0 given. The function cu;i
1 should be determined for (t, x) ∈ [(i−1)∆t, i∆t]×

Ω, satisfies homogeneous Neumann boundary conditions and initial condition cu;i
1 ((i − 1)∆t, x) =

cu;i−1
1 ((i − 1)∆t, x) ≥ 0. Thus, according to (15.35) and the theory of sub- and supersolutions, the

function cu;i
1 ≡ 0 is a subsolution, whereas a supersolution to Eq. (15.38) on the interval [(i−1)∆t, i∆t]

can be chosen as the solution to the ordinary differential equation of the form

dcu;i
1

dt
= ν̃Ki−1

1 − cu;i
1 (15.39)

where Ki−1
1 is defined in (15.35). Let us note that the solution to the equation

d

dt
c = −ω1c+ ω2K, c(t0) = c0 > 0.

equals

c(t) =
ω2

ω1

(
1− e−ω1(t−t0)

)
K + e−ω1(t−t0)c0.

It follows that for ω1 > 0, ω2 > 0, c0 > 0 and t ∈ [t0, t0 + ∆t) we have

c(t) ≤ ω2

ω1

(
1− e−ω1∆t

)
K + e−ω1(t−t0)c0 < ω2∆tK + e−ω1(t−t0)c(t0)

and

c(t0 + ∆t) < ω2∆tK + e−ω1∆tc(t0).

It thus follows that, for i = 1, . . . , n+ 1,

‖cu;i
1 ‖ < e−∆t‖cu;i−1

1 ‖+ ∆t ν̃W1(T 0
1∗, T

0
8∗, (i− 1)∆t)

‖R0‖
(1−A∆t)i−1

(15.40)

By putting consecutively the estimate for ‖cu;j−1
1 ‖ into the estimate for ‖cu;j

1 ‖, starting from j = 1

up till j = i, we obtain

‖cu;i
1 ‖ < e−i∆t‖cu;0

1 ‖+

i∑
j=1

ν̃∆t W1(T 0
1∗, T

0
8∗, (j − 1)∆t)

‖R0‖
(1−A∆t)j−1

≤

e−i∆t‖cu;0
1 ‖+ ν̃W1(T 0

1∗, T
0
8∗, (i− 1)∆t)

‖R0‖
(1−A∆t)i−1

i∑
j=1

∆t ≤

e−i∆t‖cu;0
1 ‖+ i∆t ν̃W1(T 0

1∗, T
0
8∗, i∆t)

‖R0‖
(1−A∆t)i−1

.

Let us note that for all ∆t > 0 sufficiently small (so, due to (15.13), for all n sufficiently large), we

have

1

(1−A∆t)n+1
<

3

2
eAT

hence, by means of arguments leading to (15.32), we arrive at the inequality

‖cu;i
1 ‖ < e−i∆t‖cu;0

1 ‖+
3

2
i∆t ν̃W1(T 0

1∗, T
0
8∗, i∆t)‖R0‖eA i∆t, (15.41)

where W1(T 0
1∗, T

0
8∗, i∆t) is defined in (15.35). Likewise, we have

‖cu;i
8 ‖ < e−π8i∆t‖cu;0

1 ‖+
3

2
i∆t

µ̃

π8
W8(T 0

1∗, T
0
8∗, i∆t)‖R0‖eA i∆t (15.42)
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Using the estimates (15.32),(15.41) and (15.42), we can proceed to further characterize the prop-

erties of the functions Ri, cu;i
1 and cu;i

8 . In particular, we can estimate the L∞ norm of their first

derivatives.

Lemma 15.10. Suppose that for (t, x) ∈ (0, T ]× Ω, and a > 0, u satisfy the equation

∂u

∂t
= ∆u− au+ f(t, x)

∂u

∂n
(t, x) = 0 for x ∈ ∂Ω, u(0, x) = φ(x)

and that the compatibility conditions are satisfied, i.e.
∂φ

∂n
= 0 on ∂Ω. Then, for all β ∈ (0, 1), the

following estimate holds:

‖u‖
C

(1+β)/2,1+β
t,x ((0,T )×Ω)

≤ Cp
[
‖f‖L∞((0,T )×Ω) + ‖φ‖C1+β

x (Ω)

]
(15.43)

with the constant Cp depending on β, T and the parameters characterizing Ω.

Proof The estimate (15.48) is a particular version of Theorem 6.49 of section VI in [25]. (Note that

f ∈ L∞(Ω× (0, T )) belongs also to the Morrey space M1,1+m+β .) 2

Remark Let us comment on the membership of the function f ∈ L∞(Ω× (0, T )) in the Morrey space

M1,1+m+β . According to the definition given before Theorem 7.37 in [25], the Morrey space Mp,q,

p ∈ (1,∞), q ≤ 2, can be defined as the subset of the space Lp with the finite norm of the form

‖u‖p,q = sup
Q(r),r<diamΩT

(
r−q

∫
Q(r)

∫
|u|pdX

)
,

where ΩT = [0, T ]× Ω and

‖X‖ := max(|x|, |t|1/2)

with

|x| :=

√√√√ m∑
j=1

x2
j

 .

Next (see, sec. I.3 in [25])

Q(X0, r) = {|x− x0| < r, |t− t0| < r2; t < t0}.

It follows that as r → 0, then
∫
Q(r)

dX = O(rm+2). As f ∈ L∞(ΩT ), then, for all β ∈ (0, 1),

‖f‖1,1+m+β <∞. 2

In applying Lemma 15.10 to Eqs (15.6) and (15.7), let us note that φ can be identified with cu;0
1

and cu;0
8 , whereas f : (0, T ]× Ω can be identified with the functions:

ν̃
∑n+1
i=1 χi

∫∞
0

∫∞
0
c8;i−1
8∗ Ri−1 dT1 dT8 = ν̃

∑n+1
i=1 χi

∫∞
0

∫∞
0
c8;i−1
8 ((i− 1)∆t, x)Ri−1 dT1 dT8

µ̃
∑n+1
i=1 χi

∫∞
0

∫∞
0
ci−1
1∗ Ri−1 dT1 dT8 = µ̃

∑n+1
i=1 χi

∫∞
0

∫∞
0
ci−1
1 ((i− 1)∆t, x)Ri−1 dT1 dT8

(15.44)

where χi is the characteristic function of the interval [(i− 1)∆t, i∆t]. As the integrands in the above

integrals are continuous with respect to x on each of the intervals [(i−1)∆t, i∆t], then these integrals

are of L∞([0, T ]× Ω) class. Let us denote:

cu1 (t, x) :=

n∑
i=1

χic
u;i
1 (t, x), cu8 (t, x) :=

n∑
i=1

χic
u;i
8 (t, x) (15.45)

where χi is the characteristic function of the interval [(i− 1)∆t, i∆t].
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Lemma 15.11. Let n ≥ 3 be fixed. Suppose that for each i ∈ {0, 1, . . . , n} and each x ∈ Ω, the

C0(Ω) norms of the functions Ri are bounded from above uniformly with respect to i. Then, for each

β ∈ (0, 1), cu1 and cu8 are of class C
(1+β)/2,1+β
t,x ((0, T ) × Ω). To be more precise, there exist constants

C1(β,Ω), C8(β,Ω), K1 and K8, depending on T , such that

‖cu1‖C(1+β)/2,1+β
t,x ((0,T )×Ω)

≤ C1(β,Ω)
[
K1 + ‖cu;0

1 ‖C1+β
x (Ω)

]
(15.46)

and

‖cu8‖C(1+β)/2,1+β
t,x ((0,T )×Ω)

≤ C8(β,Ω)
[
K8 + ‖cu;0

8 ‖C1+β
x (Ω)

]
. (15.47)

Proof The lemma follows from Lemma 15.10, together with (15.41) and (15.41). The constants K1

and K8 can be chosen as independent on n. 2

Lemma 15.12. Let n ≥ 3 be fixed. Suppose that for each i ∈ {0, 1, . . . , n} the C1(Ω) norms of the

functions Ri are bounded from above uniformly with respect to i. Then, for each β ∈ (0, 1), cu1 and

cu8 are of class C
1+β/2,2+β
t,x (((i− 1)∆t, i∆t)× Ω). To be more precise, there exist constants C1(β,Ω),

C8(β,Ω), K1 and K8, depending on T , such that

‖cu1‖C1+β/2,2+β
t,x (((i−1)∆t,i∆t)×Ω)

≤ C1∆(β,Ω)
[
K1 + ‖cu1 ((i− 1)∆t, ·)‖C2+β

x (Ω)

]
(15.48)

and

‖cu8‖C1+β/2,2+β
t,x (((i−1)∆t,i∆t)×Ω)

≤ C8∆(β,Ω)
[
K8 + ‖cu8 ((i− 1)∆t, ·)‖C2+β

x (Ω)

]
. (15.49)

In particular, there exists a constant P independent of i such that as ∆t→ 0

‖cu1 (i∆t, ·)− c1((i− 1)∆t, ·)‖C0(Ω) ≤ P∆t, ‖cu8 (i∆t, ·)− c8((i− 1)∆t, ·)‖C0(Ω) ≤ P∆t. (15.50)

and for all t ∈ [(i− 1)∆t, i∆t]:

‖cu1 (t, ·)−c1((i−1)∆t, ·)‖C0(Ω) ≤ P
(
t−(i−1)∆t

)
, ‖cu8 (t, ·)−c8((i−1)∆t, ·)‖C0(Ω) ≤ P

(
t−(i−1)∆t

)
.

(15.51)

Proof The lemma follows from Lemma 15.10, according to which cu1 and cu8 (defined in (15.45) ) are

of C
(1+β)/2,1+β
t,x ((0, T )× Ω) class. Starting from the initial data equal to cu,01 and cu,08 (and assuming

that they are of C2+β
x (Ω) class) we obtain a C

1+β/2,2+β
t,x solution on the set ([0,∆t) × Ω). Treating

cu;1
1 (t = ∆t, x) and cu;1

8 (t = ∆t, x) as the initial data on the interval we obtain a solution of C
1+β/2,2+β
t,x

class on the set ([1 · ∆t, 2 · ∆t) × Ω). Proceeding consecutively in this way, we obtain a C
1+β/2,2+β
t,x

solution on the set ([(i− 1) ·∆t, i ·∆t)×Ω) for all i ∈ {1, . . . , n}, hence using the Schauder esimates,

we obtain inequalities (15.48) and (15.49). As the constants K1 and K8 can be chosen as independent

on n and i, then, due to the fact that the time derivative of the solutions is bounded (and Holder

continuous), there exists a constant P such that for ∆t > 0 sufficiently small, inequality (15.50) holds.

2

Remark The following counterpart of inequalities (15.48) and (15.49) follow straightforwardly from

Lemma 15.10:

‖cu1‖C(1+β)/2,1+β
t,x (((i−1)∆t,i∆t)×Ω)

≤ C1∆(β,Ω)
[
K1∆i + ‖cu1 ((i− 1)∆t, ·)‖C1+β

x (Ω)

]
(15.52)

and

‖cu8‖C(1+β)/2,1+β
t,x (((i−1)∆t,i∆t)×Ω)

≤ C8∆(β,Ω)
[
K8∆i + ‖cu8 ((i− 1)∆t, ·)‖C1+β

x (Ω)

]
. (15.53)
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2

15.8 Estimates of first order derivatives of Ri with respect to Tm

In this section, we will examine the differentiability properties of solutions to system (15.5)-(15.7)

(together with (15.8)-(15.9)) with respect to the variables T1 and T8. Differentiating Eq.(15.5) with

respect to T1 we obtain for any pair (T1, T8):

0 = dR∇2Bi1 −Bi1
[
∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−1

8∗ , T8)
)

+ F1((i− 1)∆t, x, T1, T8) +
1

∆t

]
−Ri

[ ∂2

∂T 2
1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T1
F1((i− 1)∆t, x, T1, T8)

]
+F0((i− 1)∆t, x) · ∇Bi1 +

Bi−1
1 (x; τ i−1

1 , τ i−1
8 )

∆t
,

(15.54)

where

Bi1(x, T1, T8) :=
∂Ri

∂T1
(x, T1, T8).

Recall that, according to (15.8) and (15.9),

τ i−1
1 = T1 −∆t ·

(
γ(cu;i−1

1∗ (x), cu;i−1
8∗ (x), T1)

)
, (15.55)

τ i−1
8 = T8 −∆t · δ(cu;i−1

8∗ (x), T8). (15.56)

It follows that

∂τ i−1
1

∂T1
= 1−∆t

∂γ(cu;i−1
1∗ (x), cu;i−1

8∗ (x), T1)

∂T1
,

∂τ i−1
8

∂T8
= 1−∆t

∂δ(cu;i−1
1∗ (x), cu;i−1

8∗ (x), T8)

∂T8
,

(15.57)

hence

Bi−1
1 (x; τ i−1

1 , τ i−1
8 ) :=

∂Ri−1

∂τ i−1
1

(x, τ i−1
1 , τ i−1

8 ) · ∂τ
i−1
1

∂T1
=

∂Ri−1

∂τ i−1
1

(x, τ i−1
1 , τ i−1

8 ) ·

(
1−∆t

∂γ(cu;i−1
1∗ (x), cu;i−1

8∗ (x), T1)

∂T1

) (15.58)

and

Bi−1
8 (x; τ i−1

1 , τ i−1
8 ) :=

∂Ri−1

∂τ i−1
8

(x, τ i−1
1 , τ i−1

8 ) · ∂τ
i−1
8

∂T8
=

∂Ri−1

∂τ i−1
8

(x, τ i−1
1 , τ i−1

8 ) ·

(
1−∆t

∂δ(cu;i−1
1∗ (x), cu;i−1

8∗ (x), T8)

∂T8

)
.

(15.59)

Now, let us fix (T1, T8) and, for given x ∈ Ω, (τ i−1
1 , τ i−1

8 ) as well. In this way, we can treat

Bi1(·, T1, T8) and Bi−1
1 (·; τ i−1

1 (·, T1), τ i−1
8 (·, T8)) as functions of x only. If extremum of the absolute

value of Bi1(x, T1, T8) is attained at y ∈ Ω, then

∇Bi1(y, T1, T8) = 0,

and, due to the maximum principle, (15.58) and Lemma 15.7:
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|Bi1(y, T1, T8)| ≤
(
Ri(y, T1, T8)

∣∣∣ ∂2

∂T 2
1

γ(cu;i−1
1∗ (y), cu;i−1

8∗ (y), T1)+

∂

∂T1
F1((i− 1)∆t, y, T1, T8)

∣∣∣+
∣∣∣Bi−1

1 (y; τ i−1
1 , τ i−1

8 )

∆t

∣∣∣ ) (−A+
1

∆t

)−1

≤

(
Ri(y, T1, T8)(AM + f1) +

∣∣∣Bi−1
1 (y; τ i−1

1 , τ i−1
8 )

∆t

∣∣∣) (−A+
1

∆t

)−1

=(
Ri(y, T1, T8)(AM + f1)∆t+ |Bi−1

τ1 (y; τ i−1
1 , τ i−1

8 )|(1 +A∆t)
)

(1−A∆t)
−1
,

(15.60)

where

AM := max{A−, A+} (15.61)

with A−, A+ defined in inequality (15.23) of Lemma 15.7, and A defined by (15.30).

Now, let us suppose that the global extremum of the absolute value of Bi1(x, T1, T8) is attained at

y ∈ ∂Ω. Suppose that this extremum is a positive maximum. Then, from the fact that

∂Ri(x, T1, T8)/∂n(x) = 0, we conclude that

∂Bi1(x, T1, T8)

∂n(x)
= 0 for x ∈ ∂Ω, (15.62)

hence

∂2Bi1(y, T1, T8)

∂n(y)2
≤ 0

as otherwise Bi1(x, T1, T8) would not have attained a maximum at x = y ∈ ∂Ω. Next, the Laplacian

of Bi1(x, T1, T8) for x ∈ ∂Ω is equal to the sum of the second derivatives with respect to n(x) and the

second derivatives with respect to the directions lying in the plane tangent to ∂Ω at x. This is seen

from the form of the Laplace operator with respect to variables locally connected with ∂Ω supplied

by the Appendix A. Due to the fact that Bi1 has a maximum at x = y, each of these derivatives is

non-positive. It follows that ∇2Bi1(y, T1, T8) ≤ 0, hence the estimate of the form (15.60) holds. It

should be noted that, according to Assumption 15.2, in this case the terms proportional to F0 and

F1 do not take part in the estimates, because they are identically equal to zero at ∂Ω. The same

arguments can be applied in the case, when the extremum is a non-positive minimum.

As we showed above, thanks to the assumption concerning the compactness of the initial data, for

each i ∈ {1, . . . , n} the points (T1, T8) for which Ri(x, T1, T8) 6≡ 0 are contained in a compact set Si.
For all i ∈ {1, . . . , n}, y = y(T1, T8), so we can take a supremum over (T1, T8) ∈ Si. In this way, we

obtain the estimate for

Bi1 := sup
(T1,T8)∈Si

|Bi1(y(T1, T8), T1, T8)|.

B0
1 is given by the initial conditions. Next, let us note that, if

L := (1−A∆t)−1 (15.63)

then

(1 +A∆t) < L, (15.64)

hence, for i ≥ 1 we have,

Bi1 ≤
(
‖Ri‖Af (∆t) + Bi−1

1 L
)
L , (15.65)

where

Af = AM + f1. (15.66)
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In arriving to (15.88) we used the fact that

sup
x∈Ω,τ1,τ8

|Bi−1
τ1 (x, τ1, τ8)| ≤ sup

x∈Ω,T1,T8

|Bi−1
1 (x, T1, T8)| (15.67)

We have

B1
1 ≤

(
‖R1‖Af (∆t) + B0

1L
)
L,

B2
1 ≤

(
‖R2‖Af (∆t) + B1

1L
)
L ≤

(
‖R2‖Af (∆t) + (‖R1‖Af (∆t) + B0

1L)LL
)
L

so inductively, for i ∈ {3, . . . , n(∆t)},

Bi1 ≤ B0
1L

2i +Af (∆t)

i∑
j=1

‖Rj‖L2(i−j)+1.

Using (15.31) and (15.63), we obtain

Bi1 ≤ L2i
(
B0

1 +Af (∆t)
∑i
j=1 ‖Rj‖L−2j+1

)
≤ L2i

(
B0

1 +Af (∆t)‖R0‖
∑i
j=1 L

−j+1
)
≤

L2i
(
B0

1 +Af (∆t)‖R0‖
∑i
j=1 L

−j+1
)
≤ L2i

(
B0

1 +Af (∆t)i‖R0‖
)
.

so consequently, as i∆t =
i

n
T , we have by means of Remark after (15.32), for ∆t > 0 sufficiently

small:

Bi1 ≤
3

2
Af i∆t‖R0‖L∞ exp(2A

i

n
T ) +

3

2
B0

1 exp(2A
i

n
T ). (15.68)

Denoting t := i∆t, we can write:

Bi1 ≤
3

2
Af t‖R0‖L∞ exp(2At) +

3

2
B0

1 exp(2At) (15.69)

Likewise, we have the estimate

Bi8 ≤
3

2
Af i∆t‖R0‖L∞ exp(2A

i

n
T ) +

3

2
B0

8 exp(2A
i

n
T ). (15.70)

which, after inserting t := i∆t, can be written as:

Bi8 ≤
3

2
Af t‖R0‖L∞ exp(2At) +

3

2
B0

8 exp(2At), (15.71)

where

Bi8 := sup
(T1,T8)∈Si

|Bi8(y(T1, T8), T1, T8)|.

with

Bi8(x, T1, T8) :=
∂Ri

∂T8
(x, T1, T8).

15.9 Estimates of the first order derivatives of Ri with respect to the com-

ponents of x inside Ω

We will start from the estimates of the absolute values of the first derivatives of the functions Ri with

respect to the components of x attained inside Ω.
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Remark To avoid confusion, the derivative of Ri−1(x; τ i−1
1 (x, T1), τ i−1

8 (x, T8)) with respect to τ i−1
k ,

k = 1, 8, will be denoted below by Bi−1
τk

(x; τ i−1
1 (x, T1), τ i−1

8 (x, T8)), where, for simplicity, we have

omitted the index i− 1. 2

Differentiating Eq.(15.5) with respect to xr, r = 1, 2, 3, we obtain the equation:

0 = dR∇2Qir −Qir
[
∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−1

8∗ , T8)
)

+ F i−1
1 +

1

∆t

]
−

Ri
[ ∂2

∂cu;i−1
1∗ ∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
cu;i−1
1∗,xr +

∂2

∂cu;i−1
8∗ ∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
cu;i−1
8∗,xr +

∂2

∂cu;i−1
8∗ ∂T8

(
δ(cu;i−1

8∗ , T8)
)
cu;i−1
8∗,xr +

∂F i−1
1

∂xr

]
+
Qi−1(x; τ i−1

1 , τ i−1
8 )

∆t
+

Bi−1
τ1 (x; τ i−1

1 (x, T1), τ i−1
8 (x, T8))

∆t
· ∂τ

i−1
1

∂xr
+
Bi−1
τ8 (x; τ i−1

1 (x, T1), τ i−1
8 (x, T8))

∆t
· ∂τ

i−1
8

∂xr
+

F i−1
0 · ∇

(
∂Ri

∂xr

)
+
∂F i−1

0

∂xr
· ∇Ri,

(15.72)

where, for i ∈ {1, . . . , n},

Qir(x, T1, T8) :=
∂Ri

∂xr
(x, T1, T8)

and, for simplicity we denoted

F i−1
0 := F0((i− 1)∆t, x), F i−1

1 := F1((i− 1)∆t, x, T1, T8).

According to (15.8) we have:

1

∆t
· ∂τ

i−1
1

∂xl
= −∂γ(cu;i−1

1∗ (x), cu;i−1
8∗ (x), T1)

∂xl
=

−∂γ(cu;i−1
1∗ , cu;i−1

8∗ , T1)

∂cu;i−1
1∗

· ∂c
u;i−1
1∗
∂xl

− ∂γ(cu;i−1
1∗ , cu;i−1

8∗ , T1)

∂cu;i−1
8∗

· ∂c
u;i−1
1∗
∂xl

(15.73)

and, according to (15.9) :

1

∆t
· ∂τ

i−1
8

∂xl
= −∂δ(c

u;i−1
8∗ (x), T8)

∂xl
= −∂δ̃(c

u;i−1
8∗ , T8)

∂cu;i−1
1∗

· ∂c
u;i−1
8∗
∂xl

(15.74)

hence (15.72) can be written as

0 = dR∇2Qir −Qir
[
∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−1

8∗ , T8)
)

+ F i−1
1 +

1

∆t

]

+
Qi−1
r (x; τ i−1

1 , τ i−1
8 )

∆t
+
{
−Ri

[ ∂2

∂cu;i−1
1∗ ∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
cu;i−1
1∗,xr

+
∂2

∂cu;i−1
8∗ ∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
cu;i−1
8∗,xr +

∂2

∂cu;i−1
8∗ ∂T8

(
δ(cu;i−1

8∗ , T8)
)
cu;i−1
8∗,xr +

∂F i−1
1

∂xr

]
−Bi−1

τ1 (x; τ i−1
1 (x, T1), τ i−1

8 (x, T8)) · ∂γ(cu;i−1
1∗ (x), cu;i−1

8∗ (x), T1)

∂xr
−

Bi−1
τ8 (x; τ i−1

1 (x, T1), τ i−1
8 (x, T8)) · ∂δ(c

u;i−1
8∗ (x), T8)

∂xr

}
+ F i−1

0 · ∇
(
∂Ri

∂xr

)
+
∂F i−1

0

∂xr
· ∇Ri .

(15.75)

Now, using (15.26) and Lemma 15.11, we conclude that

68



∣∣∣ ∂2

∂cu;i−1
1∗ ∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
cu;i−1
1∗,xr +

∂2

∂cu;i−1
8∗ ∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
cu;i−1
8∗,xr

∣∣∣ ≤
M
(
C1(β,Ω)‖cu;0

1 ‖C1+β
x (Ω) + C8(β,Ω)‖cu;0

8 ‖C1+β
x (Ω)

)
.

Recall that the constants C8(β,Ω), and C8(β,Ω) are independent of i, as, in fact, the x-derivatives of

the functions defined by (15.45) are Hölder continuous in t for t ∈ [0, T ].

Next, using (15.25) and Lemma 15.11, we conclude that:

∣∣∣∂γ(cu;i−1
1∗ (x), cu;i−1

8∗ (x), T1)

∂xr

∣∣∣ ≤ T1iM
(
C1(β,Ω)‖cu;0

1 ‖C1+β
x (Ω) + C8(β,Ω)‖cu;0

8 ‖C1+β
x (Ω)

)
, (15.76)

where T1i is estimated from above in Lemma 15.9 as T 0
1∗ + 2i∆t.

The corresponding inequalities for the function δ take the form:∣∣∣ ∂2

∂cu;i−1
8∗ ∂T8

(
δ(cu;i−1

8∗ , T8)
)
cu;i−1
8∗,xr

∣∣∣ ≤ δ2 C8(β,Ω)‖cu;0
8 ‖C1+β

x (Ω)

(see (15.24)) and

∣∣∣∂δ(cu;i−1
8∗ (x), T8)

∂xr

∣∣∣ ≤ T8iδ2C8(β,Ω)‖cu;0
8 ‖C1+β

x (Ω), (15.77)

where T8i is estimated from above in Lemma 15.9 as T 0
8∗ + i∆t. Let

G1 :=M
(
C1(β,Ω)‖cu;0

1 ‖C1+β
x (Ω)+C8(β,Ω)‖cu;0

8 ‖C1+β
x (Ω)

)∣∣∣
β=0

, G8 :=
(
δ2 C8(β,Ω)‖cu;0

8 ‖C1+β
x (Ω)

)∣∣∣
β=0

.

(15.78)

Let

sup
r=1,2,3

|Qir| = |Qiρ|

and

Qi :=
∣∣∣Qiρ∣∣∣.

for some ρ ∈ {1, 2, 3}. Obviously Qi (as well as Qir) are functions of T1 and T8.

Now, the absolute value of the term F i−1
0 · ∇

(
∂Ri

∂xρ

)
+
∂F i−1

0

∂xρ
· ∇Ri at a point of the global

extremum, where ∇ ∂Ri

∂xρ
= ∇Qi = 0 can be estimated as∣∣∣∂F i−1

0

∂xρ
· ∇Ri

∣∣∣ ≤ 3f0Q
i. (15.79)

In this way we can find an L∞ estimate for the expression in the curly bracket in (15.75) (including

the term ∂F i−1
1 /∂xr with its absolute value estimated from above by f1) as:

∥∥∥{ · }∥∥∥
L∞
≤ ‖Ri‖L∞ · (G1 +G8 + f1) + Bi1 ·G1 · (T 0

1∗ + 2n∆t) + Bi8 ·G8 · (T 0
8∗ + n∆t), (15.80)

where G1 and G8 are defined in (15.78). Using inequalities (15.68), (15.70) we can write

∥∥∥{ · }∥∥∥
L∞
≤ SQ exp(2A

i

n
T ),

where, for n = T/∆t,
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SQ :=
3

2
‖R0‖L∞ · (G1 +G8 + f1) + b1G1 · (T 0

1∗ + 2T ) + b8G8 · (T8∗ + T )

with

b1 =
3

2
Af T‖R0‖L∞ +

3

2
B0

1

and

b8 =
3

2
Af T‖R0‖L∞ +

3

2
B0

8.

Lemma 15.13. Let T > 0, s ∈ IN and IN 3 n � 1 be fixed. Let ∆t = Tn−1 and L := (1− A∆t)−1,

A > 0. Then, for all n sufficiently large, we have:

σn = ∆t
(
1 + Ls + L2s + . . .+ Lns

)
<

3

2

1

sA
exp(Ans∆t).

Next, for any i ≤ n,

σi := ∆t
(
1 + Ls + L2s + . . .+ Lns

)
≤ 3

2

1

A
(exp(Ans∆t))i/n =

3

2

1

sA
exp(Ais∆t).

Proof By (15.64), we have Ls > (1 +A∆t)s > 1 + sA∆t, hence

σn = ∆t
(
1 + Ls + L2s + . . . , Lns

)
= ∆t

L(n+1)s − 1

Ls − 1
< ∆t

L(n+1)s

Ls − 1
<
L(n+1)s

sA
.

Next, for n sufficiently large, we have

L(n+1)s =
( 1

1−AT
n

)ns( 1

1−AT
n

)s
=
( 1

1− sA T

ns

)ns( 1

1−AT
n

)s
<

3

2
exp(AsT )

thus, for ∆t→ 0,

σn <
3

2

1

A
exp(Asn∆t).

In general, for i ≤ n, we have

σi <
3

2

1

sA
exp(A

i

n
sT ) =

3

2

1

sA
exp(Ais∆t).

The lemma is proved. 2

Now, recall that by Lemma 15.7 the first two terms in the bracket multiplying Qir in (15.75) are

uniformly bounded from below for all non-negative values of their arguments by the constant (−A).

