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2. Summary

Stochasticity is an inherent property of regulatory networks in living cells. Random fluctua-
tions of molecules levels arise from small numbers of interacting molecules. Such molecular
noise can be attenuated to assert precise response for a signal. However cells often exploit
stochasticity, as it introduces heterogeneity, which can be beneficial in fluctuating environ-
ments, increasing chances for survival. Understanding the influence of different types of
noise on the state of the system can be especially interesting for synthetic biology, providing
additional tool for controlling the systems behavior.

In my research I analyzed the influence of different types of noise, originating from distinct
molecular processes like gene switching, transcription, translation, diffusion of molecules
and cell division, on the choice of the preferred state in bistable biochemical systems. I
applied mathematical description of Markov processes to analyze stochastic models of a
single self-regulating gene, auto-activating kinases and a pair of mutually repressing genes
in growing and dividing cells. The model of auto-activating kinases was analyzed both in a
well-mixed reactor and in a spatially heterogeneous compartment. All other systems were
analyzed assuming perfect mixing, which is a good approximation for bacterial cells and
small compartments in eukaryotic cells.

I showed that the type of noise determines the most stable stationary state. In a self-
regulating gene model I found a subdomain in the parameter space, in which the system is
preferably in the active state (high gene expression) for dominating gene switching noise,
while for dominating transcriptional noise, the system is preferably inactive (low gene ex-
pression). In the toggle switch model I showed that increasing gene switching noise for one
gene, significantly increases its chances of “winning” over the second gene, while decreasing
dimerization noise for one gene has the opposite effect, i.e., significantly decreases its chances
of “winning” over the second gene.

Another important source of noise is cell growth and division. I showed that the epigenetic
states of a bistable system are stabilized, when the cell growth rate decreases. In the toggle
switch model the non-growing and non-dividing cells switch six orders of magnitude slower
than cells dividing every one hour. The observed effect is caused mainly by decreasing
protein and mRNA burst sizes with an increasing cycle length, as magnitude of protein level
fluctuations is highly influenced by the protein burst size, and to a lesser degree by the
mRNA burst size.

State-to-state switching in spatially extended bistable systems was analyzed in a model
of auto-activating kinases. First, a simple birth-death process was analyzed in a well-mixed
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reactor with addition of flux into and out of the reactor (additive noise). Results of this
preliminary analysis suggested that in the spatially extended system (not perfectly mixed),
the level of diffusion and the size of the reactor can determine the state of a bistable system.
This hypothesis was confirmed in the analysis of the model of auto-activating kinases on a
two-dimensional triangular lattice. The same system can be preferably inactive in a small
compartment, while in a larger compartment it will activate due to traveling wave propaga-
tion, which can arise due to an external stimulation or even spontaneously due to a localized
stochastic activation.
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3. Summary (in Polish)

Wp lyw charakterystyki szumu na wzgl
↪
edn

↪
a stabilność atraktorów w

bistabilnych uk ladach biochemicznych

Bistabilność i multistabilność obecne w uk ladach regulatorowych w szczególności w pro-
cesie ekspresji genów pe lni ↪a ważne funkcje zarówno w komórkach bakteryjnych jak i eukario-
tycznych definiuj ↪ac optymalne stany epigenetyczne komórki. Bistabilność populacji bakterii
umożliwia komórkom o tym samym genotypie przejawianie odmiennych cech fenotypowych,
co zwi ↪eksza szans ↪e na przetrwanie populacji w zmiennym środowisku. Losowość (stocha-
styczność) z kolei umożliwia przeskoki mi ↪edzy wyróżnionymi stanami.

Jednym ze sposobów uwzgl ↪ednienia losowości w procesie regulacji ekspresji genów jest do-
danie do równań deterministycznych parametru szumu (dyfuzji). Otrzymuje si ↪e w ten sposób
tzw. przybliżenie Langevina. W pracy pokazano, że opis ten nie stanowi satysfakcjonuj ↪acego
przybliżenia. Dok ladniejszy opis stochastyczny uzyskuje si ↪e traktuj ↪ac poszczególne reakcje,
np. utworzenie lub degradacj ↪e moleku ly, jako zdarzenia losowe, które zachodz ↪a zgodnie z za-
danym (wyznaczonym przez parametry modelu) rozk ladem prawdopodobieństwa. Opisany
w ten sposób proces ma charakter procesu Markowa z czasem ci ↪ag lym. Proces ten zadaje
nieskończony uk lad równań M (chemical master equations), którego stacjonarne rozwi ↪azanie
określa rozk lad prawdopodobieństwa liczby moleku l i pozwala wnioskować na temat wzgl ↪ed-
nej stabilności atraktorów (stabilnych stanów stacjonarnych), gdy ten rozk lad jest bimodalny.
Jednakże, poza szczególnymi przypadkami, analityczne rozwi ↪azanie równań M jest niemoż-
liwe, a numeryczne niezwykle trudne. Motywuje to metody przybliżone (np. opis Langevina)
i symulacyjne (z wykorzystaniem algorytmu Gillespiego).

Celem pracy jest wykazanie wp lywu charakterystyki szumu na wzgl ↪edn ↪a stabilność atrak-
torów uk ladu biochemicznego. Rozpatrywane s ↪a podstawowe modele regulacji ekspresji ge-
nów - podstawowego procesu biologii komórki, oraz model autoaktywuj ↪acych si ↪e kinaz. Ba-
dane modele w deterministycznym opisie (przy pomocy równań różniczkowych) wykazuj ↪a
bistabilność, t. j. posiadaj ↪a dwa stabilne rozwi ↪azania stacjonarne. W stochastycznych opisie
modeli, wyodr ↪ebnione zosta ly poszczególne grupy reakcji, które s ↪a traktowane jako źród la
różnych typów szumu. W szczególności rozpatrywane s ↪a nast ↪epuj ↪ace komponenty szumu:
szum prze l ↪aczania genu, transkrypcyjny, translacyjny, dimeryzacji, szum zwi ↪azany ze wzro-
stem i podzia lami komórki oraz szum zwi ↪azany z dyfuzj ↪a moleku l. Celem jest zbadanie
wp lywu wielkości poszczególnych typów szumu na wybór globalnego atraktora, t. j. stanu
stacjonarnego, w otoczeniu którego koncentruje si ↪e wi ↪ekszość masy prawdopodobieństwa,
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oraz wyznaczenie czasów przeskoków pomi ↪edzy stanami stacjonarnymi.
W pracy rozpatrywane s ↪a dwa podstawowe bistabilne uk lady ekspresji genów: uk lad

pojedynczego genu z nieliniowym dodatnim sprz ↪eżeniem zwrotnym oraz uk lad wzajemnie
wyciszaj ↪acych si ↪e genów, tzw. ”toggle switch”. W modelu pojedynczego genu uwzgl ↪ednione
zosta ly procesy prze l ↪aczania genu pomi ↪edzy stanami aktywnym i nieaktywnym, produkcja
i degradacja moleku l mRNA i bia lka. Nieliniowość sprz ↪eżenia jest konsekwencj ↪a aktywacji
genu na skutek przy l ↪aczenia dimeru bia lka lub niezależnie dwóch moleku l bia lka. W obu
przypadkach tempo aktywacji genu zależy od kwadratu liczby moleku l bia lka. W modelu
zosta lo pokazane, że dla fizjologicznego zakresu parametrów od tego, który rodzaj szumu jest
dominuj ↪acy, zależy, który z dwóch stanów uk ladu jest preferowany. Pokazano i wyjaśniono
przeciwstawny efekt zmniejszania szumu transkrypcyjnego i szumu prze l ↪aczania genu oraz
znikomy wp lyw zmiany szumu translacyjnego na określenie preferowanego stanu stacjonar-
nego (bardziej stabilnego atraktora). W modelu ”toggle switch” pokazano, że zwi ↪ekszenie
szumu prze l ↪aczania jednego z genów sprzyja wyborowi stanu, w którym drugi z genów jest
bardziej aktywny. Natomiast zwi ↪ekszenie szumu dimeryzacji bia lka b ↪ed ↪acego wynikiem eks-
presji jednego z genów sprzyja aktywacji tego samego genu.

W modelu bakteryjnego uk ladu ”toggle switch” w dziel ↪acych si ↪e komórkach zosta l zba-
dany wp lyw podzia lów komórkowych na wybór preferowanego stanu oraz na średni czas
przebywania w poszczególnych stanach. Problem analizowano w zależności od d lugości cy-
klu komórkowego określonego z kolei dost ↪epności ↪a substancji odżywczych. Pokazano istotne
zwi ↪ekszenie tempa prze l ↪aczeń w komórkach o krótszym cyklu komórkowym.

Dynamika prze l ↪aczeń pomi ↪edzy epigenetycznymi stanami komórki by la rozpatrywana
również w przestrzennym modelu autoaktywuj ↪acych si ↪e kinaz. Model przeanalizowano naj-
pierw przy za lożeniu, że komórka stanowi dobrze wymieszany reaktor (czyli dyfuzja jest
duża w stosunku do rozmiaru komórki). W tak uproszczonym modelu uwzgl ↪edniono prze-
p lyw kinaz pomi ↪edzy reaktorem a jego otoczeniem. Uzyskane wyniki pozwoli ly postawić
nast ↪epuj ↪ac ↪a hipotez ↪e: w bistabilnych uk ladach przestrzennych szybkość dyfuzji oraz rozmiar
reaktora mog ↪a decydować o wyborze preferowanyego stanu uk ladu. Analiza modelu autoak-
tywuj ↪acych si ↪e kinaz na dwuwymiarowej trójk ↪atnej siatce potwierdzi la s luszność postawionej
hipotezy. Pokazano, że ten sam uk lad może być nieaktywny w ma lym reaktorze, podczas gdy
w wi ↪ekszym reaktorze zostanie zaaktywowany przez propagacj ↪e fali aktywacji, która może
powstać dzi ↪eki spontanicznej lokalnej aktywacji.

Wyniki opisane w pracy doktorskiej mog ↪a znaleźć zastosowanie w biologii syntetycz-
nej do projektowania uk ladów regulatorowych umożliwiaj ↪acych reprogramowanie komórek.
Szczególnie cennym by loby selektywne reprogramowanie komórek, np. rakowych lub zainfe-
kowanych wirusem.

Badania by ly prowadzone w ramach projektu TEAM: “Efekty molekularne i przestrzenne
w sygnalizacji komórkowej” finansowanego przez Fundacj ↪e na rzecz Nauki Polskiej (TEAM/
2009-3/6) w latach 2009-2013.
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4. Introduction

4.1 Molecular noise – the origins and consequences for

living cells

Origins of noise

Chemical reactions are probabilistic by nature [1, 2]. Molecular noise in cells arises from small
numbers of interacting molecules and from fluctuations in extra- and intra-cellular conditions.
The level of gene expression varying from cell to cell was experimentally observed for the first
time in production of beta-galactosidase in individual cells of Escherichia coli, reported in
1957 [3]. Thirty years later appeared first studies using an expression reporter in single cells,
which confirmed the large cell-to-cell variability in the expression of beta-galactosidase [4].
An increase of the inducer dose was found not to cause the uniform increase of expression in
every cell, as it was expected, but it increased the probability that the gene is expressed at
high level. Individuality of bacterial cells was first explained by Poissonian fluctuations of
small numbers in 1976 [5]. The first theoretical models of stochastic gene expression appeared
over twenty years later [6, 7]. Gene expression was modelled using a stochastic formulation
of chemical kinetics derived by Gillespie [8]. It was proposed that proteins are produced
in short bursts of a variable number of molecules, when a small number of mRNA appears
due to promoter activation. It was also shown that stochastic effects in gene expression can
explain why some E. coli cells infected by a λ phage followed the lytic pathway, leading to the
host cell death and release of new phages, while others chose the lysogenic pathway, in which
the nucleic acid of the phage integrates into the bacterial chromosome and is transmitted to
daughter-cells until the lytic cycle is triggered by an environmental change, like UV radiation,
or by a stochastic switch.

Noise affecting all biochemical systems present in living cells can by classified as intrinsic
or extrinsic. Intrinsic noise is inherent to the analyzed system. It originates from small num-
bers of interacting molecules present in this system. Extrinsic component of noise originates
from random fluctuations of other cellular components, such as concentrations of regulatory
proteins, polymerases, rybosomes, which vary between cells. In the model of gene expression
presented in Fig. 4.1, the intrinsic noise originates from random events of reactions: gene
activation and inactivation, mRNA transription and degradation, and protein translation
and degradation. Each reaction occurs with a given propensity, i.e., a probability that the

6



Inactive 
gene

Active 
gene

mRNA
X

Protein
Y

o

o

kg

rg

km rm

kp

rp

kg - gene activation rate

rg - gene inactivation rate

km - mRNA transcription rate

rm - mRNA degradation rate

kp - protein translation rate

rp - protein degradation rate

Figure 4.1: Schematic of gene expression.

reaction occurs in time t divided by t in the limit of t converging to 0. Physiological ranges
of gene expression kinetic parameters are listed in the Table 4.1. These parameters are also
subject to extrinsic noise, which causes them to fluctuate in time and vary between cells.
Below, the origins and properties of the intrinsic noise in regulatory networks are described.

Two basic measures are used to quantify noise in the protein level: the coefficient of
variation and Fano factor. The coefficient of variation (CV) defined as the standard deviation
divided by mean is a dimensionless measure. The Fano factor (FF, index of dispersion) is
defined as a variance divided by mean. FF = 1 for the Poisson distribution. When the FF <
1, like in the binomial distribution, a dataset contains patterns of occurrence that are more
regular than the randomness associated with a Poisson process. For clumped, concentrated
data FF > 1, like in the negative binomial distribution and geometric distribution. For a
stochastic model described by the schematic in Fig. 4.1, the mean protein number E(Y )
equals kmkp/rmrp and the Fano factor of the protein number is given by the formula [9]:

FF =
rmrprg(rm + rp + rg + kg)

kg(rm + rp)(rm + kg + rg)(rp + kg + rg)
E(Y ) +

kp
rm + rp

+ 1. (4.1)

The first term in this formula can be used to quantify the contribution of random gene
switching to protein level fluctuations. This term converges to zero for kg and rg much higher
than the other rate constants. For kg and rg much smaller than the other rate constants it
converges to E(Y )rg/kg. The second term is approximately equal to the mean protein burst
size b (defined as kp/rm), when rp � rm. This condition (rp � rm) is usually satisfied in
both prokaryotes and eukaryotes, see Table 4.1 with annotations.

Random switching of the gene state was first proposed in the model in [10]. It was shown
that the operator state switching can significantly affect the protein distribution, not only
quantitatively but also qualitatively. Noisy genetic switches can have bifurcations driven
solely by the rate of operator switching even when the underlying deterministic system
remains unchanged. Operator switching results in emergence of mRNA bursts, which were
observed experimentally, first in eukaryotes (Saccharomyces cerevisiae) [11, 12], then also
in E. coli cells [13]. However, bursts observed in eukaryotes, are longer and less frequent
[14, 15]. It was proposed that chromatin remodeling may play role in stochastic switching
in eukaryotes [12, 16], while transcription factors binding and unbinding to the DNA result
in noisy transcription in both prokaryotes and eukaryotes.
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One of the main sources of randomness in protein levels in bacterial [6], as well as in
eukaryotic cells [4, 17–20] are protein bursts. Theoretical analysis of protein bursting in
bacteria [21, 22] revealed that the FF of the protein number distribution approximately
equals (b + 1). It was shown that the production of proteins in a two-step process enables
an independent control of the mean and variance of the molecule distribution. However,
reduction of noise by increasing the number of transcripts is costly. That means that living
organisms during evolutionary adaptation have made trade-offs between energy efficiency
and attenuation of fluctuations by a decrease of the protein burst size.

Theoretical models were verified in experiments [23–25], which confirmed the existence of
random, sharp bursts of proteins in E. coli cells. Additionally, contributions of frequencies of
transcription and translation to fluctuations in the protein level were computed [23] basing
on measurements of expression of a green fluorescent reporter gene in the chromosome of
Bacillus subtilis. The experiments confirmed earlier theoretical predictions [22] that the
CV depends inversely on the rate of transcription and does not depend on the translation
rate. Recent experiments providing a quantitative analysis of E. coli transcriptome and
proteome [26] show a very small (below 1) mean number of mRNA for most of the genes.
When translation occurs in large bursts, these rare events of transcription result in high
fluctuations of the protein number.

The two mechanisms by which noise is generated - extrinsic and intrinsic - were ex-
perimentally discriminated and their relative contribution to the level of fluctuations was
measured in E. coli [27]. These relative contributions were calculated on the basis of the
degree of correlation between two distinguishable fluorescent protein markers expressed from
two copies of the same promoter. The extrinsic noise affects both promoters in one cell in
the same way, while intrinsic noise introduces differences in the expression of these genes.
Thus the intrinsic noise ηint can be defined as the mean relative difference in fluorescence
intensity of the two promoters:

η2int =
〈(c− y)2〉

2〈c〉〈y〉 . (4.2)

c and y denote vectors of average fluorescence intensities from the two promoters. Extrinsic
noise ηext is defined as normalized covariance of fluorescence intensity of the two promoters:

η2ext =
〈cy〉 − 〈c〉〈y〉
〈c〉〈y〉 . (4.3)

The examination revealed that at low levels of expression both forms of noise are present.
At intermediate expression levels extrinsic noise dominates. At high expression levels both
forms of noise have comparable and small magnitudes. It was also confirmed that noise
has a genetic component. Analytical expressions for extrinsic and intrinsic noise levels were
derived in [28]. Later, time-lapse measurements showed that in E. coli the time scale for
intrinsic and extrinsic fluctuations are different: for intrinsic noise it is less than 9 minutes,
while for extrinsic noise it is approximately the length of the cell cycle [29]. Taniguchi et al.
[26] measured the intrinsic and extrinsic noise limits. The squared CV of the protein number
has an intrinsic component equal at least 1/µp and extrinsic component equal at least 0.1.
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In yeasts noise is mostly influenced by extrinsic sources [12, 16], such as a cell size, variation
in common upstream factors, and chromosomal location of the gene. In bacteria extrinsic
noise arises mostly due to variation in common upstream factors [27].

Table 4.1: Physiological kinetic parameters ranges.

Reaction Symbol Prokaryotes Eukaryotes

(E. coli, volume 1µm3 ) (mammalian cell, vol. 2×103µm3)

gene switching kg, rg
(1) (1)

mRNA transcription km ≤ 0.84[1/s](2) ≤ 0.84[1/s](3)

protein translation kp ∼ 10−2÷ ∼ 10[1/s](4) 0.018÷ 1.8[1/s](5)

mRNA degradation rm 6× 10−4 ÷ 10−2[1/s](6) 1.7× 10−5[1/s]÷ 1.7× 10−3[1/s](7)

protein degradation rp ∼ 1.4× 10−5÷ ∼ 10−2[1/s] (8) 1.7× 10−6[1/s]÷ 1.7× 10−3[1/s] (9)

mRNA number X 10−4 ÷ 5 (10) 0.5÷ 5× 104 (11)

protein number Y 10−1 ÷ 104 (12) ∼ 50÷ 108 (13)

Gene switching:
(1) For prokaryotes gene switching is faster than for eukaryotes [11]. Slow gene switching

in eukaryotes is causing large mRNA bursts [15]. The transcriptional bursting was also
observed at an E. coli promoter [13].

mRNA transcription:
(2) For E. coli maximal transcription rate: 0.16÷ 0.84/s [30].
(3) For eukaryotes maximal transcription rate: 0.16÷ 0.84/s [31].
Protein translation:
(4) Translation initiation intervals are of the order of seconds, although they are specific

for each mRNA [32]. E. coli : translation initiation rate may vary at least 1000-fold [33];
examples of translation initiation frequencies: β-galactosidase – 0.31/s (spacing between
ribosomes: 110 nucleotides), galactoside acetyltransferase – 0.06/s (spacing between ribo-
somes: 580 nucleotides) [30]; maximal peptide chain elongation rate: 20aa/s [34, 35]; average
peptide chain elongation rate: 12aa/s [30].

(5) Translation rate for eukaryotes: 0.018÷ 1.8/s [36].
mRNA degradation:
(6) The vast majority of mRNAs in a bacterial cell are very unstable, having a half-life

of about 3 minutes (decay rate 3× 10−3/s) – bacterial mRNAs are both rapidly synthesized
and rapidly degraded [37]. E. coli : mRNA half-lives span between 1 and 18 minutes (decay
rates 10−2/s÷ 6× 10−4/s) [38].

(7) The eukaryotic mRNAs are more stable than prokaryotic with half-lives exceeding
10 hours (decay rate 2 × 10−5/s). However many eukaryotic mRNA half-lives are of order
of 30 minutes (decay rate 3 × 10−4/s) or less [37]. Mammaliam mRNA degradation rates:
1.7× 10−5/s÷ 1.7× 10−3/s [39].

Protein degradation:
(8) Most of bacterial proteins are very stable, with degradation rates: 1.4× 10−5 ÷ 5.6×

10−5/s [40]. Some proteins have much higher degradation rates. E. coli RNase R has
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degradation rate of 10−3/s (in exponential phase) [41], factor σ32 has degradation rate of
10−2/s (in steady-state growth phase) [42].

(9) Yeast: protein degradation rates: 2 × 10−5/s ÷ 8 × 10−3/s [43]; Mammals: protein
degradation rates: 1.7× 10−6/s÷ 1.7× 10−3/s [39].

mRNA number:
(10) E. coli : average mRNA copy number 10−4 ÷ 5 molecules/cell [26].
(11) Mammals (Mice): average mRNA copy number observed in natural transcriptomes:

0.5 ÷ 5 × 104 molecules/cell [44], [45]. Yeast: typically 0.3 ÷ 200 molecules of mRNA/cell
[46], most genes has 0.1÷ 2 mRNA/cell [47];

Protein number:
(12) E. coli : average protein copy number 10−1 ÷ 104 molecules/cell [26].
(13) Mammals: maximal protein copy number 108 molecules/cell [48]. Yeast: 50 ÷ 106

protein molecules/cell [49]; most yeast genes: 103 ÷ 5× 104 protein molecules/cell [50].

Noise control mechanisms

In spite of the stochasticity in regulatory mechanisms, many regulatory pathways have highly
predictable outcomes. To decrease influence of noise cells use redundancy in genes (duplicates
or paralogues) [51–53] and in regulatory pathways [54, 55], (multiple) feedback loops [56] and
checkpoints to assure the proper order and synchronized development of events, like in the
cell cycle control [57–59].

Sensitivity to noise is attenuated in developmental pathways of metazoans. For example
Caenorhabditis elegans developed regulation mechanism (basing on interlocking feedback
loops) to avoid stochastic outcome in differentiation of gonadal precursor cells. An anchor
cell (cell A) and a ventral uterus cell (cell U) are derived from Z1 and Z4 gonadal precursor
cells. First, cell A arises (as a result of differentiation) randomly from either cell Z1 or cell
Z4. Then, due to the regulatory feedback via intercellular signaling, the second of the two
gonadal cells (Z1 or Z4) becomes a cell U. In this way, the final regulatory outcome is not
affected.

Another example of mechanism decreasing sensitivity to noise in the input is hysteresis.
Due to hysteresis, induced by noise rapid stochastic switching on and off (chatter), appearing
in ultrasensitive systems, can be avoided. Such mechanism is very commonly exploited by
cells. It is present, for example, in the bacterial chemotaxis in flagellar motor response
[60, 61].

Noise exploitation

It was commonly assumed that noise is undesirable for cells as it reduces precision of control.
However, it turned out that cells not always tend to eliminate or attenuate noise. In many
cases noise is beneficial. It can introduce heterogeneity, which increases chances for survival
in varying environment [5, 7, 62–67]. Intrinsic stochasticity enables coexistence of two de-
velopmental pathways in population of phage λ-infected E. coli cells: lytic and lysogenic
[7].
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Extracellular noise, present in cell–to–cell signaling systems due to environment pertur-
bations, if common to all cells, can also enhance synchronous oscillations [68] or even induce
such oscillations in deterministically monostable systems [69, 70].

Noise can help to achieve reliable cellular decisions under fluctuating extracellular condi-
tions. Such mechanism is exploited in the soil bacterium Bacillus subtilis during reversible
progression toward commitment (spore formation) [71]. In stressful environment the ma-
jority of B. subtilis cells form spores, which are extremely resistant. It was observed that
sporulation proceeds through noisy and reversible steps toward an irreversible, switch-like
dynamics of the commitment to spore formation. Analysis of a mathematical model of this
process showed that reversible progression allows cells to remain responsive to long-term
environmental fluctuations, while the existence of the irreversible commitment point enables
reliable execution of cell fate choice, which is robust against short-term reductions in stress.
This combination of gradual and all-or-none dynamics during cell fate choice allows B. sub-
tilis colonies to survive in changing environment. Similar strategy is exploited in mammalian
cells in decisions concerning apoptosis [72].

Signal fluctuations, instead of reducing precision of control, can sharpen the response of
the regulated process [73–75]. It was shown that internal noise in cellular control systems
can be used to increase sensitivity by stochastic focusing [74]. The stochastic focusing is
present in the system of gene expression with repression, where number of repressor molecules
exponentially decreases. The signal is defined as a repressor number. The answer of the
system is defined as a waiting time for the first transcribed mRNA. It was shown that in
this system random signal fluctuations reduce fluctuations in the controlled process. This
effect (the stochastic focusing) can be observed in all systems where reaction rates depend
nonlinearly on randomly fluctuating concentrations.

Another noise-driven mechanism present in cells is a stochastic resonance, emerging in
nonlinear systems, when noise enhances detection of weak signals [76, 77]. This effect was first
observed in bistable stochastic systems under periodic external force. It was shown that in
such system the average time of state-to-state transitions is correlated with the periodicity
of the external forcing. Without noise or with very small magnitude of noise the system
oscillates near one of the stationary points, see Fig. 4.2 (A). When noise is present but
the periodic force is absent, the process is a diffusion process in a bistable potential (with
two local minima). In such case mean transition times Ttransition between steady states,
i.e., between minima of the potential, are determined by the diffusion coefficient and the
potential. When both noise and a periodic force are present, the response of the system is
negligible unless the period of the forcing is close to Ttransition, see Fig. 4.2 (B) compared
to Fig. 4.2 (A). The amplitude of the response has a sharp maximum for an intermediate
(finite) level of noise, Fig. 4.3. This sharp maximum is one of the principal signatures of
the stochastic resonance, as it significantly enhances sensitivity to a weak periodic signal.
The stochastic resonance can be observed also in systems with coexisting attractors other
than fixed points. Stochastic resonance has been reported and quantified in many diverse
systems, among them in neural models [78, 79], physiological neural populations [80–82] and
networks [83], chemical reactions [84] and ion channels [85].
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(A) (B)

Figure 4.2: Response of the bistable stochastic systems under a periodic external force
for small noise magnitude (A) and medium noise magnitude (B). The upper panels
show the bistable potential. The lower panels show the response (blue) and the pe-
riodic force (red). Images from the website of the Wolfram Demonstration Project
(http://demonstrations.wolfram.com/StochasticResonance)

Recent experiments confirm that intracellular molecular noise can reduce uncertainty.
Noise in hoxb1a/krox20 expression during development of rhombomeres in the zebrafish
hindbrain promotes sharpening of boundaries between adjacent segments [86]. The mor-
phogen retinoic acid induces expression of hoxb1a and krox20 genes in different neighboring
domains. Experimental analysis revealed that edges around these gene expression domains
are at first rough and then sharpen within a few hours. Computational analysis of a spa-
tial stochastic model showed that fluctuations in the morphogen initially induce a rough
boundary, which requires noise in hoxb1a/krox20 expression to sharpen.

4.2 Bi- and multistability in regulatory networks

The bistable regulatory elements play an important role in living organisms as they enhance
heterogeneity and may allow cells in multicellular organism to specialize and specify their
fate. Decisions between cell death, survival, proliferation and senescence are associated
with bistability and stochasticity, magnitude of which controls transition rates between the

12



Figure 4.3: The dependence of an amplitude (A) of the periodic component of the response
of a bistable stochastic systems under a periodic external force on the noise magnitude
(i.e., variance in the signal q2). The system is described by a symmetric quartic potential
U(x) = x4/4− x2/2. The periodic force has an amplitude equal 2π/105 and frequency equal
0.001. Image from the Scholarpedia article on the stochastic resonance.

particular attractors [87–89]. In prokaryotes the bistability is regarded as an optimal strategy
for coping with infrequent changes in the environment [66].

The simplest regulatory element exhibiting bistability is the self-regulating gene con-
trolled by a nonlinear positive feedback [90–94]. While not often found as an isolated entity,
the self-regulating gene is a common element of biological networks; for example, 40% of
E. coli transcription factors negatively regulate their own transcription [95]. Sinderen et al.
demonstrated that transcription factor comK acts as an autoregulatory switch in Bacillus
subtilis [96]. The synthetic auto-regulatory eukaryotic gene switch was studied in Saccha-
romyces cerevisiae [97]. The other intensively studied regulatory elements exhibiting bista-
bility are the auto-activating kinases system in mammalian cells [98–100], lactose utilization
network [101] in E. coli, the genetic toggle switch - a pair of mutual repressors [102, 103]. A
classical example of the toggle switch is the regulatory circuit governing alternative lysogenic
and lytic states of phage lambda [104].

Necessary conditions for bistability are the positive feedback loop and ultrasensitivity.
The latter requires that two mechanisms are present: a mechanism filtering out small stimuli
thus enabling a stable ”off” state, and a mechanism stabilizing high state [105]. In systems
with underlying bistability, even for low noise, the stochastic trajectories exhibit stochastic
jumps between basins of attraction and thus diverge qualitatively from the deterministic
solutions. The relative stability of steady states depends on the system volume (or noise
strength) [106]. Despite the low copy number of proteins and mRNAs, genetic switches
may exhibit very low transition rates, resulting in stable epigenetic properties that persist
in simplest organisms for many generations [104, 107]. The attractors of genetic networks
can be associated with distinct cell types achieved during cell differentiation [107, 108]. In
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a single cell in the long time scale the relative occupancy of steady states is determined by
their relative stability. The same, however, may not be true for cell population when the
two steady states are associated with different growth rates. As demonstrated by Nevozhay
et al. the fraction of cells in the most strongly attracting steady state may be low, if these
cells have lower growth rate than cells in the less stable steady state [109]. Thus, in the
context of cell population the relative occupancy of a given state is defined by the rates of
state–to–state transitions (or memory) and fitness associated with particular steady states.

4.3 Modeling noisy cellular networks

Master equations and the Gillespie algorithm

Due to noise present in living cells, modeling cellular dynamics using ordinary differential
equations (ODEs) leads to imprecise or sometimes even qualitatively wrong results.

In a more accurate approach, all variables represent discrete numbers of molecules, instead
of continuous concentrations, as in previously described approaches. Reaction rates are
replaced with propensities, i.e., probabilities for each reaction to happen in an infinitesimal
period of time. Such description represents a continuous time Markov process. In Markov
processes the probabilities of state transitions satisfy the Chapman-Kolmogorov equation:

P (X3, t3|X1, t1) =
∑
X2

{P (X3, t3|X2, t2)P (X2, t2|X1, t1)}, (4.4)

for t1 < t2 < t3 denoting time, and X1, X2, X3, denoting states of the system. The master
equation:

dpX(t)

dt
=

∑
X′

{WXX′pX′(t)−WX′XpX(t)}, (4.5)

where WXX′ denotes the propensity of transition from state X to X ′, can be derived from
the equation (4.4) in the limit of t3 → t1, see [2].

In this approach, like in the ODE description, it is assumed that the system is well
mixed. This assumption is satisfied, when the size of the reactor is smaller than a ball of
radius

√
D/k, where k (∼ 1/s) is a rate of the fastest reaction. In E. coli (size ∼ 4 µm3)

diffusion coefficientD of proteins (monomers or complexes) of size 20-130 kDa ranges between
5 and 10 µm2/s [110, 111]. Which means that a well-mixed approximation is reasonable for
bacteria.

Master equations theoretically provide an analytical description for the probability dis-
tribution of all variables present in the system. However, this equations can be solved only
in the simplest cases [90, 112–114]. In some cases approximated methods can be applied
[2, 115–117].

Approximation of the solution to master equations can be obtained by Monte Carlo
simulations performed using the Gillespie algorithm [8]. In the algorithm, the time for the
next reaction event is calculated from the exponential distribution and the system is updated
accordingly in an iterative manner.

14



Langevin equations

A master equation describing a birth–death process with N species and M reactions can be
approximated by the Langevin equations [118]:

dxi(t)

dt
=

M∑
j=1

vijrj(x) +
M∑
j=1

vijrj(x)1/2ηj(t), (4.6)

(i=1,...,N), where x is a vector of concentrations, v is a stoichiometric matrix, r is a vector of
propensities and ηj(t) are temporally uncorrelated, statistically independent Gaussian white
noises.

Solution can be obtained by solving a corresponding Fokker–Planck (or Kolmogorov
forward) equation:

∂P (x, t)

dt
= −

N∑
i=1

∂

∂xi
[(

M∑
j=1

vjirj(x))P (x, t)] + (4.7)

+
1

2

N∑
i,i′=1

∂2

∂xi∂xi′
[(

M∑
j=1

vjivji′rj(x))P (x, t)].

These equations were at first obtained by a truncation of the Taylor series expansion of the
master equations (Kramers, Moyal). Then, they were derived from master equations with
additional assumptions, which are satisfied for large number of molecules [118]. However,
for systems involving more than a few species, it is impossible to solve the Fokker–Planck
equation, even numerically. In such case, solutions can be approximated by Monte Carlo
simulations of the Langevin equations.

One can obtain Langevin equations by incorporating noise (diffusion) term to ODEs.
The noise term is defined basing on the observed properties (characteristics) of noise in
the system. In this approach various noise sources present in the system are replaced by
white noise, which magnitude is either constant (additive noise) or is a function of the
solution (multiplicative noise), in the simplest case is proportional to the solution (as in
geometric Brownian motion equation). The equivalent Fokker-Planck equation describes
the evolution of the probability density function. This approach in multistable systems can
lead to qualitatively wrong results, because type of noise alone can determine which state is
predominant. This effect was shown in one of the articles included in this thesis (article I).
This work, together with article (II), addresses the question of influence of dominating type
of noise on the relative stability of the steady states in bistable systems. A description of
these results can be found in the chapters 5 and 6.

For one-dimentional bistable system the Fokker-Planck equation can be applied to cal-
culate the mean first passage time from one stable state (a) to the other (c) through an
unstable point (b). The Fokker-Plank equation takes the form:

∂P (x, t)

dt
= − ∂

∂xi
A(x)P (x, t) +

1

2

∂2

∂x2
B(x)P (x, t), (4.8)
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where A(x) =
∑M

j=1 vjrj(x) and B(x) =
∑M

j=1 v
2
j rj(x). The mean first passage time T (x)

satisfies [119]:

A(x)
∂T (x)

∂x
+

1

2
B(x)

∂2T (x)

∂x2
= −1, (4.9)

with boundary conditions: T (c) = 0 and ∂T (0)
∂x

= 0 for a switch from a to c and T (a) = 0

and ∂T (∞)
∂x

= 0 for a switch from c to a. This equation solves to:

Ta→c = 2

∫ c

a

dy

Ψ(y)

∫ y

0

Ψ(z)

B(z)
dz, (4.10)

Tc→a = 2

∫ c

a

dy

Ψ(y)

∫ ∞
y

Ψ(z)

B(z)
dz, (4.11)

where

Ψ(x) = exp

∫ x

x0

2A(y)

B(y)
dy, (4.12)

with x0 = 0 for a→ c transition and x0 = a for c→ a transition.

Spatially extended systems

Cells are a very crowded environment. Their interiors are 20-30% volume-occupied by macro-
molecules [120–123]. Diffusion in cytoplasm is reduced from three- to tenfold compared to
water [124, 125]. While a well-mixed approximation is reasonable for bacteria, in eukaryotic
cells, which have more complex cellular architecture and larger size, spatial heterogeneity
plays an important role and therefore cannot be neglected [126]. Diffusion on the cellular
membrane, which contains lipid rafts and large proteins, is approximately ten times smaller
than in cytoplasm.

Spatial organization can be taken into account by introducing different cellular compart-
ments into an ODE model. More accurate approach is to model systems using reaction-
diffusion equations, i.e., partial differential equations (PDEs).

Another idea is to divide the cell volume into well-mixed compartments and perform
stochastic simulations within these compartments taking into account transport between
compartments. The Gillespie algorithm with compartments was implemented, e.g., in Dizzy
- a software tool for stochastically and deterministically modeling the spatially homogeneous
kinetics [127] or in compartmental BNGL [128]. The more accurate approach is to perform
stochastic Monte Carlo simulations on the lattice with compartment size of one molecule size,
see articles (IV) and (V) included in this thesis. However, such simulations are very slow for
large number of molecules or in 3-D. Switching between steady states and correspondence
between stochastic and deterministic attractors in the bistable spatially extended systems
remain unresolved issues, which were approached in this thesis (articles IV and V).
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4.4 Experimental and theoretical studies on dividing

bacteria

Recent development of experimental techniques enabled observation of single molecules in
living cells. As a result, the cell growth and divisions can be described more precisely than
before. Observations of fast growing Escherichia coli cells, which are able to divide even
every 20 minutes, show extreme level of cellular activity including continuous reproduction
of genome [129], increased number of mRNAs, ribosomal RNAs and proteins necessary to
perform gene expression [130, 131]. Replication elongation rate also increases with increasing
nutrient availability [132, 133]. However, for rapid growth (more than one doubling/hour)
this rate is relatively constant and replication lasts approximately 40 minutes [133]. Parti-
tioning of molecules between daughter-cells in E. coli is binomial [13]. E. coli and B. subtilis
cells growing fast and dividing more frequently than every hour are larger than slower grow-
ing cells and can have up to 8 origins of replication per cell. However when the doubling
time increases beyond a certain threshold (∼60 minutes for B. subtilis) cell size becomes
essentially constant [134]. Not all bacteria are able to process more than one replication at
a time. Mycobacteria have always at most one genome replication proceeding [135].

The average protein lifetime in fast growing bacteria is much longer than the cell cycle
length. In result, protein levels are much lower than in the stationary state which would be
reached by the system in the absence of divisions. When nutrients level increases, the number
of polymerases and ribosomes increases [130] and a cell grows faster. This is accomplished by
an increase of the translation and transcription rates. When the translation rate increases,
protein burst size increases, implicating an increase of the Fano factor of the protein level
distribution.

Until now, most of the regulatory network models did not include effects of the cell
growth (with different rates) and divisions. However, the latest experimental results suggest
that the cell cycle length highly affects the dynamics of regulatory networks. Studying
the deterministic model of the repressilator, i.e., the system of three mutually repressing
genes A—|B—|C—|A, Osella et al. demonstrated that the cell growth and division may
qualitatively change the network dynamics [136]. A few studies were also performed on
stochastic models of gene expression including cell growth and division [21, 28, 137]. These
studies are summarized below.

The first stochastic model of gene expression in growing and dividing bacteria appeared
in 1978 [137]. The protein number distribution was analytically calculated under assumption
that there are N gene copies which can produce one mRNA each with probability γ in one
time point during the cycle, i.e., there is only one mRNA burst per cell cycle of size binomially
distributed with parameters N , γ. It was also assumed that the protein number decreases
only due to dilution (i.e., there is no protein degradation) and that the probability that a
cell of age t has a given number of molecules is independent of generation.

Cell division (every 35 minutes) was considered also in the analysis of random fluctuations
in the number of protein molecules during LacZ gene expression [21]. Gene multiplication
was neglected in the model and linear volume change of the growing cell has been assumed.
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Molecules were partitioned equally between daughter-cells. The model includes also ran-
domly changing pools of free RNA polymerases and ribosomes, thus taking into account
extrinsic fluctuations of transcription and translation rates. The performed analysis showed
that protein number fluctuations are influenced mostly by the protein burst size.

The mathematical analysis of protein number fluctuations in dividing cells was presented
in [28]. In the model the gene copy number doubles at a certain time τ during each cell cycle
and after division all molecule numbers are divided by 2. mRNA level was approximated by
the steady state level, which is justified since mRNA lifetime in bacteria is much shorter than
the cell cycle length. Then, the average protein number was derived (as a function of time
from division). The Fano factor (variance/mean) of protein level distribution (as a function
of time in the cell cycle) was calculated under assumption that the protein degradation rate
is much smaller than the mRNA degradation rate. This assumption is justified for bacteria,
as their protein lifetime is usually two orders of magnitude longer than mRNA lifetime.

Although the cell growth and division significantly influence gene expression dynamics
and molecule levels, this influence was not taken into account in earlier studies of bistable
systems. This issue is addressed in this thesis (article III). Switching in non-equilibrium
stochastic systems is analyzed and the dependence of the switching rate on the cell cycle
length is shown.
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5. Objectives and hypotheses

In my research I analyzed the following open problems: (1) the influence of the type of
noise on the relative stability of the steady states, (2) switching in non-equilibrium systems
and (3) correspondence between deterministic and stochastic attractors in spatially extended
systems.

The hypotheses investigated in this thesis are as follows:

A. The noise characteristics determines the global attractor in biochemical systems, i.e., the
most probable state of a cell.

B. Decrease in cell growth rate stabilizes the epigenetic state of a bacteria.

C. Behavior of a spatially extended stochastic bistable system depends on the substrate
diffusivity and size of the reactor.

5.1 Hypothesis A: The noise characteristics determines

the most probable state of a cell.

This hypothesis was demonstrated based on the analysis of two bistable models:

• model of a single gene with a nonlinear positive feedback (article I),

• model of a toggle switch – a pair of mutually repressing genes (article II).

As stated in the Introduction, noise in gene expression network can originate from various
sources. In this analysis I took into account only intrinsic noise, neglecting extrinsic noise.
Intrinsic noise sources can be further classified on the basis of the process from which they
originate. Therefore noise types such as transcriptional, translational, dimerization and gene
switching noise can be distinguished. In the articles (I) and (II) I showed that a dominating
type of noise in the bistable system can determine which of the two steady states is preferred.

In the model of a self-regulating gene three types of noise are present: gene switching
noise, transcriptional and translational noise. The model is described by a continuous time
Markov process. Gene activation and inactivation, mRNA transcription, protein translation
and degradation of molecules are explicitly included in the model. Each of these reactions
changes the state of the system, defined by the three variables: the state of the gene (active
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or inactive), the mRNA number and the protein number. Each reaction can occur at a ran-
dom exponentially distributed time with expected value equal to the inverse of the assumed
propensity of the reaction. In this analysis I focused on the parameter domain (lying within
physiological range) for which the system is bistable. The two preferred states of the system
are referred to as: inactive, with low protein number, and active, with high protein number.

As a first step, I examined a simplified version of the model: a two-step model, in
which the processes of transcription and translation are combined into one process of protein
production. This simplification enabled analytical treatment of the problem. Two further
approximations of the model were considered: the continuous approximation, in which the
protein production and degradation noise was neglected, and the adiabatic approximation,
in which the gene switching noise was neglected. In the continuous approximation (with
gene switching noise only) I calculated analytically the stationary probability distribution of
the protein number. Then, I found the separatrix dividing the parameter domain into two
subdomains: one in which the probability that the system is in the active state converges to
1 for decreasing noise magnitude, and the second subdomain in which the probability that
the system is in the active state converges to 0 for decreasing noise magnitude. Similarly,
the analogous separatrix was calculated for the adiabatic approximation. I showed that this
second separatrix is different than the separatrix obtained for the continuous approximation.
In this way, I found a subdomain between these two separatrices, in which the type of noise
present in the system determines the preferred state. In this subdomain the preferred state of
the system with two types of noise is determined by the relative magnitude of this two types
of noise. Specifically, when the gene switching noise is dominating, the system is preferably
active, while when the protein production and degradation noise is dominating, the system
is preferably inactive. This effect was analyzed numerically with application of the Gillespie
algorithm.