In consequence, for fixed t ∈ [0, T ] and n satisfying (15.13), it follows from (15.75) by means of

Lemma 14.1, that, for i = 1, . . . , n, the estimate from above of

Qi := sup
T1,T8

Qi = sup
x∈Ω,T1,T8,r=1,2,3

∣∣∣∂Ri
∂xr

(x, T1, T8)
∣∣∣, (15.81)

in relation to the value of Qi−1, can be written as

Qi ≤
Qi−1 + SQ∆t exp(2A

i

n
T )

1− (A+ 3f0)∆t
<
Qi−1 + SQ∆t exp(2AT )

(1−A1)

where A is defined in (15.30),

A1 = (A+ 3f0) (15.82)

and Qi−1 corresponds to Qi−1(x; τ i−1
1 , τ i−1

8 ). Denoting, similarly as in (15.63), L := (1 − A1∆t)−1,

we thus have
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Q1 ≤
(
Q0 + SQ∆t exp(2AT )

)
L,

Q2 ≤
(
Q1 + SQ∆t exp(2AT )

)
L =

((
Q0 + SQ∆t exp(2AT )

)
L+ SQ∆t exp(2AT )

)
L =

Q0L2 + SQ∆t exp(2AT )
(
L2 + L1

)
and by induction, for any i ≤ n,

Qi ≤ Q0Li + SQ∆t exp(2AT )
(
Li + . . .+ L2 + L1

)
.

Using Lemma 15.13 and proceeding as in the proof of (15.68) and (15.69), we can show that for n

sufficiently large (and ∆t > 0 satisfying equality (15.13)), for all i ∈ {1, . . . , n}, we have:

Qi ≤ 3

2

1

A1
SQ exp(2AT +A1

i

n
T ) +

3

2
Q0 exp(A1

i

n
T ). (15.83)

Thus the C1
x norm of the function Ri can be estimated by the C1

x norm of the initial conditions Q0,

where Q0 is defined in (15.81).

15.10 Estimates of the first order derivatives of Ri with respect to the

components of x at ∂Ω

Let us consider the case when an extremum of the absolute value of the spatial derivative is attained

on the boundary ∂Ω. Suppose that in the initial system of coordinates,

M1 := max
j

sup
x∈Ω

{∣∣∣∂Ri
∂xj

(x)
∣∣∣} =

∣∣∣∂Ri
∂xr

(x0)
∣∣∣

for some r ∈ {1, 2, 3} and x0 ∈ ∂Ω. Without losing generality, we can assume that this extremum of

the absolute value corresponds to a positive maximum of Ri,xr .

If x̂r ‖ n(x0), then
∂Ri

∂xr
= 0. So, suppose that x̂r 6‖ n(x0). Let N(x0) := x̂r. We can decompose

N(x0) =
1√
3

(n(x0) + s1(x0) + s2(x0)) ,

where n(x0) is a unit vector outward-normal to the boundary ∂Ω at x = x0 and unit vectors s1(x0),

s(x0) belong to a space tangent to ∂Ω at x = x0. By appropriate rotations of the system of coordinates,

we can achieve that n(x0) = x̂3 and sl(x0) = x̂l for l = 1, 2. In the (possibly) new system of

coordinates, we have

N(x0) · (∇Ri)(x0) =
1√
3

(n(x0) + s1(x0) + s2(x0)) · (∇Ri)(x0) =

1√
3

(x̂3 + x̂1 + x̂2)

(
x̂3
∂Ri

∂x3
+ x̂1

∂Ri

∂x1
+ x̂2

∂Ri

∂x2

)
=

1√
3

(
∂Ri

∂x1
+
∂Ri

∂x2

)
.

It follows that (after appropriate rotation of coordinate system around the axis parallel to x̂3) it

suffices to consider the derivative
∂Ri

∂xl
with x̂l ⊥ n(x0) and l = 1, 2. Then

∂

∂x3

(
∂Ri

∂xl

)
=

∂

∂xl

(
∂Ri

∂x3

)
= 0.

where from we obtain

∂

∂x3

(
∂Ri

∂xl

)
= 0. (15.84)

As we assumed that Ri,xl > 0 at x = x0, then
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∂2Ri,xl
∂x2

3

≤ 0

at x = x0. Next, as it was assumed that Ri,xl has a positive maximum as x = x0, then
∂Ri,xl
∂x1

=

∂Ri,xl
∂x2

= 0 and the second order derivatives of Ri,xl with respect to x1 and x2 are non-positive. Using

(15.84) and the lemma from Appendix A (with S identified with ∂Ω in the vicinity of x0), we infer

that at x = x0 we have ∆Ri,xl ≤ 0 and to estimate the value of
∂Ri

∂xr
(x0), we can use the maximum

principle as if x0 ∈ Ω. The same reasoning holds if the extremum is a non-positive minimum, i.e.
∂Ri

∂xr
(x0) ≤ 0.

15.11 Second order derivatives of Ri with respect to Tl and Tm

We will show how to estimate the second derivative ∂2Ri/∂T 2
1 . The other second order derivatives

with respect to T1 and T8 variables can be estimated in the similar way. Differentiating the both sides

of the equation (15.54) with respect to T1, we obtain

0 = dR∇2Bi11 −Bi11

[
∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−1

8∗ , T8)
)

+ F1((i− 1)∆t, x, T1, T8) +
1

∆t

]
−2Bi1

[
∂2

∂T 2
1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+
∂F1

∂T1
((i− 1)∆t, x, T1, T8)

]
−Ri

[ ∂3

∂T 3
1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+
∂2F1

∂T 2
1

((i− 1)∆t, x, T1, T8)
]

+
Bi−1

11 (x; τ i1, τ
i
8)

∆t
+ F0((i− 1)∆t, x) · ∇Bi11,

(15.85)

where

Bi1(x, T1, T8) :=
∂Ri

∂T1
(x, T1, T8) and Bi11(x, T1, T8) :=

∂2Ri

∂T 2
1

(x, T1, T8).

The term Bi−1
11 (x, τ i−1

1 , τ i−1
8 ) is defined as:

Bi−1
11 (x, τ i−1

1 , τ i−1
8 ) = Bi−1

11 (x, τ i−1
1 (x, T1), τ i−1

8 (x, T8)) =

d2Ri−1

dT 2
1

(x, τ i−1
1 , τ i−1

8 ) =
d

dT1

(
∂Ri−1

∂τ1
(x, τ i−1

1 , τ i−1
8 ) ·

(
1−∆t

∂γ(cu;i−1
1∗ (x), cu;i−1

8∗ (x), T1)

∂T1

))
=

∂2Ri−1

∂τ2
1

(x, τ i−1
1 , τ i−1

8 ) ·

(
1−∆t

∂γ(cu;i−1
1∗ (x), cu;i−1

8∗ (x), T1)

∂T1

)2

−

∆t
∂Ri−1

∂τ1
(x, τ i−1

1 , τ i−1
8 ) · ∂

2γ(cu;i−1
1∗ (x), cu;i−1

8∗ (x), T1)

∂T 2
1

=

Bi−1
τ1τ1(x, τ i−1

1 , τ i−1
8 ) ·

(
1−∆t

∂γ(cu;i−1
1∗ (x), cu;i−1

8∗ (x), T1)

∂T1

)2

−

∆t Bi−1
τ1 (x, τ i−1

1 , τ i−1
8 ) · ∂

2γ(cu;i−1
1∗ (x), cu;i−1

8∗ (x), T1)

∂T 2
1

.

(15.86)

Assuming that
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Bi11 := sup
x∈Ω,T1,T8

|Bi11(x, T1, T8)|

is attained for y ∈ Ω and some (T1, T8), we conclude that

∇Bi11(y, T1, T8) = 0.

Thus taking into account (15.67), the inequality

sup
x∈Ω,τ1,τ8

|Bi−1
τ1τ1(x, τ1, τ8)| ≤ sup

x∈Ω,T1,T8

|Bi−1
11 (x, T1, T8)|, (15.87)

using the maximum principle and proceeding as in arriving at (15.60), we obtain the relation

Bi11 ≤
(
‖Ri‖A31 + 2Bi1(A− + f1) + Bi−1

1 AM +
Bi−1

11 (1 + ∆tA)2

∆t

) (
−A+

1

∆t

)−1

=(
‖Ri‖A31∆t+ 2Bi1(A− + f1)∆t+ Bi−1

1 AM∆t+ Bi−1
11 (1 +A∆t)2

)
(1−A∆t)

−1 ≤([
‖Ri‖A31 + 2Bi1Af + Bi−1

1 AM

]
∆t+ Bi−1

11 L2
)
L

(15.88)

where A is defined in (15.30), L is defined by (15.63), AM in (15.61), Af defined in (15.66), whereas

A31 = sup
∣∣∣ ∂3

∂T 3
1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

) ∣∣∣+ f1. (15.89)

According to (15.68), we can write

‖Ri‖A31 + 2Bi1Af + Bi−1
1 AM ≤

3

2
‖R0‖ · (A31 + 2AfAf i∆t) exp(2A

i

n
T ) + 3AfB0

1 exp(2A
i

n
T )+

3

2
‖R0‖AfAM (i− 1)∆t exp(2A

i− 1

n
T ) +

3

2
AMB0

1 exp(2A
i− 1

n
T ) ≤

exp(2AT )
{

(
3

2
A31 + 3A2

fT )‖R0‖+ 3AB0
1 +

3

2
‖R0‖AfAMT +

3

2
AMB0

1

}
=: S11(T ).

(15.90)

We have B1
11 ≤

(
S11(T )∆t + B0

11L
2
)
L, B2

11 ≤
(
S11(T )∆t + S11L

3∆t + B0
11L

5
)
L and in general, for

i ≤ n,

Bi11 =
(
S11(T )∆t

i−1∑
l=0

L3l + B0
11L

3i−1
)
L

Thus using Lemma 15.13, we obtain, for ∆t > 0 sufficiently small, i.e. for L sufficiently close to 1

Bi11 ≤
3

2

1

3A
S11(T ) exp(3iA∆t) +

3

2
B0

11 exp(3iA∆t). (15.91)

The estimate for Bi88 has a simpler form due to the fact that ∂2δ/∂T 2
8 ≡ 0. This implies that the last

term in the expression for Bi−1
88 (corresponding to (15.86)), hence the term corresponding to Bi−1

1 AM
in (15.88), equals zero. Next, A31 in (15.88) reduces to f1. Similarly to Bi11, we have

Bi88 ≤
3

2

1

3A
S88(T ) exp(3iA∆t) +

3

2
B0

88 exp(3iA∆t), (15.92)

but this time, according to (15.90),

S88(T ) =
3

2
‖R0‖f1 exp(2AT ) + 2Bn8Af ,

where Bn8 is obtained from (15.70) by taking i = n.

Similar estimates can be found for Bi18. In this case the second line of (15.85) takes the form
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Bi8

[
∂2

∂T 2
1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+
∂F1

∂T1
((i− 1)∆t, x, T1, T8)

]
+Bi1

[
∂F1

∂T8
((i− 1)∆t, x, T1, T8)

]
,

whereas the third one takes the form

Ri
[ ∂2F1

∂T1T8
((i− 1)∆t, x, T1, T8)

]
We thus have

Bi18 ≤
3

2

1

3A
S18(T ) exp(3iA∆t) +

3

2
B0

18 exp(3iA∆t), (15.93)

with

S18(T ) =
3

2
‖R0‖f1 exp(2AT ) + (Bn8 + Bn1 )Af ,

where Bn1 and Bn8 are obtained from (15.68) and (15.70) by taking i = n.

15.12 Third order derivatives of Ri with respect to Tl, Tm and Tp

Using the same approach we are able to give estimates for third order derivatives of the functions with

respect to Tl, Tm and Tp, l,m.p ∈ {1, 8}, which are independent of i. Similarly to (15.91), (15.92) and

(15.93), these estimates have the following structure:

Bilmp ≤ Slmp exp(k3;1iA∆t) + B0
lmp exp(k3;2iA∆t), (15.94)

where k3;1 and k3;2 are finite natural numbers and Slmp depends on T and the norms of the coefficient

functions of system (15.5)-(15.7).

15.13 Mixed second order derivatives of Ri with respect to xk and Tm

Now, we will estimate the absolute values of the mixed derivatives

Qik,m :=
∂2Ri

∂xk∂Tm
=

d2Ri

dxkdTm
, k = 1, 2, 3, m = 1, 8.

Let g1 := γ, g8 := δ. Then

d

dxk

[∂Ri−1

∂Tm
(x, τ i−1

1 , τ i−1
8 )

]
=

d

dTm

[dRi−1

dxk
(x, τ i−1

1 , τ i−1
8 )

]
=

d

dTm

[∂Ri−1

∂xk
(x, τ i−1

1 , τ i−1
8 ) +Bi−1

τ1 (x, τ i−1
1 , τ i−1

8 )
∂τ i−1

1

∂xk
+Bi−1

τ8 (x, τ i−1
1 , τ i−1

8 )
∂τ i−1

8

∂xk

]
=

d

dTm

[
Bi−1
τ1 (x, τ i−1

1 , τ i−1
8 )

∂τ i−1
1

∂xk
+Bi−1

τ8 (x, τ i−1
1 , τ i−1

8 )
∂τ i−1

8

∂xk

]
+

Qi−1
k,τm

(x, τ i−1
1 , τ i−1

8 ) ·

(
1−∆t

∂gm(cu;i−1
1 (x), cu;i−1

8 (x), Tm)

∂Tm

)
.

(15.95)

Differentiating Eq.(15.75) with respect to Tm, we obtain the equation:
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0 = dR∇2Qik,m −Qik,m
[
∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−1

8∗ , T8)
)

+F1((i− 1)∆t, T1, T8) +
1

∆t

]
−Qik

[ ∂2γ

∂2T1
δ1m +

∂F i1
∂Tm

((i− 1)∆t, x, T1, T8)
]

+
Qi−1
k,τm

(x; τ i−1
1 , τ i−1

8 )

∆t

(
1−∆t

∂gm(cu;i−1
1∗ (x), cu;i−1

8∗ (x), Tm)

∂Tm

)

+
{
−Bim

[ ∂2

∂cu1∗∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
cu;i−1
1∗,xk +

∂2

∂cu8∗∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
cu;i−1
8∗,xk+

∂2

∂cu8∗∂T8

(
δ(cu;i−1

8∗ , T8)
)
cu;i−1
8∗,xk +

∂F i−1
1

∂xk
((i− 1)∆t, x, T1, T8)

]
−

Ri
[ ∂3

∂cu1∗∂
2Tm

(
gm(cu;i−1

1∗ , cu;i−1
8∗ , Tm)

)
cu;i−1
1∗,xk +

∂3

∂cu8∗∂
2Tm

(
gm(cu;i−1

1∗ , cu;i−1
8∗ , Tm)

)
cu;i−1
8∗,xk+

∂2F i−1
1

∂xk∂Tm
((i− 1)∆t, x, T1, T8)

]
+

Bi−1
τ1τm(x; τ i−1

1 (x, T1), τ i−1
8 (x, T8))

1

∆t
· ∂τ

i−1
1

∂xk
· ∂τm
∂Tm

+

Bi−1
τ8τm(x; τ i−1

1 (x, T1), τ i−1
8 (x, T8))

1

∆t
· ∂τ

i−1
8

∂xk
· ∂τm
∂Tm

+

Bi−1
τ1 (x; τ i−1

1 (x, T1), τ i−1
8 (x, T8))

1

∆t
· ∂

∂Tm

(
∂τ i−1

1

∂xk

)
δ1m+

Bi−1
τ8 (x; τ i−1

1 (x, T1), τ i−1
8 (x, T8))

1

∆t
· ∂

∂Tm

(
∂τ i−1

8

∂xk

)
δ8m

}
+

F i−1
0 (x) · ∇Qk,m(x,T1,T8) +

∂F i−1
0

∂xk
· ∇Bm(x, T1, T8).

(15.96)

Recall that ∂τm/∂Tm has the form determined by (15.57), whereas ∂τl/∂xk is determined in (15.73)

and (15.74). It follows from (15.73) and (15.74) that

1

∆t
· ∂

∂Tm

(
∂τ i−1
j

∂xl

)
= − ∂

∂Tm

(
∂gj(c

u;i−1
1∗ (x), cu;i−1

8∗ (x), Tj)

∂xl

)
δjm =

−∂
2gm(cu;i−1

1∗ , cu;i−1
8∗ , Tm)

∂cu;i−1
1∗ ∂Tm

· ∂c
u;i−1
1∗
∂xl

− ∂2gm(cu;i−1
1∗ , cu;i−1

8∗ , T1)

∂cu;i−1
8∗

· ∂c
u;i−1
1∗
∂xl

(15.97)

hence, by Lemma 15.7, (15.76) and (15.77), the L∞-norm of the function coefficients multiplying

Bi−1
τ1τm , Bi−1

τ8τm , Bi−1
τ1 and Bi−1

τ8 in (15.96) are bounded by a finite number CBxT∗ depending on (T1, T8)

(and other parameters of the system). Likewise, the coefficient function multiplying Ri is bounded in

its L∞-norm by a finite number CRxT∗ . Recall also that the sum of the absolute values of the coefficients

multiplying Bim can be estimated from above by a finite number (Lemma 15.11).

Let us estimate the maximal absolute value of the derivatives Qik,m inside Ω, for fixed (T1, T8) ∈
IR

2

+. Suppose that the maximum of |Qik,m(·, T1, T8)| is realized at some point

xik,m = xik,m(T1, T8) ∈ Ω

thus

∇Qik,m(xik,m, T1, T8) = 0.

Let
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sup
k=1,2,3;m=1,8;T1,T8

|Qik,m(xkm, T1, T8)| = |Qik̄,m̄(xk̄m̄, T̄1, T̄8)| =: |Qik̄,m̄(x̄, T̄1, T̄8)| =: Qi∗,∗ (15.98)

Obviously, (∇xQik̄,m̄)(x̄, T̄1, T̄8) = 0 and, according to the definition of Qi
k̄,m̄

(x̄, T̄1, T̄8), we have∣∣∣∂F i0
∂xk

· ∇Bm̄(x̄, T̄1, T̄8)
∣∣∣ ≤ 3f0|Qik̄,m̄(x̄, T̄1, T̄8)|. (15.99)

Next, proceeding like in sections 15.9 and 15.11, and using the estimates derived there, we can show

that the following recurrence inequality holds:

Qi∗,∗ ≤
(
E∗,∗ exp[5AT ]∆t+Qi−1

∗,∗ L
)
L,

where E∗,∗ depends on the initial data R0, T and the coefficient functions of system (15.5)-(15.7).

This leads to the inequality

Qi∗,∗ ≤
3

2
E∗,∗ exp[5AT ] exp(2Ai∆t) +

3

2
Q0
∗,∗ exp(2Ai∆t). (15.100)

Remark Let us note that we calculated the maximal value of |Qik,m| tacitly assuming that it is

attained inside Ω. In fact, the same procedure can be applied in the case when |Qik,m| attains it‘s

maximal value at the boundary ∂Ω. This follows from subsection 15.10 and the fact that the boundary

properties of Qik,m are the same as the properties of Qik. 2

Remark The necessity of taking the supremum over the index k (and m) as in (15.98) follows from

the presence of the term F0 ·∇Ri and is dictated by the possibility of the assessment (15.99). Without

this term, we could keep the indices k and m fixed. 2

15.14 Mixed third order derivatives Ri with respect to xk, Tm and Tl

Similarly, we can estimate the absolute value third order derivatives of the form:

Qik,m,l :=
∂3Ri

∂xk∂Tm∂Tl
=

d3Ri

dxkdTmdTl
, k = 1, 2, 3, m = 1, 8.

These estimates have the form corresponding to (15.101). Thus, in view of the second Remark

after (15.101), we have:

Qi∗,∗∗ ≤
3

2
E∗,∗∗ exp(k12;1Ai∆t) +

3

2
Q0
∗,∗∗ exp(k12;2Ai∆t), (15.101)

where for the first asterisk we can take 1, 2, 3, whereas for the second and third asterisk we can take

1 or 8. The constants k1,2;1, k1,2;2 are finite natural numbers. E∗,∗∗ depend on T and the norms of

the coefficient functions of system (15.5)-(15.7).

15.15 Basic lemma concerning the difference between functions corre-

sponding to subsequent values of i

For further analysis, we will suppose that a simplifying technical assumption.

Assumption 15.14. The function F0 does not depend on t.

In this subsection, using the results of the previous subsections, we will estimate the difference

Zi(x, T1, T8) := Ri(x, T1, T8)−Ri−1(x, T1, T8).

For i ≥ 2, Zi satisfies the equation:
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dR∇2Zi + F0(x) · ∇Zi − Zi(x;T1, T8)

∆t
+
Zi−1(x, T1, T8)

∆t
− Zi−1

∗ (x, T1, T8)

∆t
−

{
Zi
[
∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−1

8∗ , T8)
)

+ F1((i− 1)∆t, x, T1, T8)

]}
+Ri−1∆V i = 0

(15.102)

where

Zi−1
∗ := (Ri−1

∗ −Ri−1)− (Ri−2
∗ −Ri−2), (15.103)

because

Ri −Ri−1
∗ − (Ri−1 −Ri−2

∗ ) = (Ri −Ri−1)− (Ri−1 −Ri−2) + (Ri−1 −Ri−1
∗ )− (Ri−2 −Ri−2

∗ ).

Above, for fixed (T1, T8) we denoted for brevity

Rk∗ := Rk(x, τ1(x, T1), τ8(x, T8)) (15.104)

with τ1(x, T1), τ8(x, T8) determined by (15.8)-(15.9), i.e.

τ i−1
1 = T1 − γ(cu;i−1

1∗ (x), cu;i−1
8∗ (x), T1) ·∆t =: T1 − γi−1(x, T1) ·∆t, (15.105)

τ i−1
8 = T8 − δ(cu;i−1

8∗ (x), T8) ·∆t =: T8 − δi−1(x, T8) ·∆t (15.106)

and

∆V i =

[
∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−1

8∗ , T8)
)

+ F1((i− 1)∆t, x, T1, T8)

]
−[

∂

∂T1

(
γ(cu;i−2

1∗ , cu;i−2
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−2

8∗ , T8)
)

+ F1((i− 2)∆t, x, T1, T8)

]
.

(15.107)

In view of the inequality (15.50),

∆V i ≤ Bv∆t as ∆t→ 0

for all i ≥ {2, . . . , n} and some Bv ≥ 0.

Remark Above, we used the following lemma specifying the one term Taylor expansion for many

variables scalar function.

Lemma 15.15. Suppose that f ∈ CK+1 class. Then

f(y) = f(y0)+
∑

1≤|α|≤K

1

α!
(Dαf)(y0)(y−y0)α+

∑
|α|=K+1

K + 1

α!
(y−y0)α

∫ 1

0

(1−s)K(Dαf)(y0+s(y−y0)) ds.

2

Taking into account the boundedness of the first and second second derivatives of the functions

Ri, i ∈ {1, . . . , n} with respect to T1 and T8 provided by sections 15.8, 15.11, we can write:
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Ri−1 −Ri−1
∗ = Ri−1(x, T1, T8)−Ri−1(x, τ1(x, T1), τ8(x, T8)) =

Ri−1(x, T1, T8)−Ri−1(x, T1, T8)−Bi−1
1 (x, T1, T8) · γi−1(x, T1)∆t−Bi−1

8 (x, T1, T8) · δi−1(x, T8)∆t−

∑
k,l=1,8

2

2!
(τ i−1
k − Tk) · (τ i−1

l − Tl)
∫

1

0
(1− s)Bi−1

τkτl

(
x, T1 + s(τ i−1

1 − T1), T8 + s(τ i−1
8 − T8)

)
ds =

−Bi−1
1 (x, T1, T8) · γi−1(x, T1)∆t−Bi−1

8 (x, T1, T8) · δi−1(x, T8)∆t−

∑
k,l=1,8(τ i−1

k − Tk) · (τ i−1
l − Tl)

∫
1

0
(1− s)Bi−1

τkτl

(
x, T1 + s(τ i−1

1 − T1), T8 + s(τ i−1
8 − T8)

)
ds.

(15.108)

Remark In accordance with Remark before (15.72), to avoid ambiguity, we will assume the following

convention of denoting the total derivatives of the quantities Ri(x, τ i1(x, T1), τ8(x, T8)) with respect to

T1 and T8. Thus, these derivatives will be denoted by

dRi(x, τ i1(x, T1), τ8(x, T8))

dT1
= Biτ1(x, τ i1(x, T1), τ8(x, T8)) · dτ1

dT1
=: Bi1(x, τ i1(x, T1), τ8(x, T8)),

dRi(x, τ i1(x, T1), τ8(x, T8))

dT8
= Biτ8(x, τ i1(x, T1), τ8(x, T8)) · dτ8

dT1
=: Bi8(x, τ i1(x, T1), τ8(x, T8)).

2

Next

Bi−1
1 (x, T1, T8) · γi−1(x, T1)∆t−Bi−2

1 (x, T1, T8) · γi−2(x, T1)∆t =(
Bi−1

1 (x, T1, T8)−Bi−2
1 (x, T1, T8)

)
· γi−1(x, T1)∆t+Bi−2

1 (x, T1, T8)
(
γi−1(x, T1)− γi−2(x, T1)

)
∆t :=

Hi−1
1 (x, T1, T8) · γi−1(x, T1)∆t+Bi−2

1 (x, T1, T8)
(
γi−1(x, T1)− γi−2(x, T1)

)
∆t.

Likewise:

Bi−1
8 (x, T1, T8) · δi−1(x, T1)∆t−Bi−2

8 (x, T1, T8) · δi−2(x, T1)∆t =(
Bi−1

8 (x, T1, T8)−Bi−2
8 (x, T1, T8)

)
· δi−1(x, T1)∆t+Bi−2

1 (x, T1, T8)
(
δi−1(x, T1)− δi−2(x, T1)

)
∆t :=

Hi−1
8 (x, T1, T8) · δi−1(x, T1)∆t+Bi−2

8 (x, T1, T8)
(
δi−1(x, T1)− δi−2(x, T1)

)
∆t.

As (τ i−1
k − Tk) = O(∆t), it follows that there exists a positive constant r1 independent of i such that

|(Ri−1
∗ −Ri−1)− (Ri−2

∗ −Ri−2)| ≤
(
|Hi−1

1 |γ + |Hi−1
8 |δ

)
∆t+ r1(∆t)2 (15.109)

and positive constants r2, r3 (independent of i) such that

|Zi| ≤ (|Zi−1|+ r2(∆t)2 + r3|H|i−1∆t)L, (15.110)

The last inequality is obtained via the consecutive use of the maximum principle and the denotation

|H|i := sup{|Hi
1|, |Hi

8|}, (15.111)
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As R0 is given by the initial data, then

dR∇2Z1 − Z1(x;T1, T8)

∆t
+ F0(x) · ∇Z1+

{
R1

[
∂

∂T1

(
γ(cu;0

1∗ , c
u;0
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;0

8∗ , T8)
)

+ F1(0 ·∆t, x, T1, T8)

]
+(

∆xxR
0 +

[R0(x, τ0
1 (x, T1), τ0

8 (x, T8))−R0(x, T1, T8)]

∆t

)
+ F0(x) · ∇R0

}
= 0.

(15.112)

It is seen that the terms in the curly brackets {·} are of O(1) terms as ∆t→ 0. It follows that there

exists a constant G1
0Z ≥ 0 such that for all i ∈ {2, . . . , n}

|Z1(x)| < ∆tG1
0Z , for x ∈ Ω. (15.113)

To proceed, let us analyse the difference Hi
1 = Bi1 −Bi−1

1 for i = {1, . . . , n}. This will be done by

means of the equation obtained by subtracting from Eq.(15.54) for Bi1 the corresponding equation for

the function Bi−1
1 . For i ≥ 2, we obtain:

dR∇2Hi
1 + F0(x) · ∇Hi

1 =

Hi
1

[
∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−1

8∗ , T8)
)

+ F1((i− 1)∆t, x, T1, T8) +
1

∆t

]
+

Bi−1
1 [∆Vi] + Zi

[ ∂2

∂T 2
1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T1
F1((i− 1)∆t, x, T1, T8)

]
+

Ri−1
[ ∂2

∂T 2
1

γ(cu;i−1
1∗ , cu;i−1

8∗ , T1)− (
∂2

∂T 2
1

γ(cu;i−2
1∗ , cu;i−2

8∗ , T1))+

∂

∂T1
F1((i− 1)∆t, x, T1, T8)− ∂

∂T1
F1((i− 2)∆t, x, T1, T8)

]
−

Bi−1
1 (x; τ i−1

1 (x, T1), τ i−1
8 (x, T8))−Bi−2

1 (x; τ i−2
1 (x, T1), τ i−2

8 (x, T8))

∆t
.