Next, the effect was observed and analyzed numerically in the exact three-step model.
Similarly to the case of the two-step model, when the gene switching noise is dominating, the
system is preferably active, while when the transcriptional noise is dominating, the system
is preferably inactive. Changes in the magnitude of the translational noise did not affect
significantly the protein number probability distribution.

The hypothesis (A) was also verified in a different bistable model: a pair of mutually
repressing genes (toggle switch) (article II). The model is described by a continuous tome
Markov process. The state of the system is defined by eight random variables: states (active
or repressed by a dimer of the opposite gene) of gene 1 and gene 2, mRNA 1 and mRNA
2 numbers, protein monomer 1 and protein monomer 2 numbers and protein dimer 1 and
protein dimer 2 numbers. The state of the system can be changed by one of the sixteen
reactions (eight for each gene): gene activation and inactivation, mRNA transcription and
degradation, protein monomer translation and degradation, and protein dimer formation and
dissociation to monomers. A gene becomes repressed when the protein dimer of the second
gene binds to its promoter. The system is preferably in one of the two states: state 1, in
which the level of protein 1 is high, while the level of protein 2 is low, and state 2, in which
the level of protein 2 is high, while protein 1 level is low. For simplicity, I assumed that the
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system is symmetric, i.e., the default values of all reaction rate constants for both genes are
equal.

In this model I investigated the influence of gene switching noise, transcriptional, transla-
tional and dimerization noise on the choice of the preferred state of the system and calculated
mean first passage times (MFPTs) between the two states, depending on the noise magni-
tude. The analysis revealed that, as in the case of the self-regulating gene model, the type of
dominating noise determines which state is preferred. Increasing the gene switching noise for
one gene, significantly increases its chances of “winning” over the second gene, while decreas-
ing dimerization noise for one gene has the opposite effect, i.e., it decreases its chances of
“winning” over the second gene. Next, I performed the Latin hypercube sampling to examine
the robustness of the effect. Performed sensitivity analysis shows that the effect is present
for a relatively wide range of parameters.

5.2 Hypothesis B: Decrease in cell growth rate stabi-

lizes the epigenetic state of a bacteria.

This hypothesis was verified in the article (III) included in this thesis. I built a model of
a genetic toggle switch in growing and dividing bacteria. In this model I assumed that the
cell size is proportional to the level of the “house-keeping” protein. This “house-keeping”
protein represents all proteins with constitutive expression and its level is high enough to be
described by a continuous concentration instead of a discrete molecule number. Thus, the
dynamics of cell growth can be described by a deterministic model. A cell divides, when
the “house-keeping” protein level reaches a certain level. Decreased nutrient level results in
slower rates of transcription translation, and in a longer time in which cells reach the division
size. It is assumed that the transcription and translation rates change in the same way for
the “house-keeping” gene and the toggle genes, reflecting changes in the levels of ribosomes
and polymerases. Three types of cell division were considered: equal division with molecules
equally distributed between daughter-cells, division with molecules binomially distributed
(with p = 0.5) between daughter-cells and unequal cell division with molecules binomially
distributed (with p being a random variable with the mean value equal to 0.5) between
daughter-cells.

I considered cell cycle lengths of at least one hour. For faster growth rates, not considered
in this model, cell size just before cell division is larger and there is more than one genome
replication simultaneously proceeding. When cells divide at least as frequent as every hour,
cell size just before cell division for different growth rates is approximately constant and
there is at most one genome replication proceeding [129, 134]. I considered two cases of
replication of the genes included in the model: occurring just before cell division or in the
middle of the cell cycle. The replication time influences the stationary states of the system,
as an earlier replication leads to higher protein level, which results in the lower noise level.
However, this effect does not change the main result.

The model was analyzed with application of Gillespie algorithm simulations. The analy-
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sis revealed that the state-to-state switching rate significantly decreases with increasing cell
cycle length. This effect is caused by multiple factors. The biggest impact has a decrease of
the protein burst size, when the translation rate decreases. A decrease in the transcriptional
bursts size (ratio of the transcription rate to gene inactivation rate) has a smaller effect.
When the cell cycle length is shorter than the average protein lifetime (approximately 9
hours), the protein level decreases mostly due to dilution. Then, the probability distribution
of waiting times for a switch is equal to the probability distribution of waiting times for occur-
rence of approximately four subsequent cell cycles during which no protein is produced [138].
Approximately four divisions are needed to decrease protein number from the high to the
low state. The probability that no protein is produced during a given number of subsequent
cell cycles is exponentially decreasing with increasing cycle length T [138]. This decrease is
largest for translation rate varying with the cycle length and constant transcription rate.

The analysis of the toggle switch model was supplemented with an analysis of the model
of a single gene expression without auto-regulation in dividing cells. In this model the
protein distribution is unimodal. I showed that the standard deviation of the protein number
decreases with increasing cycle length, due to a decrease in the protein burst size and/or an
increase in the transcriptional bursts size.

As a next step, I plan to take into account cell cycle lengths shorter than one hour with
multiple gene copies and the cell size depending on the growth rate.

5.3 Hypothesis C: Behavior of a spatially extended

stochastic bistable system depends on the substrate

diffusivity and size of the reactor.

This hypothesis was verified in the articles (IV) and (V) included in this thesis. First, a
simple one-dimensional birth-death process - a bistable model of kinase activation - was
analyzed (article IV) in (1) a well-mixed compartment (Markov process with continuous
time), (2) in the deterministic approximation in a spatially heterogeneous compartment
(reaction-diffusion equation).

For the stochastic process Pawe l Zuk calculated (analytically) the stationary probability
distribution of the active kinases number. I calculated the solution for the reaction-diffusion
equation. Then, we found a separatrix in the parameter space, dividing it into two subdo-
mains: in the first subdomain the active state is preferred for noise decreasing to 0 (i.e.,
increasing reactor size), in the second subdomain the inactive state is preferred for noise
decreasing to 0. We calculated the analogous separatrix for the deterministic approxima-
tion, in which the system activates or inactivates due to traveling wave propagation. This
second separatrix, was found to be different, than the separatrix for the stochastic process.
When we added a flux, with in-flux equal to out-flux, the deterministic description remained
unchanged, while the stochastic description changed. We showed that for increasing flux the
separatrix for the stochastic model converges to the separatrix for the deterministic approx-
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imation. Fig. 5.1 shows a schematic for a birth-death model in 1-D reactor with well-mixed
compartments with flux fi.

f1

f2

f3

f4

b(x)-d(x). . . . . .

Figure 5.1: Schematic of a one-dimensional reactor with compartments. Molecule number
in one compartment changes due to birth and death events, in-flux (f1 + f4) and out-flux
(f2 + f3) from and to neighboring compartments.

This result can be explained as follows. In the stochastic model, described by birth and
death rates b(x) and d(x), the noise intensity depends on the number of active kinases x
present in the system (multiplicative noise). Flux f added to the model introduces additive
noise, i.e., noise which magnitude does not depend on the active kinase number x present in
the system. Adding such flux is a way of introducing diffusion. Therefore, increase of the
reactor size, which decreases multiplicative (non-uniform) noise, together with increasing
additive (uniform) diffusion-like noise renders the systems behavior similar to that of the
deterministic spatially extended model.

On the basis of these observations we proposed a hypothesis that in the spatially extended
stochastic system the size of the compartment and substrate diffusivity can determine the
preferred state of the system and a mode of activation: due to a traveling wave of activa-
tion or through a spontaneous stochastic activation. This hypothesis was confirmed in the
analysis of a stochastic kinase auto-activation reaction-diffusion model on a two-dimensional
lattice (article IV and V). Kinases can be in one of the three states: unphoshorylated (of
very low activity), singly phoshorylated (moderately active), doubly phoshorylated (fully
active). Kinases are dephosphorylated by phosphatases present explicitly in the model. The
model was analyzed by means of kinetic Monte Carlo simulations implemented by Marek
Kochańczyk. The preferred state of the system is determined by diffusion and size of the
reactor. We showed that for the same reaction rates, a small perfectly mixed reactor is
preferably inactive, while a larger, spatially heterogeneous reactor activates, when a wave
of activation propagates as in the deterministic approximation. I added to the model a nu-
merical analysis of the deterministic approximation by a reaction-diffusion system. I showed
that the profile and velocity o a traveling front obtained in continuous reaction-diffusion
system agrees with that estimated in kinetic Monte Carlo simulations. The deterministic
traveling waves were calculated with use of the finite-element method implemented in Comsol
Multiphysics (Comsol Inc., Sweden).
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6. Conclusions

Bistable elements are important as they introduce epigenetic differences between cells, allow-
ing genetically identical cells to behave differently and to pass this behavior to the daughter
cells. Transitions between the two states can be a result of changing environment or of
stochasticity present in cells (spontaneous transitions). Nowadays, experimental techniques
enable observations of single cells, or even single molecules. These observations revealed
that noise is present in cellular regulatory networks and plays important role in adapta-
tion to changing environment. Noise can enhance sensitivity to signals, introduce new type
of response like oscillations and increase chances for survival. Biological experiments are
accompanied by modeling, which helps to unravel the dynamics of biochemical networks.
Even simple circuits including few types of molecules can have a complex and unintuitive
dynamics. Modeling helps to increase understanding of complex interactions between pro-
teins, RNAs and genes. It allows for manipulating aspects of the process that are difficult
to access experimentally and even to predict existence of unknown elements of the process.
Such predictions can be then verified in experiments. Therefore modeling serves as both a
hypothesis-testing and a hypothesis-generating tool.

I analyzed the influence of different sources of stochasticity, i.e., molecule number fluctua-
tions originating from distinct processes like gene switching, transcription, translation, diffu-
sion of molecules and cell division, on the choice of the preferred state in bistable biochemical
systems. I analyzed stochastic models, described by Markov processes, of the following cir-
cuits: a single self-regulating gene, auto-activating kinases, a genetic toggle switch (a pair
of mutually repressing genes) in non-growing and non-dividing cells, and in growing and
dividing bacteria. The models were analyzed analytically or numerically with application of
the Gillespie algorithm, or kinetic Monte Carlo methods.

Results of the analysis of a single self-regulating gene and a genetic toggle switch models
in a well-mixed compartment are described in the articles (I) and (II). They confirm the
hypothesis (A), as they show that the type of noise can determine the most stable stationary
state. In particular, for a self-regulating gene model I demonstrated that there exists a
subdomain in the parameter space, in which the system is preferably in the active state (high
gene expression) for dominating gene switching noise, while for dominating transcriptional
noise, the system is preferably inactive (low gene expression). In the toggle switch model
I showed that increasing the gene switching noise for one gene, significantly increases its
chances of “winning” over the second gene, while decreasing dimerization noise for the same
gene has the opposite effect, i.e., significantly decreases its chances of “winning” over the
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second gene. I showed that the Langevin equations can lead to qualitatively wrong results,
when different noise sources are replaced by an arbitrary additive or multiplicative white
noise (article I).

Another important source of noise in cells are growth and division. In the article (III)
I showed that the epigenetic state of a bistable system is stabilized, when the cell growth
rate decreases. In the toggle switch model the non-growing and non-dividing cells can switch
(spontaneously) six orders of magnitude slower than cells dividing every one hour. This
result confirms the hypothesis (B). The observed effect is caused mainly by a decreasing
protein burst size with increasing cycle length, as magnitude of protein level fluctuations is
highly influenced by the protein burst size, and to a lesser degree by the mRNA burst size.

State-to-state switching in spatially extended bistable systems was analyzed in the articles
(IV) and (V). The preliminary results of the analysis of a simple birth-death process in a well-
mixed reactor suggested that in a spatially extended systems the level of diffusion and the
size of reactor can determine the state of a bistable system. This hypothesis was confirmed in
the analysis of the model of auto-activating kinases on a two-dimensional triangular lattice.
The same system in a small compartment can by preferably inactive, while in a larger
compartment it will activate due to the traveling wave propagation. The results confirm the
hypothesis (C).

This findings can by applied in synthetic biology to construct regulatory networks en-
abling reprogramming of cells, by means of manipulating the magnitude of noise of an appro-
priate type. Especially, control of the state of growing bacteria by modulating type and level
of nutrients, can be very useful. Eukaryotic cells compared to bacteria have a larger size and
more complex structure resulting in spatial heterogeneity. Control of the state in eukaryotic
cells can be achieved by plasma membrane deformation or formation of lipid rafts, which
modify the effective size of the compartment, or with addition of buffers or extracellular
ligands, which control the diffusivity.

Type of noise is specific to a given organism. In bacteria transcriptional noise is dominat-
ing, due to a small number of mRNA, which is on average less than 1. In eukaryotes mRNA
and proteins are more abundant, resulting in small transcriptional and translational noise.
Simultaneously, the gene activation and inactivation is a more complex and time-consuming
process than in bacteria, resulting in higher gene switching noise.

Relative magnitudes of different noise types change also during cell cycle and develop-
ment. The growth of the cell volume decreases translational and transcriptional noise, while
genome replication decreases gene switching noise. During embriogenesis of fruit fly noise
is decreased, when just after fertilization cell replicates its genome thirteen times before the
5000 nuclei and the cytoplasm are partitioned into separate cells [139].

The mechanism of stabilization of the epigenetic state can be exploited by persister
cells. Persister cells form a sub-colony of non-growing and non-dividing cells which are more
resistant to stress. An inhibition of cell growth alone can stabilize the state of persistence,
while rare switching to the normal growth state can result in replenishing of a colony of fast
growing and dividing cells.
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H I G H L I G H T S

c We analyze stochastic bistable model
of single autoregulatory gene.

c Gene switching, transcriptional and
translational noises are considered.

c We show that the most stable attrac-
tor is determined by the type of noise.

c The noise characteristics changes dur-
ing cell cycle and development.

c Noise type changes modify the
relative occupancy of
epigenetic attractors.

G R A P H I C A L A B S T R A C T

Influence of noise on the stationary probability distribution for a single autoregulatory gene with
bistability. For low gene switching noise (fast gene switching) the system settles in the inactive steady
state (low protein level). For low transcriptional noise (high transcription rate) the system settles in
the active steady state (high protein level).
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a b s t r a c t

The aim of this study is to demonstrate that in molecular dynamical systems with the underlying bi- or

multistability, the type of noise determines the most strongly attracting steady state or stochastic

attractor. As an example we consider a simple stochastic model of autoregulatory gene with a nonlinear

positive feedback, which in the deterministic approximation has two stable steady state solutions.

Three types of noise are considered: transcriptional and translational – due to the small number of gene

product molecules and the gene switching noise – due to gene activation and inactivation transitions.

We demonstrate that the type of noise in addition to the noise magnitude dictates the allocation of

probability mass between the two stable steady states. In particular, we found that when the gene

switching noise dominates over the transcriptional and translational noise (which is characteristic of

eukaryotes), the gene preferentially activates, while in the opposite case, when the transcriptional noise

dominates (which is characteristic of prokaryotes) the gene preferentially remains inactive. Moreover,

even in the zero-noise limit, when the probability mass generically concentrates in the vicinity of one of

two steady states, the choice of the most strongly attracting steady state is noise type-dependent.

Although the epigenetic attractors are defined with the aid of the deterministic approximation of the

stochastic regulatory process, their relative attractivity is controlled by the type of noise, in addition to

noise magnitude. Since noise characteristics vary during the cell cycle and development, such mode of

regulation can be potentially employed by cells to switch between alternative epigenetic attractors.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

From the mathematical perspective intracellular regulatory
processes can be considered as stochastic dynamical systems.
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Stochasticity arises due to the limited number of reacting mole-
cules such as gene copies, mRNA or proteins. In systems with
underlying bistability, even for low noise, the stochastic trajec-
tories exhibit stochastic jumps between basins of attraction and
thus diverge qualitatively from the deterministic solutions. The
relative stability of steady states depends on the system volume
(or noise strength) (Vellela and Qian, 2009). In this study, we
analyze the bistable stochastic system with three different types
of noise and demonstrate that the dominating type of noise
determines the most strongly attracting steady state (global
stochastic attractor). That is, two systems with the same deter-
ministic approximation may have qualitatively different station-
ary probability distributions (SPD) depending on the noise
characteristic, even in the zero noise limit.

We consider two models of gene expression with autoregula-
tion. We will assume that the gene is positively regulated by its
own product in a cooperative manner, which leads to the non-
linear positive feedback and bistability. Single-cell experiments
suggest that gene expression can be described by a three-stage
model (Blake et al., 2003; Raser and O’Shea, 2004). The gene
promoter can switch between two states (Ko, 1991; Raj et al.,
2006; Chubb et al., 2006), one active and one inactive. Such
transitions could be associated with binding and unbinding of
repressors or transcription factors or with changes in chromatin
structure. Transcription can only occur if the promoter is active.
The next two stages are mRNA transcription and protein transla-
tion. In certain cases when mRNA is very unstable and quickly
translated, transcription and translation processes can be lumped
together (Kepler and Elston, 2001; Hornos et al., 2005). The
resulting model has thus two stages: gene regulation and protein
synthesis. Such simplification allows for analytical treatment of
the problem, however, lumping of transcription and translation
processes may influence the impact of feedback on noise strength
(Marquez-Lago and Stelling, 2010). Therefore, in addition to the
simplified two-stage model we analyze numerically a more
detailed three-stage model in which processes of gene regulation,
mRNA transcription and protein translation are explicitly
included. The considered models have three types of noise:
transcriptional and translational – due to the limited number of
product molecules, and gene switching noise – due to gene state
transitions.

Transcriptional and translational noises are characteristic for
prokaryotes in which the mRNA and protein numbers are very
small (McAdams and Arkin, 1997; Kierzek et al., 2001; Ozbudak
et al., 2002). Recently, Taniguchi et al. (2010) quantified the mean
expression of more than 1000 Escherichia coli genes and found
that the most frequent average protein number is of order of 10,
while the most frequent average mRNA number is smaller than
one. The gene switching in prokaryotes is thought to be very fast
and thus gene regulation is frequently considered in the so called
adiabatic approximation (Hornos et al., 2005), as a process that
includes only mRNA transcription and protein translation (Thattai
and Oudenaarden, 2001; Swain et al., 2002; Shahrezaei and
Swain, 2008).

Gene switching noise is important in eukaryotes (Blake et al.,
2003; Ko, 1991; Chubb et al., 2006; Raj and Oudenaarden, 2009)
in which the transitions between the on and off states are much
less frequent. Analysis of gene expression in mammalian cells
showed that mRNA is synthesized in bursts, during periods of
time when the gene is transcriptionally active (Raj et al., 2006).
Slow gene switching can result in bimodal mRNA and protein
probability distributions even in systems without underlying
bistability (Hornos et al., 2005; Shahrezaei and Swain, 2008).
Bimodality may arise also without bistability in two-stage cas-
cades in which the regulatory gene produces transcription factors
that have a nonlinear effect on the activity of the target gene

(Ochab-Marcinek and Tabaka, 2010). In contrast to prokaryotes, in
eukaryotes the characteristic mRNA and protein numbers are
much larger. Therefore the transcriptional and translational
noises in many cases may be neglected (Lipniacki et al., 2006,
2007; Bobrowski et al., 2007) or considered in the diffusion
approximation (van Kampen, 2007; Kepler and Elston, 2001). Cell
cycle transcriptional regulator gene SWI6 in yeast is an example
of a gene with expression noise originating almost only from gene
switching noise, while transcriptional noise is negligible (Becksei
et al., 2005).

The bistable regulatory elements received a lot of attention in
the last decade as they enhance heterogeneity and may allow
cells in multicellular organism to specialize and specify their fate.
Decisions between cell death, survival, proliferation and senes-
cence are associated with bistability and stochasticity, magnitude
of which controls transition rates between the particular attrac-
tors (Hasty et al., 2000; Puszynski et al., 2008; Lipniacki et al.,
2008). In prokaryotes the bistability is regarded as an optimal
strategy for coping with infrequent changes in the environment
(Kussell and Leibler, 2005).

The simplest regulatory element exhibiting bistability is the
self-regulating gene controlled by a nonlinear positive feedback
(Hornos et al., 2005; Walczak et al., 2005; Karmakar and Bose,
2007; Hat et al., 2007; Schultz et al., 2007; Siegal-Gaskins et al.,
2009). While not often found as an isolated entity, the self-
regulating gene is a common element of biological networks;
for example, 40% of E. coli transcription factors negatively regulate
their own transcription (Rosenfeld et al., 2002). van Sinderen and
Vemnema (1994) demonstrated that transcription factor comK
acts as an autoregulatory switch in Bacillus subtilis. The synthetic
auto-regulatory eukaryotic gene switch was studied in Sacchar-
omyces cerevisiae (Becskei et al., 2001). The other intensively
studied regulatory element exhibiting bistability is the toggle
switch – a pair of mutual repressors (Lipshtat et al., 2006;
Chatterjee et al., 2008). A classical example is the double-
negative regulatory circuit governing alternative lysogenic and
lytic states of phage lambda (Ptashne, 2004), lactose utilization
network (Ozbudak et al., 2004) or Delta–Notch regulation
(Sprinzak et al., 2010).

Despite the low copy number of proteins and mRNAs genetic
switches may exhibit very low transition rates, resulting in stable
epigenetic properties that persist in simplest organisms for many
generations (Ptashne, 2004; Acar et al., 2005), reviewed by
Chatterjee et al. (2008). The attractors of genetic networks can
be associated with distinct cell types achieved during cell differ-
entiation (Acar et al., 2005; Chang et al., 2006). In a single cell, in
the long time scale the relative occupancy of steady states is
determined by their relative stability. The same, however, may
not be true for cell population when the two steady states are
associated with different growth rates. As demonstrated, by
Nevozhay et al. (2012) using synthetic bistable gene circuit, the
fraction of cells in the most strongly attracting steady state may
be low, if these cells have lower growth rate than cells in the less
stable steady state. Thus, in the context of cell population the
relative occupancy of a given state is defined by rates of state to
state transitions (or memory) and fitness associated with parti-
cular steady states.