(15.114)

Denoting

γiT1
:=

∂γ(cu;i
1 , cu,88 , T1)

∂T1
, δiT8

:=
∂δ(cu,88 , T1)

∂T8
, Bi−1

τ1 :=
∂Ri−1

∂τ1
, Bi−2

τ1 :=
∂Ri−2

∂τ1
,

we have:

∣∣∣Bi−1
1 (x; τ i−1

1 (x, T1), τ i−1
8 (x, T8))−Bi−2

1 (x; τ i−2
1 (x, T1), τ i−2

8 (x, T8))
∣∣∣ =∣∣∣Bi−1

τ1 (x; τ i−1
1 (x, T1), τ i−1

8 (x, T8))(1− γi−1
,T1

∆t)−Bi−2
τ1 (x; τ i−2

1 (x, T1), τ i−2
8 (x, T8))(1− γi−2

,T1
∆t)
∣∣∣ =∣∣∣ [Bi−1

τ1 (x; τ i−1
1 (x, T1), τ i−1

8 (x, T8))−Bi−2
τ1 (x; τ i−2

1 (x, T1), τ i−2
8 (x, T8))

]
· (1− γi−1

,T1
∆t)−

Bi−2
τ1 (x; τ i−2

1 (x, T1), τ i−2
8 (x, T8)) ·

[
γi−1
,T1

∆t− γi−2
,T1

∆t
] ∣∣∣

(15.115)

Let us note that

|γi−1
,T1

(x, T1)∆t− γi−2
,T1

(x, T1)∆t| = |
(
γi−1
,T1

(x, T1)− γi−2
,T1

(x, T1)
)
|∆t < G11(∆t)2.
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Next, we have, according to Lemma 15.15, with K = 0,

Bi−1
τ1 (x; τ i−1

1 (x, T1), τ i−1
8 (x, T8))−Bi−2

τ1 (x; τ i−2
1 (x, T1), τ i−2

8 (x, T8)) =

Bi−1
τ1 (x; τ i−1

1 (x, T1), τ i−1
8 (x, T8))

−Bi−2
τ1

[
x; τ i−1

1 (x, T1)− {τ i−1
1 (x, T1)− τ i−2

1 (x, T1)}, τ i−1
8 (x, T8)−

{
τ i−1
8 (x, T8)− τ i−2

8 (x, T8)
} ]

=

Bi−1
τ1 (x; τ i−1

1 (x, T1), τ i−1
8 (x, T8))−Bi−2

τ1 (x; τ i−1
1 (x, T1), τ i−1

8 (x, T8))−

[
(τ i−1

1 (x, T1)− τ i−2
1 (x, T1))

∫
1

0
(Bi−1

τ1τ1(x, τ i−1
1 + s(τ i−2

1 − τ i−1
1 ), τ i−1

8 + s(τ i−2
8 − τ i−1

8 )) ds+

(τ i−1
8 (x, T8)− τ i−2

8 (x, T8))

∫
1

0
(Bi−2

τ1τ8(x, τ i−1
1 + s(τ i−2

1 − τ i−1
1 ), τ i−1

8 + s(τ i−2
8 − τ i−1

8 )) ds
]
.

(15.116)

Now, we have the identity:

dR∇2B0
1 +F0(0 ·∆t, x) · ∇B0

1 −
B0

1(x;T1, T8)

∆t
−
{
dR∇2B0

1 +F0(0 ·∆t, x) · ∇B0
1 −

B0
1(x;T1, T8)

∆t

}
= 0.

By subtracting this identity from (15.54) for i = 1, and taking into account Assumption 15.14, we

conclude that, for i = 1, (15.114) is substituted by the equation:

0 = dR∇2H1
1 + F0(x) · ∇H1

1 −H1
1

1

∆t
−

B1
1

[
∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−1

8∗ , T8)
)

+ F1(0 ·∆t, x, T1, T8)

]
−

R1
[ ∂2

∂T 2
1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1) +

∂

∂T1
F1(0 ·∆t, x, T1, T8)

)]
+

F0(0 ·∆t, x) · ∇B0
1 + dR∇2B0

1 +
B0

1(x; τ0
1 (x, T1), τ0

8 (x, T8))−B0
1(x;T1, T8)

∆t
.

(15.117)

Taking into account that ∣∣∣B0
1(x; τ0

1 (x, T1), τ0
8 (x, T8))−B0

1(x;T1, T8)

∆t

∣∣∣ =∣∣∣∣∣∣∣∣
B0
τ1(x; τ0

1 (x, T1), τ0
8 (x, T8))

∂τ0
1

∂T1
−B0

1(x;T1, T8)

∆t

∣∣∣∣∣∣∣∣
assuming the sufficient smoothness of the initial data and using the maximum principle we obtain the

inequality ∣∣∣H1
1

∣∣∣ < h1
1∆t. (15.118)

Likewise, we can obtain the estimate ∣∣∣H1
8

∣∣∣ < h1
8∆t. (15.119)

Using these estimates, we can consider the equation for Z2, given by (15.102) with i = 2. Let us note

that, due to (15.118) and (15.119), Z1
∗ given by (15.103) can be estimated as
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|Z1
∗ | = |(R1 −R1

∗)− (R0 −R0
∗)| ≤

|B1
τ1τ1(cu;0

1 (x), cu;0
8 (x), T1) ·∆t−B0

τ1τ1(cu;0
1 (x), cu;0

8 (x), T1)|+ 2B11(∆t)2+

|B1
τ8τ8(cu;0

8 (x), T8) ·∆t−B0
τ8τ8(cu;0

8 (x), T8)|+ 2B8(∆t)2 ≤(
|h1

1γ(cu;0
1 (x), cu;0

8 (x), T1)|+ 2B11

)
(∆t)2 +

(
|h1

8γ(cu;0
1 (x), cu;0

8 (x), T1)|+ 2B18

)
(∆t)2,

hence

|Z1
∗ | ≤

(
h1

1γ + h1
8δ
)

(∆t)2 + (2B11 + 2B88)(∆t)2, (15.120)

where

γ = sup |γ|, δ = sup |δ|. (15.121)

It thus follows from (15.102) and (15.120) by means of the maximum principle that

|Z2| ≤ (|Z1|+K1∗(∆t)
2)L,

for some constant K1∗, where L = (1−A∆t)−1.

The crucial fact for further analysis is contained in the following lemma.

Lemma 15.16. Let x ∈ Ω and (T1, T8) be fixed. Then

−(τ i−2
1 (x, T1)− τ i−1

1 (x, T1)) = (γ(cu;i−1
1∗ (x), cu;i−1

8∗ (x), T1)− γ(cu;i−2
1∗ (x), cu;i−2

8∗ (x), T1)) ·∆t

and

−(τ i−2
8 (x, T8)− τ i−1

8 (x, T8)) = (δ(cu;i−1
8∗ (x), T8)− δ(cu;i−2

8∗ (x), T8)) ·∆t

hence

| −
(
τ i−2
1 (x, T1)− τ i−1

1 (x, T1)
)
| ≤ G21(∆t)2,

where G21 is independent of i, and

| −
(
τ i−2
8 (x, T8)− τ i−1

8 (x, T8)
)
| ≤ G28(∆t)2,

where G28 is independent of i.

Moreover, for p = 1, 8,

∣∣∣ ∂γ

∂cu;i−1
p∗

(cu;i−1
1∗ (x), cu;i−1

8∗ (x), T1)− ∂γ

∂cu;i−2
p∗

(cu;i−2
1∗ (x), cu;i−2

8∗ (x), T1)
∣∣∣ ≤ Gcγp∆t. (15.122)

and ∣∣∣ ∂δ

∂cu;i−1
8∗

(cu;i−1
8∗ (x), T1)− ∂γ

∂cu;i−2
8∗

(cu;i−2
8∗ (x), T1)

∣∣∣ ≤ Gcδ∆t (15.123)

Proof By (15.8) and (15.9), we obtain straightforwardly the first pair of inequalities. The second

pair of estimates follow from inequality (15.25) in Lemma 15.7, the form of the function δ and the

estimates (15.50). To prove estimate (15.122) we use Lemma 15.15 and write the expression inside

the mid signs | · | at the left hand side of (15.122) in the form
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∂γ

∂cup∗
(cu;i−1

1∗ (x), cu;i−1
8∗ (x), T1)− ∂γ

∂cup∗
(cu;i−2

1∗ (x), cu;i−2
8∗ (x), T1) =

∂γ

∂cup∗

(
cu;i−2
1∗ (x) + [cu;i−1

1∗ (x)− cu;i−2
1∗ (x)], cu;i−2

8∗ (x) + [cu;i−1
8∗ (x)− cu;i−2

8∗ (x)], T1

)
−

∂γ

∂cup∗
(cu;i−2

1∗ (x), cu;i−2
8∗ (x), T1) =

∑
r=1,8[cu;i−1

r∗ (x)− cu;i−2
r∗ (x)]·∫

1

0

∂2γ

∂cup∗∂c
u
r∗

(
cu;i−2
1∗ (x) + s[cu;i−1

1∗ (x)− cu;i−2
1∗ (x)], cu;i−2

8∗ (x) + s[cu;i−1
8∗ (x)− cu;i−2

8∗ (x)], T1

)
ds.

Now, using inequalities (15.50) in Lemma 15.12 and the second inequality (15.27) in Lemma 15.7, we

obtain (15.122). In the same way we can obtain (15.123). 2

Consequently, by (15.116), we conclude that

∣∣∣Bi−1
T1

(x; τ i−1
1 (x, T1), τ i−1

8 (x, T8))−Bi−2
T1

(x; τ i−2
1 (x, T1), τ i−2

8 (x, T8))
∣∣∣ ≤∣∣∣ [Bi−1

τ1 (x; τ i−1
1 (x, T1), τ i−1

8 (x, T8))−Bi−2
τ1 (x; τ i−1

1 (x, T1), τ i−1
8 (x, T8))

]
· (1− γi−1

,T1
∆t)
∣∣∣+(

B11G21 + B11G28

)
(∆t)2 ≤ |Hi−1

1 |(1 +AM∆t) +
(
B11G21 + B18G28

)
(∆t)2,

where

AM := max{A−, A+} (15.124)

with A−, A+ defined in inequality (15.23) of Lemma 15.7, and A defined by (15.30).

It thus follows by means of the maximum principle that

|Hi
1| ≤ (|Hi−1

1 |(1 +AM∆t) +WH1
(∆t)2 + ∆t |Zi|)L, (15.125)

where WH1
= B11G21 + B18G28. In the same way, for some constant WH8

,

|Hi
8| ≤ (|Hi−1

8 |(1 + δ2∆t) +WH8∆t+ ∆t |Zi|)L. (15.126)

By defining, as before,

|H|i := sup{|Hi
1|, |Hi

8|},

we obtain

|H|i ≤ (|Hi−1|(1 +A18∆t) +WH(∆t)2 + ∆t |Zi|)L, (15.127)

where WH = sup{WH1 ,WH8} and A18 = sup{AM , δ2}.

By combining (15.110) and (15.172) we obtain the system:

|Zi| ≤ (|Zi−1|+ r2(∆t)2 + r3|H|i−1∆t)L.

|H|i ≤ (|Hi−1|(1 +A18∆t) +WH(∆t)2 + ∆t |Zi|)L.
(15.128)

We will find an upper bound for |Z|i and |H|i provided by solutions to the following system of

equations:
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|Zi| = (|Zi−1|+ a∗(∆t)
2 + a|H|i−1∆t)L.

|H|i = (|Hi−1|(1 + b∆t) + a∗(∆t)
2 + ∆t |Zi|)L,

(15.129)

where

a∗ := max{WH , r2}, b := A18.

In fact, we will consider the system for the differences:

ψ(i) := |Zi| − |Zi−1|, φ(i) := |H|i − |H|i−1,

i ∈ {2, . . . , n}, which reads

ψ(i) = (ψ(i− 1) + aφ(i− 1)d)L

φ(i) = (φ(i− 1)(1 + bd) + ψ(i)d)L,

where

d := ∆t.

Using the first equation in the second one, we can write the system in the standard form of recursive

sequences:

ψ(i) = (ψ(i− 1) + aφ(i− 1)d)L

φ(i) = (ψ(i− 1)dL+ φ(i− 1)(1 + bd+ ad2L))L.

(15.130)

Note that, due to (15.113), (15.118), (15.119) and (15.129), we have:

ψ(2) = O(∆t2), φ(2) = O(∆t2).

If X(i) := (ψ(i), φ(i))T , then system (15.130) can be written as

X(i) = AX(i− 1), (15.131)

with

A =

 L adL

dL2 (1 + bd+ ad2L)L

 . (15.132)

For d > 0 sufficiently small, the eigenvalues λ1 and λ2 of the matrix A are both positive and are equal

to

λ1 =
1

2

(
cL− L

√
c2 + 4ad2L+ 2L

)
, λ2 =

1

2

(
cL+ L

√
c2 + 4ad2L+ 2L

)
, (15.133)

where

c = bd+ ad2L.

The solutions to (15.131) are given by the powers of the matrix A. To find An, we will use the

following result from [11].

Lemma 15.17. (see [11, Theorem 1]) Let U be a k×k nonsingular matrix with eigenvalues λ1, . . . , λk
and let M(0) = I, M(j) = Πj

i=1(U − λiI), j ≥ 1. Suppose that uj(m) satisfy the (recursive) system

u1(m+ 1) = λ1u1(m), u1(0) = 1

uj+1(m+ 1) = λj+1uj+1(m) + uj(m), uj+1(0) = 0, j = 1, . . . , k − 1.
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Then, for m ≥ k

Um =

k−1∑
j=0

uj+1(m)M(j). (15.134)

In our case

M1 = (A− λ1I) =


1

2

(√
c2 + 4ad2L− c

)
L adL

dL2 1

2

(
c+
√
c2 + 4ad2L

)
L.

 (15.135)

Now, let us note that we have

u1(m) = λm1 .

Next, as u2(0) = 0, we have

u2(1) = λ2u2(0) + u1(0) = 1,

u2(2) = λ2u2(1) + u1(1) = λ2 + λ1

u2(3) = λ2(λ2 + λ1) + λ2
1 = λ2

2 + λ2λ1 + λ2
1

and, in general, for m ≥ 2,

u2(m) =

m−1∑
s=0

λs1λ
m−1−s
2 =

λm2 − λm1
λ2 − λ1

As, λ2 > λ1, then it follows from (15.134) that

Am = λm1 I +
(∑m−1

s=0 λs1λ
m−1−s
2

)
(A− λ1I) < λm1 I + λm−1

2

(
m · (A− λ1I)

)
(15.136)

where the last inequality should be understood entry-wise. By means of the identity
√
y1 + y2 <

√
y1 +

√
y2, we conclude that

1

2

(
c−
√
c2 + 4ad2L

)
L ≥ −√aLdL,

1

2

(
c+
√
c2 + 4ad2L

)
L ≤ cL+

√
aLdL = (b+

√
aL)Ld+ ad2L,

where
√
aL =

√
a
√
L, hence, according to (15.133),

L
(
1−√aLd

)
< λ1 < L

0 < λ2 <
(
1 + d(b+

√
aL) + ad2

)
L.

(15.137)

Recall that L = (1 − A∆t)−1. Let d = ∆t be so small that L < 2. Then, by means of the definition

of
√
aL, we have

S = (b+
√
aL) + ad < b+

√
2
√
a+ ad.

If necessary, let us decrease d to the values so small that (1 + Sd) < (1 − Sd)−1 < 2. (This can be

done without losing generality, because we are interested in the limit d = ∆t→ 0.) It follows that ,

λ2 =

(
1 +

1

2

(
c+

√
c2 + 4ad2

))
L < (1 + Sd)L < L(1− dS)−1.

Thus

lim
n→∞

λn−1
2 ≤ lim

n→∞
λn−1

2 < lim
n→∞

Ln(1− dS)−n.
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By means of Remark after (15.32), we can estimate the last limit as exp(AT ) exp(ST ). Moreover, we

can also find n so large that λn2 < 9/4 exp(AT ) exp(ST ) for d = T/n. Next, according to (15.135)

1

d
· (A− λ1I) =


1

2

(√
c̃2 + 4aL− c̃

)
L aL

L2 1

2

(
c̃+
√
c̃2 + 4aL

)
L.

 (15.138)

where c̃ = c/d = b + adL. The entries of the last matrix stays of the order of O(1) as d → 0. It is

thus seen that (A− λ1I)d−1 = (A− λ1I)nT−1 = O(1) as n→∞. Likewise, as for d arbitrarily small

λ1 < L, then

lim
n→∞

λn1 < lim
n→∞

Ln < exp(AT ).

Due to Remark after (15.32) for all n = T/d sufficiently large we have λn1 <
3

2
exp(AT ). By means

of (15.136), the matrix An stays uniformly bounded as n → ∞ and d = T/n → 0. Moreover, as the

matrix A (given by (15.132)) satisfies the inequality A > I (in the sense of entries), then for m1 < m2

Am2 > Am1 .

In fact, ψ(i) and φ(i) are well defined for i ≥ 2. However, for technical reasons, we can assume

additionally that ψ(1) = O(∆t2) = O(n−2) and φ(1) = O(∆t2) = O(n−2). Hence for any 2 ≤ i ≤ n,

(ψ(i), φ(i))T ≤ (ψ(1), φ(1))T +Ai−1(ψ(1), φ(1))T ≤ (ψ(1), φ(1))T + (O(∆t2), O(∆t2))T . (15.139)

Consequently,

(

n∑
m=1

ψ(m),

n∑
m=1

φ(m)) ≤ n(O(∆t)2), O(∆t)2)) ≤ (O(∆t), O(∆t)).

Equivalently we can consider system (15.129), which after replacing |Zi| by zi, |H|i by hi and

inserting |Zi| into the equations for |H|i we obtain for i ∈ {2, . . . , n}

zi = (zi−1 + a∗(∆t)
2 + ahi−1∆t)L.

hi = (hi−1(1 + b∆t+ a(∆t)2L) + a∗(∆t)
2 + ∆t zi−1L+ a∗(∆t)

3L)L.

(15.140)

This recursive system of equations can be written in the following matrix form

Y (i) = AY (i− 1) +G, (15.141)

where

Y (i) =

 zi

hi



G =

 a∗d
2

a∗d
2 + a∗d

3L

 (15.142)

and A is given as above by (15.132). Now, by means of the Corollary 3.18 in [12], we have for m ≥ 2:

Y (m) = AmY (1) + (

m−1∑
r=1

Am−r−1)G.

By the previous estimates

Am < An, for n > m > 1

85



in the sense of inequalities between the entries. We can thus estimate

n−1∑
r=1

An−r−1 < nAn,

hence

Y (n) = AnY (1) + (
∑n−1
r=1 Am−r−1)G < AnY (1) + nAnG =

O(1) · Y (1) +O(1) · (nO(1/n2)) = O(1) ·O(1/n) +O(1) ·O(1/n) = O(d).

(15.143)

Thus we are in a position to formulate the main result of this section:

Lemma 15.18. For all i ∈ {1, . . . , n}, the following estimates hold:

‖Zi‖
C0(Ω×IR2

+)
< G0Z ∆t, ‖Hi

1‖C0(Ω×IR2
+)
< G0H1 ∆t and ‖Hi

8‖C0(Ω×IR2
+)
< G0H8 ∆t, (15.144)

where the constants G0Z , G0H1, G0H8 are independent of i.

15.16 Estimates of C1+β
x norms of the functions Ri

By means of the results of the previous section, we will now give estimates of C1+β
x norms of Ri. This

will be done by rewriting Eq. (15.5) in the form not containing the terms proportional to (∆t)−1,

namely as

dR∇2Ri + F0(x) · ∇Ri−

{
Ri
[
∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−1

8∗ , T8)
)

+ F1((i− 1)∆t, x, T1, T8)

]
+W i

}
= 0,

(15.145)

where, by (15.108),

W i :=
1

∆t

(
Ri(x, T1, T8)−Ri−1(x; τ i−1

1 , τ i−1
8 )

)
=

1

∆t

(
[Ri(x, T1, T8)−Ri−1(x, T1, T8)] + [Ri−1(x, T1, T8)−Ri−1(x; τ i−1

1 , τ i−1
8 )]

)
=

1

∆t

(
Zi(x, T1, T8) + [Ri−1(x, T1, T8)−Ri−1(x; τ i−1

1 , τ i−1
8 )]

)
=

Zi

∆t
+

1

∆t

(
−Bi−1

1 (x, T1, T8) · γi−1(x, T1)∆t−Bi−1
8 (x, T1, T8) · δi−1(x, T8)∆t−

∑
k,l=1,8(τ i−1

k − Tk) · (τ i−1
l − Tl)

∫
1

0
(1− s)Bi−1

τkτl

(
x, T1 + s(τ i−1

1 − T1), T8 + s(τ i−1
8 − T8)

)
ds
)
.

By Lemma 15.18, Zi/∆t < G0Z , hence by the results of sections 15.5 and 15.7, we conclude that the

expression in the curly brackets is of the order of O(1). It follows from Lemma 14.5, by taking l = 2

and the integration power p sufficiently large that

‖Ri‖W 2
p
≤ C2p

where the constants C2p are uniformly bounded for all p. By using the Sobolev imbedding theorem,

we conclude that for all β ∈ (0, 1) there exists a constant C1β independent of i ∈ {1, . . . , n} such that

‖Ri‖C1+β(Ω) ≤ CR1β . (15.146)
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15.17 Estimates of the higher order norms of the functions cu;ik

Using the estimate (15.146), we will find the bound for higher order derivatives of the functions cu;i
k .

Lemma 15.19. Let n ≥ 3 be fixed. Suppose that for each i ∈ {0, 1, . . . , n} and β ∈ (0, 1), the C1+β(Ω)

norms of the functions Ri are bounded from above uniformly with respect to i. Then, cu1 and cu8 are of

class C
(3+β)/2,3+β
t,x (((i− 1)∆t, i∆t)×Ω). To be more precise, there exist constants C1(β,Ω), C8(β,Ω),

K1 and K8, depending on T , such that

‖cu1‖C(3+β)/2,2+β
t,x (((i−1)∆t,i∆t)×Ω)

≤ C1∆(β,Ω)
[
K1 + ‖cu1 ((i− 1)∆t, ·)‖C2+β

x (Ω)

]
(15.147)

and

‖cu8‖C(3+β)/2,3+β
t,x (((i−1)∆t,i∆t)×Ω)

≤ C8∆(β,Ω)
[
K8 + ‖cu8 ((i− 1)∆t, ·)‖C2+β

x (Ω)

]
. (15.148)

In particular, there exists constants P and P1 independent of i such that as ∆t→ 0

‖cu1 (i∆t, ·)− c1((i− 1)∆t, ·)‖C0(Ω) ≤ P∆t, ‖cu8 (i∆t, ·)− c8((i− 1)∆t, ·)‖C0(Ω) ≤ P∆t, (15.149)

‖cu1 (i∆t, ·)− c1((i− 1)∆t, ·)‖C1(Ω) ≤ P1∆t, ‖cu8 (i∆t, ·)− c8((i− 1)∆t, ·)‖C1(Ω) ≤ P1∆t (15.150)

and for t ∈ [(i− 1)∆t, i∆t]

‖cu1 (t, ·)−c1((i−1)∆t, ·)‖C0(Ω) ≤ P (t−(i−1)∆t), ‖cu8 (t, ·)−c8((i−1)∆t, ·)‖C0(Ω) ≤ P (t−(i−1)∆t)

(15.151)

together with

‖cu1 (t, ·)−c1((i−1)∆t, ·)‖C1(Ω) ≤ P1(t−(i−1)∆t), ‖cu8 (t, ·)−c8((i−1)∆t, ·)‖C1(Ω) ≤ P1(t−(i−1)∆t)

(15.152)

Proof The proof of the lemma follows from Lemma 14.6. Starting from the initial data cu,01 , cu,08

belonging to C3+β
x (Ω) class and using the fact that R0 ∈ C1+β class, we obtain a C

(3+β)/2,3+β
t,x

solution on the set ([0,∆t)× Ω). Treating cu;1
1 (1 ·∆t, x) and cu;1

8 (∆t, x) as the initial data we obtain

a solution of C
(3+β)/2,3+β
t,x class on the set ((1 ·∆t, 2 ·∆t]×Ω). Proceeding consecutively in this way,

we obtain a C
(3+β)/2,3+β
t,x solution on the set (((i − 1) · ∆t, i · ∆t] × Ω) for all i ∈ {1, . . . , n}, hence

using the Schauder estimates, we obtain inequalities (15.147) and (15.148). As the constants K1 and

K8 can be chosen as independent of n and i, then in view of Leray-Schauder estimates, in particular

due to the fact that the time derivative of the solutions is Holder continuous, there exists a constant

P such that for ∆t > 0 sufficiently small, inequality (15.149) holds. Next, noting that that, according

to the definition of norms in this space, the subnorm∥∥∥ ∂
∂t

(
∂|α|

(∂x)α

)∥∥∥
C0(Ω)

with |α| ≤ 1 is finite (see [23], Theorem IV.5.3 and Section I.1), we arrive at inequalities (15.150). 2

15.18 Estimates of first order derivatives of Zi with respect to xk

To proceed, we will analyse the equation for spatial derivatives Zi,xk , k ∈ {1, 2, 3}. By fixing k, we

will for simplicity denote

′ :=
∂

∂xk
, Zi,xk := Z ′i.
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Remark In the proof below, for each i ∈ {2, . . . , n}, we will be interested in the quantity

max
k∈{1,...,dim(Ω)},(T1,T8)∈IR2

+

(
sup
x∈Ω

∂Zi

∂xk

)
= Z ′i.

However, for the sake of concise notation, we will the notation Z ′i, independently of i. 2

By differentiating Eq.(15.102) and using Assumption 15.14 we obtain the equation:

dR∇2Z ′i + (F0(x) · ∇)Z ′i + (F ′0(x) · ∇)Zi−

Z ′i(x;T1, T8)

∆t
+
Z ′i−1(x, T1, T8)

∆t
+
Z ′i−1
∗ (x, T1, T8)

∆t
−

{
Z ′i
[
∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−1

8∗ , T8)
)

+ F1((i− 1)∆t, x, T1, T8)

]
+

Zi
[( ∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−1

8∗ , T8)
)

+ F1((i− 1)∆t, x, T1, T8)

]′ }
−

(Ri−1∆V i)′ = 0

(15.153)

where

Z ′i−1
∗ := (Ri−1

∗ −Ri−1)′ − (Ri−2
∗ −Ri−2)′ (15.154)

with Ri−1
∗ defined in (15.104) and ∆V is given by (15.107).

To begin with, let us note that according to (15.107) and (15.150) the term (Ri−1∆V i)′ is of the

order of O(∆t). We are going to construct a recurrent sequence for Z ′i − Z ′i−1 and prove that these

differences are of the order of O(∆t)2. First, adapting the analysis of the term Zi∗ in Eq.(15.102), let

us consider the term Z ′i−1
∗ . For i ≥ 2, we have:

R′i−1 −R′i−1
∗ = R′i−1(x, T1, T8)−R′i−1(x, τ i−1

1 (x, T1), τ i−1
8 (x, T8)) =

R′i−1(x, T1, T8)−R′i−1(x, T1, T8)−

B′i−1
1 (x, T1, T8) · γi−1(x, T1)∆t−B′i−1

8 (x, T1, T8) · δi−1(x, T8)∆t−

Bi−1
1 (x, T1, T8) · (γi−1(x, T1))′∆t−Bi−1

8 (x, T1, T8) · (δi−1(x, T8))′∆t−[
(τ i−1

1 − T1)2
∫ 1

0
(1− s)(Bi−1

τ1τ1(x, T1 + s(τ i−1
1 − T1), T8 + s(τ i−1

8 − T8)) ds+

(τ i−1
8 − T8)2

∫ 1

0
(1− s)(Bi−1

τ8τ8(x, T1 + s(τ i−1
1 − T1), T8 + s(τ i−1

8 − T8)) ds+

2(τ i−1
1 − T1)(τ i−1

8 − T8)
∫ 1

0
(1− s)(Bi−1

τ1τ8(x, T1 + s(τ i−1
1 − T1), T8 + s(τ i−1

8 − T8)) ds
]′
.

(15.155)

Next, by means of section 15.13 and Lemma 15.16

B′i−1
1 (x, T1, T8) · γi−1(x, T1)∆t−B′i−2

1 (x, T1, T8) · γi−2(x, T1)∆t =(
B′i−1

1 (x, T1, T8)−B′i−2
1 (x, T1, T8)

)
· γi−1(x, T1)∆t+B′i−2

1 (x, T1, T8)
(
γi−1(x, T1)− γi−2(x, T1)

)
∆t :=

H ′i−1
1 (x, T1, T8) · γi−1(x, T1)∆t+B′i−2

1 (x, T1, T8)
(
γi−1(x, T1)− γi−2(x, T1)

)
∆t =

H ′i−1
1 (x, T1, T8) · γi−1(x, T1)∆t+Qi−2

∗,∗ O(∆t)∆t
(15.156)
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and

Bi−1
1 (x, T1, T8) · (γi−1(x, T1))′∆t−Bi−2

1 (x, T1, T8) · (γi−2(x, T1))′∆t =(
Bi−1

1 (x, T1, T8)−Bi−2
1 (x, T1, T8)

)
· (γi−1(x, T1))′∆t+Bi−2

1 (x, T1, T8)

·
(

(γi−1(x, T1))′ − (γi−2(x, T1))′
)

∆t

= Hi−1
1 (x, T1, T8) · γi−1(x, T1)∆t+Bi−2

1 (x, T1, T8) ·
(

(γi−1(x, T1))′ − (γi−2(x, T1))′
)

∆t

(15.157)

where, for ′ =
∂

∂xk
,

(γi−1(x, T1))′ − (γi−2(x, T1))′ =
∑
p=1,8

{ ∂γ

∂cu;i−1
p∗

· ∂c
u;i−1
p∗

∂xk
− ∂γ

∂cu;i−2
p∗

· ∂c
u;i−2
p∗

∂xk

}
=

∑
p=1,8

{[ ∂γ

∂cu;i−1
p∗

− ∂γ

∂cu;i−2
p∗

]
· ∂c

u;i−1
p∗

∂xk
+

∂γ

∂cu;i−2
p∗

·
[∂cu;i−1

p∗

∂xk
− ∂cu;i−2

p∗

∂xk

]}
.

(15.158)

Likewise, by means of section 15.13 and Lemma 15.16

B′i−1
8 (x, T1, T8) · δi−1(x, T1)∆t−B′i−2

8 (x, T1, T8) · δi−2(x, T1)∆t =(
B′i−1

8 (x, T1, T8)−B′i−2
8 (x, T1, T8)

)
· δi−1(x, T1)∆t+B′i−2

1 (x, T1, T8)
(
δi−1(x, T1)− δi−2(x, T1)

)
∆t

:= H ′i−1
8 (x, T1, T8) · δi−1(x, T1)∆t+B′i−2

8 (x, T1, T8)
(
δi−1(x, T1)− δi−2(x, T1)

)
∆t

= H ′i−1
8 (x, T1, T8) · δi−1(x, T1)∆t+Qi−2

∗,∗ O(∆t)∆t
(15.159)

and

Bi−1
8 (x, T1, T8) · (δi−1(x, T8))′∆t−Bi−2

8 (x, T1, T8) · (δi−2(x, T8))′∆t =(
Bi−1

8 (x, T1, T8)−Bi−2
8 (x, T1, T8)

)
· (δi−1(x, T8))′∆t+Bi−2

8 (x, T1, T8)

·
(

(δi−1(x, T8))′ − (δi−2(x, T8))′
)

∆t

= Hi−1
8 (x, T1, T8) · δi−1(x, T8)∆t+Bi−2

8 (x, T1, T8) ·
(

(δi−1(x, T1))′ − (δi−2(x, T1))′
)

∆t

(15.160)

The first term of the right hand side of (15.157), due to Lemma 15.18, can be estimated by a

constant (independent of i) times (∆t)2. By the results of section 15.8, |Bi−2
1 (x, T1, T8)| is bounded

uniformly with i. Next, by (15.122) in Lemma 15.16, the first square bracket at the right hand

side of (15.158) is of the order of O(∆t). Similarly, due to estimate (15.150) in Lemma 15.19, the

second square bracket in (15.158) is of the order of O(∆t). Similar conclusions can be drawn with

respect to the expression given by the right hand side of (15.160). Finally, as (τ i−1
1 − T1) = γ∆t and

(τ i−1
8 −T8) = δ∆t, in view of Lemma 15.12 (differentiability of the functions γ and δ) and section 15.14

(differentiability with respect to xk of Bτkτl), we conclude that there exists a constant r1 independent

of i, such that for all x ∈ Ω and (T1, T8) ∈ IR2
+,

|(R′i−1
∗ −R′i−1)− (R′i−2

∗ −R′i−2)| =
(
|H ′i−1

1 |γ + |H ′i−1
8 |δ

)
∆t+ r1(∆t)2.

Suppose that
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‖∇Zi‖ =
∣∣∣∂Zi
∂xk

(x∗)
∣∣∣ := Z ′i(x∗).

Then, by applying to Eq. (15.153) the maximum principle at the point x∗, we can estimate for ∆t

sufficiently small

|Z ′i(x∗)| ≤
{
|Z ′i−1(x∗)|

1

∆t
+
(
|H ′i−1

1 |γ∆t+ |H ′i−1
8 |δ∆t+ r1(∆t)2

) 1

∆t
+ r4∆t

}( 1

∆t
−A− 3f0

)−1

.

Denoting, similarly to (15.161),

|H ′|i := sup{|H ′i1 |, |H ′i8 |}, (15.161)

we arrive at the inequality corresponding to (15.110):

|Z ′i| ≤ (|Z ′i−1|+ r̃2(∆t)2 + r̃3|H ′|i−1∆t)L, (15.162)

where

L = (1−A1∆t), A1 = A+ 3f0. (15.163)

(Cf. (15.82).) Let us note that by differentiating Eq. (15.112) with respect to xk, we can prove that

‖∇Z1(·)‖C0(Ω) < ∆tG1
Z , (15.164)

for some constant G1
Z .

In the similar way, we can derive the equation for the components of ∇Hi
1 for i ∈ {2, . . . , n}. Let,

similarly as before:

′ :=
∂

∂xk
, Hi

1,xk
:= H ′i1 , Hi

8,xk
:= H ′i8 ,

where the index k is in general a function of i. The equation for H ′i has the form:

0 = dR∇2H ′i1 + (F0(x) · ∇)H ′i1 + (F ′0(x) · ∇)Hi
1−

H ′i1

[
∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−1

8∗ , T8)
)

+ F1((i− 1)∆t, x, T1, T8) +
1

∆t

]
−

B′i−1
1 [∆Vi]−Bi−1

1 [∆Vi]
′ − Z ′i

[ ∂2

∂T 2
1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T1
F1((i− 1)∆t, x, T1, T8)

]
−

Zi
[ ∂2

∂T 2
1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T1
F1((i− 1)∆t, x, T1, T8)

]′
−

(
Ri−1

[ ∂2

∂T 2
1

γ(cu;i−1
1∗ , cu;i−1

8∗ , T1)− (
∂2

∂T 2
1

γ(cu;i−2
1∗ , cu;i−2

8∗ , T1))+

∂

∂T1
F1((i− 1)∆t, x, T1, T8)− ∂

∂T1
F1((i− 2)∆t, x, T1, T8)

])′
+

(
Bi−1

1 (x; τ i−1
1 (x, T1), τ i−1

8 (x, T8))−Bi−2
1 (x; τ i−2

1 (x, T1), τ i−2
8 (x, T8))

)′
∆t

.

(15.165)

This equation can be obtained formally by differentiating (with respect to xk) Eq.(15.114).

In accordance with (15.105) and (15.106), let us denote:

γiT1
:=

∂γ(cu;i
1∗ , c

u,i
8∗ , T1)

∂T1
, δiT8

:=
∂δ(cu,i8∗ , T1)

∂T8
.

We have:

90



(
Bi−1

1 (x; τ i−1
1 (x, T1), τ i−1

8 (x, T8))−Bi−2
1 (x; τ i−2

1 (x, T1), τ i−2
8 (x, T8))

)′
=

(
Bi−1
τ1 (x; τ i−1

1 (x, T1), τ i−1
8 (x, T8))(1− γi−1

T1
∆t)−Bi−2

τ1 (x; τ i−2
1 (x, T1), τ i−2

8 (x, T8))(1− γi−2
T1

∆t)
)′

=( [
Bi−1
τ1 (x; τ i−1

1 (x, T1), τ i−1
8 (x, T8))−Bi−2

τ1 (x; τ i−2
1 (x, T1), τ i−2

8 (x, T8))
]
· (1− γi−1

T1
∆t)−

Bi−2
τ1 (x; τ i−2

1 (x, T1), τ i−2
8 (x, T8)) ·

[
γi−1
T1

∆t− γi−2
T1

∆t
] )′

(15.166)

Let us note that, according to Lemma 15.19,(
γi−1
T1

(x, T1)∆t− γi−2
T1

(x, T1)∆t
)′

= (γ′i−1
T1

(x, T1)− γ′i−2
T1

)∆t < G11g(∆t)
2.

Next, by (15.16),

(
Bi−1
τ1 (x; τ i−1

1 (x, T1), τ i−1
8 (x, T8))−Bi−2

τ1 (x; τ i−2
1 (x, T1), τ i−2

8 (x, T8))
)′

=(
Bi−1
τ1 (x; τ i−1

1 (x, T1), τ i−1
8 (x, T8))−

Bi−2
τ1

[
x; τ i−1

1 (x, T1)− {τ i−1
1 (x, T1)− τ i−2

1 (x, T1)}, τ i−1
8 (x, T8)−

{
τ i−1
8 (x, T8)− τ i−2

8 (x, T8)
} ])′

=(
Bi−1
τ1 (x; τ i−1

1 (x, T1), τ i−1
8 (x, T8))−Bi−2

τ1 (x; τ i−1
1 (x, T1), τ i−1

8 (x, T8))−[
(τ i−1

1 (x, T1)− τ i−2
1 (x, T1))

∫ 1

0
(Bi−2

τ1τ1(x, τ i−1
1 + s(τ i−2

1 − τ i−1
1 ), τ8 + s(τ i−1

8 − τ i−2
8 )) ds+

(τ i−1
8 (x, T8)− τ i−2

8 (x, T8))
∫ 1

0
(Bi−2

τ1τ8(x, τ i−1
1 + s(τ i−2

1 − τ i−1
1 ), τ i−1

8 + s(τ i−2
8 − τ i−1

8 ) ds
])′

.

(15.167)

If ′ =
∂

∂xk
, we have

(
Bi−1
τ1 (x; τ i−1

1 (x, T1), τ i−1
8 (x, T8))−Bi−2

τ1 (x; τ i−1
1 (x, T1), τ i−1

8 (x, T8))
)′

= H ′i1 (x, τ i−1
1 (x, T1), τ i−1

8 (x, T8))

+
(
Bi−1
τ1τ1(x; τ i−1

1 (x, T1), τ i−1
8 (x, T8))−Bi−2

τ1τ1(x; τ i−1
1 (x, T1), τ i−1

8 (x, T8))
)
· ∂τ

i−1
1 (x, T1)

∂xk

+
(
Bi−1
τ1τ8(x; τ i−1

1 (x, T1), τ i−1
8 (x, T8))−Bi−2

τ1τ8(x; τ i−1
1 (x, T1), τ i−1

8 (x, T8))
)
· ∂τ

i−1
8 (x, T1)

∂xk
(15.168)

Remark Recall that
∂τ i−1

1 (x, T1)

∂xk
and

∂τ i−1
8 (x, T1)

∂xk
are of the order of (∆t) as ∆t→ 0 (see Lemma

15.3). It follows that the second and the third term in the above expression is of the order of O((∆t)2),

if only the coefficients multiplying
∂τ i−1

1 (x, T1)

∂xk
and

∂τ i−1
8 (x, T1)

∂xk
are of the order of ∆t. 2
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Next,[
(τ i−1

1 (x, T1)− τ i−2
1 (x, T1))·

∫ 1

0
(Bi−2

τ1τ1(x, τ i−1
1 (x, T1) + s(τ i−2

1 (x, T1)− τ1(x, T1)), τ8(x, T8) + s(τ i−1
8 (x, T8)− τ i−2

8 (x, T8))) ds
]′

=

(τ i−1
1 (x, T1)− τ i−2

1 (x, T1))′·

∫ 1

0
(Bi−2

τ1τ1(x, τ i−1
1 (x, T1) + s(τ i−2

1 (x, T1)− τ1(x, T1)), τ8(x, T8) + s(τ i−1
8 (x, T8)− τ i−2

8 (x, T8))) ds+

(τ i−1
1 (x, T1)− τ i−2

1 (x, T1))·

∫ 1

0

(
Bi−2
τ1τ1(x, τ i−1

1 (x, T1) + s(τ i−2
1 (x, T1)− τ1(x, T1)), τ8(x, T8) + s(τ i−1

8 (x, T8)− τ i−2
8 (x, T8)))

)′
ds

Let us note that, in view of Lemma 15.16 and Lemma 15.19,

(τ i−1
1 (x, T1)− τ i−2

1 (x, T1) = O((∆t)2), and (τ i−1
1 (x, T1)− τ i−2

1 (x, T1))′ = O((∆t)2)

as ∆t→ 0. On the other hand the quantity

(
Bi−2
τ1τ1(x, τ i−1

1 (x, T1) + s(τ i−2
1 (x, T1)− τ1(x, T1)), τ8(x, T8) + s(τ i−1

8 (x, T8)− τ i−2
8 (x, T8)))

)′
is finite, if only the third order derivatives Bkτ1τ1x(x, τ1, τ8), Bkτ1τ1τ1(x, τ1, τ8), Bkτ1τ1τ8(x, τ1, τ8) are

bounded for all the possible x, τ1 and τ8 of interest. Likewise,(
Bi−2

18 (x, τ i−1
1 + s(τ i−2

1 − τ i−1
1 ), τ i−1

8 + s(τ i−2
8 − τ i−1

8 )
)′

is finite, if only the third order derivatives Bkτ1τ1x(x, τ1, τ8), Bkτ1τ8τ1(x, τ1, τ8), Bkτ1τ8τ8(x, τ1, τ8) are

bounded for all the possible x, T1 and T8 of interest.

In view of Remark after (15.168), we have to estimate the differences

Hi
km := Bikm(x, T1, T8)−Bi−1

km (x, T1, T8), k,m ∈ {1, 8}.

Let us consider the difference Hi
11. The remaining differences (Hi

18 and Hi
88) can be considered

similarly. The equation for Hi
11 is obtained by subtracting the equation (15.85) for Bi−1

11 from the

equation for Bi11. We have
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0 = dR∇2Hi
11 + F0((i− 1)∆t, x) · ∇Hi

11−

Hi
11

[
∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−1

8∗ , T8)
)

+ F1((i− 1)∆t, x, T1, T8) +
1

∆t

]
−

Bi−1
11

{[ ∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−1

8∗ , T8)
)

+ F1((i− 1)∆t, x, T1, T8)

]
−[

∂

∂T1

(
γ(cu;i−2

1∗ , cu;i−2
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−2

8∗ , T8)
)

+ F1((i− 2)∆t, x, T1, T8)

]}
1
−

2Bi1

{[ ∂2

∂T 2
1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+
∂F1

∂T1
((i− 1)∆t, x, T1, T8)

]
−[

∂2

∂T 2
1

(
γ(cu;i−2

1∗ , cu;i−2
8∗ , T1)

)
+
∂F1

∂T1
((i− 2)∆t, x, T1, T8)

]}
2
−

Ri
{[ ∂3

∂T 3
1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+
∂2F1

∂T 2
1

((i− 1)∆t, x, T1, T8)
]
−

[ ∂3

∂T 3
1

(
γ(cu;i−2

1∗ , cu;i−2
8∗ , T1)

)
+
∂2F1

∂T 2
1

((i− 2)∆t, x, T1, T8)
]}

3
−

Zi
[ ∂3

∂T 3
1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+
∂2F1

∂T 2
1

((i− 1)∆t, x, T1, T8)
]
+

1

∆t

[
Bi−1
T1T1

(x; τ i−1
1 (x, T1), τ i−1

8 (x, T8))−Bi−2
T1T1

(x; τ i−2
1 (x, T1), τ i−2

8 (x, T8))
]

4
.

(15.169)

Recall that according to (15.86):

Bi−1
11 (x, τ i−1

1 , τ i−1
8 ) = Bi−1

11 (x, τ i−1
1 (x, T1), τ i−1

8 (x, T8)) =

Bi−1
τ1τ1(x, τ i−1

1 , τ i−1
8 ) ·

(
1−∆t

∂γ(cu;i−1
1∗ (x), cu;i−1

8∗ (x), T1)

∂T1

)2

−

∆t Bi−1
τ1 (x, τ i−1

1 , τ i−1
8 ) · ∂

2γ(cu;i−1
1∗ (x), cu;i−1

8∗ (x), T1)

∂T 2
1

.

(15.170)

Let us note that the expressions in the curly brackets {·}1, {·}2 and {·}3 in (15.169) are of the order

O(1)∆t. Using (15.170) in the square bracket [·]4, we have

[·]4 =
(
Bi−1
τ1τ1(x, τ i−1

1 , τ i−1
8 )−Bi−2

τ1τ1(x, τ i−2
1 , τ i−2

8 )
)
·

(
1−∆t

∂γ(cu;i−1
1∗ (x), cu;i−1

8∗ (x), T1)

∂T1

)2

−

Bi−2
τ1τ1(x, τ i−2

1 , τ i−2
8 ) ·

(
2−∆t

∂γ(cu;i−1
1∗ (x), cu;i−1

8∗ (x), T1)

∂T1
−∆t

∂γ(cu;i−2
1∗ (x), cu;i−2

8∗ (x), T1)

∂T1

)
·

∆t
(∂γ(cu;i−1

1∗ (x), cu;i−1
8∗ (x), T1)

∂T1
− ∂γ(cu;i−2

1∗ (x), cu;i−2
8∗ (x), T1)

∂T1

)
−

∆t
(
Bi−1
τ1 (x, τ i−1

1 , τ i−1
8 )−Bi−2

τ1 (x, τ i−2
1 , τ i−2

8 )
)
· ∂

2γ(cu;i−1
1∗ (x), cu;i−1

8∗ (x), T1)

∂T 2
1

−

∆tBi−2
τ1 (x, τ i−2

1 , τ i−2
8 ) ·

(∂2γ(cu;i−2
1∗ (x), cu;i−2

8∗ (x), T1)

∂T 2
1

− ∂2γ(cu;i−2
1∗ (x), cu;i−2

8∗ (x), T1)

∂T 2
1

)
(15.171)

The second, the third and the fourth term in (15.171) are of the order of (∆t)2 (as ∆t → 0).

Next, taking advantage of the fact that, according to section 15.12, the third order derivatives

Biτ1τ1τ1(x, τ1, τ8) and Biτ1τ1τ8(x, τ1, τ8) are bounded independently of x ∈ Ω and all (T1, T8) ≥ 0,

we obtain:
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Bi−1
τ1τ1(x, τ i−1

1 , τ i−1
8 )−Bi−2

τ1τ1(x, τ i−2
1 , τ i−2

8 ) =(
Bi−1
τ1τ1(x, τ i−1

1 , τ i−1
8 )−Bi−2

τ1τ1(x, τ i−1
1 , τ i−1

8 )
)

+
(
Bi−2
τ1τ1(x, τ i−1

1 , τ i−1
8 )−Bi−2

τ1τ1(x, τ i−2
1 , τ i−2

8 )
)

=(
Bi−1
τ1τ1(x, τ i−1

1 , τ i−1
8 )−Bi−2

τ1τ1(x, τ i−1
1 , τ i−1

8 )
)

+[
(τ i−1

1 (x, T1)− τ i−2
1 (x, T1))

∫ 1

0
(Bi−1

11 (x, T1 + s(τ i−1
1 (x, T1)− T1), T8 + s(τ i−1

8 (x, T8)− T8)) ds+

(τ i−1
8 (x, T8)− τ i−2

8 (x, T8))
∫ 1

0
(Bi−1

88 (x, T1 + s(τ i−1
1 (x, T1)− T1), T8 + s(τ i−1

8 (x, T8)− T8)) ds
]

Using (15.171), we obtain by means of the maximum principle that for some constant A∗11

|Hi
11| ≤ |Hi−1

11 |(1−A∆t)−1 +A∗11(∆t)2.

This recursive relation can be written formally as:

Y (i) = AY (i− 1) +G,

where

Y (i) = |Hi
11|, G = A∗11(∆t)2 ,

A is given by (15.132) with L = (1−A∆t)−1 and A is defined in (15.30).

Let us note that by taking i = 1 in (15.169) and assuming sufficiently smooth initial conditions

R0, cu1 and cu8 it is seen that |H1
11| = O(∆t). Similarly by considering the equations corresponding to

(15.169) for H1
18 and H1

88, we conclude that |H1
18| = O(∆t) and |H1

88| = O(∆t).

Now, by means of the Corollary 3.18 in [12], we have for m ≥ 2:

Y (m) = AmY (1) + (

m−1∑
r=1

Am−r−1)G.

By the previous estimates

As < Am−1, for m− 1 > s ≥ 1

in the sense of inequalities between the entries. Taking into account that n = T (∆t)−1, we can thus

estimate

G

m−1∑
r=1

Am−r−1 < G (m− 1)Am−1 < GnAm−1 = A∗11T∆tAm−1 < A∗11T∆tAm,

hence for ∆t > 0 sufficiently small and all i ∈ {1, . . . , n}, using Remark after Lemma 15.8,

|Hi
11| ≤ Y (i) ≤ 3/2 exp(Ai∆t)H1

11 + 3/2 ∆t A∗11T exp(Ai∆t) −→
∆t→0

3/2 exp(Ai∆t)H1
11.

In the same way we can show that

|Hi
88| ≤ 3/2 exp(Ai∆t)H1

88 −→
∆t→0

3/2 exp(Ai∆t)H1
88

and

|Hn
18| ≤ 3/2 exp(Ai∆t)H1

18 −→
∆t→0

3/2 exp(Ai∆t)H1
18.

Assuming that the derivatives Bj111 and Bj118 are bounded and continuous (independently of j ∈
{1, . . . , n}, we conclude that
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[
Bi−1

11 (x; τ i−1
1 , τ i−1

8 )−Bi−2
11 (x; τ i−2

1 , τ i−2
8 )

]
=
(
Bi−1

11 (x; τ i−1
1 , τ i−1

8 )−Bi−2
11 (x; τ i−1

1 , τ i−1
8 )

)
+[

(τ i−1
1 (x, T1)− τ i−2

1 (x, T1))
∫ 1

0
(Bi−1

111 (x, T1 + s(τ i−1
1 (x, T1)− T1), T8 + s(τ i−1

8 (x, T8)− T8)) ds+

(τ i−1
8 (x, T8)− τ i−2

8 (x, T8))
∫ 1

0
(Bi−1

118 (x, T1 + s(τ i−1
1 (x, T1)− T1), T8 + s(τ i−1

8 (x, T8)− T8)) ds
]
.

Taking into account the above estimates, and carrying out a similar analysis for the equation for

H ′i8 , we can deduce the inequalities:

|H ′|i ≤ (|H ′|i−1(1 +Ag18∆t) +WgH(∆t)2 + ∆t |Z ′i|)L, (15.172)

for some constants Ag18 and WgH independent of i.

Next, by differentiating Eq.(15.118) and using similar arguments, we conclude that:∣∣∣H ′11 ∣∣∣ < h1
g1∆t and

∣∣∣H ′18 ∣∣∣ < h1
g8∆t (15.173)

hence

max
{∣∣∣H ′11 ∣∣∣, ∣∣∣H ′18 ∣∣∣} ≤ max{h1

g1, h
1
g8}∆t := H1∆t.

Now, proceeding, like in section 15.15, either using the scheme of the form (15.131) or the scheme

(15.141), we obtain estimates corresponding to the estimates (15.144). Let us use the scheme corre-

sponding to (15.141).

Putting (15.162) into (15.172), we obtain a pair of inequalities:

|H ′|i ≤ (|H ′|i−1(1 +Ag18∆t+ r̃3(∆t)2L) +WgH(∆t)2 + ∆t |Z ′i−1|L+ r̃2(∆t)3L)L,

|Z ′i| ≤ (|Z ′i−1|+ r̃2(∆t)2 + r̃3|H ′|i−1∆t)L.

(15.174)

Replacing |Zi| by Zi, |H|i by Hi, we obtain, for i ∈ {2, . . . , n}, as in the case of system (15.140),

Zi = (Zi−1 + a∗d
2 + aHi−1d)L.

Hi = (Hi−1(1 + bd+ ad2L) + a∗(∆t)
2 + dZi−1L+ a∗d

3L)L,

(15.175)

where we denoted d = ∆t, with the obvious identification of the constants a∗, a, b, which are in general

different than the corresponding constants for system (15.140), but have been denoted similarly for

simplicity. As above, L is given by (15.163). This recursive system of equations can be written in the

following matrix form

Y(i) = AY(i− 1) +G, (15.176)

where

Y(i) =

 Zi
Hi


and

Y(1) ≤

 G1
Z

H1

 ∆t.

The matrix A has formally the form given by (15.132), whereas G the form given by (15.142). Re-

peating the analysis of system (15.140), we can show the validity of the lemma below.
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Lemma 15.20. The following estimates hold:

‖∇Zi‖ < GZ ∆t, ‖∇Hi
1‖ < GH1 ∆t and ‖∇Hi

8‖ < GH8 ∆t (15.177)

for some constants GZ , GH1 and GH8 independent of i.

15.19 Estimates of C2+β
x norms of the functions Ri

By means of the above results, we can now derive an ‘a priori’ C2+β estimate of the functions Ri. As

in section 15.16, this will be done by rewriting the equation (15.5) in the form

dR∇2Ri + F0((i− 1)∆t, x) · ∇Ri−

{
Ri
[
∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−1

8∗ , T8)
)

+ F1((i− 1)∆t, x, T1, T8)

]
+W i

}
= 0.

(15.178)

with

W i :=
1

∆t

(
Ri(x, T1, T8)−Ri−1(x; τ i−1

1 , τ i−1
8 )

)
=

1

∆t

(
[Ri(x, T1, T8)−Ri−1(x, T1, T8)] + [Ri−1(x, T1, T8)−Ri−1(x; τ i−1

1 , τ i−1
8 )]

)
=

1

∆t

(
Zi(x, T1, T8) + [Ri−1(x, T1, T8)−Ri−1(x; τ i−1

1 , τ i−1
8 )]

)
=

Zi

∆t
+

1

∆t

(
−Bi−1

1 (x, T1, T8) · γi−1(x, T1)∆t−Bi−1
8 (x, T1, T8) · δi−1(x, T8)∆t−

∑
k,l=1,8(1− θ)Bi−1

kl (x, τ i−1
1 θ(x, T1), τ i−1

8 θ(x, T1))(τ i−1
k − Tk) · (τ i−1

l − Tl)
)

(see (15.108)). By (15.177), ‖∇Zi‖/∆t < GZ , ‖∇Hi
1‖/∆t < GH1 and ‖∇Hi

8‖/∆t < GH8 (uniformly

with respect to i), thus combining it with the results of sections 15.8 and 15.11, we conclude that the

expression in the curly brackets has its C1,0 norm of the order of O(1). It follows from Lemma 14.5,

by taking l = 3 and the integration power p sufficiently large that

‖Ri‖W 3
p
≤ C3p

where the constants C3p are uniformly bounded for all p. By using the Sobolev imbedding theorem,

we conclude that for all β ∈ (0, 1) there exists a constant C2β independent of i ∈ {1, . . . , n} such that

‖Ri‖C2+β(Ω) ≤ CR2β . (15.179)

Having these relations we can use the refined version of the Gagliardo-Nirenberg inequality (see [4])

to obtain higher order estimate for functions Zi. Let us recall the result proved in [4].

Lemma 15.21. Assume that the real numbers s1, s2, s ≥ 0, θ ∈ (0, 1) and 1 ≤ p1, p2, p ≤ ∞ satisfy

the relations s = θs1 + (1 − θ)s2,
1

p
=

θ

p1
+

1− θ
p2

. Suppose that the following condition does not

hold:

P : s2 ≥ 1 is an integer, p2 = 1 and s2 − s1 ≤ 1− 1

p1
.

Then, for every θ ∈ (0, 1), there exists a constant C, depending on s1, s2, p1, p2, θ and Ω such that

‖f‖W s,p(Ω) ≤ C‖f‖θW s1,p1 (Ω)‖f‖
1−θ
W s2,p2 (Ω), ∀f ∈W s1,p1(Ω) ∩W s2,p2(Ω).

Remark The refinement of the above result with respect to the classical formulation of the Gagliardo-

Nirenberg inequality consists in the fact that the numbers s1, s2 and s may not be integers. 2
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Let us apply Lemma 15.21 for f = Z ′i. Thus, using (15.177) and Eq.(15.178), we conclude that

there exists a constant C2′ such that, for any p3 ∈ [1,∞),

‖Z ′i‖W 2,p3 < C2′ .

(As before, for simplicity, for fixed k ∈ {1, 2, 3}, ′ :=
∂

∂xk
.)

Thus, we take s2 = 2, s1 = 0, p1 = ∞ and p2 = p3. Then s2 − s1 6≤ 1 − 1

p1
= 1, hence condition

P does not hold. Taking θ ∈ (0, 1/2), we have s2 = 2(1− θ) > 1, p > p3 and

‖f‖W 2(1−θ),p(Ω) ≤ C‖f‖θL∞(Ω)‖f‖
1−θ
W 2,p3 (Ω)

.