The paper is organized as follows: in the following section we
consider the two-stage gene autoregulation model and its three
approximations:

� the deterministic approximation,
� the continuous approximation with the gene switching

noise only,
� and the adiabatic approximation with the transcriptional and

translational noise only.
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Based on two last approximations, we demonstrate that the
type of noise determines the global attractor. Then, we numeri-
cally calculate the SPD in the case when two types of noise are
present and show that the most strongly attracting steady state is
determined by the prevalent type of noise. For a relatively large
subdomain in the parameter space, the SPD is concentrated either
in one or the other stable steady state depending on the
dominating type of noise. We supplement our consideration of
the two-stage model by the analysis of the SPD following from
Langevin equations in which the white noise term is added to the
equation obtained in the deterministic approximation.

Finally, to confirm our findings, we consider a more detailed,
three-stage model in which processes of gene regulation, mRNA
transcription and protein translation are explicitly included,
which enables distinguishing of transcriptional and translational
noises. Within the latter model we demonstrate that the global
attractor is determined by relative magnitudes of the transcrip-
tional and gene switching noises, while the translational noise is
the least important. We conclude discussing these two types of
noise in the context of gene expression in bacteria and
eukaryotes.

2. Results

2.1. Two-stage model and its approximations

We assume that the gene may be in one of the two states –
active or inactive, Fig. 1A. In this model we assume that the
protein is synthesized directly from the gene, with the rate
constant Q only when the gene is active and is degraded with
the rate constant r. We chose time units in which r¼1. The rate
constant Q is proportional to the product of transcription and
translation rate constants Q1 and Q2. The autoregulation arises
when gene activation and/or inactivation rates (c(Y) and b(Y))
depend on the level of synthesized protein Y. The model defines a
time continuous Markov process described by two random vari-
ables: the gene state G(t) Af0,1g and number of protein molecules
YðtÞAN. The resulting transition propensities are

G¼ 0-G¼ 1, cðYÞ,

G¼ 1-G¼ 0, bðYÞ,

Y ¼ n-Y ¼ nþ1, QG,

Y ¼ n-Y ¼ n�1, n:

8>>><
>>>:

ð1Þ

Let gn denote the probability that fG,Yg ¼ f1,ng and hn denote
the probability that fG,Yg ¼ f0,ng. Probabilities gn and hn follow a
countable set of chemical master equations:

dgn

dt
¼Q ðgn�1�gnÞþðnþ1Þgnþ1�ngnþcðnÞhn�bðnÞgn,

dhn

dt
¼ ðnþ1Þhnþ1�nhn�cðnÞhnþbðnÞgn,

8>><
>>: ð2Þ

where we set g�1 ¼ 0 to close the first of Eqs. (2).
Here, we focus on such c(n) and b(n) that define the positive

nonlinear autoregulation leading to bistability. Thus, we assume

cðnÞ ¼ c0þðc2=Q2
Þn2, bðnÞ ¼ b0 with c0,c2,b040: ð3Þ

Such type of regulation arises in the case when the gene is
switched on by its own product in a cooperative manner or by
the other transcription factor present at some constant level. In
order to analyze systems with various average numbers of
proteins, but having the same deterministic limit, the nonlinear
term ðc2=Q2

Þn2 is scaled by Q, which is equivalent to the
assumption that the gene switching rates are proportional to
the protein concentration rather than to the protein number.

Even in the stationary case, the system (2) can be solved
analytically using a moment generating function only in the case
when c(n) and b(n) are both constant, or one of them is constant
and the other is linear in n (Hornos et al., 2005). In our case (3),
due to the second order nonlinearity in c(n), the method proposed
by Hornos et al. (2005) leads to the third order ordinary
differential equation, we failed to solve. We will thus estimate
the marginal SPD f n ¼ gnþhn corresponding to the exact model by
Monte Carlo simulations of the system (1). Analytically, we will
study three approximations to the exact model: the continuous
approximation with the gene switching noise only, the adiabatic
approximation with the transcriptional noise only, and the
deterministic approximation, Fig. 1B.

2.1.1. Deterministic approximation

This classical approximation (Ackers et al., 1982) is justified
when the transition rates c(n) and b(n) are much greater than one,
and simultaneously the characteristic number of protein mole-
cules is very large. In such a case one may consider y¼Y/Q as a
continuous variable. The scaled protein level y(t) is given by a
single ordinary differential equation:

dy

dt
¼ GðyÞ�y where GðyÞ ¼

cðyÞ

cðyÞþbðyÞ
: ð4Þ

In our specific case, cðyÞ ¼ c0þc2y2 and bðyÞ ¼ b0, thus the sta-
tionary solutions of Eq. (4) are the real roots of the third order
polynomial:

W ¼�c2y3þc2y2�ðc0þb0Þyþc0 ¼ 0: ð5Þ

We will focus on the bistable case when W has three real roots
such that 0oy1oy2oy3o1. Steady states y1 and y3 are stable,
while y2 is unstable. Due to the fact that W has the same
coefficient at the third and the second power, its roots satisfy
y1þy2þy3 ¼ 1. The original coefficients b0, c0, c2 may be recov-
ered from the roots by the following relations:

c0 ¼
b0y1y2y3

y1ðy2þy3Þþy2y3ð1�y1Þ
, c2 ¼

b0

y1ðy2þy3Þþy2y3ð1�y1Þ
: ð6Þ

Due to relation y3 ¼ 1�y1�y2, the ðy1, y2, y3Þ parameter space
may be reduced to the domain D 3 fy1,y2g such that y1oy2 and
1�y1�y2 ¼ y34y2.

2.1.2. Continuous approximation

The model with noise resulting only from gene switching was
analyzed previously in Karmakar and Bose (2007). When the

Fig. 1. Two-stage gene expression model. (A) Schematic of the model

(B) Stochastic model and its three approximations.
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characteristic number of protein molecules is very large, as in the
deterministic case, y¼Y/Q may be considered a continuous vari-
able which follows:

dy

dt
¼ G�y, ð7Þ

where G, as in the exact model, is given by the process (1). These
assumptions define a time continuous piece-wise deterministic
Markov process. Probabilities gn(t) and hn(t) are now replaced by
the continuous functions gðy,tÞ, hðy,tÞ that satisfy (Lipniacki et al.,
2006; Bobrowski et al., 2007)

@h

@t
�
@

@y
ðyhÞ ¼ bðyÞg�cðyÞh, ð8Þ

@g

@t
þ
@

@y
ðð1�yÞgÞ ¼�bðyÞgþc yð Þh: ð9Þ

The above system has the following stationary solution (Hat et al.,
2007)

hðyÞ ¼ exp

Z
�bðyÞ

ð1�yÞ
þ

cðyÞ�1

y

� �
dy

� �
, gðyÞ ¼

yhðyÞ

ð1�yÞ
: ð10Þ

In our specific case, when cðyÞ ¼ c0þc2y2 and bðyÞ ¼ b0, the mar-
ginal SPD f ðyÞ ¼ gðyÞþhðyÞ may be expressed analytically:

f ðy; c2,c0,b0Þ ¼ Ceð1=2Þc2y2

yc0�1ð1�yÞb0�1, ð11Þ

where C is such that
R 1

0 f ðyÞ ¼ 1.
Now, we will replace original coefficients b0, c0, c2 by y1, y2

(see Eq. (6)) and introduce s :¼ 1=b0. Let us notice that for such
defined s all gene switching noise rates b0, c0, c2 are inversely
proportional to s. The coefficient s is an inverse of the adiabati-
city coefficient, introduced in Hornos et al. (2005), and will be
referred to as a measure of gene switching noise. Specifically, we
will consider the SPD in the limit s-0. In this limit the SPD given
by Eq. (11) converges either to the Dirac delta in y1 or in y3, i.e. to
dðy1Þ, or to dðy3Þ for all fy1,y2gAD, except fy1,y2g such that

lim
s-0

f ðy1; y1,y2,sÞ
f ðy3; y1,y2,sÞ

:¼ C1 where 0oC1o1: ð12Þ

Eqs. (6), (11) and (12) define (in the implicit form) the
separatrix Scontinuous

1�y1

y1þy2

� �
y1

1�y1�y2

� �p1

ep2 ¼ 1, ð13Þ

where

p1 ¼
y1y2ð1�y1�y2Þ

ð1�y1Þð1�y2Þðy1þy2Þ
, p2 ¼

2y1þy2�1

2ð1�y1Þðy1þy2Þ
: ð14Þ

That is, in the continuous approximation, the bistability domain D

is split by the separatrix Scontinuous (on which 0oC1o1) into two
subdomains. For fy1,y2g above the separatrix ScontinuousC1 ¼1 and
the SPD converges to dðy1Þ as s-0, while for fy1,y2g below the
separatrix Scontinuous C1 ¼ 0 and the SPD converges to dðy3Þ, see
Fig. 2A.

Simulations of the stochastic process in the continuous
approximation, i.e. simulation of a piece-wise continuous process
given by Eqs. (1) and (7), were performed using the Haseltine and
Rawlings (2002) algorithm (Lipniacki et al., 2007). These simula-
tions show significantly different behavior of the protein level y(t)
near each of the two stable stationary points (see Fig. 3C and D).
When the trajectory is in the vicinity of y1 (Fig. 3D) the
characteristic time for which the gene is switched off � 1=cðy1Þ

is much longer than the characteristic time for which the gene is
switched on � 1=b0. When the trajectory is in the vicinity of y3

(Fig. 3C) these two times are similar. The characteristic departures
from both states y1 and y3 are larger towards y2 than in the
opposite direction. For low noise there are relatively few transi-
tions through the unstable state y2. The frequency of these
transitions decreases to zero with decreasing noise.

2.1.3. Adiabatic approximation

This approximation is justified when transition rates c(n) and
b(n) are much larger than the protein degradation rate constant.
In such a case, G may be replaced (Hornos et al., 2005; Bobrowski,
2006) by its expected value G¼ GðnÞ ¼ cðnÞ=ðcðnÞþbðnÞÞ. This
approximation leads to a birth–death process with birth and
death propensities:

BðnÞ ¼ GðnÞQ ,

DðnÞ ¼ n: ð15Þ

As in the case of the continuous approximation, the simula-
tions show that trajectories near each stable stationary point
differ significantly, Fig. 4. The birth and death events are less
frequent near y1 than near y3.

Let Fn denote the stationary probability that the number of
protein molecules is equal to n. In the steady state the net
probability current between neighboring states N and Nþ1 is

Fig. 2. Bistability domain in fy1 ,y2g space. Panel (A): the two black curves divide the domain into three subdomains: in the subdomain A (containing point A), the SPDs of

adiabatic and continuous approximations concentrate in y1; in the subdomain B (containing point B), the SPDs of the two approximations concentrate in y3. In the

subdomain C (bounded by separatrices Sadiabatic and Scontinuous), the SPD for the continuous approximation (e¼ 0) is concentrated in y3 while the SPD for the adiabatic

approximation (s¼ 0) is concentrated in y1. Panel (B): continuous line – analytically calculated division curve y2ðy1Þ for the adiabatic approximation (s¼ 0) in the e-0

limit; dotted lines are the separation lines for a finite noise parameter e¼ 1=300 and e¼ 1=20,000.
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equal to zero, i.e.

FnBðnÞ�Fnþ1Dðnþ1Þ ¼ 0, ð16Þ

which gives Fn in the form:

Fn ¼ F0

Yn�1

i ¼ 0

BðiÞ

Dðiþ1Þ
: ð17Þ

Eq. (17) defines the discrete probability density function Fn when

P1
n ¼ 1ð

Qn�1
i ¼ 0 BðiÞ=Dðiþ1ÞÞo1, which is satisfied provided that for

sufficiently large j, BðiÞ=Dðiþ1Þoao1 for all i4 j. Since
BðiÞ=Dðiþ1ÞoQ=n, the last condition holds. Now, we may choose
F0 such that

P1
n ¼ 0 Fn ¼ 1. We analyze the discrete probability

density Fn for small e¼ 1=Q . In the limit of e-0, the adiabatic
approximation converges to the deterministic approximation, and
so the coefficient e will be considered as a measure of transcrip-
tional and translational noise. Let FQ

ðyÞ :¼ QFn, where y :¼ n=Q , i.e.
FQ
ðyÞ ¼ QFQ

ð0Þ
QyQ�1

i ¼ 1 bði=Q Þ=dði=Qþ1=Q Þ, where bði=Q Þ :¼ BðiÞ,

Fig. 3. Two-stage model: Stochastic simulation trajectory for the continuous approximation, e¼ 0. Protein level obtained in the numerical simulation for s¼ 1=50. The

three steady states y1 ¼ 0:03 (stable), y2 ¼ 0:27 (unstable) and y3 ¼ 0:7 (stable) of the deterministic approximation are shown by the dashed lines. For such y1, y2, y3

(corresponding to point C in Fig. 2A) the SPD of the continuous approximation converges to dðy3Þ as s-0, see Fig. 5C. Time is given in units in which the protein

degradation rate constant is equal to 1. Panel (B) shows the zoomed region from Panel (A) around transition from the low to the high protein level, the further detail of this

transition is shown in Panel (E); Panel (D) shows trajectory in the vicinity of the steady state y1; Panel (C) shows trajectory in the vicinity of the steady state y3.

Fig. 4. Two-stage model: Stochastic simulation trajectory for adiabatic approximation, s¼ 0. Protein level obtained in the numerical simulation for e¼ 1=100. The three

steady states y1 ¼ 0:03 (stable), y2 ¼ 0:27 (unstable) and y3 ¼ 0:7 (stable) of the deterministic approximation are shown by the dashed lines. For such y1, y2, y3

(corresponding to point C in Fig. 2A) the SPD of the adiabatic approximation converges to dðy1Þ as e-0, see Fig. 5C. Panel (B) shows the zoomed region from Panel

(A) around transition from the low to high protein level, the detail of this transition is shown in Panel (E); Panel (D) shows trajectory in the vicinity of steady state y1; Panel

(C) shows trajectory in the vicinity of steady state y3.
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dði=Q Þ :¼ DðiÞ. Now,

log FQ
ðyÞ ¼ log Qþ log FQ

ð0Þþ
XyQ�1

i ¼ 1

log
bði=Q Þ

dði=Qþ1=Q Þ
: ð18Þ

In the limit of e-0, dði=Qþ1=Q Þ-dði=Q Þ. Next, replacing the sum
by the integral, we obtain

log FQ
ðyÞ ¼ log Qþ log FQ

ð0ÞþQ

Z y

0
log

bðzÞ

dðzÞ
dz, ð19Þ

thus

FQ
ðyÞ ¼QFQ

ð0Þexp Q

Z y

0
log

bðzÞ

dðzÞ
dz

� �
: ð20Þ

Since
R1

0 FQ
ðzÞ dz¼ 1 we get

FQ
ðyÞ ¼

expðQfðyÞÞR1
0 expðQfðzÞÞ dz

, ð21Þ

where

fðyÞ ¼
Z y

0
log

bðzÞ

dðzÞ
dz: ð22Þ

The Laplace’s method implies that in the limit of Q-1, the
function FQ

ðyÞ converges to the Dirac delta distribution dðymÞ in
the unique global maximum ym of fðyÞ, provided that such global
maximum exists. In our case bðyÞ ¼Q ðc0þc2y2Þ=ðc0þc2y2þb0Þ

and dðyÞ ¼Qy. Using Eqs. (6) and (22) we obtain

fðyÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1y2y3

p
arctan

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1y2y3
p

� �

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2y3þy1ðy3þy2Þ

p
arctan

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2y3þy1ðy3þy2Þ

p
" #

þy 1þ log
y1y2y3þy2

yðy2y3þy1ðy3þy2Þþy2

� �� �
: ð23Þ

Since the extrema of FQ
ðyÞ coincide with the extrema of fðyÞ, the

global maximum of fðyÞ is either in y1 or y3, thus the SPD
converges either to dðy1Þ or to dðy3Þ as Q-1. Only in the non-
generic case, in which fðyÞ has no global maximum, i.e. when

fðy1Þ ¼fðy3Þ ð24Þ

the SPD converges to the sum of two Dirac delta functions
A1dðy1ÞþA3dðy3Þ. Eqs. (23) and (24) define the separatrix Sadiabatic.
For fy1,y2g above the separatrix Sadiabatic the SPD converges to dðy1Þ,
while for fy1,y2g below the separatrix Sadiabatic the SPD converges to
dðy3Þ as e-0, Fig. 2A. The allocation of probability mass depends

also on the magnitude of noise. In Fig. 2B we show the separatrices,
(defined as lines y2ðy1Þ on which the SPD is equally distributed
between the two basins of attraction) obtained from Eq. (17) for two
values of e. The separatrices converge to Sadiabatic as e-0.

2.2. SPD dependence on the transcriptional and gene switching noise

magnitudes

Simulations in the continuous and adiabatic models (see
Figs. 3 and 4) were both performed for point C ¼ fy1 ¼ 0:03,
y2 ¼ 0:27g in the parameter space shown in Fig. 2A. For the
continuous approximation the characteristic departures from
the stable steady states y1 and y3 are of similar magnitude. The
case of the adiabatic approximation is different. Here, the fluctua-
tions around point y3 are much larger than around point y1. This
suggests that the average time spent in the vicinity of point y1

before the transition to point y3 will be longer than the average
time spent in the vicinity of point y3 before the reverse transition.
As a result the SPD for the adiabatic approximation will concen-
trate around point y1, while for the continuous approximation the
SPD will concentrate around y3. This effect should be even more
pronounced in the low noise limit when the transitions between
the two attractors are less frequent. Accordingly, as shown in
Fig. 2A the separatrices Sadiabatic and Scontinuous are different, and
together they bound domain C, such that in the zero noise limit
for fy1,y2gAC, the SPD of the continuous model converges to dðy1Þ,
while the SPD of the adiabatic model converges to dðy3Þ. In the
further analysis we consider the three sets of roots shown in
Fig. 2A, i.e.

A¼ f0:1,0:35gAA,
B¼ f0:15,0:25gAB,
C ¼ f0:03,0:27gAC.
In Fig. 5, we compare the SPD of the adiabatic and of the

continuous approximations. For fy1,y2g ¼ A and fy1,y2g ¼ B the
SPDs obtained in both approximations are concentrated (in the
low noise limit) in the vicinity of the same steady state, y1 and y3,
respectively, for A and B. However, for fy1,y2g ¼ C, the SPD of the
adiabatic approximation is concentrated in the vicinity of y1,
while the SPD of the continuous approximation is concentrated in
the vicinity of y3. Let us also note that in case B the magnitude of
noise controls the relative allocation of probability mass between
basins of attraction of steady states y1 and y3.

In the adiabatic approximation the gene switching noise s is, by
definition, identically 0. Similarly, in the continuous approximation

Fig. 5. The SPDs for the adiabatic and continuous approximations. Columns A, B and C correspond to points A, B and C in Fig. 2A. Upper row panels – the adiabatic

approximation, lower row panels – the continuous approximation. For y1 ¼ 0:03, y2 ¼ 0:27, in the zero noise limit (column C), the SPDs of the adiabatic and the continuous

approximations converge, respectively, to dðy1Þ, and dðy3Þ.

J. Jaruszewicz et al. / Journal of Theoretical Biology 317 (2013) 140–151 145



the transcriptional and translational noise e is identically 0. We thus
showed that in the parameter subdomain C the system settles in the
inactive state for e=s¼1 (adiabatic approximation) and settles in
the active state for e=s¼ 0 (continuous approximation). This sug-
gests that there exist a range of parameters for which noise ratio e=s
determines which of the two steady states is the most strongly
attracting. We now verify this conjecture considering the exact
model with different e and s values, see Fig. 6. To estimate the SPD
we performed long-run Monte Carlo simulations of the system (1)
using the Gillespie (1977) algorithm. For the analysis shown in
Fig. 6, we chose C ¼ f0:03,0:27gAC. Such a choice of fy1,y2g

produces the equimodal SPD in the case when magnitudes of
transcriptional and gene switching noises are comparable (and
sufficiently large), i.e. e¼ 1=300 and s¼ 1=100. We observe that
when magnitude of the transcriptional or gene-switching noise
decreases to zero the SPD becomes unimodal. As expected from
the analysis shown in Fig. 5, the SPD is concentrated in y1 as s-0
(adiabatic approximation limit), and in y3 as e-0 (continuous
approximation limit). Therefore, we demonstrated that when two
types of noise are present, their relative magnitudes determine the
global attractor. This effect has an analog in equilibrium selection in
evolutionary games (Miekisz, 2005).

2.3. Langevin approach

The classical approach to complex stochastic systems involves
Langevin equation in which various noise sources are replaced by
white noise, which magnitude is either constant (additive noise)
or is a function of the solution (multiplicative noise), in the
simplest case is proportional to the solution (as in geometric
Brownian motion equation). Here, we follow this procedure
starting from the deterministic approximation of our model.

Langevin–Ito equation extending deterministic equation (4) is

dy

dt
¼ AðyÞþxðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðyÞ=V

p
where AðyÞ :¼ GðyÞ�y ð25Þ

and xðtÞ is a Gaussian white noise, with

/xðtÞS¼ 0, /xðtÞxðt0ÞS¼ dðt�t0Þ: ð26Þ

In this description
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðyÞ=V

p
is identified as noise intensity,

where V is the volume of the reactor. In the case of additive noise
BðyÞ ¼ const ¼ B0. We consider also the case of multiplicative
noise, assuming that its magnitude is proportional to y(t) and
set BðyÞ ¼ y. The other choice of multiplicative noise was made by
Frigola et al. (2012), who assumed that magnitude of noise is
proportional to the sum of birth and death rates (in our case it
would be GðyÞþy). One should notice that such a choice is in a
sense arbitrary since adding any function f(y) to birth and death
rates, leaves deterministic equation unchanged but changes its
stochastic counterpart.