As p3 is at our disposal, then we can find the smallest p3 such that that (2(1 − θ) − dim(Ω)/p)/2 =

1/2− θ. For example taking θ = 2/7 and p3 > 7dim(Ω), we obtain 2(1− θ)− dim(Ω)/p > 9/7, hence

we conclude that

‖Z ′i‖C9/7 < C(∆t)2/7, (15.180)

which results in the estimate

‖Zi‖C2+2/7 < C(∆t)2/7. (15.181)

Similar reasoning can be applied to the functions H ′i1 and H ′i8 . For m = 1, 8, we can thus obtain

the inequalities of the form:

‖H ′im‖C9/7 < C(∆t)2/7,

and consequently

‖Hi
m‖C2+2/7 < C(∆t)2/7. (15.182)

15.20 Estimate of differences Zi − Zi−1

Note that Eq.(15.102) can be written as

dR∇2
(
Zi(x, T1, T8)− Zi−1(x, T1, T8)

)
− Zi(x;T1, T8)− Zi−1(x, T1, T8)

∆t
−

Zi−1
∗ (x, T1, T8)

∆t
−
{
Zi
[
∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−1

8∗ , T8)
)

+ F1((i− 1)∆t, x, T1, T8)

]}

+Ri−1∆V i + dR∇2Zi−1(x, T1, T8) + F0((i− 1)∆t, x) · ∇Zi−1 = 0
(15.183)

Now, using (15.177) and (15.181), we can use the maximum principle to conclude that

‖Zi − Zi−1‖C0(Ω)

∆t
=
∥∥∥Zi

∆t
− Zi−1

∆t

∥∥∥
C0(Ω)

≤ Cdiff (∆t)2/7. (15.184)

Similarly, differentiating Eq.(15.183) with respect to Tm, m = 1, 8, (or rewriting Eq.(15.114) and using

(15.177) and (15.182) we obtain by applying the maximum principle the inequalities:

‖Hi
m −Hi−1

m ‖C0(Ω)

∆t
=
∥∥∥Hi

m

∆t
− Hi−1

m

∆t

∥∥∥
C0(Ω)

≤ Cdiff (∆t)2/7. (15.185)
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16 Convergence of the sequences as ∆t→ 0

Let us write Eq.(15.5) in the form:

dR∇2Ri + F0(x) · ∇Ri − Zi

∆t
−

{
Ri
[
∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−1

8∗ , T8)
)

+ F1((i− 1)∆t, x, T1, T8)

]
− W̃ i

}
= 0,

(16.1)

where, according to Lemma 15.15,

W̃ i :=
1

∆t
[Ri−1(x, T1, T8)−Ri−1(x; τ i−1

1 , τ i−1
8 )] =

1

∆t

(
−Bi−1

τ1 (x, T1, T8) · γi−1(x, T1)∆t−Bi−1
τ8 (x, T1, T8) · δi−1(x, T8)∆t−

∑
k,l=1,8(τ i−1

k − Tk) · (τ i−1
l − Tl)

∫ 1

0
Bi−1
τkτl

(
x, T1 + s(τ i−1

1 (x, T1)− T1), T8 + s(τ i−1
8 (x, T8)− T8)

)
(1− s)ds

)
= −Bi−1

1 (x, T1, T8) · γi−1(x, T1)∆t−Bi−1
8 (x, T1, T8) · δi−1(x, T8) +O(∆t).

For given n ≥ 1, ∆t = Tn−1 > 0 and the set of points {tit := it∆t}it=nit=1 , let us define the function

Rn(t, x, T1, T8) := Rit−1(x, T1, T8)+

(∆t)−1(t− tit−1)
(
Rit(x, T1, T8)−Rit−1(x, T1, T8)

)
for tit−1 ≤ t < tit .

(16.2)

Below, we will analyse in sequence, the result of action of different operators of the left hand side of

Eq.(15.5) on the function Rn. For tit−1 ≤ t ≤ tit , we thus have:

∆Rn(t, x, T1, T8) = ∆Rit−1(x, T1, T8) + (t− tit−1)
(

∆Rit(x, T1, T8)−∆Rit−1(x, T1, T8)
)
· (∆t)−1,

(16.3)

and, according to (15.181),

‖∆Rit(·, T1, T8)−∆Rit−1(·, T1, T8)‖
C

2/7
x
≤ C∆(∆t)2/7, (16.4)

uniformly in (T1, T8). Then, by definition (16.2), for t ∈ [ti−1, ti],

∂Rn

∂t
= (∆t)−1

(
Rit(x, T1, T8)−Rit−1(x, T1, T8)

)
.

This function is constant on each interval t ∈ [ti−1, ti] and, according to (15.181), the difference

between these values is of the order of O(∆t). Next, for t ∈ [ti−1, ti]
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∂

∂T1
(γ(cu1 (t, x), cu8 (t, x), T1)Rn) +

∂

∂T8
(δ(cu8 (t, x), T8)Rn) =

Rn · ∂

∂T1
γ(cu1 (t, x), cu8 (t, x), T1) +Rn · ∂

∂T8
δ(cu8 (t, x), T8) +

+γ(cu1 (t, x), cu8 (t, x), T1) · ∂

∂T1
Rn(t, x, T1, T8) + δ(cu8 (t, x), T8) · ∂

∂T8
Rn(t, x, T1, T8) =

[
Rn · ∂

∂T1

(
γ(cu1 (t, x), cu8 (t, x), T1)− γ(cu;i−1

1∗ (x), cu;i−1
8∗ (x), T1)

)
+Rn · ∂

∂T8

(
δ(cu8 (t, x), T8)− δ(cu;i−1

8∗ (x), T8)
)

+

∂

∂T1
Rn(t, x, T1, T8)

(
γ(cu1 (t, x), cu8 (t, x), T1)− γ(cu;i−1

1∗ (x), cu;i−1
8∗ (x), T1)

)
+

∂

∂T8
Rn(t, x, T1, T8)

(
δ(cu8 (t, x), T8)− δ(cu;i−1

8∗ (x), T8)
) ]

+

{
Rn · ∂

∂T1
γ(cu;i−1

1∗ (x), cu;i−1
8∗ (x), T1) +Rn · ∂

∂T8
δ(cu;i−1

8∗ (x), T8)
}

1
+

{
γ(cu;i−1

1∗ (x), cu;i−1
8∗ (x), T1) · ∂

∂T1
Rn(t, x, T1, T8) + δ(cu;i−1

8∗ (x), T8) · ∂

∂T8
Rn(t, x, T1, T8)

}
2

(16.5)

where cu1 (t, x) and cu8 (t, x) are defined by (15.45). Due to Lemma 15.19 (inequalities (15.151)), (15.152),

together with the boundedness of the functionRn (implied by the boundedness of Rm, m ∈ {1, . . . , n})
and the boundedness of the functions Bm1 , Bm8 , it is seen that the expression in the square bracket [·]
above is of the order of ∆tO(1) as ∆t→ 0.

By (16.2), the first term in the curly bracket {·}1 equals:(
Rit−1(x, T1, T8) + (∆t)−1(t− tit−1)

(
Rit(x, T1, T8)−Rit−1(x, T1, T8)

) )
· ∂

∂T1
γ(cu;i−1

1∗ (x), cu;i−1
8∗ (x), T1)

= Rit−1(x, T1, T8) · ∂

∂T1
γ(cu;i−1

1∗ (x), cu;i−1
8∗ (x), T1) +O(1)∆t,

where the last estimate is obtained via the boundedness of of the derivative of γ (see Lemma 15.7)

and inequalities (15.144). Likewise,

Rn · ∂

∂T8
δ(cu;i−1

8∗ (x), T8) = Rit−1(x, T1, T8) · ∂

∂T1
δ(cu;i−1

8∗ (x), T1) +O(1)∆t,

Similarly, the expression in the bracket {·}2 equals

1

∆t
·
(

∆t · γ(cu1 (t, x), cu8 (t, x), T1) · ∂

∂T1
Rn(t, x, T1, T8) + ∆t · δ(cu8 (t, x), T8) · ∂

∂T8
Rn(t, x, T1, T8)

)
=

1

∆t
·
(

∆t ·
(
γ(cu1 (t, x), cu8 (t, x), T1)− γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
· ∂

∂T1
Rn(t, x, T1, T8)+

∆t ·
(
δ(cu8 (t, x), T8)− δ(cu;i−1

8∗ , T8)
)
· ∂

∂T8
Rn(t, x, T1, T8)

)
+

1

∆t
·
(

∆t · γ(cu;i−1
1∗ , cu;i−1

8∗ , T1) · ∂

∂T1
Rn(t, x, T1, T8) + ∆t · δ(cu;i−1

8∗ , T8) · ∂

∂T8
Rn(t, x, T1, T8)

)
=

− 1

∆t
·
(
Rn(t, x, T1 −∆t · γ, T8 −∆t · δ)−Rn(t, x, T1, T8) + (∆t)2O(1)

)
,

what follows from inequality (15.151) together with the boundedness of the derivatives of the function

Rn with respect to T1 and T8 (implied by the boundedness of the functions Bm1 , Bm8 ).

Now, using the definition (16.2), for t ∈ [ti−1, ti], denotations (15.105) and (15.106)), and the
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results of section 15.15 (see (15.144)), we have:

1

∆t

(
Rn(t, x, T1 −∆t · γ, T8 −∆t · δ)−Rn(t, x, T1, T8)

)
=

1

∆t

{
Ri−1(t, x, T1 −∆t · γi−1, T8 −∆t · δi−1)−Ri−1(t, x, T1, T8) +

(∆t)−1(t− tit−1)
([
Ri(t, x, T1 −∆t · γi, T8 −∆t · δi)−Ri(t, x, T1, T8)

]
−[

Ri−1(t, x, T1 −∆t · γi−1, T8 −∆t · δi−1)−Ri−1(t, x, T1, T8)
])}

(16.6)

Now, according to (15.109), the absolute value of the expression

[
Ri(t, x, T1−∆t·γi, T8−∆t·δi)−Ri(t, x, T1, T8)

]
−
[
Ri−1(t, x, T1−∆t·γi−1, T8−∆t·δi−1)−Ri−1(t, x, T1, T8)

]
is bounded from above by

(
|Hi−1

1 |γ + |Hi−1
8 |δ

)
∆t + r1(∆t)2 for some constant r1 independent of i,

hence by Lemma 15.18 is of the order of O((∆t)2). It follows that

1

∆t

(
Rn(t, x, T1 −∆t · γ, T8 −∆t · δ)−Rn(t, x, T1, T8)

)
=

1

∆t

{
Ri−1(t, x, T1 −∆t · γi−1, T8 −∆t · δi−1)−Ri−1(t, x, T1, T8)

}
+O(∆t).

Finally, for t ∈ [ti−1, ti], we have:

F0(x) · ∇Rn(t, x, T1, T8) =

F0(x) · ∇Rit(x, T1, T8) + [(t− tit−1) · (∆t)−1 − 1]F0(x) ·
(
∇Rit(x, T1, T8)−∇Rit−1(x, T1, T8)

)
=

F0(x) · ∇Rit(x, T1, T8) +
[
(t− tit−1) · (∆t)−1 − 1

]
F0(x) ·

(
∇Zi(x, T1, T8)

)
.

(16.7)

By (15.177) the last term vanishes as fast as ∆t for ∆t → 0. It thus follows that for t ∈ [ti−1, ti] we

can write

dR∇2Rn − ∂Rn

∂t
− ∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)Rn

)
− ∂

∂T8

(
δ(cu;i−1

8∗ , T8)Rn
)

+

F0(x) · ∇Rn − F1((i− 1)∆t, x, T1, T8)Rn =

dR∇2Ri −
{
Ri
[
∂

∂T1

(
γ(cu;i−1

1∗ , cu;i−1
8∗ , T1)

)
+

∂

∂T8

(
δ(cu;i−1

8∗ , T8)
)

+ F1((i− 1)∆t, x, T1, T8) +
1

∆t

]}
+

Ri−1(x; τ i−1
1 , τ i−1

8 )

∆t
+ F0(x) · ∇Ri + (∆t)2/7O(1) = 0 + (∆t)2/7O(1).

Let us consider the convergence properties of the sequence Rn. We will use the Arzela-Ascoli

lemma in the spaces W 2,1
q (MT ), MT = Ω × (0, T ) × ATT , where ATT is any open simply connected

set with a smooth boundary comprising the support of the functions Ri for all i ∈ {1, . . . , n} with the

norm defined by

‖u‖(2)
q,QT

=

2∑
j=0

<< u >>
(j)
q,QT

where (cf. (1.3),(1.4) in I.1 of [23])
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<< u >>
(0)
q,QT

= ‖u‖q,QT , << u >>
(1)
q,QT

=
∑
k=1,2,3

∥∥∥ ∂u
∂xk

∥∥∥
q,QT

+
∑
l=1,8

∥∥∥ ∂u
∂Tl

∥∥∥
q,QT

,

<< u >>
(2)
q,QT

=
∑
k,s=1,2,3

∥∥∥ ∂2u

∂xk∂xs

∥∥∥
q,QT

+
∑
l,m=1,8

∥∥∥ ∂2u

∂Tl∂Tm

∥∥∥
q,QT

+
∥∥∥∂u
∂t

∥∥∥
q,QT

,

and

‖f‖q,QT =
(∫ T

0

(∫
Ω×ATT

|f(t, x, T1, T8)|q dxdT1dT8

)
dt
)1/q

.

According to the estimates derived in the previous sections, for each n ∈ IN, the norm of the functions

Rn have their W 2,1
q,QT

uniformly bounded for any arbitrarily large q > 0. As it follows from the

Corollary after Theorem 9.1 of section IV.9 (which is based on Lemma 3.3 of chapter II) in [23], for

all n ∈ IN, the functions Rn satisfy the norm inequality

‖Rn‖(2−Υ) ≤ CΩ‖Rn‖(2)
q,QT

, Υ =
dim(Ω×ATT ) + 2

q
,

for some constant CΩ, where ‖ · ‖χ denotes the Hölder norm ‖ · ‖χ/2,χt,x . It follows that the functions

Rn are uniformly bounded in the C
µ̃(q)/2,µ̃(q)
t,(x,T1,T8) norm, with µ̃(q) satisfying the inequality

µ̃(q) < 2− dim(Ω×ATT )

q
= 2− 7

q
,

hence µ̃(q) > 1 +β, for any β ∈ (0, 1) if q is sufficiently large. Now, by the Arzela-Ascoli lemma, from

the sequence {Rn}∞n=1, we can choose a subsequence converging to a function R ∈ Cµ/2,µ,1+µ
t,x,(T1,T8)([0, T ]×

Ω× IR2
+) for any µ < µ̃(q) (cf. section 15.12). Simultaneously, as n→∞, then the functions cu1 and

cu8 tend along the appropriate subsequence (being, in general, a subsequence of the subsequence along

which {Rn}∞n=1 converges), to some functions cu1D and cu8D belonging to the space C
(1+β)/2,1+β
t,x ([0, T ]×

Ω) for any β ∈ (0, 1). Now, for fixed (T1, T8) and for every n < ∞, we can multiply the equation

satisfied by Rn by a smooth test function φ∗(t, x), integrate by parts and consider it as an equation

for weak solutions Rn as a function of (t, x). By passing to the limit ∆t→ 0, we conclude that R is

a weak solution to the equation:

∂R
∂t

= dR∇2R+ f(t, x, (T1, T8)) (16.8)

where

f(t, x, (T1, T8)) = F0(x) · ∇R+

(
− ∂

∂T1
(γ(cu1D(t, x), cu8D(t, x), T1)R)− ∂

∂T8
(δ(cu8D(t, x), T8)R)− F1(t, x, T1, T8)R

)
∈ Cµ/2,µt,x

with (T1, T8) treated as parameters. Let us note that given the function f(t, x), Eq.(16.8), supple-

mented with the homogeneous Neumann boundary conditions and C4,4
x,(T1,T8) initial conditions (as it

was supposed in Assumption 15.4) has a solution with finite C
1+µ/2,2+µ,2+µ
t,x,(T1,T8) norm. This solution is

unique. For, suppose that it is not true, and that, for fixed (T1, T8), there exists another solution

P to this equation (with the same boundary and initial conditions). By subtracting, multiplying by

D = R−P and integrating by parts it is seen that D satisfies the equation

1

2

∂

∂t

∫
Ω

D2(t, x, T1, T8)dx = −dR
∫

Ω

|∇D(t, x, T1, T8)|2dx.

As D(0, x, T1, T8) ≡ 0, we conclude that D(t, x, T1, T8) ≡ 0.

We are thus in a position to formulate the summarizing theorem of Part III.
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Theorem 16.1. The triple (R, cu1D, cu8D) satisfies system (15.2)-(15.4). The function R ∈ C1+µ/2,2+µ
t,(x,T1,T8) ((0, T )×

Ω× IR2
+), whereas the functions cu1D, c

u
8D ∈ C

1+µ/2,2+µ
t,x ((0, T )× Ω) ∩ C(([0, T ]× Ω).

Proof The fact that R, cu1D, cu8D ∈ C
1+µ/2,2+µ
t,(x,T1,T8) ((0, T ) × Ω × IR2

+) has been shown above. We also

showed that these functions satisfy Eq. (15.5). We will prove that they satisfy Eqs (15.6)-(15.7). Let

us consider the second equation in system (15.5)-(15.7). For t ∈ [(i− 1)∆t, i∆t) it can be written in

the form

∂cu;i
1

∂t
= ∇2cu;i

1 + ν̃
∫∞

0

∫∞
0
c8;i−1
8∗ Rn dT1 dT8 − cu;i

1 − ν̃
∫∞

0

∫∞
0
c8;i−1
8∗ δRni dT1 dT8

(16.9)

where δRni = (∆t)−1(t − tit−1)
(
Rit(x, T1, T8) − Rit−1(x, T1, T8)

)
. As, independently of t and ∆t =

Tn−1, (∆t)−1(t− tit−1) ≤ 1, then using Lemmata 15.18 and 15.20, we conclude that for each (T1, T8),

lim
n→∞

‖δRni(·, ·, (T1, T8))‖C0,µ
t,x

= 0.

By using the functions defined by (15.45), for fixed n, the set of equations (16.9) can be written as

the equation

∂cu1
∂t

= ∇2cu1 + ν̃

∫ ∞
0

∫ ∞
0

c88∗(c
8
u, T8)Rn dT1 dT8 − cu;i

1 − ν̃
∫ ∞

0

∫ ∞
0

c88∗(c
8
u, T8) δRni dT1 dT8. (16.10)

In fact, we should consider cu1 as a weak solution to Eq.(16.10). Let us note that
∫∞

0

∫∞
0
c88∗(c

8
u, T8)Rn dT1 dT8

is a continuous function of (t, x), whereas the function
∫∞

0

∫∞
0
c88∗(c

8
u, T8) δRni dT1 dT8 is of L∞ class.

It follows from Theorem 15.11 that the functions cu1 and cu8 have finite C
(1+β)/2,1+β
t,x norm for all

β ∈ (0, 1). Thus by considering a subsequence of {n}∞1 , for which all the considered sequences of

functions converge, we conclude that cu1D, cu8D are of the class C
(1+β̃)/2,1+β̃
t,x , with β̃ ∈ (0, 1) and, in

fact, are weak solutions to the equation on (0, T )× Ω

∂cu1D
∂t

= ∇2cu1D − cu1D + f(t, x), T1, T8), (16.11)

where

f(t, x) = ν̃

∫ ∞
0

∫ ∞
0

c88DR dT1 dT8

and c88D(t, x, T8) = cu8D T8 (1 + cu8D)−1. As f(t, x) ∈ C(1+β)/2,1+β
t,x then using, e.g. [23, Theorem 5.3,

chapter IV], we conclude that there exists a solution to Eq. 16.11, with the homogeneous Neumann

boundary conditions and initial conditions in C4(Ω) class as supposed in Assumption 15.4, has a

solution in C
1+β/2,2+β
t,x ([0, T ] × Ω) class. As f(t, x) is fixed, then the solution is unique, what can

be shown as in the case of the equation for R. The third equation in system (15.5)-(15.7) can be

considered in the similar way. 2

17 Conclusions

In the dissertation, we used two different approaches to study the initial boundary value problems

connected with system (1.11)-(1.13). In Part II, we considered scalar linear equations with the form

of their differential part similar to that of Eq. (1.11), and despite its mixed parabolic-hyperbolic

structure, we managed to construct explicit solutions in the homogeneous and inhomogeneous cases.

Besides to the construction of solutions, an important result of this part presented in Lemma 9.5

(see also Lemma 11.1), states that, in a sense, these solutions can be treated as a limit of solutions

with added diffusional terms with respect to the auxiliary variables T1 and T8. This result seems to

be particularly significant in designing the method of numerical analysis of the model. In Part III

we applied a modification of the Rothe method and proved the existence of solution to a simplified
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version of system (1.11)-(1.13) in the limit of the size of the step interval ∆t→ 0. To obtain a priori

estimates, necessary for the proof of convergence of the family of solutions, we use the maximum

principle for elliptic equations. In derivation of these estimates we extensively took advantage of the

celebrated paper [1]. It seems that this method can be used to general classes of similar systems.

Its applicability depends on appropriate behaviour of characteristics to the hyperbolic part of the

equation of the mixed type. In particular, we assumed that the projections of the characteristics onto

the (T1, T8)-plane enter its positive quarter in the course of time.
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A Appendix A – Laplace operator in IRm in local coordinates

connected with an (n− 1) dimensional hypersurface

Consider a hypersurface S = {(x1, x2, . . . , xn) : x1 − ω(x2, . . . , xn) = 0} defined in the vicinity of the

point x0 ∈ S. Assume that the hyperplane x1 = 0 is tangent to the hypersuface S at the point x0. It

follows that

∂ω

∂xi
(x0) = 0, i = 2, . . . , n. (A.1)

Let

ξ = x1 − ω(x2, . . . , xn) ηi = xi for i = 2, . . . , n. (A.2)

Let us derive the expression for the Laplace operator ∆ in the variables (ξ, η1, . . . , ηn) at the point

x = x0.

Lemma A.1. Suppose that (A.1) and (A.2) hold. Then at x = x0:

∆ξ,η1,...,ηn =
( ∂2

∂ξ2
+

n∑
i=2,...,n

∂2

∂η2
i

)
+

n∑
i=2,...,n

κk(x0)
∂

∂ξ

where κk(x0) := −∂
2ω

∂x2
k

(x0), k = 2, . . . , n are the principal curvatures of the surface S at x = x0.

We have:

∂

∂x1
=

∂ξ

∂x1

∂

∂ξ
+

n∑
i=2

∂ηi
∂x1

∂

∂ηi
.

and

∂

∂xk
=

∂ξ

∂xk

∂

∂ξ
+

n∑
i=2

∂ηi
∂xk

∂

∂ηi
.

It follows that

∂2

∂x2
1

=
∂ξ

∂x1

∂

∂ξ

( ∂ξ
∂x1

∂

∂ξ
+

n∑
i=2

∂ηi
∂x1

∂

∂ηi

)
+

n∑
i=2

∂ηi
∂x1

∂

∂ηi

( ∂ξ
∂x1

∂

∂ξ
+

n∑
j=2

∂ηj
∂x1

∂

∂ηj

)
and

∂2

∂x2
k

=
∂ξ

∂xk

∂

∂ξ

( ∂ξ
∂xk

∂

∂ξ
+

n∑
i=2

∂ηi
∂xk

∂

∂ηi

)
+

n∑
i=2

∂ηi
∂xk

∂

∂ηi

( ∂ξ
∂xk

∂

∂ξ
+

n∑
j=2

∂ηj
∂xk

∂

∂ηj

)
Due to (A.2) we have in some vicinity of x0:

∂ξ

∂x1
= 1,

∂ηi
∂x1

= 0,
∂ηi
∂xk

= δik, for i, k ∈ {2, . . . , n},

and exactly at x = x0, for k = 2, . . . , n,

∂ξ

∂xk
= − ∂ω

∂xk
= 0.

We thus have at x0,

∂2

∂x2
1

=
∂2

∂ξ2

and, for k = 2, . . . , n,
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∂2

∂x2
k

=
∂

∂ηk

( ∂ξ
∂xk

∂

∂ξ

)
+

∂2

∂2ηk
= − ∂

∂xk

( ∂ω
∂xk

) ∂
∂ξ

+
∂2

∂2ηk
= −

(∂2ω

∂x2
k

) ∂
∂ξ

+
∂2

∂2ηk
.

Thus finally at x = x0:

∆ξ,η1,...,ηn =
( ∂2

∂ξ2
+

n∑
i=2,...,n

∂2

∂η2
i

)
+

n∑
i=2,...,n

κk(x0)
∂

∂ξ

where

κk(x0) := −∂
2ω

∂x2
k

(x0), k = 2, . . . , n,

can be interpreted as the principal curvatures of the surface S at x = x0.
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Appendix B

This appendix contains the review of the mathematical models of chondrogenetic processes in

vertebrates submitted to the journal of Mathematical Biosciences.
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limb development: Recent advances in continuous models

Paramita Chatterjee, IPPT PAN, Poland
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Bogdan Kaźmierczak, IPPT PAN, Poland

Abstract

The phenomenon of chondrogenic pattern formation inside the vertebrate limb is one of the best studied
examples of organogenesis. Many different models, mathematical as well as conceptual, have been proposed
for it in the last fifty years or so. In this review, we give a brief overview of the fundamental biological
background, then describe in detail several models which aim to describe qualitatively and quantitatively
the corresponding biological phenomena. We concentrate on several new models that have been proposed
in recent years, taking into account recent experimental progress. The major mathematical tools in these
approaches are ordinary and partial differential equations. In particular, we analyze a subtle and inter-
woven relation between the positional information postulate and reaction-diffusion convection mechanisms.
Moreover, we discuss models with non-local flux terms implied by cell-cell adhesion forces and a structured
population model with diffusion. We also include a detailed list of potential morphogens which have been
identified to play a role in the process of limb formation and its growth.

1 Introduction

Organogenesis is one of the most intriguing phenomena in biology. The question ’How does an initially homoge-
neous and indistinguishable set of cells give rise to subgroups of differentiated cells, tissues and whole organs?’
is an extremely challenging and complicated modeling problem.

An important example of organogenesis is vertebrate limb development. Models explaining the mechanism
of limb formation are based on the experimental study of limb bud outgrowth and shaping as well as on skeleton
formation. Conceptually, limb bud outgrowth and its shaping is a different process from skeleton formation
[180]. However, limb bud outgrowth and its shaping are dynamically interconnected with the process of skeleton
formation [106]: limb bud outgrowth and its shaping influence the formation of skeleton. This can be observed
experimentally and confirmed by relatively simple mathematical models based on reaction-diffusion equations,
where the associated self-organizing process is influenced by the form of the boundary conditions, as well as
the shape and size of the domain [15, 181, 182, 183]. Physical properties of the respective tissues [63] also
influence the mathematical and computational modeling of limb outgrowth and its shaping. Basically limb bud
mesenchymal mass (mesoblast) is a deformable viscoelastic material which is not miscible with the surrounding
flank mesenchyme. These cells divide either isotropically or directionally change the shape and size of the
mesoblast, stretch and alter the tissue mass. There is an epithelium sheet around the mesoblast and under an
acellular basement membrane, which is a source of molecular signals that generate and modulate the cellular
behaviours of the underlying mesenchyme [180].

In this paper, we give an overview of limb development phenomena in vertebrates and present several
mathematical models that describe these processes. We concentrate on continuous models formulated as systems
of partial differential equations representing various chemical concentrations as well as cell densities. In the last
six years in particular, new classes of reaction-diffusion models [143, 128, 49, 11, 12, 177] have been proposed
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which are based on new experimental insights into the molecular basis of chondrogenesis and incorporate much
more detailed interactions from gene regulatory networks than previous models. While self contained, our survey
can also be seen as an update of previous surveys of mathematical models in chondrogenesis (see [188, 187, 48]).
We also include a list of all gene products that have been found to be relevant for limb chondrogenesis and who
may play important roles as morphogens.

2 Biology of limb bud growth and basic concepts of sketal pattern
formation

The process of limb growth is almost the same in all tetrapods, but most of the experimental work has been done
on chicken and mice embryos. For chicken, the complete developmental process from a fertilize egg to hatchling
takes about three weeks. Limb buds begin to emerge from the embryonic body at the end of third day and
elongate rapidly. On the fourth day the humerus begins to appear in the form of a chondrogenic condensation,
that is, a tight aggregate of precartilage cells. The complete pattern of the limb skeleton is laid out in cartilage
elements by the seventh day.

2.1 Limb bud outgrowth and shaping

The vertebrate limb is an outgrowth from the embryonic body wall, due to the influence of a diffusible mor-
phogen, fibroplast growth factor 8 (FGF8), which is secreted from the ectoderm.

As outgrowth proceeds, a morphologically distinct ectodermal thickening, consisting of a partially stratified
epithelium, forms at the distal tip, known as the apical ectodermal ridge (AER) (see Figure 1), which is the
source of FGF8 [180]. The AER forms in three steps: induction of precursor cells, migration of precursor cells
and compaction of the ridge.

Figure 1: Schematic illustration of a
limb bud. Positions of the AER (Api-
cal Ectodermal Ridge), the ZPA (Zone
of Polarising Activity) are shown along
the limb axes in the developing limb.
The image also shows a region which
is identified as the ”Progress Zone” in
Wolpert’s Progress Zone model. (Mod-
ified from [185], page no. 214 )

In an embryo, during the early stages of limb formation, the limb bud is evolving along three axes: the
axis from shoulder to hand is known as proximal-distal or PD axis, from thumb to little fingers is known as
anterior-posterior or AP axis and the axis from back of hand to palm is called as dorsal-ventral or DV axis as
shown in Figure 2.

Initially, the limb bud is composed of a set of mesodermal cells covered by a relatively thin layer of ectoderm.
The limb bud arising from the chick ’body’ wall is flat and almost elliptic in cross section with its major and
minor axes parallel to AP and DV axes (see Figure 2) respectively [29]. At the Hamburger-Hamilton stage
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21 1 (HH 20), the dorsal parts of the chick limb start to round up, whereas the ventral side starts to flatten.
During the limb outgrowth, the region from somite to wing tip, called PD length, expands very fast [29] and
the posterior part of the limb grows faster than the anterior one [66].

Figure 2: Outgrowth and shap-
ing of vertebrate limb. Develop-
ment of a chicken limb in three
axes: Proximal-Distal (humerus
in wing, femur in leg), Anterior-
Posterior (radius and ulna in
wing, tibia and fibula in leg) and
Dorsal-Ventral (digits in wing
and leg). (Modified from [180])

1In developmental biology, the Hamburger–Hamilton stages (HH) describe 46 chronological stages in chick development, starting
from egg laying and ending with a hatched chick. These stages are described, e.g. in [56]. During development of chick limb, the
segmentation of dorsal mesoderm into blocks, called somites, takes place [29].
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Figure 3: Role of the
AER in vertebrate
limb development:
Top: Normal develop-
ment of a wing with
the AER. Middle:
formation of wing if
the AER removed
early. Bottom: for-
mation of wing if the
AER removed later.
(Modified from [180]).

The AER and underlying mesoderm play an important role in the outgrowth of the limb. If the AER
is removed during the growth of the limb, the underlying mesoderm stops dividing and consequently limb
outgrowth stops [47, 133, 138]. Also it is observed in tissue cultures that the mesoderm is induced to proliferate
if the AER is combined with limb mesoderm. Actually, there is a two sided dependency between the AER
and the underlying mesoderm: If mesoderm is removed from an early limb, the AER regresses. In contrast, if
prospective limb mesoderm is amputated in flank ectoderm before the outgrowth of the limb bud, the still AER
forms and the limb develops [61].

The first to carry out the experiments with AER removal was Saunders [137]. In his experiments, he partially
used some much older ideas and methods, e.g. Lillie [76] and Peebles [124]. He was also motivated by certain
observations made by Willier [170] and Hamburger [55]. In his paper [137], Saunders described the removal of
the AER from the tip of the wing bud resulting in truncation of wing depending on the stage at which the AER
was removed. He concluded from these results that the AER plays an essential role in growth of a wing and
’the orderly formation of the wing parts’ [162].

The main idea of this experiment was revisited by Rowe and Fallon [132] (for wings and legs). It has been
shown there that if the AER is removed in 18 or early 19 HH stage of development, this results in the absence
of some of the digits of the evolving limb. Moreover, the bigger the piece cut off from the anterior part of the
AER (between the somite levels 15 and 20), the more digits are absent in the final limb. (See Table 1 and Table
2 in [132]). Figure 3 shows the result of removal of AER in various stages of development.

In the experiment based paper [137], Saunders proposed the fate maps of early chick wing along the proximo-
distal by injecting small clumps of carbon particles into the dorsal surface of bud as a marker.

Summerbell furthered the ideas of Sauders in [149, 150] by inserting impermeable barriers in chicken wings,
at the Hamilton-Hamburger stages 16-18 and 20-22 [56] through the dorsal-ventral axis, perpendicular to the
body wall of the limb bud at different anterior-posterior somite levels. Due to this, distal anterior and posterior
tissues of limb bud were seperated [132]. Inserting the barriers at different somite levels resulted in the lack of
digits situated at the anterior side of the barrier. To explain this fact, it was proposed in [150] “that pattern is
specified by the concentration of a diffusible morphogen controlled by the zone of polarizing activity” and that
the insertion of the barriers prevented this morphogen from reaching anterior mesoderm, which resulted in the
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faliure of anterior structure.
It has been also observed that taking the AER before Hamilton-Hamburger stage 29 and grafting it onto

a younger limb (i.e. with a younger mesoderm) results in a proper limb development [133]. Likewise taking
a young AER and grafting it onto an older mesoderm does not lead to any limb-elements duplications. This
suggests that information of the proper sequence of limb development is programmed in the limb’s mesoderm,
not in the AER. In particular, the AER emits signals that do not change qualitatively in time (do not depend on
its developmental stage). However, after Hamilton-Hamburger stage 29, the AER loses the capacity to induce a
complete limb. According to these findings, the role of the AER seemed to be permissive rather than instructive,
that is to say “keeping distal cells labile and able to change positional values by an unknown mechanism” [85]
(see Figure 4).

For many years, the effects of limb morphogens (in particular FGFs) were regarded as mitogenic, i.e., they
promote cell division at the distal tip to drive limb bud outgrowth. Recent works suggest that mesenchymal cells
of the limb bud show a chemotactic migratory response to FGF gradients [75] towards the AER and oriented
movement and growth [180, 14, 174]. Cell orientation depends on Wnt signaling, whereas its velocity depends
on FGF signaling [51].

Some models (like the model, proposed in [16]), suggest that the flow of the limb mesenchyme is mechani-
cally guided by the dorsal and ventral ectoderm, while some indicate that the dorsal ectoderm, excepting the
underlying base membrane, is not necessary for normal limb shaping [86, 180].

Another important question concerning limb development is how the identity of limbs (hindlimb and forlimb)
is determined. Forelimbs and hindlimbs emerge from the body wall of the embryo, initially composed of
undifferentiated mesenchymal cells covered by a layer of ectoderm. The determination of limb identity depends
on two transcription factors: Tbx5 and Tbx4 (T-box transcription factor) [46]. Both of these factors accelerate
Fgf10 expression [1, 97, 110, 111] during limb bud initiation. In absence of Tbx5 in mice prohibits Fgf10
expression and forelimb skeletal formation [1], while Tbx4 knockout in mouse prevents hindlimb development,
but a small hindlimb is formed due to the retention of low FGF10 levels [104]. Similarly to Tbx4, Pitx1 (a paired-
like homeodomain 1, which is a protein and is encoded by the PITX1 gene) also influences in the formation
of hindlimb [155]. In tetrapods, the identity of limb depends on the rostrocaudal positions of Tbx4, Tbx5 and
Pitx1 expression, which are influenced by Hox family of genes. Mainly HoxA and HoxD clusters controls the
limb development. The regulatory elements of these clusters are confined within two flanking topologically
associating domains (TADs), which encompass the adjacent gene desert. During limb initiation the telomeric
TAD controls the early waves of HoxA and HoxD gene expression in the lateral plate mesoderm. At a specific
position, Hox genes are sequentially activated in a rostrocaudal pattern and this is crucial for the induction of
limb growth. During this forelimb initiation process Tbx5 expression is induced under a rostral Hox expression
pattern, leading to forelimb development. Similarly, it is hypothesized that Pitx1 and Tbx4 drive the hindlimb
development due to caudal Hox expression pattern [125].
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Figure 4: Role of the AER in limb development (Modified from [186])

2.2 Skeletal pattern formation on the growing limb

The skeleton is a complex organ which protects a number of internal organs and stores ions, particularly calcium
[61]. The skeleton is formed by two different tissues, cartilage and bone, which support each other. Low
metabolic rate, avascularity, capability for continued growth and high tensile strength coupled with resilience
and elasticity are the distinctive properties of cartilage, whereas constant renovation to meet both mechanical
and metabolic demands, vascularity, displaying rigidity and hardness are the properties of bone. Bones differ
individually by size and shape, forming discrete arrays of elements.

During embryonic development, the skeleton and muscles grow from the paddle shaped limb bud mesoblast
which is covered by epithelium, called ectoderm [126]. In most vertebrate, skeletons progress as a series of
primordial cartilage in proximal-distal form [108]. In the case of the chicken, the humerus of the upper wing is
established first, then radius-ulna in mid-wing, followed by the wrist bones and the digits lastly. Bones replace
cartilage in most vertebrate.

Before cartilage forms, mesenchymal cells of the mesoblast form tight aggregates called precartilage mes-
enchymal condensations. These are the morphological basis of the skeleton [53, 54, 107]. This process is
accompanied by the production and secretion of ECM glycoproteins, like fibronectin, which trap the cells at
specific positions [41, 42]. The aggregation of cells becomes firm due to cell-cell adhesion which depends on cell-
surface molecules such as NCAM [169](neural cell adhesion molecule), N-cadherin [114] or cadherin-11 [70, 80].
In the final step of chondrogenesis, precartilage cells differentiate into cartilage, a process associated with various
gene products [115] and cartilage specific ECM [129].
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2.2.1 Proximal-Distal Patterning

Several conceptual models have been proposed to understand the limb patterning along the proximal-distal axis.

2.2.1.1 Progress Zone model

The most influential model is without a debt the celebrated Progress Zone Model proposed by Lewis Wolpert
in [171] (see also [148]). The Progress Zone (PZ) refers to a region of undifferentiated mesodermal cells ap-
proximately 300µm beneath the AER in the developing limb bud (see Figure 1). The PZ model postulates
that cells obtain positional information via the amount of time spent within this region. Specifically, the cells
‘measure’ the time they spend in the Progress Zone. When the cells leave this region, their clock stops. As all
cells are dividing within the Progress Zone, this is a continuous process. Thus the humerus is formed by the
cells which are ‘first’ to leave the zone, whereas the digits are formed by the cells that are ‘last’ to leave this
zone (see Fig.1 in [160]). These postulates have been supported by the experiments done by Saunders et. al.
[133], and Summerbell et. al. [149, 150] (see Section 2.1). Removal of the AER stops the change of positional
information value in the apical mesenchyme and progress halts in the zone at the tip. Then the cells lose their
lability prematurely. Thus their proliferation rate is reduced and they start to differentiate according to the
positional value they had just before the AER extirpation. As a result, the outcome limb is shorter and lacks
distal elements [148]. Similarly, if the tip of a very young limb is removed and replaced by a tip of an older limb,
the developing limb contains deletions, which is consistent with the idea of the Progress Zone Model [160].

Though the progress zone model was able to explain the results of the basic AER removal and limb X-
irradiation experiments, it was called into question, mainly because of the non-specified mechanism in which
cells in the progress zone obtain the positional information [32, 85].

2.2.1.2 Early Specification Model

An essentially different model was proposed by Dudley et. al. in [32] and was originally called the ‘Early
Specified Model’, but later became known as ‘Early Specification Model’. This model assumes that the limb
pattern is specified at a very early stage of development and the limb segments already have distinct molecular
features before the limb bud grows out [32, 160]. It is postulated that during llimb growth, the cells undergo
a process of appropriate differentiation (corresponding to their early specification) and proliferation resulting
in the expansion of the limb elements. The assumptions of the model were based on the experiments done by
Dudley et. al. in [32], where they analyzed the effects of the AER extirpation on the formation of limb elements.
By tracking the (labeled) limb bud cells, it was observed that the removal of the AER resulted in the death
of underlying distal mesenchymal cells along with the truncation of distal elements. This suggests that distal
cells do not take part in the chondrogenetic process after AER removal. The early specification assumptions
are also consistent with experiments in which grafting of an early limb bud tip on a neutral site resulted only
in digit-like elements, indicating that the mesenchymal cells were already specified at very early stage [32, 160].
These observations led Dudley and the collaborators to the conclusion that cell fates are pre-established within
the early stage of limb bud growth.

2.2.1.3 Progress Zone model versus Early Specification model

Under some additional assumptions, both of these models have a potential to explain the process of limb
formation. Soon after the work of Dudley et. al. [32] was published, Wolpert et. al. in [160] indicated that
the results of the experiments presented in [32] leading to the early specification model, can be also interpreted
within the progress zone model. Moreover, the Early Specification Model was criticized, because it would imply
that each of the seven cartilaginous limb bud elements (humerus, radius and ulna, two carpal elements that
are initially same size as the radius and ulna but fail to grow and a maximum of three digital elements) would
correspond to approximately 4 layers of cells. The reasoning of Wolpert was the following: the early bud is
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300µm long and the average mesenchymal cell diameter is assumed to be equal to 10 µm, so each cartilaginous
elements will only be approximately 40µm, i.e. four cells.

Also, in [160] Wolpert suggested that the X-irradiation experiments on early limb buds presented in [173]
provide some strong evidence for progress zone model. In these experiments, to reduce the rate of cells leaving
the progress zone, mesenchymal cells of limb at stages 18/19 (Hamilton-Hamburger), stage 21 or the AER stage
24, were killed by X-irradiation. As a result, the progress zone needs to be repopulated before the cells can begin
to leave again, so the time spent by some cells in the progress zone is increased. Increments of X-irradiation
doses (the ectoderm is not influenced at these doses) resulted in the loss of proximal structures, whereas distal
structures with the digits were relatively unaffected. Moreover, for still bigger doses of X-irradiation the structure
of digits became abnormal. If the radiation was above 2500 rads, then no structures were observed at all. This
seems consistent with the analysis based on the progress zone model because a very few cells could spend a
short time in this region, resulting the deletion of proximal structure. Within the early specification model, this
deletion was interpreted via the progressive determination of limb structures – the differentiation of cells into
distal elements occurs later than into proximal ones [32].

On the other hand, in support of the early specification model, the results of fate mapping experiments
described in [123, 136] may be cited. These experiments suggested that along the proximo-distal axis, cell
lineage-restricted compartments might exist [164].

The process of limb development proposed by these two models is shown in Figure 5.

2.2.1.4 Mathematical Models, in particular Turing-type models

The above mentioned models of the formation of the skeletal pattern are conceptual models that synthesize
biological, biochemical and physical ideas, but do not use any mathematical specifications of their concepts. In
contrast, several mathematical models have been proposed. These models investigate how the interaction of
gene expression, cell proliferation, cell movement and adhesion and differentiation can lead to the spontaneous
emergence of chondrogenic patterns. Central to most of these models is the Turing mechanism for pattern
formation in systems of reacting and diffusing chemicals ( see [166]). In the first model of chondrogenic pattern
formation based on the Turing mechanism, in [105], Newman and Frisch proposed an application of a single
linear stationary reaction-diffusion equation for the concentration of a hypothetical morphogen (including the
differentiation of mesenchymal cells into precartilage ones) to track the emergence of consecutive bones as
a result of the limb bud growth, via the analysis of the eigenfunctions corresponding to the cross sections
perpendicular to the proximal-distal axis. To this end, the limb is approximated by an appropriate cuboid. It is
assumed that distribution of the (hypothetical) morphogen forms a prepattern which is then replicated by the
distribution of the precartilage cells. This approach gave a very intuitive insights into the basic features of the
precartilage pattern formation, though, of course, it is a drastic simplification of the corresponding process. In
ensuing years, much work has been done on incorporating more realistic reaction kinetics, the effect of growth
and realistic non-rectangular domains and explicitly modeling the response of cells via diffusive, chemotactic or
cell-cell adhesion fluxes.

Given the very different natures of the conceptual biological models and the more concrete mathematical
models, the two are often somewhat hard to compare and contrast. For instance, in the widest sense, Wolpert’s
positional information model postulates that a cell’s spatial position determines its fate, but does a priori not
stipulate the exact mechanism of how the cell senses its position, or how this information is translated into
its behavior. Temporal or spatial gradients of morphogens are central to this mechanism, but there are many
different ways in which they may be set up and maintained. In a sense, the Turing mechanism may be regarded
as a possible mechanism for the establishment of morphogen gradients, although in a more narrow sense, the
positional information concept is that the spatial morphogen gradients are set up by regions of specialized
cells such as the Zone of Polarizing Activity (ZPA) in the limb; this sense is not compatible with the Turing
mechanism, where patterns are set up in an autonomous, self-organizing way that does not require a group of
specialized cells.
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In section 3, we further discuss the relationship between Wolpert’s positional information model and the
Turing mechanism, then survey recent mathematical models in the ensuing section.

2.2.1.5 Other approaches

The classical experiments of AER removal, X-ray irradiation and other experiments regarding the limb formation
and its development can be analyzed by the both of progress zone model and early specification model. But,
recent experiments on morphogens (mainly on FGF4 and FGF8), concerning their effects on pattern formation
of cartilage of the limb (see [74, 153]), can not be fully explained by any of these models. Therefore these two
models are not sufficient [156].

The identification of molecular clock genes presented in e.g., [121, 122], would support the progress zone
model. Unfortunately, these findings do not present a satisfactory evidence for a cell autonomous clock for the
limb patterning [156]. Also, the formation of distinct proximodistal progenitor pools can not be explained by
the early specification model.

Although neither of the above mentioned models is able to explain the process of proximodistal patterning
fully, their general ideas seem to be interwoven in other approaches. Thus, for example, so called ‘intercalation
model’ can be thought as a sort of modification of the progress zone model [82, 85]. By analyzing the effects of
gradual increase of FGF-encoding genes knockout, it was hypothesized in [164] that the intermediate structures
are specified at a later stage of development. To be more precise, the extreme proximal and distal parts of
the limb are the first PD elements to be specified, e.g. by diffusion gradients of retinoic acid from the body
and FGFs from the the AER. Later on, the strucures of intermediate positional values (radius and ulna) are
intercalated. A new idea of this model is that it takes into account a possible influence of the embryo’s body
on the formation of the limb structures.

Figure 5: (A) The Progress Zone Model: in early stages of limb development, whole limb has proximal identity,
specifically stylopod which is specified by red colour. As the limb grows, zeugopod appears slightly distally due
to the influence of FGF, produced by the tip of limb, specified by yellow colour. Later, as the outgrowth
proceeds, cells at the progress zone started to divide. The cells, which are not within the range of influence of
FGF, maintain their specified fate. While the cells near to tip, are within the range of influence of FGF started
to divide more distally. Therefore autopod appears, shown in orange colour. (B) The Early Specification Model:
all the segments of proximal-distal axis in early limb bud are specified - stylopod is specified by red, zeugopod
by yellow and orange corresponds to autopod (Modified from [156])).
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Figure 6: A graphical scheme of the model for proximo-distal patterning of chick wing proposed by Towers et. al
in [134]. a. Specification of positional values for the stylopod (humerus, orange in d) by trunk secreted retinoic
acid at early limb initiation stages (HH18 or HH19). b. Intrinsic time specification of positional values for the
zeguopod (blue in d) at stages HH 20-22. c. Specification of positional values for the autopod (wrist/digits,
green in d) at later stages, HH23-24. AER secreted FGFs, which are responsible for limb bud growth, supress the
Meis1/2 expression to terminate the proximal process by inducing the retinoic acid degrading enzyme Cyp26b1
indicated by the red line in b. Deficiency of retinoic acid in the distal part of the limb bud, turns on intrinsic
timing phase and the cells express 5’Hoxa/d genes and sustain the subsequent level of FGFs (secreted by AER).
At subsequent stages, the cell adhesion properties and positional values of proximal specification intrinsically
change over time (the + symbols indicate the greater adhesion properties of cells). This implies a spatial
inhomogeneity of proximo-distal positional values due to the dispacement of cells from the distal mesenchyme
(arrows in insets a-c) by an intrinsic programme of proliferation. (Modified from [134])

Towers et. al. in [134] proposed, what they called, ’a complete model of proximo-distal limb patterning’,
which is a conjugate modification of the progress zone model and positional information idea. At early limb
initiation stages of chick wings (HH18/19), the positional value of the stylopod (humerus) is determined by trunk
secreted retinoic acid (RA). At later HH stages, FGFs secreted by AER induce expression of Cyp26b1 [127],
which is a retinoic acid-degrading enzyme. This process combined with limb bud growth generates a retinoic
acid-free distal mesenchyme domain (see Fig. 6, b, c). It is suggested in [134] that this phenomenon ’triggers an
intrinsic timer in distal mesenchyme cells and the switch from proximal (stylopod) to distal (zeugopod/autopod)
specification’. At HH stages 20-22 (Fig.6 b), distal mesenchyme cells inducing this process, initially enter
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zeugopod specification phase characterized by Hoxa/d11 expression and then at HH stages 23-24, they undergo
a phase of autopod specification, characterized by Hoxa/d13 expression (Fig.6 c).

Recently, Towers et. al. in [135] provide an experimental evidence that the final distinction in morphological
forms dictated by differences in proximo-distal positional values is mediated by cell-cell adhesion which is
position-specific [168]. Also, the cell-cell adhesion properties are influenced by 5’ Hox transcription factors,
mainly, by Hoxa13. It is suggested in [135] that the correct allocation of cells into the autopod (via specific
positional values) is guaranted by Hoxa13 most probably by an appropriate control of cell-surface properties.

2.2.2 Anterior-Posterior Patterning

The mechanism behind Anterior-Posterior Patterning is very similar to the formation of PD axis. Classical
experiments [151, 152, 159] show that a region at the posterior of the growing limb bud, organizes the AP
patterning across the distal limb, known as the zone of polarizing activity (ZPA). The protein Sonic Hedgehog
(Shh), produced from ZPA, influences the distinct fates of the limb cells along the anterior-posterior axis.

Therefore digit 1 (thumb or big toe) consists of cells with lowest concentrate of Shh in the distal limb, whereas
the most posterior digits (little finger or small toe) arises from the region close to the ZPA. This suggests that
the duration of exposure to high Shh, instead of short term duration of Shh concentration gradient at a single
moment in time, defines AP digits [140, 163, 48]. Thus Shh is important in controlling digit number and
patterning along the AP axis of vertebrate limb buds [164, 165]. In the experiment based paper [57], Harfe et
al. suggested that the digit formation along AP axis not only depends on concentration of Shh, but also the
duration of exposure to Shh is important in the specification of the differences between the digits.

In the previous section we have mentioned the role of RA in Proximal-Distal arrangement of the limb. It
turns out that retinoic acid (RA) plays an important role in anterior-posterior patterning. It was found that
RA present in the chick limb, shows a biggest gradient at posterior margin [157] and the existence of two phases
of RA signaling is necessary for vertebrate limb development [94].

Moreover, according to experiments described in [83], if the amputated salamander limbs were soaked in
retinoic acid (RA), a duplicated limb grows, e.g. two sets of radius and ulna grows. It was also observed that
RA can produce the same duplication of digits by an additional the ZPA [159, 151].

We must however be aware that the impact of RA on the limb formation process is, in a way, combined with
its interaction with Shh morphogen. Through the regulation of Meis gene expression, RA is involved in proximal
limb formation and its effects on anterior posterior pattern are mediated via the transcriptional activation of
Shh [164].

AP Patterning implied by growth
Growth/morphogen models of chick wing patterning emphasize that growth plays a vital role to specify the
positional values of morphogen concentration in the early limb bud. This process, controlled by Shh signaling,
was described, e.g. by [163, 164]. It was shown there that Shh controls the high-level expression of several
genes, so that digits rise in the digit-forming region of the early wing bud, in polarizing region cells, digit 4 rises
and in adjacent posterior cells, digit 2 and 3 rise [164]. Experiments described in [140] proved that the loss of
posterior digits were caused by inhibition of Shh signaling by cyclopamine, but later it was revealed that this
was due to combination of reduced AP growth and specification [163]. Towers et al. [163, 164] showed that
the fate maps of cyclopamine-treated chick wings describes all prospective digit progenitors contributes to the
anterior elements. Also, along the AP axis, overexpression of the cyclin-dependent kinase inhibitor, p21cip1, as
well as the application of p21cip1 transcription inducer, known as deacetylase inhibitor trichostatin A (TSA),
inhibits the growth. As a result, limb grows without anterior digits [163, 164]. These studies indicate that Shh
normally promotes anterior-posterior expansion and specify the digit number and identity in chick limb.

Numerical simulation of growth of AP and PD axes are done by Dillon et. al.[28, 30], considering a simplified
version with two diffusible morphogens produced at the AER and the ZPA regions respectively. This model
allows to verify signaling pathways for morphogen signaling [61]. The equations of the mathematical model
proposed in [28, 30] are described in the section 4.
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Polarity of anterior-posterior axis in forelimb are determined by Hox genes, but for hind limb, no such
evidence is found [161].

2.2.3 Dorsal-Ventral Patterning

In comparison to Proximal-Distal and Anterior-Posterior patterning, Dorso-Ventral patterning has received
much less attention, although some experimental works have been done to elucidate its mechanism, see [21].
Experiments done by Chen et. al. in [19] suggest that Dorsal-Ventral axis is formed by cells derived from both
mesoderm and ectoderm at different stages of development.

When some parts of limb bud mesoderm were detached and centrifugally compacted limb bud cells were
reattached into the ectodermal hull of a three or four day chick wing bud, and then grafted to the flank of
the host embryo, it was found that the skeleton and musculature of the distal elements have a Dorso-Ventral
axis which conforms to that of the ectoderm [61]. Similarly, in case of leg buds of chick embryo, if the intact
mesodermal cores were remerged with ectodermal hulls, the Dorso-Ventral axis of the ectoderm was reversed
and the skeleton with musculature was also reversed along the Dorso-Ventral axis [61, 19]. It indicates that
before the appearing of the AER, the ectoderm can specify the Dorso-Ventral axis and the mesoderm is able to
impart Droso-Ventral positional information onto the ectoderm [19].

Other mesoderm and ectoderm recombination experiments revealed that, most probably, the ectoderm
acquires Dorso-Ventral polarity from the underlying mesoderm prior to limb bud outgrowth at approximately
Hamburger-Hamilton stage no 15 [19, 44].

3 Mathematical ideas behind the models of chondrogenic pattern
formation

Chondrogenesis is one of a plethora of examples of pattern formation in embryogenesis, giving rise to a funda-
mental questions in developmental biology: What are the fundamental mechanisms by which biological patterns
(structures and shapes) form [50]? In the following subsections, we concentrate on two well known ideas, Turing’s
reaction-diffusion (RD) mechanism and the Positional Information (PI) approach proposed by Lewis Wolpert.

3.1 Mechanism based on diffusion and interaction between appropriate groups of
molecules

In description of embryological development, reaction-diffusion models are widely used to explain self-regulated
pattern formation [72]. In 1952, in the celebrated paper The Chemical Basis of Morphogenesis [166] Alan Turing
proposed reaction-diffusion (RD) model addressing the problem of biological patterns formation.

Turing revealed that a simple system of two equations for interacting morphogens can describe six types of
spatial patterns, including traveling waves and oscillations as well as stable periodic patterns, such as stripes or
spots, arising from a uniform field of cells [50]. The major achievement of these findings is the Turing pattern,
which can be developed due to the diffusion driven instability, called Turing the instability.

This phenomenon can be mathematically stated in the following way: under some additional conditions, a
homogeneous steady state of a dynamical system stable to small perturbations in the absence of diffusion, may
become unstable to small spatially non-homogeneous perturbations if the diffusion is added in the system. This
is surprising and unexpected as diffusion usually degrades spatial patterns and leads to uniformity in the long
run (see, e.g. [50, 103]).

Turing’s ideas about pattern formation continues to enjoy popularity among mathematical modelers and
developmental biologists. This interest is mainly due to the fact that time evolution of proteins and chemicals
can be well described by means of reaction-diffusion systems of equations. Such a description reflects two basic
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processes which determine their space-time distribution, i.e. undirected random motion (diffusion) and mutual
interaction.

Several examples of biological patterning, such as animal coat patterns of zebra, leopard, mollusc shell
pigmentation patterns, can be explained by using the Turing instability in the appropriate reaction-diffusion
systems (see, for example, [90, 103]). However, it is not known whether the Turing mechanism is the only
reason behind these phenomena [50, 119]. To be more precise, it is often difficult to assign concrete morphogens
playing the role of activators or inhibitors in the abstract mathematical model describing the process of pattern
formation, although, in several cases, morphogens corresponding to the applied reaction-diffusion systems have
been identified with varying degrees of certainty (see e.g. [3, 36, 84, 95, 100, 128, 145]). In the most popular
version of a two-morphogen system, the Turing mechanism also requires diffusion coefficients of activating and
inhibiting morphogens to be of different sizes, often one or more orders of magnitude.

The notion of Turing instability is mainly used to explain the appearance of periodic biological patterns.
However, reaction-diffusion description may be also applied to understand mechanisms of emergence of the
non-periodic patterns (see, e.g. [101, 141, 144]).

3.2 Positional Information mechanism

Lewis Wolpert proposed the Positional Information (PI) model in the late 1960s. Wolpert was interested in
how a complex pattern could be determined from simple asymmetries in the tissue and how the scale of this
pattern could be coordinated over large tissue domains (rather than how a periodic pattern could arise from
arbitrarily small spatial perturbation of the spatially homogeneous steady state, as investigated by Turing) [50].
Specifically he wanted to pattern formation could be directed depending on existant heterogeneities or polarities
across the tissue. The key idea is that spatial morphogen gradients, i.e. changes in morphogens’ concentrations
over space, may result in different cellular behaviour, which in turn may lead to the formation of spatial patterns
[171, 172, 50].

Compared to Turing’s RD models, which suggest, for example, that stripes or spots of morphogens directly
produce stripes or spots of cell types in the resulting tissue, Wolpert introduced an ‘interpretation’ step, accord-
ing to which cells can interpret the local concentration of ‘positional molecules’ and choose their fate appropriate
for that position [50]. This interpretation step implies an additional freedom that not only allows a smooth,
monotonic molecular concentration gradient to give rise to any arbitrary pattern, periodic (like stripes or spots)
and non-periodic (like the French Flag pattern 7), but also allows the exact same pair of orthogonal morphogens
to induce cells to form different patterns depending on the cell type [50]. Positional Information model is well
illustrated by the development of Drosophila segments [50]. In the Positional Information framework, the mor-
phogen concentrations effectively work as positional coordinates. In the other words, the spatial distribution
of PI molecules isomorphic to the developing or final limb skeletal patterns [180]. That is, they serve only as
informational factors, rather than an isomorphic prepattern.
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Figure 7: Schematic representation of limb development according to different proposed model with the help of
french flag (Modified from [164]).