The Fokker–Planck equation corresponding to the above Lan-
gevin–Ito equation reads (van Kampen, 2007)

@Fðy,tÞ

@t
¼�

@

@y
ððAðyÞÞFðy,tÞÞþ

1

2V

@2

@y2
ðBðyÞFðy,tÞÞ: ð27Þ

In the stationary case (@Fðy,tÞ=@t¼ 0) this equation solves
explicitly to

FðyÞ ¼
CV

BðyÞ
expð�2VfðyÞÞ, ð28Þ

where fðyÞ

fðyÞ ¼ �
Z y

0

AðzÞ

BðzÞ
dz ð29Þ

has the meaning of a potential. In the case of additive noise, BðyÞ ¼ B0,
fðyÞ is proportional to the deterministic potential fðyÞ ¼ �

R y
0 ðAðzÞÞdz.

Fig. 6. The SPD of the two-stage model obtained in Monte Carlo simulations for y1 ¼ 0:03, y2 ¼ 0:27 (point C in Fig. 2A). Panel (A) shows the bimodal SPD in the case when

the magnitudes of two types of noise are comparable: e0 ¼ 1=300, s0 ¼ 1=100. Panel (B) consisting of three subpanels shows the SPD for the constant transcriptional noise

e0 and decreasing gene switching noise s. Panel (C) also consisting of three subpanels, shows the SPD for the constant gene switching noise s0 and decreasing

transcriptional noise e. The lowest subpanels show the analytically calculated SPDs for the adiabatic and continuous approximations.
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Analogously to the previous section the separatrices Sadditive and
Smultiplicative are given in implicit form by fðy1Þ ¼fðy3Þ. In Fig. 7 we
show them together with previously determined separatrices Sadiabatic

and Scontinuous in y1,y2 plane. In order to calculate these two new
separatrices, we make use of Eqs. (6) giving c0 and c2 as functions of
y1,y2 and y3.

The alternative way of calculating separatrices Sadditive and
Smultiplicative involves the, so called, Dynkin equation (dual to
Fokker–Plank equation) for the first mean passage time (MFPT)
Ty,gðyÞ from y to the absorbing boundary at y¼ y, with the
reflective boundary at y¼ g (see the book of Gardiner, 2004 for
the MFPT introduction, and Nevozhay et al., 2012; Frigola et al.,
2012 for the recent relevant application of this method):

�1¼ AðyÞ
@Ty,gðyÞ

@y
þ

1

2V
BðyÞ

@2Ty,gðyÞ

@y2
: ð30Þ

The boundary conditions are Ty,gðyÞ ¼ 0, and dTy,g=dy¼ 0 at
y¼ g. In the low noise limit, the probability mass fraction
concentrated in the vicinity of the steady state y1 is
ðT3-1Þ=ðT3-1þT1-3Þ, where T1-3 is the MFPT from y1 to y3 and
T3-1 is the MFPT from y3 to y1. To calculate T1-3 we set y¼ y3

and g¼ 0, while to calculate T3-1 we set y¼ y1 and g¼1. Our
separatrices are given by equality T3-1 ¼ T1-3 in V-1 limit.
Obviously, MFPTs give more information than just the probability
mass allocation as they account for cell memory (Nevozhay et al.,
2012). Times T1-3 and T3-1 may be obtained in explicit integral
forms from Eq. (30) (Gardiner, 2004).

In summary, using the classical Langevin approach we con-
firmed that a prediction of the most strongly attracting steady
state, strongly depends on assumed noise, here, either additive or
multiplicative. As one could expect, the additive noise separatrix
closely matches with that of continuous approximation in which
noise results solely from gene switching, while the multiplicative
noise separatrix closely matches with that of the adiabatic
approximation for which the magnitude of noise grows with the
number of molecules. As already said, in the original stochastic
model the most strongly attracting steady state is determined by
the relative magnitude of gene switching, transcriptional and
translational noises, and thus in general it may not be predicted
basing on the Langevin equation in which all noise sources are
lumped together and replaced by white noise. By considering
arbitrary noise functions we showed recently, that any steady
state can became a global stochastic attractor for particular choice
of noise (Zuk et al., 2012).

2.4. Three-stage model

In this section we consider a more detailed model of an
autoregulatory gene and demonstrate that the choice of the most
strongly attracting steady state is governed by the relative
magnitudes of gene switching, transcriptional and translational
noises. The following three processes are included in the model:
the gene activation/inactivation, mRNA transcription and protein
translation, Fig. 8. The mRNA is synthesized with the rate
constant Q1 and is degraded with the rate constant r1. The protein
is translated on the mRNA template with the rate constant Q2 and
is degraded with the rate constant r2. The transcriptional and
translational noises are characterized, respectively, by parameters
e1 ¼ r1=Q1 and e2 ¼ r2=Q2. Thus the characteristic number of
proteins (achieved when the gene is turn on for infinitely long
time) is equal to N¼ 1=ðe1e2Þ. As in the previous model we
assume that the gene may be in one of two states: inactive
G¼0 (no mRNA synthesis) or G¼1, active due to binding of its
own protein or some transcription factor implicitly present in the
model at constant concentration. The transition from state G¼0
to G¼1 proceeds with rate c0þðc2=N2

ÞY2 (where Y is the number
of proteins), while the transition from G¼1 to G¼0 proceeds with
constant rate b0. The coefficient c2 describing cooperative auto-
activation scales with N2, which is equivalent to the assumption
that protein binding rate is proportional to the concentration
rather than to the number of molecules. It is assumed that the cell
size is proportional to the characteristic protein number N. As in
the previous model the gene switching noise is characterized by
the parameter s¼ 1=b0. The model defines a time continuous
Markov process described by three random variables: the gene
state GðtÞAf0,1g, number of mRNA molecules XðtÞAN and num-
ber of proteins YðtÞAN.

The assumed reaction rate constants are listed in Table 1. For a
non-dimensional analysis we chose time units in which r2 ¼ 1 (third
column). Parameter values for prokaryotes and eukaryotes are cal-
culated by assuming r2 ¼ 10�4=s. As discussed in the Introduction,
prokaryotes are characterized by large transcriptional and transla-
tional noise, while eukaryotes have larger gene switching noise.
Therefore, in the example shown in Fig. 9, we assume for bacteria
e1 ¼ e01, e2 ¼ e02, s¼ s0=100 and for eukaryotes e1 ¼ e01=5,
e2 ¼ e02=25, s¼ s0, where e01 ¼ 1=15, e02 ¼ 1=75 and s0 ¼ 1=50.
Parameters e01, e02 and s0, will be referred to as default parameters.
They are so chosen that the SPD corresponding to the Markov
process is bimodal, and the probability mass is equally distributed
between two basins of attraction, Fig. 9A. Fig. 10 shows stochastic
simulation trajectory corresponding to the SPD shown in Fig. 9A.

In the s-0, e1-0 and e2-0 limit, the considered Markov
process for X(t), Y(t) can by approximated by the system of two
ordinary differential equations for scaled variables xðtÞ ¼ e1XðtÞ,
yðtÞ ¼ e1e2YðtÞ:

dx

dt
¼ r1ðGðyÞ�xÞ where GðyÞ ¼

c0þc2y2

c0þc2y2þb0
, ð31Þ

dy

dt
¼ r2ðx�yÞ: ð32Þ

Fig. 7. Separatrices the calculated for the continuous and adiabatic approximations

(as in Fig. 2A) compared with those resulting from the Fokker–Plank equation with

assumed either additive or multiplicative noise. For each of approximations for y1,

y2 above the separatrix, the global attractor is in y1, while for y1, y2 below the

separatrix the global attractor is in y3. Fig. 8. Schematic of the three-stage model.
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In a relatively broad range of parameters the above system
exhibits bistability. The stable steady states with high and low
protein concentration will be referred to as active and inactive,
respectively. For assumed parameters (Table 1) the three steady
states are

Inactive: x1 ¼ 0:03, y1 ¼ 0:03;
Unstable: x2 ¼ 0:26, y2 ¼ 0:26;
Active: x3 ¼ 0:71, y3 ¼ 0:71.

Let us note that stationary solutions of the system (31) and
(32) depend only on c0=b0 and c2=b0, i.e. are independent to noise
parameters s, e1, e2. Noise parameters, however, influence the
SPD. As shown in Fig. 9, the SPD for default noise parameters
(Table 1) is bimodal with the probability mass equally distributed
between two basins of attraction, Fig. 9A. Decrease of the gene
switching noise s (with the transcriptional and translational
noises kept constant) causes that the probability mass concen-
trates in the inactive state, Fig. 9B. In contrast, decrease of the
transcriptional noise e1 (with the gene switching and transla-
tional noises kept constant) causes that the probability mass
concentrates in the active state, Fig. 9C. Decrease of the transla-
tional noise (simultaneously with transcriptional noise) does not
significantly influence the SPD, Fig. 9D. Considering this observa-
tion, we focus on the normalized transcriptional to gene switch-
ing noise ratio, defined as R¼ ðe1=e01Þ=ðs=s0Þ. In Fig. 11 we

analyze the mass fraction of the SPD in the basin of attraction
of the inactive state, S1, as a function of R. Fraction S1 approaches
unity as R�1-0 (for fixed e1 and e2) and approaches zero as R-0
(for fixed s). The results presented in Figs. 9 and 11 demonstrate
that the type of dominating noise determines the most strongly
attracting steady state. The small R (transcriptional to gene
switching noise ratio), characteristic for eukaryotes, promotes
gene activation. In turn, large R, characteristic for bacteria, pro-
motes gene inactivation.

3. Conclusions

We considered two models of a self-regulating gene with
underlying bistability. In the simplified two-stage model, the
transcription and translation processes were lumped together,
which allowed for the analytical approach. Next, we considered
the three-stage model with three types of noise; transcriptional
and translational – due to the limited number of mRNA and
protein molecules, and the gene-switching noise – due to gene
activation and inactivation. Analysis of both models demon-
strated that the relative magnitudes of transcriptional and trans-
lational, and gene switching noise determine how the SPD is
allocated between the two basins of attraction. We found that the
low ratio of transcription to gene switching noise (R) promotes
gene activation, while large R promotes gene inactivation.

Table 1
Model parameters.

Name Symbol Non-dimensional value Valueforbacteria Value for eukaryotes

Transcriptional noise default value e01 1=15

Translational noise default value e02 1=75

Gene switching noise default value s0 1=50

Transcriptional noise e1 e01 e01=5

Translational noise e2 e02 e02=25

Gene switching noise s s0=100 s0

Protein degradation r2 1 10�4=sa 10�4=sb

mRNA degradation r1 10r2 10�3=sc 10�3=sd

Inducible gene activation c2 4:8r2ðe1e2Þ
2=s 1:9� 10�6=se 1:2� 10�12=sf

Basal gene activation c0 0:027r2=s 0:0135=sg 0:000135=sg

Gene inactivation b0 r2=s 0.5/sg 0.005/sg

mRNA transcription Q1 r1=e1 0.015/sh 0.075/si

Protein translation Q2 r2=e2 0.0075/sj 0.1875/sk

mRNA number in 0:03=e1 0.5 2.28

Inactive (active) state ð0:64=e1Þ (10.6)l (53.2)m

Protein number in inactive (active) state 0:03=e1e2 34.3 4290.1

ð0:64=e1e2Þ (798.4)n (99799.4)o

a Most of bacterial proteins are very stable, with degradation rate constants: 1:4� 10�5
25:6� 10�5=s (Jayapal et al., 2010). Some proteins have much higher

degradation rates. E. coli RNase R has degradation rate constant of 10�3=s (in exponential phase) (Chen and Deutscher, 2010), factor s32 has degradation rate constant of

10�2=s (in steady-state growth phase) (El-Samad et al., 2005).
b Mammals: protein degradation rate constants: 1:7� 10�6

21:7� 10�3=s (Hargrove, 1993).
c The vast majority of mRNAs in a bacterial cell are very unstable, having a half-life of about 3 min (decay rate constant 3� 10�3=s) (Alberts et al., 2002). E. coli: mRNA

half-lives span between 1 and 18 min (decay rate constants 10�2
26� 10�4=s) (Bernstein et al., 2002).

d The eukaryotic mRNAs are more stable than prokaryotic with half-lives exceeding 10 h (decay rate constant 2� 10�5=s). However, many have half-lives are of order

of 30 min (decay rate constant 3� 10�4=s) or less (Alberts et al., 2002). Mammalian mRNA degradation rate constants: 1:7� 10�5
21:7� 10�3=s (Hargrove, 1993).

e For 1 mm3 cell volume (bacterial cell) c2 ¼ 6:9=ðmM2
� sÞ.

f For 2� 103 mm3 cell volume (mammalian cell) c2 ¼ 1:7=ðmM2
� sÞ.

g For prokaryotes gene switching is faster than for eukaryotes (Blake et al., 2003). Slow gene switching in eukaryotes is causing large mRNA bursts (Raj et al., 2006).

However, the transcriptional bursting was also observed in E. coli promoter (Golding et al., 2005).
h For E. coli the maximal transcription rate constant: 0:84=s (Kennel and Riezman, 1977).
i For eukaryotes the maximal transcription rate constant: 0:84=s (Kafatos, 1972).
j Translation initiation intervals are specific for each mRNA (Laursen et al., 2005). E. coli: translation initiation rate constant may vary at least 1000-fold (Sampson et al.,

1988); examples of translation initiation frequencies; b-galactosidase: 0:31=s (spacing between ribosomes: 110 nucleotides), galactoside acetyltransferase: 0:06=s (spacing

between ribosomes: 580 nucleotides) (Kennel and Riezman, 1977); maximal peptide chain elongation rate: 20aa/s (Young and Bremer, 1976; Bremer et al., 1974); average

peptide chain elongation rate: 12aa/s (Kennel and Riezman, 1977).
k Translation rate constant for eukaryotes: 0:01821:8=s (Cohen et al., 2009).
l E. coli: average mRNA copy number: 10�4

25 molecules/cell (Taniguchi et al., 2010).
m Mammals (mice): average mRNA copy number observed in natural transcriptomes: 0:525� 104 molecules/cell (Mortazavi et al., 2008; Galau et al., 1977).
n E. coli: average protein copy number: 10�1

2104 molecules/cell (Taniguchi et al., 2010).
o Mammals: the maximal protein copy number: 108 molecules/cell (Sims and Allbritton, 2007). Most of yeast genes: 103

25� 104 molecules/cell (Gygi et al., 1999).
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Behavior of living cells is inherently associated with noise,
which can be either perceived as an obstacle to accurate signal
processing, or as a necessary factor introducing heterogeneity in

cell populations. Noise enables cells to explore the state space,
and allocates the cell population between the local optima – the
epigenetic attractors. In this study we demonstrated that in the
given epigenetic landscape, defined by the deterministic
approximation, the relative occupancy of the attractors is
controlled by the type of noise, even in the limit in which noise
amplitude converges to zero. The theoretical consequence of our
finding is that the prediction of the most strongly attracting
steady state or global attractor in the classical Langevin
approach, in which all noise sources are replaced by white
noise, may not, in general, be correct. Observation that the most
strongly attracting steady state, is controlled by relative con-
tributions of the gene switching and transcriptional noise may
be exploited in synthetic biology, which enables controlling
the magnitudes of different noise sources in designed systems;
see eg. Kierzek et al. (2001) and Ozbudak et al. (2002) where

Fig. 9. The marginal SPD of the three-stage model for parameters from Table 1. S1 – mass fraction in the inactive state basin of attraction. Panel (A) shows almost ‘‘equimodal’’

SPD obtained in the case when e01 ¼ 1=150, e02 ¼ 1=75 and s0 ¼ 1=50. Panel (B) shows the SPD of the constant transcriptional and translational noise e1 ¼ e01, and e2 ¼ e02 and

decreasing gene switching noise s. Panel (C) shows the SPD for the constant gene switching noise s¼s0, constant translational noise e2 ¼ e02 and decreasing transcriptional

noise e1. Panel (D) shows the SPD for the constant gene switching noise s¼ s0 and decreasing transcriptional and translational noise parameters e1 and e2.

Fig. 10. Three-stage model: Stochastic simulation trajectory for default noise

parameters e1 ¼ e01 ¼ 1=150, e2 ¼ e02 ¼ 1=75 and s¼ s0 ¼ 1=50. The corresponding

SPD is shown in Fig. 9A. Time is given in units equal to the mean protein lifetime.

Fig. 11. Mass fraction in the vicinity of the inactive state, S1, as a function of noise

parameters ratio R¼ ðe1=e01Þ=ðs=s0Þ. Panel (A) S1 plotted as a function of R�1 for

constant e1 ¼ e01 (and e2 ¼ e02). Panel (B) S1 as a function of R for constant s¼s0.
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transcription and translation rates were independently
modulated.

As already said the dominant noise is cell type-specific. The
process of gene expression, analyzed in this study, involves at
least three types of noise: gene-switching, transcriptional and
translational. Eukaryotic and prokaryotic cells differ significantly
in their gene expression noise characteristics. In eukaryotes, the
most important source of noise are infrequent transitions
between the on and off states (Raj et al., 2006; Becksei et al.,
2005). In turn due to a large volume and correspondingly a large
number of mRNA and proteins, the transcriptional and transla-
tional noises are relatively low. In the model the larger number of
mRNA and protein was achieved by the increase of mRNA
transcription and protein translational rate constants, which
reflects the higher number of mRNA polymerases and ribosomes
in eukaryotic cells. In prokaryotic cells gene activation and
deactivation are thought to be very fast due to small volume,
which implies easier contact and more frequent binding of
transcription factors to the gene promoters. Thus, the gene
switching noise in prokaryotes is typically low. Due to the small
number of mRNA molecules and proteins, the gene expression
noise in prokaryotic cells originates mostly from the transcription
and translation events (Taniguchi et al., 2010). As a result
eukaryotes, compared with prokaryotes, have a lower ratio of
transcriptional to gene switching noise, which as demonstrated in
this study promotes activation of autoregulatory genes.

In our study we concentrate on the gene expression noise,
which is the most ubiquitous, but not always dominant source of
noise in cell signaling. Earlier, we theoretically then experimen-
tally demonstrated that at low dose TNF a stimulation, noise
associated with stochastic receptor activation dominates over
gene expression noise in NF-kB system (Lipniacki et al., 2007;
Tay et al., 2010). As a result, at low dose stimulation, individual
cell responses became highly asynchronous, with fraction of
responding cells decreasing with the stimulation dose (Tay
et al., 2010; Turner et al., 2010).

Noise characteristics are not only cell type-specific, but may
also change during the cell cycle and development. This opens the
possibility that relative occupancy of steady states may be
actively controlled by noise. For example cell volume growth in
G1 phase and DNA replication in S phase asynchronously modify
the relative contributions of gene switching, transcriptional and
translational noises. Much larger changes in noise magnitude and
its characteristics accompany embryogenesis in fruit fly or frog. In
the first case nuclear divisions (mitoses) begin following fertiliza-
tion, but are not accompanied by division of cytoplasm (cytokin-
esis). Only after thirteen mitotic divisions, the approximately
5000 nuclei are partitioned into separate cells (Campos-Ortega,
1997). In the case of frog embryogenesis the huge egg is
converted into a tadpole consisting of millions of much smaller
cells containing the same amount of organic matter (Nieuwkoop
and Faber, 1994). One might speculate that changes in noise
magnitude and characteristics add to the formation of morphogen
gradients (changing relative stability of predefined steady states)
initiating body segmentation and cell differentiation. Such mode
of control, would require a more precise tuning of parameters
than the simple tilting of the epigenetic landscape. However, it
would have the advantage of keeping the epigenetic attractors
(potentially the most plausible states) unchanged, with simulta-
neous modification of their relative occupancy.
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Abstract
Bistable regulatory elements enhance heterogeneity in cell populations and, in multicellular
organisms, allow cells to specialize and specify their fate. Our study demonstrates that in a
system of bistable genetic switch, the noise characteristics control in which of the two
epigenetic attractors the cell population will settle. We focus on two types of noise: the gene
switching noise and protein dimerization noise. We found that the change of magnitudes of
these noise components for one of the two competing genes introduces a large asymmetry of
the protein stationary probability distribution and changes the relative probability of individual
gene activation. Interestingly, an increase of noise associated with a given gene can either
promote or suppress the activation of the gene, depending on the type of noise. Namely, each
gene is repressed by an increase of its gene switching noise and activated by an increase of its
protein-product dimerization noise. The observed effect was found robust to the large, up to
fivefold deviations of the model parameters. In summary, we demonstrated that noise itself
may determine the relative strength of the epigenetic attractors, which may provide a unique
mode of control of cell fate decisions.

1. Introduction

Bi- and multi-stable regulatory elements play an important
role in cell signaling by introducing heterogeneity in cell
populations and allowing cells in a multicellular organism to
specialize and specify their fate. Attractors of genetic networks
can be associated with distinct cell types achieved during cell
differentiation [1, 2]. Although multistationarity is not required
for the emergence of co-existing phenotypes [3], decisions
between cell death and survival, proliferation or senescence are
likely associated with bistability. In prokaryotes, multistability
is regarded as an optimal strategy for coping with varying
environmental conditions [4].

In a single cell, the relative occupancy of steady states is
determined by their relative stability, while at the population
level it is additionally governed by growth rates associated with
particular steady states [5]. Intuitively, the relative strength
of the macroscopic steady states should be controlled by the
‘shape’ of the epigenetic landscape. Considering the epigenetic
landscape as a potential energy landscape, one could expect
that the stability of a steady state increases with the depth

of the associated potential well. The external stimulation that
leads to the modification of the potential influences the relative
stability of the steady states and may promote state-to-state
transitions. Interestingly, noise itself was also found to be
an important determinant of the relative occupancy of the
macroscopic steady states [6–9]. As shown by Vellela and
Qian [6], in a bistable system the noise magnitude controls the
probability mass fraction in each of the two attraction basins.
In the limit of zero noise, generically, all probability mass
concentrates in the vicinity of the most stable steady state
[7]. Surprisingly, also the noise type (in addition to the noise
magnitude) influences the relative stability of the macroscopic
steady states. Analyzing a single autoregulatory gene by means
of the chemical Langevin equation, Frigola et al demonstrated
that additive and multiplicative noise assumptions lead to
different effective potentials [8]. Recently, by considering
arbitrary noise functions, we showed that any steady state can
become a global stochastic attractor for a particular choice
of noise [7]. In the case of a single autoregulatory gene,
we found that when the gene switching noise dominates
the transcriptional/translational noise, the gene preferentially
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activates, while in the opposite case the gene preferentially
remains inactive [9].