A key difference between Turing’s and Wolpert’s ideas, which has certainly had an important impact on
their reception, is their intuitive appeals. Turing’s reaction-diffusion mechanism is not intuitive. Self-organizing,
morphological patterns arising from ‘nothing’ (to be more precise from arbitrarily small spatial perturbations)
are difficult to understand as diffusion usually induces stability. On the contrary, Wolpert’s positional infor-
mation approach is more intuitive and is easy to grasp. In Wolpert’s theory, one can regard morphological
patterns as a result of an interplay between the spatial concentrations of different morphogens secreted from the
corresponding sources, which are usually separated and localized in different positions of the evolving organ. In
the case of limb bud growth these sources can be e.g., the AER secreting FGFs, and the ZPA secreting SHH
(see Figure1).

3.3 Turing’s bifurcation and Wolpert’s positional information mechanisms as con-
gruous morphogenetic processes

Turing’s RD and Wolpert’s PI approaches have often been considered as two different ideas, contrary to each
other. In principle however, these two ideas can work together, each of them providing its specific benefits to the
system analysis: Turing’s bifurcation method can explain the symmetry-breaking of the initially homogeneous
set of cells, whereas Wolpert’s positional information mechanism can explain the distinction of differently
specialized sub-regions in a growing embryo following the created patterns of morphogens. For instance, the
presence of a chemical gradient which influences the kinetics of a reaction-diffusion system may modify the
resulting Turing patterns in specific ways, see e.g. [189, 190, 191].

On the other hand, the formal distinction between these approaches seems artificial. In general, these two
mechanisms are often combined. To be more precise, it is usually very difficult to split apart the time scales
of the morphogen evolution and the cell differentiation or proliferation as in [18], equivalent to assuming that
pattern formation is mechanistically separated from cell movement. Such an approach is sometimes called the
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morphostatic approximation. In fact, the differentiated cells secret morphogens (at a rate dependent on con-
centrations of additional agents). On the other hand, morphogen concentration may influence (upregulate or
downregulate) the cell proliferation or differentiation [2, 60, 49]. Moreover, very complicated morphological mo-
tifs can be generated via a prepattern-pattern sequence, in which a preceding pattern prepares the prerequisites
for the subsequent pattern, a bit like in a very complex reaction chains in the regulatory pathways of molecular
chemistry [93].

4 A short review of mathematical models related to limb develop-
ment

The intriguing phenomena connected with vertebrate limb growth and bone pattern formation have attracted
interest of many researches and resulted in a large number of mathematical as well as computational models
aiming to explain the process of chondrogenesis. There is enduring interest in the development and refinement
of such models due to ever increasing computational power and biological data provided by experiments.

To investigate the mechanisms of limb development and pattern formation, mathematical modeling is ex-
tremely useful. It can establish the necessity of concrete assumptions of interactions. The interplay between
experiment and model is a process of reciprocal influence: Models are not only established from the experi-
ments, but often lead to additional experiments verifying new hypotheses. Obviously, except for very simple
models, it is not easy to derive quantitative conclusions, thus complicated numerical simulations, using advanced
techniques and methods, should be appropriately designed.

The mathematical models of chondrogenesis can, in principle, be divided in two groups [180]:

(a) Models related to growth and shape of limb bud.

(b) Models related to formation of skeleton patterns via morphogen’s interaction.

4.1 Models related to growth and shape of limb bud

Experiment based growth models that describe the process of vertebrate limb growth and bone pattern formation
attracted scientists for a long time. Since late 1960’s, several computational and mathematical models of the
limb bud outgrowth have been developed.

One of the main questions here is what the basic mechanism of limb outgrowth is, and how it is generated in
the early limb [48]. The pioneering work in modeling the growth of embryonic limb bud was done by Ede and
Law in late 1960s [37, 48]. They proposed a simple model involving cell proliferation and motion, to know about
the necessity of difference in rates of cell reproduction at the proximal and distal part of the limb during the limb
growth. Ede and Law concluded from the simulations of the model that the cell proliferation rate at proximal
and distal parts do not effect on early shaping of the limb [48]. Later, they found that the proliferation rate is
crucial during the limb growth, when the limb bud attains its characteristic paddle shape. It was observed by
them that in this period of growth, more distal cells are dividing more frequently than the proximal cells with a
tendency of cells to move slightly distally. These important results along with the estimated differences in the
rate of proliferation have been widely accepted and used in several simulations [28, 30, 62, 126].

• Dillon and Othmer’s model
It seems that the first mathematical and computational model describing effectively the process of limb growth
and experimentally observed gene expression patterns during its development was proposed by Dillon and
Othmer in [28, 29, 180].

It was a mathematical model of cell fluid flow coupled with elastic boundaries representing the mechanical
and biochemical properties of the ectoderm surrounding the limb mesoblast. The fluid motion is described by
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the Navier-Stokes equations

∇ · u = S(c(x, t)),

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p+ µ(∇2u +

1

3
∇S) + ρF.

(1)

Here the term S can be interpreted as the local source strength of growth. It depends on the concentrations c1
and c2, where c1 corresponds to the morphogen secreted from the AER and c2 corresponds to the morphogen
secreted from the ZPA (For convenience (c1, c2) is denoted by c) as well as the location of the tissue within
the limb bud, and the age of the limb. x is the position within the limb and t is the age of the limb, ρ is
fluid density, p its pressure and µ fluid viscosity. The morphogens are convected at u the local velocity of the
limb bud mesoderm. Limb bud ectoderm exert the force density F on the fluid surrounding it. Their model
incorporates the effect of morphogens, like Shh, FGFs with sources at the AER and the ZPA. It is governed by
a reaction-diffusion-advection system

∂c

∂t
+∇ · (uc) = D∇2c +R(c), (2)

where D is the diffusion matrix for the morphogens and the production rate is denoted as R(c). In fact, the
above model has been to the only successful attempt to consider constructively the relation between growth as a
physical process, the effects of morphogens on the parameters of growth, and adjusting the numerical results to
the experimental findings concerning the dynamics of limb bud expansion. Some of the physical and biological
assumptions are reevaluated because of new information along with the extension by the same authors [30],
yet the model is up till now the most relevant in the context of integration of the two main kind of processes
influencing the limb growth.

The AER morphogen is only produced in the AER(Ω1) and the ZPA morphogen is in the ZPA (Ω2). Thus
R = (R1, R2) has the form

Rk =


rk(c)− κkck x ∈ Ωk,

−κkck Otherwise

where rk(c) > 0 except at c = 0 and the corresponding Michaelis-Menten kinetics are as follows with rate
constants Vk and Kk:

r1(c) = V1
c2

K1 + c2
, r2(c) = V2

c1
K2 + c1

.

The source term S has the form:
S = s1c1 + s2

where s1 and s2 are constants. Hence the local growth rate linearly depends on the local concentration of c1.

• Model of Murea et. al.
In [102, 180], Murea et al. presented a model of limb outgrowth as a free boundary problem governed by
creeping motion of expanding mesoblast (due to nutrient supply) and ectodermal boundary with nonuniform
surface tension. In contrary to Dillon et al. [28], the authors of [102] didn’t assume that Proximal-Distal gradient
is mitotic. Later Boehm et al. [14] approved this assumption. It was also claimed in [102] that in the case,
when the rate of growth S(x, t) is relatively big, then it should be taken into account as an additional source of
cells’ movement. Neglecting simultaneously the inertial term in the Navier Stokes equation, and assuming very
high viscosity of mesenchymal cells, they finally arrive at the simplified equation of the form:

− µ∆v +∇p = f +
µ

3
∇S (3)
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together with the additional equation combining the the growth rate with the divergence of the speed:

∇ · v = S

Here p = P − pair is tissue pressure and P is fluid pressure, pair is the pressure of the surrounding air. µ
and v are fluid viscosity and velocity, while S(x, t) is the rate of growth. The gradient of p and the gradient of
S determine the velocity of the limb bud outgrowth.

• Model of Morishita et al.
Morishita et al. in [99] proposed “growth based morphogenesis” model to describe the changes of organ mor-
phology during limb development. This model proposes a discrete reaction diffusion equations defined in a
network of nodes. This nodes are divided into M- and E- nodes (representing mesenchyme and epithelium
cells). The equations have form:

cMi (t+ dt) = cMi (t) +D{
∑
j

(cMj (t)− cMi (t)) +
∑
k

(cAERk − cMi (t))}dt− γcMi (t)dt, (4)

where cMi , cAERk are the AER-signal concentrations at the M-node i and E-node k respectively. D is diffusion
constant and γ is degradation rate of the AER-signal at each M-node. Here the first summation indicates all
M-nodes j linked with node i and the second one for all E-nodes k linked with node i. cAERk assumed to be
constant. As it is seen from (32), the chemical flux at each node is proportional to the difference between focal
node and its neighbors.

Although the some of conclusions following the numerical simulations in [99] have been questioned, this
relatively simple computational discrete model proved useful in analyzing morphological processes controlled
by the spatiotemporal pattern of volume sources.

• Model of Boehm et al.
The development of vertebrate limb bud has been studied for a long time in the context of the spatial distribution
of cell fates. On the other hand, the question how the limb bud physically elongates, attracted much less
attention. In [14], the authors proposed a similar fluid dynamics model like the models in [28, 99], to study
numerically the elongation process, using finite element computational method in three dimensions incorporating
quantitative data on shape changes and proliferation rates. They concluded that limb bud elongates due to the
process concerning cell division, migration, and therefore cannot be explained by a mere proliferation gradient
hypothesis.

This model, based on Navier-Stokes equations, showed the patterns of cell division considering the mes-
enchyme as a viscous incompressible fluid, whose volume increases with s (a distributed material source term,
in fact, s represents the proportional volumetric growth per unit time):

∂v

∂t
+∇p− 1

Re
∇ · [∇v] = 0,

∇ · v = s,

(5)

Here the term v represents velocity and the pressure is represented by the term p. Re is Reynolds number.
Such a conclusion has been also confirmed by the results of the cellular automata-based limb bud shaping model
in[126].

As follows from the above models, limb bud growth and shaping is a complicated process involving many
interwoven phenomenona. In the experiment based paper [178], Zeng et al. investigated the limb formation
mechanism in vitro and in vivo. They observed that precartilage formation in the limb is controlled by the
differential adhesion of cells: less adhesive cells construct one large humerus in the proximal region whereas
more adhesive cells generate many small sized digits in the distal area. This observation leads to the result of
density dependent pattern formation in the limb due to cell adhesion along with chemotaxis.
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The basic theoretical idea behind this approach is that the proper specification of localized volume source
(e.g., cell proliferation) is able to guide organ morphogenesis, and that the specification is given by chemical
gradients. As it is also suggested in [63], polarity of mesoderm and cartilage cells in the limb bud (governed
mainly by noncanonical Wnt signalling) can play a significant role in directional movement and oriented division.
Thus concluded that the directional activities like orientation of cell division and their motility drives the limb
outgrowth [174, 180].

In principle, by choosing proper initial distribution of proliferation morphogens, we can obtain an appropriate
shape and size of the growing limb bud (see Figure 8), however such an approach may leads to a theoretical
contradictions which can be resolved only by introducing new ‘driving factors’.

Figure 8: [180] Result of computational optimization of a finite element model for limb bud shaping. (A)
red/yellow shows a discrete region of very high proliferation at the distal tip and blue as shrinking areas dorsal
and ventrally. (B) generate a shape (green in (C) and (D)), which is similar to real shape (blue in (D)). As it is
noted in [180], the final growth pattern conflict with experimental values only for a distribution of proliferation
rates. (Modified from [180])

4.2 Models related to formation of skeleton patterns via morphogen interaction

Formally, we can distinguish two groups of models describing the dynamics of morphogens leading to skele-
tal pattern formation [180]: the ‘isomorphic’ and ‘non-isomorphic’ ones. In isomorphic models it is assumed
that there is an isomorphic shape preserving mapping between the spatial distribution of morphogens and the
skeletal elements. This isomorphism can be realized by means of different phenomena, e.g. by enhancing the
differentiation of mesenchymal cells into cartilage cells (which then differentiate into chondrocytes), attracting
(chemotactic) processes and others. In the non-isomorphic case, there is no a straightforward spatial correspon-
dence between the chemical prepattern and the final localization of bones. In this case the morphogen dynamics
is a part of a broader process, and can impact the pattern formation mainly implicitly, e.g. by influencing the
shape of the growing limb, upregulating proliferation, differentiation or apoptosis, and initiating regulatory
pathways. In both cases, the existence of appropriate mechanisms should be assumed. On the other hand, the
necessity of their verification is an additional motivation for profound experimental studies.

• Meinhardt’s boundary model
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In [89, 91], several points about the limb bud development, such as, positioning of the limbs along the body axes
and the reconstruction of limb structure in urodele amphibians were discussed. In contrast to the “gradient
hypothesis” of PI model [158], in [89, 91] the “boundary model” to study other developmental issues, like
the formation of new structures, including gradient sources at the interface of two or more distinct tissues or
populations of cells, has been proposed. In the gradient like models, each cell’s positional identity is determined
by the local values of chemical concentrations or exposure-duration of their gradients, whereas in the former (the
boundary model), the gradients are set up by a direct confrontation of independently induced cell populations.
These gradients are completely unrelated to the determinants of the original tissues and can lead to further
modifications and spatially nonuniform development of one or both of the interacting cell types. The Meinhardt
boundary model proposed in [89, 91] has proved many features of developmental systems in spite of lack of
experimental data to specify the locations of skeleton elements [93, 180]. The gradient system studied by
Meinhardt in [91] is presumed to establish the positional identity along the AP axis of limb bud, in this way
unifying, in a sense, the generation of PD positional information with AP positional information, although this
seems to contradict the original PI model, which asserts that there is an internal cellular clock that caused
the cells in a non-differentiating distal environment [148]. Addressing these issues, Meinhardt [91] suggested
a “bootstrap” model, where proximal differentiating cells emanate signal to the AER to keep the levels of
morphogen elevated above the values able to specify the distal most positional identities of the limb.

In fact, to simulate the process of skeleton formation, we should take into account both the morphogens’
interaction as well as the process of limb bud growth, because these two phenomena, are going on simultaneously.
However, even if we confine ourselves to a fixed shape and size of the limb bud, thus assuming that the growth
is slow compared to the speed of pattern formation induced by the morphogens’ interaction, we can verify
the possibility of skeleton development with the chosen set of morphogens. The general form of PDEs of
reaction-diffusion type exploiting so called auto-activation with lateral inhibition (LALI) mechanism to model
the spatiotemporal dynamics of generic morphogens can be written as:

∂C

∂t
= D∇2C +R(C), (6)

where C is a vector (c1, c2, · · · , cn) representing the concentrations of morphogens produced by the cells of
developing organ with rate R(C) and D is diagonal matrix of diffusion coefficients (see, e.g. [92, 93]). This
type of Turing-like systems were studied in many works (see, e.g. [9, 27, 26]). Not only they analyze the
spatiotemporal dynamics of non-isomorphic morphogen patterns, but also the underlying modeling framework
for morphogen patterns isomorphic to the limb skeleton were discussed. It is worthwhile to note that there is
no general consent on the set of morphogens playing a leading role in the process of skeleton formation. In fact,
different models put an accent on different set of morphogens. On one hand this freedom may be a result of a
great complexity of the chondrogenetic phenomena, on the other hand, it may be a consequence of insufficient
amount of experimental data.

•Model of Dillon et al.
In one of the most promising approach, having a relatively well documented experimental justification, the
primary role in the chondrogenetic pattern onset is assigned to Shh protein and its complexes (cf. table 1).
This approach has been studied in a series of papers initiated by [27]. Later on, the results of [27] concerning
the growth and morphogen patterning of the limb were extended with new findings of Shh signaling pathways.
Namely, the relation between Shh receptor Patched (Ptc) and the associated membrane signal transduction
factor Smo was discussed by Dillon et al. in [28, 30].

They supplemented reaction-diffusion system by incorporating the new terms related to the influence of
Shh receptor and mediator proteins, coupled (in addition to terms for FGF in 2-D) with the Navier-Stokes
equations. In this way, using the model one can simulate the effects of ectopic sources of Shh and compares the
results with the experiments. The model analyzes the interaction between Shh, Shh transmembrane receptor
Patched (Ptc) and Smoothened (Smo) (see [25, 174]), a transmembrane protein mediating Shh signaling through
phosphorylation of the Gli family of transcription factor. For example, the interaction between Shh and Ptc
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can be described, neglecting the other terms, as in [180]:

∂

∂t
[Shh] = [diffusion of Shh]− [association of Shh and Ptc]

+ [disassociation of Shh-Ptc complex]− [degradation of Shh] + [Shh production],

∂

∂t
[Ptc] = −[association of Shh and Ptc] + [disassociation of Shh-Ptc complex]

− [association of Smo and Ptc] + [disassociation and degradation of Smo-Ptc complex]

+ [Ptc productions by itself and by Smo]− [degradation of Ptc],

∂

∂t
[(Shh-Ptc complex)] = [association of Shh and Ptc]

− [disassociation and degradation of Shh-Ptc complex].

Figure 9: The computational and experimental results of Patched (Ptc) responses to Sonic hedgehog (Shh) bead
implants (upper panels) and the ZPA tissue implants (lower panels). (Upper) The rescaled figures of numerical
simulations of Ptc concentration 2, 6, and 18 h after bead implants (A, C, and E, respectively), whereas in
lower, Ptc concentration 12, 16, and 20 h after tissue implant (A, C, and E, respectively). Experimental results
are from Drossopoulou et al. [31] for ptc transcript expression 2, 6, and 16 h post-bead implants and for the
ZPA grafts, 4, 8, and 16 h post-implant (B, D, and F, respectively). (From Dillon et al. [30]).

It is also supposed in the model that Smo has two forms: active (associated with free Ptc) and inactive (in-
teracting with Shh-Ptc) and that different forms of Shh have the same diffusion constants. (The last assumption
was brought into question in [40].) The main idea of this work was to compare the effects of implantation of
ectopic sources of Shh (Shh beads) and ectopic the ZPA tissue. The excellent agreement between the numerical
simulations within the model and experimental findings, seem to prove both the relative validity of the model
assumptions as well as the fact that the ZPA is a source of Shh morphogen. The last conclusion seems to be
the main and outstanding result of [30]. The comparison between the model and the experimental results is
shown in Fig. 9.

•Model of Hirashima et al.
The interactions between the AER and the ZPA is an intriguing question, the answer to which plays crucial role
in the study of skeleton pattern formation. Several experiments were done to enlighten these interactions (see,
e.g. [7, 10]). Hirashima et al. in [62] proposed a model in this direction. Namely, they addressed the question
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of interaction between FGF expression at the AER and Shh expression at the ZPA, especially the positive
effect of FGF on the production of Shh by mesenchymal cells. This model was implemented on a simplified one
dimensional domain {x : 0 < x < ∞} with the AER at the left boundary and the ZPA at a chosen distance
from the AER. It took into account the following processes :

a) Diffusion of FGFs from the AER.
b) Shh expression in the mesenchymal cells.
c) Diffusion of SHH from the mesenchymal cells.
d) Fgfs expression in the AER cells.

The system of equations in Ω := (0,∞)× (0,∞) 3 (x, t) describing the above phenomena was proposed as:

∂F

∂t
= DF

∂2F

∂x2
− γFF, for x > 0, (7)

∂R

∂t
= αR

Fh2

Fh2 +Kh2
2

− γRR, (8)

∂Sin
∂t

= αS
Fh1

Fh1 +Kh1
1

Kh3
3

Rh3 +Kh3
3

− (γS,in + βS)Sin, (9)

∂

∂t
S = DS

∂2

∂x2
S − γSS + βSSin for x > 0, (10)

d

dt
F

(0)
in (t) = αF

S(0, t)h4

S(0, t)h4 +Kh4
4

− (γF,in + βF )F
(0)
in (t). (11)

It was supplemented by the following boundary conditions at x = 0 and at x =∞:

−DF
∂

∂x
F (0, t) = βFF

(0)
in (t), (12)

F (∞, t) = 0, (13)

∂

∂x
S(0, t) = 0, (14)

S(∞, t) = 0. (15)

Equation (16) describes diffusion of FGFs (mainly FGF4) from the AER with the diffusion constant DF ,
together with its degradation with the rate γF . The production of FGFs in the AER and its influx into the
mesenchyme is described by the boundary condition (12). Here F (x, t) is the extracellular FGF concentration

and F
(0)
in (t) is the Fgf gene expression level in the AER cells. Equation (13) indicates that the FGF concentration

approaches 0 very far from the AER.
Equations (8) and (9) describe the dynamics of Shh expression in the mesenchymal cells. According to

equation (8), the concentration of repressor R increases with the extracellular FGF concentration F . Equation
(9) describes the level of Shh expression in mesenchymal cells, denoted as Sin. The parameters of production
and degradation of repressor are αR and γR respectively, while αS and γS,in are the corresponding parameters
of SHH. βS is the rate of transport of SHH to the outside of cells. K1,K2, and K3 are dissociation constants
and h1, h2, and h3 are Hill coefficients. The extracellular SHH concentration is denoted as S.

Equation (10) describes the spatio-temporal dynamics of SHH outside the mesenchymal cells. The first two
terms of the right-hand side of equation (10) represent SHH diffusion and degradation, respectively with the
diffusion coeffient DS and its degradation with rate γS . SHH is activly transport from inside to the outside of
mesenchyme cells as it is mentioned in equation (8). S satisfies the no-flux boundary conditions at x = 0 and
at x =∞ as is indicated by equations (14)-(15).

Assuming that the activation of Fgf expression by SHH-signal occurs only in the AER cells (x = 0), but
not in mesenchymal cells (x > 0), equation (11), describes the dynamics of Fgf expression level, denoted as
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F
(0)
in (t), in the AER cells. This expression is stimulated by the extracellular SHH concentration at x = 0 via the

appropriate Michaeles-Menten kinetics, with FGF production rate αF . As mentioned above, γF is degradation
rate and βF is the active transport rate of FGF to the extracellular space.

The main objective of [62] was the study of the role of coupled dynamics of positive feedback and feed-forward
interactions between Fgf expression at the AER and Shh expression at the ZPA. As it was mentioned above the
AER is assumed to be localized at x = 0, whereas the position of the ZPA is identified with the point, where
the maximum of Shh expression level in Ŝin occurs. It has been concluded in [62] that appropriately defined
interaction between the AER and the ZPA enhances the robustness of the distance between the AER and the
ZPA. By robustness we mean here that this distance is weakly sensitive to the changes of the parameters of the
model. Interestingly, the repression of the acitivity of the ZPA by the repressor R (modeled in the first term
at the right hand side of equation (9)) plays a crucial role. The robustness of the distance between the AER
and the ZPA is very important in the limb development, because both the AER and the ZPA act as sources of
positional information.

• Model of Armstrong et al.
In [4], Armstrong et al. designed a nonlinear partial differential equation aimed to described the phenomenon of
cell-cell adhesion. This model was later analyzed by Dyson et al. in [34] and [35]. This non-local term represents
the phenomena of cell-cell adhesion and cell-extracellular matrix adhesion. These processes are crucial in many
biological contexts leading to different kinds of pattern formation.

To observe the formation of aggregations of cells or cell clusters for an initially distributed cell population
with the strong cell-cell adhesion, Armstrong et al. considered first a population of one species cell together
with uniform adhesive properties.

In one spatial dimension the model reads [35]:

∂u(x, t)

∂t
=
∂u2(x, t)

∂x2
− ∂

∂x
(uK(u)) (16)

where

K(u) =
φ

R

∫ R

−R
αg(u(x+ x0))ω(x0) dx0. (17)

Here u(x, t) denotes the cell density. The cell-cell adhesion is represented by the term K(u), while the corre-
sponding forces and their effects on the local cell density are described by the term g(u(x+ x0)). The strength
of cell-cell adhesive force is represented by α and ω(x0) characterizes the direction and magnitude of the force
(changing with x0). φ is a constant of proportionality related to viscosity and R is sensing radius of the cells.
Figure 10 illustrates the schematic representation of the cell movement.

Equation (16) is considered for x ∈ (−∞,∞), with initial condition u(x, 0) = u0(x).

x+Rx x1x2x−R

Direction of force

due to cells at x2

Direction of force

due to cells at x1

Figure 10: Schematic representation of cell movement due to the attractive force [4].

In [4], the term g(u(x+ x0)) is considered either linear i.e., g(u(x+ x0)) = u(x+ x0) or of logistic type:

g(u(x+ x0)) =

{
u(x+ x0)(1− u(x+ x0)/M) if u(x+ x0) < M

0, otherwise
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where M represents the crowding capacity of the population.
The form of ω(x0) reflects the adhesive nature of cell-cell interaction and its form should depend on its

specific form (depending on the cells). For linear functions g(u(x + x0)), it has been proposed in [4], ω(x0) as
a simple step function

ω(x0) =

{
−1 −R < x0 < 0

1, 0 < x0 < R

It should be, however, kept in mind that many more realistic forms of ω(x0) can be considered in the model.

In the same paper [4], a system describing two populations of different types of cells. The proposed model
has the form:

ut = uxx − (uKu(u, v))x
vt = vxx − (vKv(u, v))x

(18)

where

Ku(u, v) = Su

∫ 1

−1

guu(u(x+ x0), v(x+ x0))ωuu(x0)dx0︸ ︷︷ ︸
u−v adhesion

+C

∫ 1

−1

guv(u(x+ x0), v(x+ x0))ωuv(x0)dx0︸ ︷︷ ︸
u−v adhesion

(19)

and

Kv(u, v) = Sv

∫ 1

−1

gvv(u(x+ x0), v(x+ x0))ωvv(x0)dx0︸ ︷︷ ︸
v−u adhesion

+C

∫ 1

−1

gvu(u(x+ x0), v(x+ x0))ωvu(x0)dx0︸ ︷︷ ︸
v−u adhesion

.
(20)

Here u(x, t) and v(x, t) denote the populations’ cell densities. The terms Ku(u, v) and Kv(u, v) represent the
adhesion of cells. In Ku, the first term denotes the self-population adhesion of first type of cells and the other
term indicates the cross-population adhesion. Similarly, in Kv, the first term represents the self-population
adhesion of second type of cells and the other term indicates the cross-population adhesion. The self-adhesive
strength of population u and v are represented by the terms Su and Sv, while the cross-adhesive strength
between the populations is represented by C.

In the same paper [4], the models describing the one population and two interacting populations in one
spatial dimension, were extended to two spatial dimensions, i.e. for x ∈ R2.

The one population model in this case takes the form

ut = ∇2u−∇ · (uK(u)) (21)

where

K(u) = α

∫ 1

0

∫ 2π

0

g(u(x+ r η)) Ω(r) η r dθ dr. (22)

Here x ∈ R2 denotes the position of the cell. x+ r η denotes the position of other cells within the sensing disc
of radius R scaled to R = 1. η = η(r, θ) is the unit outward normal to the circle C(x, r). The term ηΩ(r)
replaces the functions ω(x0) present in spatially one dimensional model (16)-(17).

Similarly, two interacting populations’ model, defined in (18), was extended to two spatial dimensions as
follows,

ut = ∇2u−∇ · (uKu(u, v))
vt = ∇2v −∇ · (vKv(u, v))

(23)

where

Ku(u, v) =

∫ 1

0

∫ 2π

0

r η
[
Su guu(u(x+ r η), v(x+ r η)) Ωvv(r) + C guv(u(x+ r η), v(x+ r η)) Ωuv(r)

]
dθ dr (24)
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and

Kv(u, v) =

∫ 1

0

∫ 2π

0

r η
[
Sv gvv(u(x+ r η), v(x+ r η)) Ωuu(r) + C gvu(u(x+ r η), v(x+ r η)) Ωuv(r)

]
dθ dr. (25)

Here u(x, t) denotes the cell density of first type cells and v(x, t) denotes the cell density of second type cells
at position x and time t. The terms Ku, Kv define the non-local adhesion described before. The dependence of
the strength of adhesive binding on the radial distance is represented by the functions Ωuu, Ωvv and Ωuv.

In the one population and spatially one dimensional model it is relatively easy to obtain an intuition about
the influence of the non-local adhesion terms on solutions. In this case, one can approximate the integrals
by local differential terms obtained formally by the expansion of the cell density within the integral [4]. So,
substitution of the expansion of u(x, t)

u(x+ x0, t) = u(x, t) + x0ux(x0, t) +
x2

0

2
uxx(x0, t) + · · ·

into the integral K(u) changes equation (16) for g(u) = u to

ut = uxx −Aα[uux]x −Bα[uuxxx]x + Φ(x5
0) (26)

where A =
∫ 1

−1
x0ω(x0)dx0 and B =

1

6

∫ 1

−1
x3

0ω(x0)dx0 are both positive. Let us note that, as ω(x0) is odd,

then
∫ 1

−1
xk0ω(x0)dx0 = 0 for all even integer k.

The second order term in equation (26) depends on the first spatial derivative ux as in the models of
chemotaxis [3][68].

It implies the cell movement up the gradients (towards higher concentration) of cell density, therefore cell
aggregating may be potentially observed in solutions to equation (16)-(17). On the other hand, the fourth
order term has a dampening effect, therefore the non-local term may help in cell aggregations without creating
singularities and blows up phenomena. In a similar way, the PDE approximation can be done for two interacting
populations.

Higher dimensional case:
Although the model was constructed initially in one and two dimensions by Armstrong et al. in [4], still higher
dimensional studies are extremely important in the context of cancer modelling.

Therefore the above model was extended in N -dimensions by Dyson et al. in [35], as follows:

∂u(x, t)

∂t
= D∆u(x, t)︸ ︷︷ ︸

random motility

−∇ ·

(
u(x, t)

∫
Bρ

g(u(x+ ξ, t)) ξ ω(ξ) dξ

)
︸ ︷︷ ︸

cell adhesion

+ f(u(x, t))︸ ︷︷ ︸
cell loss and gain

(27)

for x ∈ RN , t > 0 and Bρ denoting the N -dimensional ball centred at 0 and of radius ρ with initial condition
u(x, 0) = u0(x), x ∈ RN .

It is assumed that f(0) = 0 (for biological reason). Also, it is assumed that there is a number P1 > 0 such
that f(u) > 0 for u ∈ (0, P1), and f(u) < 0 for u > P1. These assumptions suggest that there is cell gain at
lower densities while in higher densities, due to the effects of crowding, cell loss occurs more rapidly in compared
to the generation of new cells via division.

• Model of Glimm et al.
Recently in [49], Glimm et al. proposed a new model related to bone formation based upon the results of an
experimental paper [13] (see also [79]). The mathematical formulation of this model incorporates a non-local
flux term describing cell-cell adhesion forces (coinciding with the approach of Armstrong et al. in [4]), and has
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a form of a structured population model with diffusion. In this context, the model proposed by Glimm et al. in
[49] differs from models discussed in previous sections, and it has far reaching consequences for its mathematical
analysis. This is due to the presence of hyperbolic terms inside the reaction-diffusion equations. (In Eq.(32)

these are the terms
∂

∂T1
(γ̃(cu1 , c

u
8 , T1)R) and

∂

∂T8
(δ̃(cu8 , T8)R) .)

In [13, 79], a crucial role of ‘new’ morphogens regulating the cells’ aggregation and bone formation during
avian limb growth has been reported. These ‘new’ regulating proteins are chicken galectins: CG-1A and
CG-8. CG-1A and CG-8 and their respective counterreceptors are produced by all mesenchymal cells. The
model proposed in [49] not only explains the interactions between CG-1A and CG-8 to form spatial patterns of
condensations during cell aggregation and bone formation but also provides the crucial insights of the pattern
formation from a physical prospect that the limb skeletal patterning is a morphodynamic process and thus
depends on mesenchymal cell motility.

The biological foundations of the model formulated in [49] are as follows:
1. Mesenchymal cells move randomly with constant diffusion rate until they are trapped on the adhesive surface
of condensations of mesenchymal cells.
2. CG-1A induces CG-8 gene expression and vice versa, CG-8 induces CG-1A gene expression.
3. CG-1A not only upregulates cell-cell adhesion but also promotes the formation of condensations, whereas
CG-8 inhibits cell-cell adhesion suggests that the two galectins have a common counterreceptor. It is found that
if CG-1A is added to cell cultures, the number of condensed cells (and their density) increase but addition of
CG-8 inhibits the condensations [49].

These assumptions are schematically shown in Figure 12.

 

Figure 11: Schematic illustration of the key players and their basic roles in the galectins model proposed in
[49]. (Modified from [49])
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Glimm’s model consists of a system of partial integro-differential equations, of the form:

∂R

∂t
= DR∇2R︸ ︷︷ ︸

cell diffusion

− ∇ · (RK(R))︸ ︷︷ ︸
cell-cell adhesion

− ∂

∂c1
(αR)− ∂

∂c88
(β8R)− ∂

∂c18
(β1R)︸ ︷︷ ︸

binding/unbinding of galectins to counterreceptors

− ∂

∂l1
[(γ − α− β1)R]− ∂

∂l8
[(δ − β8)R]︸ ︷︷ ︸

change in counterreceptors

(28)

∂cu1
∂t

= D1∇2cu1︸ ︷︷ ︸
diffusion

+ν̄

∫
c88RdP︸ ︷︷ ︸

positive feedback of CG-8 on prod. of CG-1A

+

∫
αRdP︸ ︷︷ ︸

binding CG-1A to its counterreceptor

−π̄1c
u
1︸ ︷︷ ︸

degradation

(29)

∂cu8
∂t

= D8∇2cu8︸ ︷︷ ︸
diffusion

+µ̄

∫
c1RdP︸ ︷︷ ︸

positive feedback of CG-1A on prod. of CG-8

+

∫
β1RdP︸ ︷︷ ︸

binding CG-8 to counterreceptor

−π̄8c
u
8︸ ︷︷ ︸

degradation

(30)

A term with a bar over it e.g. µ̄ denoted as a constant. As we mentioned above, the cell-cell adhesion term
∇ · (RK(R)) is formulated basing on the approach of [4] (see the previous subsection, especially (17)) and is
defined as

K(R(t,x, c1, c
8
8, c

1
8, l1, l8)) = ᾱKc1

∫ ∫
Dρ0

∫
c̃1σ(R(t,x+r, c̃1, c̃

8
8, c̃

1
8, l̃1, l̃8))dP̃

r

|r|
dnr, (31)

here ᾱK is a constant which represents the strength of the adhesion and σ(R) has either linear or logistic form.
Here cu1 = cu1 (t,x) is concentration of freely diffusible CG-1A and cu8 = cu8 (t,x) is concentration of freely diffusible
CG-8, whereas R = R(t,x, c88, c

8
1, l1, l8) denotes morphogenetic cell density. The effective adhesion force on a cell

at location x depends on the product of the concentration of bound CG-1A on the cell and the concentration
of bound CG-1A at locations x + r, where the distance vector r varies over the n-dimensional (n = 1; 2; 3) ball
Dρ0(x) centred at x. The radius ρ0 is the “sensing” radius, which is a measure of the characteristic distance
for adhesion; cells at distance greater than ρ0 do not contribute to the adhesion forces (see figure 10).

The term γ−α−β1 models the rate at which the membrane-bound concentration of the shared counterrecep-
tors which are not bound to either galectin changes. The change is due to the expression of new counterreceptors
by the cells and degradation (leading to the effective rate γ), the binding and unbinding of the counterreceptor
to CG-1A (the rate α) and the binding and unbinding of the counterreceptor to CG-8 (the rate β1 ). Similarly,
the term δ−β8 denotes the rate at which the membrane-bound concentration of its own counterreceptors which
are not bound to CG-8 galectin changes.

Assuming “fast galectin binding” to the countereceptors, the following simplified system was obtained in
[49] from the full model using the two auxiliary variables :

the total concentration of CG-1As counterreceptors

T1 = c1 + c18 + l1

and total concentration of CG-8s counterreceptors

T8 = c88 + l8.

∂R

∂t
= dR∇2R−∇ · (RK(R))− ∂

∂T1
(γ̃(cu1 , c

u
8 , T1)R)− ∂

∂T8
(δ̃(cu8 , T8)R), (32)

∂cu1
∂t

= ∇2cu1 + ν̃

∫ ∞
0

∫ ∞
0

c88R dT1dT8 − cu1 , (33)
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∂cu8
∂t

= ∇2cu8 + µ̃

∫ ∞
0

∫ ∞
0

c1R dT1dT8 − π̃8c
u
8 , (34)

with

c88 = c88(t,x, T8) =
cu8T8

1 + cu8
,

c1 = c1(t,x, T1) =
cu1T1

1 + fcu8 + cu1
,

γ̃(cu1 , c
u
8 , T1) =

(
2cu1

c1 + ˜̄c1
− γ̃2

)
c1
cu1
,

δ̃(cu8 , T8) = 1− δ̃2
T8

1 + cu8
,

K[R, cu1 , c
u
8 ](t,x, T1, T8) = Ψ(δ; dist(x, ∂Ω))

α̃Kc1(t,x, T1)

∫ ∞
0

∫ ∞
0

∫
Dr0 (0)

c1(t, s, T̃1)σ̃(R(t, s, T̃1, T̃8))
s

|s|
ds dT̃1dT̃8

Here α̃K is a constant which represents the strength of the adhesion for some δ > 0 sufficiently small, Ψ(δ; ·) is
a smooth cut-off function such that Ψ(δ; y) ≡ 1 for y ≥ 2δ, Ψ(δ; y) ≡ 0 for y ≤ δ.

Numerical simulations in [49], evidence that the system (32)-(33)-(34) can produce spatial patterns in the
morphogenetic density R(t;x;T1;T8) for a wide range of the model parameters. The cell-cell adhesion flux term
plays a crucial role in this spatial pattern formation, as can be observed in Figure 12.

Figure 12: [49] Distribution of cell density
∫ ∫

R(t;x;T1;T8)dT1dT8 at times t = 0 and t = 1 for different values

of the cell-cell adhesion constant α̃K . Other values are r0 = 0.04, δ̃2 = 1, γ̃2 = 1, ˜̄c1 = 1, f = 0.8, dR =
0.04, π̃8 = 1, ν̃ = 0.8, µ̃ = 2. Initial distributions are represented by dashed lines and distributions at t = 1
are by solid lines. As α̃K is increased, periodic patterns appear as a result of random spatial noise added to the
initial distribution. Here periodic boundary conditions are used, so that the positions x = 0 and x = 1 denote
the same physical point. (Modified from [49].)

27



• Model of Iber-Badugu
In [5], Iber et al. proposed a model for the mechanism of patterning of digits in mouse limb, based on BMP-
receptor interaction. BMP signaling along with FGF gradient are important for digits formation [11, 12, 177]. It
is fairly interesting that the influence of SHH on the digit pattern formation has not been taken into account in
this model. This is based on the experiments described in [67, 147, 164], where it was found that the expression
of SHH terminates much faster than the expression pattern of Sox9, which is responsible for digit pattern.
Moreover in absence of Shh expression, digit pattern can also be observed [77]. Neglecting the effects of Shh
along the anterior-posterior polarity, Iber and the coworkers focused on the interactions of BMP (denoted as
B in the model), its receptor (denoted as R) and FGF (denoted as F ) under which the digits emerge in the
autopod. These interactions were well explained in figure 13. BMP and FGF diffuse relatively fast compared
to plasma membrane based BMP receptors. In the model, the diffusion of the ligand bound receptors, residing
mainly in cell, denoted as C in model, were ignored as they are internalised rapidly [69]. The rate of BMP
receptor binding is proportional to R2B, as BMPs are dimers, can bind two receptors. In the limb bud, BMP2
expression is reduced by the BMP2 signaling. Basing on this fact, the rate of BMP production is assumed in

the form PB
KB

KB + [C]
. In this way, the BMP and BMP-receptor dynamics is proposed as follows:

[Ḃ] = D̄B∆̄[B]︸ ︷︷ ︸
diffusion

+PB
KB

KB + [C]︸ ︷︷ ︸
production

−dB [B]︸ ︷︷ ︸
degradation

−kon[R]2[B] + koff [C]︸ ︷︷ ︸
complex formation

[Ċ] = kon[R]2[B]− koff [C]︸ ︷︷ ︸
complex formation

−dC [C]︸ ︷︷ ︸
degradation

,
(35)

where kon and koff are the binding and dissociation rate constants respectively. D̄B is the diffusion coefficient
for BMP molecules.

Production of receptor depends on the concentration of C as the signaling of BMP-bound receptors positively
regulates receptor production.

[Ṙ] = D̄R∆̄[R]︸ ︷︷ ︸
diffusion

+ pR + pC([C])︸ ︷︷ ︸
production

−dR[R]︸ ︷︷ ︸
degradation

−2kon[R]2[B] + koff [C]︸ ︷︷ ︸
complex formation

, (36)

where pR and pC are constants.
The receptor ligand assumes its quasi steady-state almost instantaneously as the dynamics of receptors

ligands complex are much faster than the dynamics of BMP, hence the concentration of bound receptors are
proportional to R2B, i.e.,

[C] ∼ kon
koff + dC

[R]2[B] = KC [R]2[B]; KC =
kon

koff + dC

It was proved in [5] that the system 35–36 was sufficient to produce pattern and it can be reduced to classical
Turing model Schnakenberg type if pC = 2dC and dB = 0.

Expression of BMP is induced by the FGF signaling, so the model was extended by the Badugu et al. in [5]
by introducing the production rate PB as a function of FGF concentration F,

PB(F ) = pb + p∗B
[F ]n

[F ]n +Kn
BF

KB

KB + [C]
,

where KBF and n are the Hill constant and Hill coefficient repectively. It has been found that BMP-bound
receptors signaling stimulate as well as inhibit FGF-dependent processes [33, 122]. Hence FGF activity is best
described as

PF ([C]) = pF
[C]n

[C]n +Kn
F1

Kn
F2

[C]n +Kn
F2

,
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where KF1 � KF2 are the Hill constants for the activation and inhibition impacts of BMP signaling. So the
dynamics of FGF is as follows,

[Ḟ ] = D̄F∆[F ]︸ ︷︷ ︸
diffusion

+ pF
[C]n

[C]n +Kn
F1

Kn
F2

[C]n +Kn
F2︸ ︷︷ ︸

production

− dF [F ]︸ ︷︷ ︸
degradation

, (37)

where D̄j (j = B,R, F ) are the diffusion coefficients with D̄R � D̄B , D̄F .
The shape of the domain was extracted from limb bud images at E12.5 and hence the system of equations

were solved on a growing domain (see Figure. 13). Except at the flank, developing limb bud does not exchange
with the surrounding, so zero-flux boundary conditions for B and R was incorparated with the system, while
FGF production was implemented as a flux boundary condition,

~n · ∇F = ρF
(R2B)n

(R2B)n + κn1

κn2
(R2B)n + κn2

,

where ~n is the unit normal vector.
An additional remark should be made here concerning a specific role of Sox9 gene which is not explicitly

taken into account in this model. Sox9 serves an important role in digit pattern formation, but according to
[5], only as a marker of endochondral differentiation. To be more precise, BMP-2 signalling stimulates the Sox9
expression and this enhances the Noggin expression, which has a negative impact on BMP signalling by changing
BMP into an inactive complexes [5, 184]. However, this approach was questioned by Sharpe et al. in [128] due
to the result that Sox9 is a part of Turing network rather than a marker of endochondral differentiation. Also,
in [128], Sharpe et al. are doubtful about the assumption of the model proposed by Iber et al. in [5] that the
diffusion of BMP receptors through tissue as it has no evidence.
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Figure 13: (A) It is considered in the model that the interactions of BMP, its receptor and FGF form a loop. In
fact, BMP receptor complexs are formed due to the reversible binding of BMP and its receptor, which induce
the production of receptors and enhances the FGF activity, while FGF induces BMP expression. (B) Therefore,
BMP has a positive impact on receptor as well as on FGF, both via BMP-receptor complexs (excluded from
the figure). It should be mentioned here that receptors act as auto-activatory when they are bounded by
BMP, whereas BMP enhances self-decay by receptor binding, and hence they are auto-inhibitory, and a mutual
enhancment is observed between BMP and FGF. (C) The domain of compuatation, based on the shape of a
limb bud, at E11.5. The radial axes of the elliptic bud are denoted as Ri, (i = 1, 2, 3, 4). Height and width of
the stalk are represented by H0 and W0, respectively. In the stalk, the height of the domain is denoted by H1.
The expression of BMP is upgraded at the height of the domain in the stalk. (Modified from [5])

•BSW Model (Raspopovic et al.)
In Turing-type reaction-diffusion systems, the wavelength of the patterns produced typically shows a strong
dependence on the parameters. So changes in the parameters will lead to changes in the wavelength. This
observation is one of the principal objections to the applicability of the Turing mechanism to bone pattern
formation in the vertebrate limb. After all, the number of elements is very stable and e.g. derivation from the
number of digits (in the form of surplus digits (polydactyly) or missing or fused digits (syndactyly)) relatively
rare.

Proponents of reaction-diffusion mechanisms have pointed out that the prevalence of congenital limb defects
is high relative to other defects, and higher than e.g. either Down syndrome or cleft palate, with prevalence
reported as 22.7 per 10,000 birth in a study in Thailand [65]; in a large study in Hungary, this number was
reported as 1 in 1816, or about 5.5 per 10,000 births ([38] as cited in [48]). Still, these incidences are quite low
on an absolute scale and do not put in question the basic argument of the robustness of the limb patterning
network. A more convincing reply was presented in a remarkable study by Sheth et al. (2012) [143]. The
authors generated a series of mouse mutants which lacked alleles for three genes that have beeen shown to be
important in digit formation, namely the distal Hox genes Hoxd11-13, Hoxa13, and Gli3, the major mediator of
Sonic Hedgehog sigmaling in limb development. Sheth et al present a total of 15 mutant types: 5 combination
of different Hox gene deletions; namely Hoxa13+/+; Hoxd11-13+/+, Hoxa13+/-; Hoxd11-13+/-, Hoxa13+/+;
Hoxd11-13-/-, and Hoxa13-/-; Hoxd11-13-/-. Each of these types was combined with eitehr the normal GLi3
dose, Gli3+/+, or the heterozygous dose Gli3+/XtJ, or the null dose Gli3XtJ/XtJ. With progressive removal of
Hox and Gli3, phenotypes show more and more digits, from the control number of 5 to 13 for the Hoxd11-13+/-;
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Hoxa13-/-;Gli3XtJ/XtJ mutant. Here the number of digits depends on the Hox dose, with finely graduated steps
(see Figure 14).

Sheth et al. created in a simple linear reaction-diffusion model, in which the parameters of the reaction
kinetics of a generic activator and a generic inhibitor were kept constant except the activator-dependent pro-
duction rate of the inhibitor, which was assumed to be under the joint control of FGFs and Hox genes. The
model showed that indeed, a reduction of Hox dose led to a decrease of the wavelength of the Turing pattern;
this wavelength could be tuned through control of the Hox dose.

These experimental results were then incorporated into a much more detailed model by Raspopovic et al.
(2014) [128], the so called BSW model. This model takes into account Sox9, the earliest skeletal marker in the
mouse, bone morphogenetic proteins (BMPs) and WNT. It was found that all three show spatially periodic
expression patterns. Sox9 was exactly out of phase with BMP and WNT, i.e. the peaks of concentration of Sox9
coincided with the concentration troughs of BMP and WNT, and vice versa. Two of the regulatory interactions
between the three components are known: WNT signaling inhibits Sox9 and BMP upregulates Sox9. The other
relationships in a Turing reaction-diffusion network were chosen in such a way that the linearized solutions
show the same phase pattern as the experiments, with BMP and WNT being in-phase and Sox9 being exactly
out-of-phase relative to them. In the linear reaction kinetics, a third order term was added to prevent blow up
of concetrations. This yields the so-called BSW model:

∂s

∂t
= αs + k2b− k3w − (s− s′)3

∂b

∂t
= αb − k4s− k5b+ db∇2b

∂w

∂t
= αw − k7s− k9w + dw∇2w

Here s(x, t), b(x, t) and w(x, t) are the concentrations of Sox9,BMP, and WNT, respectively. The parameters
αs, αw, αb, k2, k3, k4, k5, k7, k9 are postive constants, and db, dw are the diffusion coefficients of BMP and WNT,
respectively. Note that Sox9 doesn’t diffuse.
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Figure 14: Digit formation is shown in forelimbs. (A) Expression of Sox9 in limbs (E12.5) of the Hoxa13;Gli3
allelic series. Use of AP profiles for the analysis of Sox9 is shown by white and yellow curved lines. A digit
bifurcation is pointed by the red arrow and WT means wild type. (B) The curved lines indicate the staining
intensity of Sox9 along the yellow profile of (A). Length of AP axis and the duration of each digit formation
are measured and presented for Hoxa13+/−;Gli3XtJ/XtJ . (C) For each case of limb development, the average
periods of digit formation versus AP lengths is shown: in case of WT (control) and Gli3XtJ/XtJ (either the
normal or heterozygous dose of Hoxa13), linear relation is noticed, while in the case of Hoxa13−/−;Gli3XtJ/XtJ

(red line), a flatter relation together with bifurcations (red arrowhead) is observed. Corresponding to the yellow
line of (A) presented in (B) is shown by the curved arrow marks. Simulations of the reaction-diffusion model
inside an E12.5, Gli3 mutant limb shape are shown by (D) and (E). (D) Digit bifurcation (red arrow) similar
to the Hoxa13−/−Gli3XtJ/XtJ mutants is shown by the concentration of activator which is obtained in the
simulation with a uniform modulation of wavelength ω (shown in the graph). (E) The result of simulation: a
suitable PD gradient based modulated wavelength avoids bifurcations as the wavelength increases with growing
AP length. (Modified from [143].)

5 Discussion and Outlook

Recent years have seen the proposal of several new mathematical models of pattern formation in the vertebrate
limb, with the the Iber-Badugu model [5], the Glimm-Bhat-Newman galectin model [49] and the BSW model
[128]. These models rely on a much more in-depth understanding of relevant gene regulatory networks than
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previous models. One of the limitations of current modeling approaches is the relative lack of data for species
other than the mouse and the chicken. Thus it is presently not clear to which extent the proposed models
transcend the specific details of the model organism to reflect generic mechanisms that apply to all tetrapods.
For instance, Sox9 expression patterns are quite distinct for the mouse, the chicken and turtles, respectively
[98], and Sox9-null limb mesenchyne still exhibits precartilage condensations [6]. In turn, galectin-1 null mice
have been shown to have normally developed limb skeletons [45], so that questions about the generality of both
the galectin model and the BSW model remain.

All mathematical models presented in this survey have taken into account only a small number of compo-
nents, in contrast with the hundreds of molecules that have been shown to play a role in limb chondrogenesis. The
process itself is characterized by a great robustness and redundancy of many components. Newman et al. argue
in [109] that these models are not to be understood as necessarily competing explanations, but rather represent
different modules of a multisystem complex which each are capable of generating patterns in a self-organizing
way, but whose interplay yields the redundancy which is the source of the extraordinary robustness of the overall
patterning process. For instance, they speculate that the BSW network evolved from a differentiation-inducing
module that served as a ‘readout’ of an existing prepattern to a self-organizing patterning system in its own
right.

Arguably, despite the progress in recent years with new mathematical models, the conceptual understanding
of the mechanisms of chondrogenic pattern formation in the limb is lagging far behind experimental inves-
tigations, which have generated huge amounts of data through increasingly sophisticated visualization and
experimentation techniques. Besides expanding the investigation of component mechanisms to more species
than the mouse and the chicken, the analysis of how these different components may interact, reinforce each
other and yield robustness is a crucial future task. Addressing these problems will certainly encompass so-
phisticated integrated computational multi-scale models carefully vetted against data. However, mathematical
analysis of ’small’ model will remain relevant, for instance in addressing the question of how two independent
self-organizing systems acting in concert may enhance the robustness of the overall patterning process.
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[61] Herrero, M. A., López, J. M., Bone formation: Biological aspects and modelling problems. Journal of
Theoretical Medicine, 6(1), (2005), 41-55.

[62] Hirashima, T., Iwasa, Y., Morishita, Y., Distance between AER and ZPA is defined by feed-forward loop and
is stabilized by their feedback loop in vertebrate limb bud. Bulletin of mathematical biology, 70(2), (2008),
438-459.

[63] Hopyan, S., Sharpe, J., Yang, Y., Budding behaviors: Growth of the limb as a model of morphogenesis.
Developmental Dynamics, 240(5), (2011), 1054-1062.

[64] Hung, I.H., Yu, K., Lavine, K.J., Ornitz, D.M., FGF9 regulates early hypertrophic chondrocyte differ-
entiation and skeletal vascularization in the developing stylopod. Developmental biology, 307(2), (2007),
300-313.

[65] Jaruratanasirikul, S., Tangtrakulwanich, B., Rachatawiriyakul, P., Sriplung, H., Limpitikul, W., Dissanee-
vate, P., Khunnarakpong, N. and Tantichantakarun, P., Prevalence of congenital limb defects: Data from
birth defects registries in three provinces in Southern Thailand. Congenital anomalies, 56(5), 203-208, 2016.

[66] Javois, L.C., Pattern specification in the developing chick limb. Pattern formation, (1984), 557-579.

[67] Kawakami, Y., Tsuda, M., Takahashi, S., Taniguchi, N., Esteban, C. R., Zemmyo, M., ... & Asahara, H.
Transcriptional coactivator PGC-1α regulates chondrogenesis via association with Sox9. Proceedings of the
National Academy of Sciences of the United States of America, 102(7), (2005), 2414-2419.

[68] Keller, E.F. and Segel, L.A., Model for chemotaxis. Journal of theoretical biology, 30(2), (1971), 225-234.

[69] Kicheva, A., Pantazis, P., Bollenbach, T., Kalaidzidis, Y., Bittig, T., Jülicher, F., González-Gaitán, M.,
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List of morphogens connected with limb development
Morphogen
family

Sub-family Role References

FGFs (Fi-
broblast
Growth
Factors )

FGF-1
known as
FGF acidic

Involved in embryonic development,
cell growth, tissue repair etc.
Modifies endothelial cell migration and
proliferation.
Controls blastema cell proliferation at
the time of limb regeneration of the am-
phibians.

[179]

FGF-2,
known as
FGF basic

Controls the patterning along Proximo-
Distal and Anterior-Posterior axes.
Over expression of FGF-2 up-regulates
proliferation of mesenchymal cells,
leads to a duplications along the
Anterior-Posterior axis.

[39, 87, 131] [10, 51,
75, 112, 126]

FGF-4, also
known as
FGF-K or
K-FGF

Induces limb-bud initiation, growth and
patterning.
Promotes stem cell proliferation.

[17, 71, 113, 153]

FGF-5 Enhances expansion of connective tis-
sue fibroblasts.
Suppresses skeletal muscle development
in the limb.

[22]

FGF-7, also
known as
KGF

Induces the formation of an AER in
dorsal median ectoderm.

[176]

FGF-8 Stimulates the activities of AER.
Participates in the initiation of Shh ex-
pression in the mesoderm.
Maintains mesoderm outgrowth and
Shh expression in the established limb
bud.

[17, 23, 74, 153]

FGF-9, also
known as
HBGF-9 and
GAF

Involved in formation of proximal skele-
tal element in the developing limb.
Regulates early stages of chondrogen-
esis and promotes skeletal vasculariza-
tion and osteogenesis.

[64, 153, 164]

FGF-10 Regulates fgf10 gene expression in the
lateral plate mesoderm and may be in-
volved in the determination process of
the limb territories.
Acts as an endogenous initiator for limb
formation.
Involved in communication between
limb mesenchyme and AER.

[88, 96, 117, 142]

FGF-17 Acts similar to FGF-4 and FGF-9. [74, 87, 93, 113]
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FGF-18 Plays a negative up-regulating role in
skeletal development and bone home-
ostasis.
Acts for specification of L-R asymmetry
on limb development.
Lack of FGF18 in mice results in ex-
panded zones of proliferating and hy-
pertrophic chondrocytes and increased
chondrocyte proliferation, differentia-
tion, and Indian hedgehog signaling.

[78, 118, 116]

FGF-20 Acts similar to FGF-9. [11, 52]
Hedgehog
Family

Indian
hedgehog
(Ihh)

Involved in the growth of the endochon-
dral skeleton, but is not directly in-
volved in limb development.

[146, 167]

Shh (Sonic
hedgehog)

Regulates vertebrate organogenesis, es-
pecially the growth of digits of limbs.
Shh is secreted from the ZPA.

[167] [153, 7, 20,
24, 40, 57, 130, 139,
140, 154]

Notch family Notch-1 Regulates interactions between physi-
cally adjacent cells.
Contributes in the regulation of mes-
enchymal apoptosis during digit forma-
tion.
Involved in limb mesenchymal develop-
ment, especially has an impact on au-
topod from the dorsal and/or ventral
ectoderm.

[121]

Notch-2
Notch-3
Notch-4

TGFβ
(transform-
ing growth
factor beta)

Regulates chondrocyte formation, pro-
liferation and differentiation during
limb development.

[43, 59, 73, 81]

RA (retinoic
acid, a
metabolite
of vitamin
A)

Stimulates the growth of the posterior
end of the limb.

[127]

Wnt/beta-
catenin

Acts during: 1. limb initiation, 2. limb
patterning, 3. late limb morphogenesis,
4. myoblast differentiation in the limb,
5. long bone development.

[21, 58, 175]

TBox TBX4 Induces the growth of hindlimb. [125]
TBX5 Accelerates the expression of FGF10

and growth of forelimb
[125]
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Hox genes HoxA &
HoxB

Control the body plan along the cranio-
caudal axis of an embryo. At a specific
position, Hox genes are sequentially ac-
tivated in a rostrocaudal pattern and
this is crucial for the induction of limb
growth.

[125]

BMP(Bone
morpho-
genetic
protein)

Upregulates the FGF expression. [5, 11, 12, 177]
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