In this study, we will focus on the role of noise in
the toggle switch regulation. A toggle switch—a pair of
mutual repressors—is considered as one of the most important
regulatory elements exhibiting bistability [10–13]. Using a
toggle switch, a single cell converts graded external stimuli
into a binary answer expressing almost exclusively one of
the two competing repressors. At the population level, the
graded stimuli are encoded by the fraction of cells expressing
instantaneously the particular gene. Classical examples of
toggle switches include the lysis/lysogeny switch in λ phage
[14–16], several mitogen-activated protein kinase cascades in
animal cells [17–19], and cell cycle regulatory CI circuits
in Xenopus laevis and Saccharomyces cerevisiae [20, 21].
Another example of a toggle switch in bacteria is a tetracycline
resistance circuit in Escherichia coli.

A synthetic toggle switch in E. coli was constructed
by Gardner et al [22]. It was forced to flip between the
steady states using a transient chemical or thermal induction.
The toggle was constructed using the Lac repressor (lacI)
in conjunction with Ptcr-2 promoter and either a PLs1con
promoter in conjunction with a temperature-sensitive λ

repressor (cIts) or a PLtetO-1 promoter in conjunction with
a Tet repressor (tetR). The work of Gardner et al also
provides a theoretical prediction of the conditions sufficient
for bistability. Bistability arises when at least one of the
inhibitors represses the expression of the competing gene with
cooperativity greater than 1. Later, Lipshtat et al showed that
exclusive toggle switches may exhibit bistability even without
a cooperative binding [12]. In the exclusive switch, the two
promoter sites overlap and thus two repressors cannot be bound
simultaneously. In the simplest of the three considered models,
despite the fact that the deterministic approximation predicts
a single steady state, the stationary probability distribution
(SPD) was found bimodal. The additional assumptions that
either bound repressors may degrade, or that free repressor
proteins may form inactive heterodimers led to bistable models
with two macroscopic stable steady states [12].

Cells have evolved to survive in fluctuating environments
taking advantage of the stochasticity present in the process of
gene regulation. State-to-state transitions in a toggle switch
are enabled by noise, whose magnitude controls switching
rates [23, 24]. In a rapidly changing epigenetic landscape
high noise is favorable as it allows for fast adaptation. It
was shown theoretically that in a varied environment bacteria
maximize fitness by tuning noise with the frequency of
the environment fluctuations [25]. In the system of mutual
repressors, the overall states stability can be controlled by
noise associated with a mode of repression. As shown by
Komorowski et al, translational repression contributes greater
noise to gene expression than transcriptional repression [26].
Warren et al demonstrated that overlapping upstream gene
regulatory domains increases toggle stability, i.e. decreases
state-to-state transition rates [27]. In general, the transition
times increase exponentially with the characteristic number
of repressor molecules, and are reduced when proteins are
synthesized in large bursts [28]. It is also known that the noise

magnitude affects the dynamical characteristics of the toggle
switch. As shown by Dai et al, a deterministically bistable
toggle switch has two stochastic (or noise) attractors only for
a limited noise amplitude [29]. An excess of noise makes the
toggle switch first tristable (with a new third state characterized
by high expression of both genes), then monostable, with both
genes expressing simultaneously. The model considered by
Dai et al involves delays accounting for time duration of
various gene expression processes. The considered delays are
due to the formation of an open promoter complex, ribosome
clearance, transcriptional and translational elongation and
post-translational processing, see [30] for review.

In the current study, we answer the question whether
noise itself can control relative stability of the two toggle
macroscopic steady states. Such mode of control would enable
activation or repression of a particular toggle gene without
any modification of the associated epigenetic landscape.
In the studied toggle switch model, we consider explicitly
processes of mRNA transcription, protein translation, protein
dimer formation and gene repression. Each of these processes
introduces a different type of noise to the system. We will show
that the change of the magnitudes of noise components for
either of the two competing genes alters the protein SPD and
changes the probability mass fraction in each of the two basins
of attraction. Interestingly, a decrease of noise associated with
a given gene can promote the activation of that gene or the
other, depending on the type of noise.

2. Model

The toggle switch model consists of two competing genes:
gene 1 and gene 2, figure 1. Each gene can be repressed by the
competing gene protein dimer. Processes of gene repression,
mRNA transcription, protein translation, dimer formation and
dissociation are explicitly included in the model, table 1. Each
of these processes is considered stochastic and contributes to
noise in levels of molecules.

The model defines a time-continuous Markov process
involving eight random variables: the gene 1 and gene 2
states, G1(t), G2(t) ∈ {0 (repressed),1 (active)}, numbers of
molecules of mRNA 1 and mRNA 2, M1(t), M2(t) ∈ N,
numbers of molecules of the protein monomer 1 and protein
monomer 2, P1(t), P2(t) ∈ N, numbers of molecules of the
protein dimer 1 and protein dimer 2, D1(t), D2(t) ∈ N. The
default transition propensities ki, (i = 1, . . . , 9) for each of
the nine considered reactions (see figure 1) are assumed equal
for both genes, table 1. These rates are chosen so that the
system in the deterministic approximation is bistable, i.e. it has
two stable steady-state solutions, each corresponding to a high
expression of one gene and a low expression of the another, and
the unstable steady state for which both genes have the same
relatively low expression. The stochastic trajectories switch
between the basins of attraction of these two stable steady
states, figure 2. The full symmetry between the two genes (for
the default parameters) is manifested by the symmetric SPD.
The stochastic trajectories and the SPDs of the system were
obtained in the Gillespie algorithm simulations [31].
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Figure 1. Schematic of the stochastic toggle switch model. Each of
two genes can be repressed by the binding of the protein dimer
molecule, the product of the competing gene. The repressed gene is
activated by the dissociation of the dimer molecule (which returns to
the pool of free dimers) from its promoter. We assume small, but
non-zero mRNA transcription from the repressed genes. Other
stochastic reactions explicitly included in the model are protein
translation, dimer formation and its dissociation, and degradation of
mRNA and protein monomer molecules. We assume that dimers are
much more stable than monomers and thus we neglect their
degradation. Coefficients σi and θi control individual gene switching
and dimerization noise components. For σ1 = σ2 and θ1 = θ2, all
reaction corresponding propensities are equal for both genes
(symmetric case).

In the following section, we will analyze the dynamics
of the model with respect to the magnitudes of individual
noise components. In particular, we will focus on the gene
switching and protein dimerization noises. The gene switching
noise is controlled independently for each of the two genes by
parameters σi (i = 1, 2), which multiply simultaneously rate
constants of gene activation and gene repression, k1 and k2,
respectively (see figure 1). The noise introduced by the gene
switching decreases with the switching rates, and becomes
zero in the adiabatic limit when these rates are infinite. We
will thus consider 1/σi as the gene switching noise parameter.
The parameter σi controls noise in the system, but, as we will
see in the following section, its value does not influence steady
states of the deterministic approximation of the system. The
dimerization noise is controlled by parameters θi (i = 1, 2),
which multiply simultaneously dimer association and dimer
dissociation rate constants, respectively k6 and k7, see figure 1.
Thus, the dimerization noise of the gene i product decreases
with increasing θi, but again the value of θi does not influence
the steady state of the deterministic approximation of the
system.

The control of the toggle switch coefficients by
dimerization and gene switching noise parameters was chosen
because it allows us to separate noise effects from the effects
resulting from the modification of macroscopic steady states
of the system. Such an approach allows us to compare
different stochastic systems having the same deterministic
approximation.

Table 1. Reaction rate constants.

Reaction Symbol Default value σi = 1, θi = 1 Physiological range for bacteria (volume 1 μm3)

Gene activation σik1 0.003 (1/s) Unknowna

by protein dimer dissociation
Gene repression by σik2 0.015 (1/(mlcl×s)) Unknownb

protein dimer binding
mRNA transcription k3 0.02 (1/s) �0.84 (1/s)c

from the active gene
mRNA transcription k4 0.0006 (1/s) d

from the repressed gene
Protein translation k5 0.01 (1/(mlcl×s)) ∼10−2–∼10 (1/s)e

Dimer formation θik6 0.0001 (1/(mlcl×s)) 1.63 × 10−6–9.47 (1/(mlcl×s))f

Dimer dissociation to monomers θik7 0.01 (1/s) 5 × 10−8–1.9 × 103 (1/s)g

mRNA degradation k8 0.005 (1/s) 10−2–6 × 10−4 (1/s)h

Protein monomer degradation k9 0.0005 (1/s) ∼1.4 × 10−5–∼10−2 (1/s)i

mlcl=molecule
a,b For prokaryotes, gene switching is faster than for eukaryotes [37].
c,d For E. coli, maximal transcription rate: 0.16–0.84 s−1 [38].
e Translation initiation intervals are of the order of seconds, although they are specific for each mRNA [39]. E. coli: translation
initiation rate may vary at least 1000-fold [40]; examples of translation initiation frequencies: β-galactosidase—0.31 s−1

(spacing between ribosomes: 110 nucleotides), galactoside acetyltransferase—0.06 s−1 (spacing between ribosomes: 580
nucleotides) [38]; maximal peptide chain elongation rate: 20 aa s−1 [41, 42]; average peptide chain elongation rate: 12 aa s−1

[38].
f All cell types: 9.8 × 102/(M × s)–5.7 × 109/(M × s)[43]; for 1 μm3 volume (bacterial) cell: 1.63×10−6/mlcl×s –9.47/mlcl×s.
g All cell types: 5 × 10−8/s–1.9 × 103/s [43]. Dissociation constant range: 7.2 × 10−17M−2.2 × 10−6M [43]; for 1 μm3 volume
(bacteria) 4.34 × 10−8/mlcl×s–1.32 × 103/mlcl×s.
h The vast majority of mRNAs in a bacterial cell are very unstable, having a half-life of about 3 min. Bacterial mRNAs are both
rapidly synthesized and rapidly degraded [44]. The average mRNA copy number in E. coli is 10−4–5 mlcls/cell [45].
i Most bacterial proteins are very stable, with degradation rates: 1.4 × 10−5–5.6 × 10−5 s−1 [46]. Some proteins have much
higher degradation rates. E. coli RNase R has a degradation rate of 10−3 s−1 (in exponential phase) [47], factor σ 32 has a
degradation rate of 10−2 s−1 (in steady-state growth phase) [48]. The average protein copy number in E. coli is 10−1–104

mlcls/cell [45].
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Figure 2. The stochastic simulation trajectories for σi = θi = 1, i = 1, 2. Dashed lines denote steady states of the deterministic
approximation. On the left vertical axis numbers of molecules are given and on the right vertical axis we show the scaled ‘concentrations’
(see the text). The corresponding protein monomer SPD is shown in figure 4(a).

3. Results

3.1. Deterministic approximation

We start the analysis of the model dynamics with
an examination of its deterministic approximation. In
the deterministic approximation, the stochastic variables
describing gene states Gi are replaced by continuous
variables gi. The remaining variables, Mi, Pi and Di, are
considered continuous and are scaled by their maximal values,
respectively, M0, P0 and D0, reached under the condition that
each gene is in the active state:

M0 = k3/k8; P0 = (k3k5)/k8k9;
D0 = k6(k3k5)

2/(k7(k8k9)
2). (1)

The scaled variables

mi = Mi/M0, pi = Pi/P0, di = Di/D0 (2)

will be referred to as scaled ‘concentrations’. Now, the
considered Markov process can be approximated by the system
of eight ordinary differential equations:

dgi

dt
= σi(k1(1 − gi) − k2D0d jgi), (3)

dmi

dt
= k8gi + k4

M0
(1 − gi) − k8mi, (4)

dpi

dt
= 2θik6P0

(
di − p2

i

) + k9(mi − pi), (5)

ddi

dt
= θik7

(
p2

i − di
)
, (6)

where i = 1, 2 and j = 3 − i. The deterministic
approximation is accurate only when the characteristic
numbers of molecules are large (enough to be replaced by
the continuous concentrations). For bacteria this condition
is seldom satisfied, and thus mass rate equations may serve
only as a reference for the stochastic analysis. In particular,
in equation (6), the loss of a (single) dimer molecule that
binds DNA is neglected, although this loss is accounted for in
stochastic simulations.

The steady-state values of p1 are given by the real roots
of the fifth-order polynomial,

W (p1) = − (
k2

1k2k3k4k2
5k6k2

7k4
8k4

9 + k3
1k3

7k6
8k6

9

)

+ (
k2

1k2k2
3k2

5k6k2
7k4

8k4
9 + k3

1k3
7k6

8k6
9

)
p1

− (
2k1k2

2k2
3k2

4k4
5k2

6k7k2
8k2

9 + 2k2
1k2k2

3k2
5k6k2

7k4
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9

)
p2

1

+ (
2k1k2

2k3
3k4k4

5k2
6k7k2

8k2
9 + 2k2

1k2k2
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5k6k2
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)
p3

1

− (
k3
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3k3

4k6
5k3
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3k4
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6k7k2
8k2

9

)
p4

1

+ (
k3

2k4
3k2

4k6
5k3

6 + k1k2
2k4

3k4
5k2

6k7k2
8k2

9

)
p5

1. (7)

The steady-state values of the remaining variables are given
by the following relations:

p2 = (
k1k7k2

8k2
9 + k2k2

3k4k2
5k6 p2

1

)(
k1k7k2

8k2
9 + k2k2

3k2
5k6 p2

1

)−1
,

(8)
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m1 = p1, d1 = p2
1, (9)

m2 = p2, d2 = p2
2, (10)

g1 = (
k1k7k2

8k2
9

) (
k1k7k2

8k2
9 + k2k2

3k2
5k6d2

)−1
, (11)

g2 = (
k1k7k2

8k2
9

) (
k1k7k2

8k2
9 + k2k2

3k2
5k6d1

)−1
. (12)

For the assumed parameters (table 1), the polynomial W (p1)

has three real roots, and correspondingly the system has three
steady states (figures 2 and 4(a)):

• the unstable state S0: g1 = g2 ≈ 0.12, m1 = p1 = m2 =
p2 ≈ 0.15, d1 = d2 ≈ 0.022,

• the stable state S1:
g1 ≈ 0.006, g2 ≈ 0.71, m1 = p1 ≈ 0.72, d1 ≈ 0.51,
m2 = p2 ≈ 0.036, d2 ≈ 0.0013,

• the stable state S2:
g1 ≈ 0.71, g2 ≈ 0.006, m1 = p1 ≈ 0.036, d1 ≈ 0.0013,
m2 = p2 ≈ 0.72, d2 ≈ 0.51.

In the steady state S1, gene 1 is mostly active while gene 2
is repressed. In the steady state S2, gene 2 is mostly active
and gene 1 is repressed. In the deterministic approximation,
the choice of the stationary state is determined by the initial
conditions, i.e. trajectories remain in the same basin of
attraction. In figure 2, we show the correspondence between
deterministic steady states S0, S1 and S2 and trajectories of
the stochastic system. The scaled concentrations (given on the
right-hand side of each panel) can be converted to the numbers
of molecules (given on the left-hand side) by relations (2).

3.2. Stochastic model analysis

In the stochastic model, trajectories switch between the
two basins of attraction, figure 2. Since the system is
multidimensional, the exact determination of attraction basins
is difficult. For practical purposes, in order to determine mean
residence times T1 and T2 in the basins of states S1 and S2

(or shortly in states S1 and S2), we assume the following
definitions of state-to-state transitions: the S1 to S2 transition
occurs when P2 −P1 > P0(p1(S1)− p1(S2))/3 and in addition
when D2 − D1 > D0(d1(S1) − d1(S2))/3, and analogously
for the reverse transition. Accordingly, the events in which
only P2 − P1 becomes greater than P0(p1(S1) − p1(S2))/3
are not counted as state-to-state transitions. When performing
sensitivity analysis (section 3.3), we observe that for some sets
of parameters (for which dimers have much higher stability
than monomers) such pseudo-transitions are quite frequent
but are not followed by a trajectory jump to the vicinity of
the other steady state. For similar reasons, it is not enough to
require that P2 and D2 simply exceed P1 and D1, respectively.
Such a definition would lead to multiple pseudo-transitions
accompanying almost every single real transition.

Stationary probability mass fractions in the vicinities
of stable steady states S1 to S2 can be estimated from
the mean residence times as π∗(S1) := T1/(T1 + T2) and
π∗(S2) := T2/(T1 + T2). However, because the definition of
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Figure 3. The mean residence time in states S1 and S2 calculated in
the symmetric case as a function of the gene switching noise 1/σ or
dimerization noise 1/θ , where σ = σ1 = σ2 and θ = θ1 = θ2.

state-to-state transitions is arbitrary, we will also estimate
probability mass fractions independently of the mean
residence times for a cross validation. We make use of the
fact that in the deterministic approximation the system is
symmetric with respect to both genes. This allows us to define
π(S1) := 〈G1〉 /(〈G1〉 + 〈G2〉) and π(S2) := 〈G2〉 /(〈G1〉 +
〈G2〉), where 〈G1〉 denotes the average state of gene 1, equal
to the probability that the gene is active. The stationary
probability mass fractions π(S1) and π(S2) will be estimated
based on the long-run Gillespie algorithm simulations, having
1000 (for figures 3 and 5) or 100 (for figures 6 and 7) S1 to S2

(and reverse) transitions. Based on the same simulations we
will also estimate the mean residence times T1 and T2.

As one could expect, in the symmetric case, i.e. when
σ1 = σ2 = σ and θ1 = θ2 = θ , the mean residence times
T1 and T2 are equal and decrease with increasing magnitude
of noise in the system. As shown in figure 3, an increase of
either of the two considered noise components (i.e. 1/σ or
1/θ ) leads to a shortening of the mean residence times in
states S1 and S2. This allows for the interpretation of 1/σ

and 1/θ as, respectively, the gene switching and dimerization
noise parameters. As analyzed earlier by Warren and ten
Wolde [28], the mean residence time decreases with increasing
transcriptional noise (inversely proportional to the number of
product molecules). We also observe this effect within the
considered toggle switch model, see appendix.

Responses of the system to a non-symmetric change of
noise parameters are less intuitive. In figure 4, we analyze the
changes of the SPD in response to the non-symmetric (only for
gene 2) fivefold change of the gene switching or dimerization
noise. As shown (figure 4(c)), the increase of the gene 2
switching noise induces a break of symmetry of the SPD, such
that the probability mass fraction concentrates in the vicinity
of state S1 (i.e. the state in which gene 1 is predominantly
active) with π(S1) = 0.84. In turn, the decrease of the gene 2
switching noise makes gene 2 dominant, with π(S1) = 0.36
(figure 4(e)). Surprisingly, the increase of the dimerization
noise for the gene 2 protein causes the gene 2 activation (with
π(S1) = 0.19, figure 4(d)), while the decrease of the gene 2
protein dimerization noise causes the gene 1 activation (with
π(S1) = 0.64, figure 4( f )).

In short, an increase of noise associated with a given gene
may either promote or suppress its activation depending on the

5



Phys. Biol. 10 (2013) 035007 J Jaruszewicz and T Lipniacki

(a)

(e)

(b)

(c) (d )

(S1)=0.5

(S1)=0.84

(S1)=0.36

symmetric case - contour plot symmetric case - mesh plot

gene 2 switching noise 
5-fold increased

gene 2 protein dimerization 
noise 5-fold increased

gene 2 switching noise 5-fold 
increased and dimerization 
noise 5-fold decreased

(S1)=0.64

(S1)=0.19

(f )

P2

P1

P1P1

P1P1

P1
P2

P2

P2

P2

P2

S1

S2 se
paratrix

   

P 1=
P2

pr
ob

ab
ili

ty
 d

en
si

ty
pr

ob
ab

ili
ty

 d
en

si
ty

pr
ob

ab
ili

ty
 d

en
si

ty
pr

ob
ab

ili
ty

 d
en

si
ty

pr
ob

ab
ili

ty
 d

en
si

ty

0 40 80
0

40

80

unstable point
stable points

gene 2 switching noise 
5-fold decreased

gene 2 protein dimerization 
noise 5-fold decreased

(g)

(S1)=0.89

P2 P1

pr
ob

ab
ili

ty
 d

en
si

ty

Figure 4. The SPDs of the stochastic model obtained in Monte Carlo simulations. Panels (a) and (b) show the contour and mesh plots in the
symmetric case (σi = θi = 1, i = 1, 2). Panel (a): the stable steady states of the corresponding deterministic model are marked with dots and
the unstable steady state is marked with a circle. An increase or decrease of noise associated with the gene 2 expression causes the SPD to
become asymmetric. Panels (c), (d), (e) and ( f ): increase of the gene switching noise causes the probability mass to concentrate in the
vicinity of state S1, while an increase of dimerization noise causes most of the probability mass to concentrate in the vicinity of state S2. A
decrease of the gene switching noise causes the probability mass to concentrate in state S2, while a decrease of the dimerization noise causes
most of the probability mass to concentrate in the vicinity of state S1. Panel (g): a simultaneous fivefold increase of the gene 2 switching
noise and a decrease of the gene 2 dimerization noise results in the largest asymmetry of the SPD, 89% of the probability mass concentrated
in state S1.

increased noise component. An increase of the gene switching
noise promotes the activity of the competing gene, while an
increase of the dimerization noise suppresses the competing
gene activation. These two opposing effects can be combined

by the simultaneous fivefold increase of the gene 2 switching
noise, and fivefold decrease of its product dimerization noise,
which leads to an almost full suppression of the gene 2 activity,
with π(S1) = 0.89, figure 4(g).
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The results shown in figure 4 are supported by the analysis
of the mean residence times T1 and T2, figure 5. As shown in
figure 5(a), an increase of the gene 2 switching noise induces

an increase of time T1 and a decrease of time T2. In contrast, an
increase of the gene 2 protein dimerization noise leads to an
increase of time T2 and simultaneously leads to a decrease of
time T1. The above analysis implies that an increase of the gene
switching noise stabilizes the gene in the inactive state, and
destabilizes it in the active state. The increase of a given gene
product dimerization noise stabilizes that gene in the active
state and additionally eases inhibition of the competing gene.

As shown in figure 5, the probability mass fraction
π(S1) (defined, recall, as π(S1) := 〈G1〉 /(〈G1〉 + 〈G2〉)) is
almost equal to π∗(S1) := T1/(T1 + T2), showing the perfect
consistency of these two measures. Accordingly, π(S1) is a
monotonically growing function of the gene 2 switching noise
(with π(S1) = 0.91 for 1/σ2 = 10) and a monotonically
decreasing function of the gene 2 protein dimerization noise
(with π(S1) = 0.10 for 1/θ2 = 10); see figure 5, two bottom
subpanels.

The results presented in figures 3 and 5 can be explained
as follows. As shown in figure 4, trajectories transit between
states S1 and S2 through the vicinity of state S0 in which both
genes are mainly repressed, and the levels of both proteins are
low. Thus, the S1 to S2 transition requires the repression of the
active gene (G1) by binding a protein dimer, product of the
repressed gene (G2). These dimers arise infrequently due to
the small mRNA synthesis from the repressed gene G2

(coefficient k4, table 1). A detailed analysis of the trajectory
whose short fragment is shown in figure 2 indicates that
for the default parameters less than 1% of the active gene
switching-off events leads to a state-to-state (S1 to S2 or
reverse) transition, compare figures 2(a) and (c). When gene
switching noise increases, say tenfold, the gene switching-off
events are ten times less frequent, but the time for which the
gene is switched off is ten times longer. We found that these
longer switch-offs are much more effective, and almost all of
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them lead to state-to-state transitions. As a result, the increase
of the gene 2 switching noise shortens the mean residence
time T2 (in S2), figure 5(a). A simultaneous increase of the
gene switching noise for gene 1 and gene 2 shortens both T1

and T2, respectively, as shown in figure 3(a).
As said, the active gene switching-offs follow synthesis

of single dimers from the repressed gene. For the default
parameters, a synthesis of a single dimer leads on average
to k2/k7 = 1.5 switching-off events (less when several dimers
compete for the binding site). When the gene 2 dimerization
noise increases, say tenfold, gene 2 dimers appear tenfold less
frequently, but survive ten times longer. As a result appearance
of a single dimer leads to k2/(k7/10) = 15 switching-off
events. Because these switch-offs arise in series, they have
much higher chance to induce S1 to S2 transition. As a result
when the gene 2 dimerization noise increases, the time T1

decreases, figure 5(b). Simultaneously, the time T2 increases,
because an S2 to S1 transition requires longer repression of
gene 2, necessary for protein dimers of gene 2 to dissociate
to monomers, figure 5(b). The last effect, however, is weaker
than the previous one, and therefore a simultaneous increase
of protein 1 and protein 2 dimerization noises leads to the
decrease of both T1 and T2, respectively, as shown in figure 3(b).

3.3. Sensitivity analysis

In order to analyze the sensitivity of the presented results to a
model parameters variation, we perform systematic robustness
analysis based on the Latin hypercube parameter sampling.
That is, we toss 600 points (Xi, i = 1, . . . , 9) from the nine-
dimensional unit cube. Based on the tossed Xi, we calculated
600 sets of new coefficients Ki as

Ki = 5(1−2Xi )ki for i �= 3, Ki = 2(1−2Xi )ki for i = 3. (13)

Thus, the new coefficients are allowed to vary fivefold above
and fivefold below the default values, except for parameter
k3 for which the variation was twofold. The fivefold variation
of k3 led to very long mean residence times, increasing the
numerical cost of simulations. From the obtained 600 sets
of parameters, we left 322 sets for which the system in the
deterministic approximation maintained bistability.

For these selected sets of parameters, we calculated the
probability mass fraction π(S1) := 〈G1〉 /(〈G1〉 + 〈G2〉), and
the average mean transition time (T1 + T2)/2 in the case when
either gene switching or dimerization noise was increased
tenfold for one of the genes. That is, we analyze two cases:

(1) when the gene 2 switching noise parameter is 1/σ2 = 10
(with σ1 = θ1 = θ2 = 1),

(2) when the gene 2 dimerization noise parameter is 1/θ2 =
10 (with θ1 = σ1 = σ2 = 1). Calculations were made
using the same method as previously based on simulations
with 100 transitions.

In the first (second) case, we managed to accomplish 292
(287) out of 322 simulations. In the remaining simulations, the
S1 to S2 (or reverse) transitions rates were so small that we were
not able to reach 100 S1 to S2 transitions. In these cases, the
relative state occupancies can be calculated using the forward
flux sampling methods developed by the group of ten Wolde

[32, 33]. However, because these methods are challenging for
multidimensional systems, we simply remove the unfinished
simulations from the further analysis. As will be demonstrated
later, since the studied effect of the SPD asymmetry increases
with decreasing transition rates, we remain confident that the
inclusion of these unfinished trajectories would only improve
our results.

In figures 6(a) and (b), we show histograms of probability
π(S1) in the first and second cases, respectively. Let us
recall that in simulations performed for the default parameters
(figure 5), we obtained π(S1) = 0.91 for 1/σ2 = 10 and
π(S1) = 0.1 for 1/θ2 = 10. Here, we found that for
1/σ2 = 10, the probability mass fraction π(S1) > 0.5 for
97% of tossed and computed sets of parameters, and that the
average 〈π(S1)〉 = 0.77. For 1/θ2 = 10 case, the probability
mass fraction π(S1) < 0.5 for 99% of tossed and computed
sets of parameters, and the average 〈π(S1)〉 = 0.23.

In figure 7, we present the scatter plot showing the
probability mass fraction π(S1) versus average mean residence
time (T1 + T2)/2. The dots and triangles correspond to
1/σ2 = 10 and 1/θ2 = 10 cases, respectively. The presented
data indicate that the asymmetry of the SPD increases with
the mean residence time, i.e. the stability of the toggle switch.
This finding is important, since bacterial toggle switches can
be extremely stable with transition times exceeding millions
of cell cycles [34].

4. Conclusions

In this study, we considered a bistable stochastic model of the
genetic toggle switch. The reactions of mRNA transcription,
protein translation, dimerization and gene repression by
the binding of the competing protein dimers are explicitly
included in the model. We focused on the two stochasticity
sources present in the regulation: the gene switching and
the protein dimerization noise. These two noise components
were modified independently by changing simultaneously
repressor binding and dissociation rate constants, or rate
constants of a protein dimer formation and dissociation. This
procedure enabled us to modify the noise characteristics of
the system without influencing the deterministic limit of the
process.

Our analysis demonstrated that an increase of noise
associated with the expression of a particular gene introduces
a large asymmetry in the SPD. Interestingly, we observe that
each of the genes is repressed by increasing its gene switching
noise (i.e. when its promoter repression and activation rates
decrease). In contrast, the increased dimerization noise for
a particular gene product leads to the preferential activation
of the gene. We thus showed that various noise components
associated with gene expression and protein processing
antagonistically contribute to the strength of each of the two
competing genes.

The sensitivity analysis based on the Latin hypercube
parameters sampling demonstrated that the SPD asymmetry
introduced by an increase of a particular noise component is
statistically robust with respect to the large (up to fivefold)
parameters deviations that change macroscopic steady states
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as well as state-to-state transitions rate. The effect of the
preferential gene inactivation due to gene switching noise
increase, observed for the assumed default parameters, was
conserved for 283 out of 292 tossed and computed parameter
sets. Similarly, the effect of preferential gene activation due
its product protein dimerization noise increase was conserved
for 283 out of 287 tossed and computed parameter sets.
Importantly, we found that the scale of the noise introduced
asymmetry positively correlates with the stability of the toggle
switch. The asymmetry was statistically increasing with mean
residence time, which calculated for the tossed parameters sets
varied about eight orders of magnitude. This implies that the
discovered effect can be important in bacterial toggle switches
which may exhibit enormous stability, with one transition over
millions of generation.

The observation that magnitudes of individual noise
components determine the dominating gene opens the
possibility of a new mode of toggle switch control. Such
a control can be potentially exploited in synthetic biology,
which offers tools for an independent modification of various
noise sources [35, 36]. It remains an open question whether
extracellular conditions can switch the toggle by modifications
of noise components. Such regulation seems quite likely for
bacteria. For example, the temperature can modify repressor
binding and dissociation rate constants and level of nutrients
may regulate the transcription and translation rates. The
potential advantage of the noise driven control is such that it
does not influence the macroscopic steady states of the system
and thus ensures that the cell remains in one of the predefined
local optima.
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Appendix. Decrease of the mean residence time with
increasing transcriptional noise

Here, we analyze the effect of transcriptional noise introducing
a new coefficient ξ . Multiplying the mRNA transcription rate
coefficient k3 by ξ , and simultaneously dividing dimerization
and DNA-dimer binding coefficients k6 and k2 by ξ we obtain
systems characterized by ξ -fold larger (than default) number
of mRNA, protein monomer and protein dimer molecules, but
the same scaled concentrations. The inverse of coefficient ξ

can be thus considered as a measure of transcriptional noise.
In figure A1, we show that the mean residence time decreases
with the magnitude of transcriptional noise 1/ξ .
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Figure A1. Mean residence time as a function of transcriptional
noise 1/ξ .
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Bistable regulatory elements are important for nongenetic inheritance, increase of cell-to-cell heterogeneity
allowing adaptation, and robust responses at the population level. Here, we study computationally the bistable
genetic toggle switch—a small regulatory network consisting of a pair of mutual repressors—in growing and
dividing bacteria. We show that as cells with an inhibited growth exhibit high stability of toggle states, cell growth
and divisions lead to a dramatic increase of toggling rates. The toggling rates were found to increase with rate of
cell growth, and can be up to six orders of magnitude larger for fast growing cells than for cells with the inhibited
growth. The effect is caused mainly by the increase of protein and mRNA burst sizes associated with the faster
growth. The observation that fast growth dramatically destabilizes toggle states implies that rapidly growing
cells may vigorously explore the epigenetic landscape enabling nongenetic evolution, while cells with inhibited
growth adhere to the local optima. This can be a clever population strategy that allows the slow growing (but stress
resistant) cells to survive long periods of unfavorable conditions. Simultaneously, at favorable conditions, this
stress resistant (but slowly growing—or not growing) subpopulation may be replenished due to a high switching
rate from the fast growing population.
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I. INTRODUCTION24

Epigenetic mechanisms of biological evolution constitute25

an expanding research area, with important consequences for26

organism development, proliferative diseases such as cancer,27

and synthetic biology [1]. A genetic toggle switch, a pair28

of mutual repressors, is one of the most important circuits29

introducing bistability to gene regulatory networks [2–5]. Bi-30

and multistable regulatory elements introduce heterogeneity31

in cell populations and allow cells in a multicellular organism32

to specialize and specify their fate. Although multistability is33

not required for the emergence of coexisting phenotypes [6],34

decisions between cell death, survival, proliferation, or senes-35

cence are likely associated with bistability. In prokaryotes36

multistability is regarded as an optimal strategy for adapting37

to varying environmental conditions [7]. Classical examples38

of toggle switches include the lysis-lysogeny switch in λ39

phage [8–10], a tetracycline resistance circuit in Escherichia40

coli, Laslo switch in human hematopoiesis [11], several41

mitogen-activated protein kinase cascades in animal cells42

[12–14], and cell-cycle regulatory CI circuits in Xenopus laevis43

and Saccharomyces cerevisiae [15,16]. Gardner et al. [17]44

constructed a synthetic toggle switch in E. coli and provided a45

theoretical prediction of the conditions sufficient for bistability.46

Bistability may arise when at least one of the repressors inhibits47

the competing gene with cooperativity greater than one or48

when the promoter sites overlap, so the repressors cannot be49

bound simultaneously [4].50

Gene expression in bacterial cells is considered noisy.51

Stochasticity originating from small numbers of mRNA and52

*tlipnia@ippt.pan.pl

protein molecules enables transitions between distinct states. 53

In changing epigenetic landscape noise is favorable as it 54

allows for adaptation; bacteria maximize fitness by tuning 55

noise magnitude with the frequency of the environment 56

fluctuations [18]. The influence of noise on transition rates 57

in a genetic switch has been extensively studied [19–23]. It 58

was shown that the relative stability of the steady states of a 59

toggle as well as of a single autoregulatory gene is controlled 60

by the type of noise [23,24]. 61

In bacteria the average protein lifetime is typically longer 62

than the cell cycle [25], which causes the system to be far 63

from equilibrium. Observations of fast growing Escherichia 64

coli cells, which are able to divide as frequently as every 65

20 min, show an extreme level of cellular activity including 66

continuous reproduction of genome [26], increased number of 67

mRNAs, ribosomal RNAs, and proteins necessary to perform 68

gene expression [27–30]. At high nutrient availability and 69

rapid cell growth DNA elongation rate is roughly constant and 70

DNA replication lasts approximately 40 min [31]; however, 71

at low nutrient levels DNA replication slows down [31,32]. 72

Partitioning of molecules between daughter cells in E. coli is 73

binomial [33]. E. coli and B. subtilis rapidly growing cells 74

are larger than slowly growing cells and can have up to eight 75

origins of replication per cell. However, when the doubling 76

time increases beyond a certain threshold (∼60 min for B. 77

subtilis) cell size becomes essentially constant, and cells have 78

at most one replication proceeding [34]. 79

In this article we analyze how the cell-cycle length 80

influences switching rates between two attracting trajectories 81

(epigenetic states) in a bacterial toggle switch. We will 82

consider cell-cycle lengths T � 1 h and assume simultaneous 83

replication of two toggle genes either just before cell division 84

or (in the Appendix A) in the middle of cell cycle. In fact, 85

1539-3755/2014/00(0)/002700(10) 002700-1 ©2014 American Physical Society
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since DNA replication takes at least about 40 min (in E. coli),86

different genes are present in different copy numbers at a given87

time of the cell cycle. This effect may have a significant impact88

on the dynamics of regulatory systems, especially in the case89

of rapid growth (T < 1 h), when genes may have up to eight90

copies [26,35]. However, in natural systems genes composing91

a toggle switch (like other regulatory modules) are typically92

localized in a vicinity of each other [36,37]; see also EcoCyc93

database [38]. In the case of synthetic toggle switches opposing94

genes are typically introduced in one plasmid, and therefore95

replicate in approximately the same time.96

II. MODEL97

The rate of cell growth and division times are determined98

by the “housekeeping protein” level, which is assumed99

proportional to the cell volume V (t). Since there are many100

genes responsible for protein mass production we assume101

that the dynamics of the housekeeping protein level is102

deterministic. Expression of the housekeeping gene is defined103

by transcription rate constant km, translation rate constant kp,104

protein degradation rate constant rp, and mRNA degradation105

rate constant rm. Constants km and kp depend on T , while106

degradation rates rp and rm are assumed to be independent 107

of T [28,30]. The cell divides when the housekeeping protein 108

level (or equivalently cell volume) doubles. For simplicity 109

we assume equal assignment of housekeeping protein and 110

its mRNA to progeny cells. Cell growth rate is therefore 111

governed by the housekeeping protein accumulation. Such 112

assumption implies that in the case when no switches occur 113

the concentration of toggle proteins remains roughly constant 114

during the cell cycle. 115

The housekeeping mRNA m(t) and protein p(t) levels 116

satisfy the following ODEs: 117

dm

dt
= km − rmm,

dp

dt
= kpm − rpp, (1)

with conditions 118

m(T ) = 2m(0), p(T ) = 2p(0). (2)

The above system has explicit solutions, 119

m(t) = km

rm

(
1 − 1

ermt (2 − e−rmT )

)
,

p(t) = kmkp

rmrp

[
1 − 1

rm − rp

(
rm

erpt (2 − e−rpT )
− rp

ermt (2 − e−rmT )

)]
when rm �= rp, (3)

p(t) = kmkp

r2
m

(
1 − 1

ermt (2 − e−rmT )

)
when rm = rp,

where t is the time from the last cell division. The cell volume V (t) = V0[p(t)/p(0)] [where V0 = V (0)] is therefore given by 120

the expressions 121

V (t) = V0 + V0
rm(2 − e−rmT )(1 − e−rpt ) − rp(2 − e−rpT )(1 − e−rmt )

rm(2 − e−rmT )(1 − e−rpT ) − rp(2 − e−rpT )(1 − e−rmT )
, when rm �= rp, (4)

and122

V (t) = V0 + V0
1 − e−rmt

1 − e−rmT
, when rm = rp. (5)

Expressions (4) and (5) imply that V (T ) = 2V0, i.e., that the123

cell doubles its size during the cycle.124

We consider a symmetric toggle switch, defined by125

the continuous time Markov process involving eight ran-126

dom variables: gene 1 and gene 2 states G1(t), G2(t) ∈127

{0(repressed),1(active)}, numbers of the mRNA 1 and mRNA 2128

molecules M1(t), M2(t) ∈ N, numbers of the protein monomer129

1 and protein monomer 2 molecules P1(t), P2(t) ∈ N, and130

numbers of the protein dimer 1 and protein dimer 2 molecules131

D1(t), D2(t) ∈ N (Fig. 1). Processes of gene activation,132

repression, mRNA transcription, protein translation, dimer for-133

mation, and dissociation are explicitly included in the model.134

Propensities of the second-order (bimolecular) reactions are135

assumed inversely proportional to V (t). We assume that the136

nutrient level influences the synthesis of the two toggle proteins137

P1 and P2 in the same way as it affects the housekeeping protein138

synthesis. We assume that the toggle mRNAs transcription139

rate constants equal km and toggle proteins translation rate 140

constants equal kp. 141

Here, we will assume that the gene replication takes 142

place just before division; the case in which gene replication 143

takes place in the middle of cell cycle is considered in the 144

Appendix A and leads to similar results. DNA replication 145
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FIG. 1. (Color online) Schematic of the toggle switch model
in dividing cells. (a) Schematic of the cell growth and division.
(b) Schematic of the toggle switch system.
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TABLE I. Reaction-rate constants.

Reaction Symbol Default value V (t) = 1, km = k̄m, kp = k̄p Parameter range for bacteria (vol. 1 μm3)

Gene repression by kg/V (t) 0.01 a

protein dimer binding
Gene activation rg 0.002 a

by protein dimer unbinding
mRNA transcription km 0.005 � 0.8[1/s]b

from the active gene
Protein translation kp 0.01 ∼10−2–∼10[1/s]c

Dimer formation kd/V (t) 0.0005 1.6 × 10−6–9.5 [1/mlcl s]d

Dimer dissociation to monomers rd 0.1 5 × 10−8–1.9 × 103 [1/s]e

mRNA degradation rm 0.003 10−2–6 × 10−4[1/s]f

Protein monomer degradation rp 0.000 03 ∼1.4 × 10−5–∼10−2 [1/s]g

aGene switching is causing mRNA bursts observed at an E. coli promoter [33].
bFor E. coli maximal transcription rate: 0.16–0.84/s [46].
cTranslation initiation intervals are of the order of seconds, although they are specific for each mRNA [47]. E. coli: translation initiation rate
may vary at least 1000-fold [48]; examples of translation initiation frequencies: β-galactosidase—0.31/s (spacing between ribosomes: 110
nucleotides), galactoside acetyltransferase—0.06/s (spacing between ribosomes: 580 nucleotides) [46]; maximal peptide chain elongation rate:
20 aa/s [49,50]; average peptide chain elongation rate: 12 aa/s [46].
dAll cell types: 9.8 × 102/(M s)–5.7 × 109/(M s) [51]; for 1 μm3 volume (bacterial) cell: 1.63 × 10−6/ mlcls–9.47/mlcl s.
eAll cell types: 5 × 10−8/s–1.9 × 103/s [51].
fThe vast majority of mRNAs in a bacterial cell are very unstable, having a half-life of about 3 min (decay rate 3 × 10−3/s)—bacterial
mRNAs are both rapidly synthesized and rapidly degraded [52]. E. coli: mRNA half-lives span between 1 and 18 min (decay rates 10−2/s–6 ×
10−4/s) [30].
gMost of the bacterial proteins are very stable, with degradation rates: 1.4 × 10−5–5.6 × 10−5/s [25]. Some proteins have much higher
degradation rates. E. coli RNase R has a degradation rate of 10−3/s (in exponential phase) [53]; factor σ 32 a has degradation rate of 10−2/s (in
steady-state growth phase) [54].

requires that the two DNA strands separate and become acces-146

sible to DNA polymerase, and therefore leads to dissociation of147

DNA-bound proteins near the replication forks. Accordingly,148

we assume that repressor molecules dissociate from DNA149

leading to gene activation. However, when the repressor level150

is high the gene may become repressed almost immediately151

after the replication fork passes that gene. The mRNA, protein152

monomer, and protein dimer molecules are distributed between153

daughter cells in one of two ways: (1) following the binomial154

distribution with parameter 0.5 so that each molecule has equal155

probability to enter each of the daughter cells, or (2) almost156

evenly such that the daughter cells both receive half of the157

molecules of a given type, or half ±1/2 when the half is not158

an integer.159

The transition propensities, assumed equal for both genes,160

are161

Gi = 0 → Gi = 1, kg(1 − Gi),

Gi = 1 → Gi = 0, rgd3−iGi/V (t),

Mi = mi → Mi = mi + 1, kmGi,

Mi = mi → Mi = mi − 1, rmmi,
(6)

Pi = pi → Pi = pi + 1, kpmi,

Pi = pi → Pi = pi − 1, rppi,

Di = di → Di = di + 1, kdpi(pi − 1)/V (t),

Di = di → Di = di − 1, rddi,

for i = 1,2.162

The assumed reaction-rate constants are listed in Table I. 163

The stochastic trajectories and the central moments of protein 164

distributions were obtained using the Gillespie algorithm [39]. 165

In the deterministic approximation the state of the system is 166

described by eight continuous variables: gene activities g1, g2 167

∈ [0 1], levels of mRNAs, proteins, and protein dimers m1, m2, 168

p1, p2, d1, d2. Dynamics of the system between cell divisions 169

follows the ODE system: 170

dgi

dt
= kg(1 − gi) − rg

V (t)
djgi, (7)

dmi

dt
= kmgi − rmmi, (8)

dpi

dt
= kpmi − rppi + 2rddi − 2

kd

V (t)
p2

i , (9)

ddi

dt
= kd

V (t)
p2

i − rddi, (10)

where i = 1,2 and j = 3 − i. 171

The deterministic approximation is accurate only when the 172

characteristic numbers of molecules are large enough to be 173

replaced by the continuous concentrations. For bacteria this 174

condition is never satisfied, and thus deterministic kinetics 175

equations may serve only as a reference for the stochastic 176

simulations; see Fig. 2. Here, the deterministic analysis is 177

applied to define the two attracting trajectories of the system. In 178

nondividing cells these trajectories are replaced by two stable 179

steady states, in which either one or the other gene dominates. 180

As the system is bistable, all deterministic trajectories, except 181
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FIG. 2. (Color online) Stochastic (a) and deterministic (b) trajec-
tories of the toggle switch components in dividing cells (T = 1 h,
binomial distribution of molecules between daughter cells).
(c) Deterministic trajectory of the housekeeping protein level con-
trolling cell volume V (t) and divisions.

the separatrix, converge to one of the attracting trajectories;182

see Fig. 2.183

Let pA and pI denote protein levels for dominating and184

dominated gene at the end of the cell cycle, and let dA and185

dI denote corresponding protein dimer levels. Values pA(T )186

and dA(T ) increase with T , while pI (T ) and dI (T ) decrease187

with T and for T = 1 h are pA = 70.7, pI = 3.4, dA = 12.5,188

and dI = 0.0, while for T = 10 h are pA = 83.3, pI = 2.3,189

dA = 17.3, and dI = 0.0.190

III. RESULTS191

We considered two cases: (I) the transcription rate is192

constant and the faster protein accumulation and cell growth193

results from an increase of the translation rate; (II) vice194

versa, the transcription rate is constant and the translation195

rate increases. In both cases lengthening of the cell cycle196

leads to an increase of the mean first passage times (MFPT)197

between the attracting trajectories. Experimental data suggest198

that lengthening of the cell cycle is associated with reduced199

transcription and/or translation rates [28,29].200

In case (I), when the transcription rate is kept constant,201

we found that the MFPT is a sharply increasing function of202

T , increasing about four orders of magnitude as T increases203

from 1 h to 60 h; see Fig. 3(a). Moreover, the nondividing204

and nongrowing cells of constant volume 2V0 (the volume of205
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FIG. 3. (Color online) MFPT for the model with the varying
protein burst size, case (I). Two types of molecule distributions
between sister cells are considered: the most equal (equal in the
case of even molecule number; in the uneven case, the one molecule
is distributed with probability 0.5 to one of the cells), and binomial
with equal probability. The MFPT as function of the cell-cycle length
T (a), maximum cell volume in nondividing cells (b), and translation
rate (c). For small translation rate cells do not reach volume 2V0 and
may not divide.

dividing cell just prior to division) have the MFPT six orders of 206

magnitude longer than cells dividing every 1 h; see Fig. 3(a). 207

Cells of constant volume V0 (V0/3) have the MFPT four (two) 208

orders of magnitude longer than cells dividing every 1 h; see 209

Fig. 3(b). An increase of the cell volume in nondividing cells 210

(in which the translation rate is too small to reach the division 211

size 2V0) results in an increase of the MFPT by about two 212

orders of magnitude, as V (t) increases from V0 to 2V0; see 213

Fig. 3(b). As a result, the dependence of the MFPT on the 214

translation rate is a nonmonotonous function; see Fig. 3(c). It 215

increases for small translation rates (for which cells are not 216

able to reach the division volume 2V0), and then for dividing 217

cells it rapidly decreases, when an increase of the translation 218

rate shortens T . 219

In case (II), when the translation rate is kept constant, the 220

MFPT is also an increasing function of T ; however, it increases 221

about two orders of magnitude [not four as in case (I)] as T 222

increases from 1 h to 60 h; see Fig. 4(a). The nondividing and 223

nongrowing cells of constant volume equal 2V0 (V0) have the 224

MFPT about 300 (30) times longer than cells dividing every 1 225

h; see Fig. 4(a). An increase of cell volume in nondividing cells 226

results in approximately 10-fold increase of the MFPT, as V (t) 227

increases from V0 to 2V0; see Fig. 4(b). As a result, similar to 228

case (I), the dependence of the MFPT on the translation rate 229

is a nonmonotonous function; see Fig. 4(c). 230
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Interestingly, although the asymmetry in the distribution231

of molecules leads to shortening of the MFPT, the effect232

is relatively modest. The ratio of the MFPT when molecule233

distribution between daughter cells is most symmetric to the234

MFPT when it is binomial with equal probabilities is less than235

2; see Figs. 3 and 4. Assuming that daughter cells are unequal236

in volume (following a truncated normal distribution with 10%237

coefficient of variation), which implies unequal probabilities238

in binomial distributions, we obtained only slightly shorter239

MFPTs (result not shown).240

Dependence of the MFPT on transcription and translation241

rates for dividing and nondividing cells is summarized in242

Fig. 5. The effects observed in simulations can be ex-243

plained as follows. There are two main factors controlling244

toggling rates [20]: the mean protein number (M) for the245

dominating gene [roughly proportional to V (t)] and the246

magnitude of noise, which can be measured by the Fano factor247

(FF = variance/mean), with contributions from the higher248

moments of the protein distribution in the vicinity of the249

attracting trajectories. The MFPT was reported to increase250

exponentially with M [and therefore V (t)] [20], and this251

dependence is seen here for nondividing cells; see Figs. 3(b)252

and 4(b). Lengthening of the cell cycle is associated with253

either decrease of the protein burst size b = kp/rm (the254

average number of proteins synthesized from a single mRNA255

molecule) in case (I), or with a decrease of the mRNA burst256

size (the average number of mRNA molecules synthesized257

during the time when the gene is turned on) in case (II).258

In the considered case a decrease of the protein burst size259

has a dominant effect on noise as FF ≈ b + 1 [40,41], and,260

as a result, on the toggling rates. As shown in Fig. 5, cells261

having a small translation rate and a correspondingly larger262

transcription rate (and therefore the same size or the same T )263

have longer MFPTs. An increase of T [case (I)] associated264

with a decrease of b leads therefore to a dramatic increase265

of the MFPT. Moreover, prior to division, cells with longer266

T have a higher number of proteins associated with the 267

dominating gene and a lower number of proteins associated 268

with the dominated gene, which implies a wider separation 269

of the attracting trajectories. These two effects add to the 270

MFPT elongation with increasing T , and become dominant 271

in case (II), when the elongation of the MFPT (due to the 272

elongation of T ) is much smaller than in case (I); see Fig. 3(a) 273

versus Fig. 4(a). In case (II), an increase of the MFPT is also 274

partially attributed to the increase of the mRNA burst size; see 275

Appendix B, Fig. 10. 276

In Appendix B we analyze numerically the expression of a 277

single gene in dividing cells. We demonstrate that the standard 278

deviation, as well as the third and fourth central moments 279

of the protein distribution, decrease with T . The decrease is 280

substantial (at least twofold, as T changes from 1 to 10 h) in 281

case (I), i.e., with a varied protein burst size, Figs. 8 and 9, 282

or relatively modest (smaller than 25%) in case (II), when 283

the transcription rate varies and protein burst size remains 284

constant; see Figs. 10 and 11. 285

Finally, we analyze the dynamics of toggle switching 286

process for various T . As shown in Fig. 6, for T � 10 287

h the transition between the two attracting trajectories is 288

accomplished in four cell cycles (on average). Only in the 289

case of a very long cell-cycle length (T = 60 h), the transition 290

is accomplished within the single cell cycle. This effect can 291

be explained as follows. When the cell-cycle length is equal 292

to or shorter than about 10 h (the average protein lifetime) 293

the protein level decreases mostly due to dilution. In such a 294

case after four cell divisions (assuming zero or a very low 295

protein production) the dominating gene protein level may 296

decrease as much as 24 = 16 times and become comparable 297

with the repressed gene protein level enabling state transition. 298

Furthermore, the probability that no protein is produced 299

during cell cycle (or a given number of cell cycles) decreases 300

exponentially with T , which intuitively explains why, in the 301

case when the protein degradation may be neglected, the MFPT 302

increases exponentially with the cell-cycle length T [42]. In 303

nondividing (or very slowly dividing) cells, the protein level 304

decreases (mainly) due to degradation and therefore the above 305

reasoning is no longer valid, and, as demonstrated, the MFPT 306

is controlled by cell size. 307

IV. CONCLUSIONS 308

The genetic toggle switch was analyzed theoretically before 309

by several groups, who did not account for the cell cycle. 310

It was found that the lifetimes of toggle states can be very 311

long. Our analysis demonstrates, however, that the stability of 312

the toggle switch dramatically decreases in dividing and fast 313

growing bacteria. Such an effect was experimentally observed 314

in the λ phage toggle switch system in a mutant, λprm240, in 315

which the promoter controlling expression of repressor CI is 316

weakened, rendering lysogens unstable [43]. Lysogens grown 317

in minimal medium are stable but switch at high rates when 318

grown in reach medium. For wild type cells, the spontaneous 319

switching rate was almost undetectable, estimated to be equal 320

to 10−8/generation. 321

Shortening of the cell cycle results from an increase of 322

the translation or transcription rates or both. In the first case 323

(increase of translation) the MFPT was found to be almost six 324
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FIG. 6. (Color online) Stochastic trajectories of the toggle switch mRNA and protein monomer numbers in dividing cells with binomial
distribution of molecules between daughter cells and (a)–(c) the cell-cycle length T = 1 h, (d)–(f) the cell-cycle length T = 3 h, (g)–(i) the
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orders of magnitude shorter for rapidly dividing cells (T = 1 h)325

than for cells with suppressed growth and divisions. We should326

notice that in these two cases toggle state-to-state transitions327

are essentially different processes. Nondividing cells remain328

for most of the time in the tiny vicinity of one of two steady329

states and the toggling requires transition between these states.330

In rapidly dividing cells, the system is very far from the331

equilibrium, i.e., the protein numbers are growing throughout332

the whole cycle and never approach the vicinity of the steady333

state. In such a case toggling implies transitions between the334

two attracting trajectories.335

When state-to-state transition is accomplished within one336

cell cycle (which is the case when the cell cycle is very long) the337

states of daughter cells remain with large probability the same.338

However, when cell-cycle length is shorter than the protein339

degradation time, state-to-state transition requires about four340

cycles to be accomplished, which allows cells emerging in341

these four generations to follow divergent trajectories, and342

may introduce heterogeneity to cell population.343

Cell fate and fitness strongly depend on bi- and multi-344

stable regulatory elements controlling various aspects of cell345

behavior. The strong dependence of the MFPT on growth346

rate has important regulatory consequences. In the case347

when one state of the toggle is associated with a slow348

or inhibited growth it automatically becomes much more349

stable than the opposite state (associated with faster growth). 350

The observation that fast growth dramatically shortens the 351

MFPT and destabilizes the corresponding toggle state suggests 352

that rapidly growing cells vigorously explore the epigenetic 353

landscape enabling nongenetic evolution [1], while cells with 354

slow or inhibited growth adhere to the local optima. From a 355

population perspective this may be an evolutionary optimal 356

strategy. It is known that bacteria and other simple organisms 357

have epigenetic forms, characterized by slower or inhibited 358

growth but higher resistance to environmental stress such as 359

antibiotics treatment, or lack of nutrients [44]. The fraction 360

of cells in the persistent state is determined by state-to-state 361

switching rates as well as growth rates in the persistent and 362

normal states [45]. At favorable conditions the high transition 363

rate from the state of fast growth to the persistent state 364

allow for replenishing the persistent cell population (which 365

tends to be less abundant due to slow or inhibited growth). 366

Simultaneously, the small transition rate from the persistent 367

to normal state enables the persistent cell subpopulation to 368

survive long periods of unfavorable conditions. 369
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APPENDIX A: GENE REPLICATION381

IN THE MIDDLE OF THE CYCLE382

Here, we confirm that the MFPT increases with the cell-383

cycle length T also when the toggle genes replicate not just384

before division but earlier during the cell cycle. Namely, we385

assume that DNA replication takes place in the middle of386

the cell cycle, i.e., at t = 0.5T . To shorten the numerical387

simulation time, we assume two times smaller translation rate388

than in the previous case. As already discussed, the translation389

rate controls the number of protein molecules and therefore390

toggling rates, which become very long (hard to determine391

in numerical simulations), when an increase of gene copy392

number is not compensated by a decrease of translation (or393

transcription rate). In this model variant in the deterministic394

approximation the protein monomer and protein dimer levels395

just before division are pA = 53.7, pI = 4.4, dA = 7.2, and396

dI = 0.0 (for T = 1 h), and pA = 65.8, pI = 3.5, dA = 10.8,397

and dI = 0.0 (for T = 10 h).398

In case (I) (constant transcription rate), we found that the399

MFPT is a sharply increasing function of T , increasing more400

than three orders of magnitude as T increases from 1 h to 60 h;401

see Fig. 7(a). In case (II) (constant translation rate), the MFPT402

increases about 50-fold as T increases from 1 h to 60 h; see403

Fig. 7(b). The obtained results confirmed that, also for gene404

replication in the middle of the cell cycle, a decrease in growth405

rate stabilizes the state of the system; see Fig. 7.406

APPENDIX B: SINGLE GENE MODEL WITHOUT407

AUTOREGULATION IN DIVIDING CELLS408

Toggling rates increase with an increasing width of the409

protein distribution in the vicinity of each of the attracting410
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FIG. 8. (Color online) Varied protein burst size [case (I)], analog
of the dominating gene. Central moments of the protein distribution
just before division. Simulations were performed assuming a binomial
molecule distribution, for two cases of gene expression regulation:
(1) constant gene activity (blue triangles) and (2) gene switching with
rates equal to switching rates of the dominating gene in the toggle
(red circles).

trajectories. Here, we investigate how the first four central 411

moments of the protein distribution depend on the cell-cycle 412

length T . Since we are interested in the width of the protein 413

distribution in the basins of the attracting trajectories (not the 414

width of the whole protein distribution, which is controlled 415

mainly by the separation of the attracting trajectories), we 416

consider an expression of a single gene without autoregulation, 417

instead of the toggle switch. 418

We analyze two models (defining continuous time Markov 419

processes), with and without gene switching. In each model 420

two sets of parameters corresponding to the dominating 421

(Figs. 8 and 10) or dominated (Figs. 9 and 11) gene in the 422

toggle are considered. 423

In the model without gene switching the state of the system 424

is described by the two random variables: the number of mRNA 425

molecules M(t) ∈ N and number of protein molecules P (t) ∈ 426

N. 427

The transition propensities are as follows: 428

M = m → M = m + 1, kmkg/(kg + rgdT ),

M = m → M = m − 1, rmm,
(B1)

P = p → P = p + 1, kpm,

P = p → P = p − 1, rpp.

We assume dT = dA or dT = dI , where dA and dI are the mean 429

protein dimer numbers just before division, for dominating and 430

dominated gene, respectively, in the toggle switch model for 431

cells with the cycle length of T . Therefore, the gene activity 432

kg/(kg + rgdT ) is equal to the probability that the toggle gene 433

(dominating or dominated) is active. All other parameters are 434

the same as in the toggle switch model; see Table I. As a 435
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FIG. 9. (Color online) Varied protein burst size [case (I)], analog
of the dominated gene. Central moments of the protein distribution
just before division. Simulations were performed assuming a binomial
molecule distribution, for two cases of gene expression regulation: (1)
constant gene activity (blue triangles) and (2) gene switching with
rates equal to switching rates of the dominated gene in the toggle
(red circles).

result, analogous to the toggle switch system (see main text),436

the mean protein number before division increases with T for437

the dominating gene (Figs. 8 and 10), and decreases for the438

dominated gene (Figs. 9 and 11).439

In the model with gene switching, there is an additional440

random variable, representing the gene state, either active441

(G = 1) or inactive (G = 0). In this model the transition442

propensities are443

G = 0 → G = 1, kg(1 − G),

G = 1 → G = 0, rgGdT ,

M = m → M = m + 1, Gkm,
(B2)

M = m → M = m − 1, rmm,

P = p → P = p + 1, kpm,

P = p → P = p − 1, rpp.

We assume dT = dA or dT = dI , where dA or dI are the mean444

protein dimer numbers for dominating and dominated gene,445

respectively, in the toggle switch model in cells with the cycle446

length of T . This assumption implies that the gene is switched447

on and off with the same rates as either the dominating and448

dominated gene in the toggle. Analogous to the toggle switch449

model we will assume that the gene is activated at the division450

(due to the repressor release during the DNA replication). To451

determine the influence of this assumption, we also considered452

the model variant in which the assumption is released; see453

Figs. 10 and 11.454

0 5 10
15

16

17

Cycle length [h]3r
d 

ro
ot

 o
f 3

rd
 m

om
en

t (c)

 

 

0 5 10
26

28

30

32

Cycle length [h]4t
h 

ro
ot

 o
f 4

th
 m

om
en

t (d)

 

 

constant high gene activity
analogue of toggle dominating gene
without gene activation after division
analogue of toggle dominating gene

0 5 10
20

21

22

23

Cycle length [h]

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 p

ro
te

in
 n

um
be

r (b)

 

 

0 5 10
85

90

95

Cycle length [h]M
ea

n 
pr

ot
ei

n 
nu

m
be

r (a)

 

 

FIG. 10. (Color online) Constant protein burst size [case (II)],
analog of the dominating gene. Central moments of the protein
distribution just before division. Simulations were performed as-
suming a binomial molecule distribution, for three cases of gene
expression regulation: (1) constant gene activity (blue triangles),
(2) gene switching with rates equal to switching rates of the
dominating gene in the toggle without gene activation after each
division (green squares), and (3) gene switching with rates equal
to switching rates of the dominating gene in the toggle (with gene
activation after each division) (red circles).
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FIG. 11. (Color online) Constant protein burst size [case (II)],
analog of the dominated gene. Central moments of the protein
distribution just before division. Simulations were performed as-
suming a binomial molecule distribution, for three cases of gene
expression regulation: (1) constant gene activity (blue triangles),
(2) gene switching with rates equal to switching rates of the dominated
gene in the toggle without gene activation after each division (green
squares), and (3) gene switching with rates equal to switching rates
of the dominated gene in the toggle (with gene activation after each
division) (red circles).
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1. Estimation of central moments of the protein distribution455

We analyze the following two cases introduced in the main456

paper.457

Case (I), in which an increase of T results from decreases458

in translation rate (decreasing protein burst size); see Figs. 8459

and 9.460

Case (II), in which an increase of T results from decreases461

in transcription rate; see Figs. 10 and 11.462

In each case by means of long run multiprocessor simu-463

lations we estimate the probability distribution of the protein464

number at the time of division, and calculate the mean, second,465

third, and fourth central moments. For each set of parameters466

we use trajectories having at least 105 divisions for Figs. 8467

and 9, or 107 for Figs. 10 and 11.468

a. Case (I): Varied protein burst size469

In case (I) the decrease of protein burst size is responsible470

for a significant decrease of second, third, and fourth central471

moments of the protein number; see Figs. 8 and 9. This effect472

was observed and explained previously for nondividing cells,473

for which the Fano factor of the protein number distribution is474

proportional to b + 1, where b is the protein burst size (protein475

translation rate divided by mRNA degradation rate) [41]. The476

similar dependence was obtained many years ago by Otto Berg477

who calculated the protein number probability distribution in478

dividing bacteria [40]. In the model with the constant gene479

activity, there is no contribution from the gene switching480

noise, and therefore all central moments are smaller than in the481

model accounting for the gene switching. However, the noise482

contribution from the gene switching is much smaller than that483

of the increasing protein burst size.484

b. Case (II): Constant protein burst size485

In case (II) the size of the protein level fluctuations for486

the gene corresponding to the dominating gene in the toggle487

changes with T mostly due to the varying average size of488

mRNA bursts emerging in periods of gene activity (Fig. 10).489
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FIG. 12. (Color online) Stochastic trajectory of the toggle switch
components in dividing cells. Cell-cycle length T = 1 h, binomial
distribution of molecules between daughter cells.

This is evident when models with and without gene switching 491

are compared. However, in the case when the analog of the 492

dominated gene is considered the effect of varying size of 493

mRNA bursts is small because the transcription rate is small 494

and the probability that more than one mRNA molecule is 495

synthesized is relatively low. Only for a short cell cycle, T = 496

1 h, can several mRNA molecules be synthesized in short 497

periods of activity of the dominated gene, see Fig. 12, and 498

correspondingly, for a short cell cycle the difference between 499

models with and without gene switching is more pronounced. 500

However, for the analog of the dominated gene the central 501

moments decrease with cell-cycle lengthening simply because 502

the mean protein level decreases. 503
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Abstract
Living cells may be considered as biochemical reactors of multiple steady states. Transitions
between these states are enabled by noise, or, in spatially extended systems, may occur due to
the traveling wave propagation. We analyze a one-dimensional bistable stochastic birth–death
process by means of potential and temperature fields. The potential is defined by the
deterministic limit of the process, while the temperature field is governed by noise. The stable
steady state in which the potential has its global minimum defines the global deterministic
attractor. For the stochastic system, in the low noise limit, the stationary probability
distribution becomes unimodal, concentrated in one of two stable steady states, defined in this
study as the global stochastic attractor. Interestingly, these two attractors may be located in
different steady states. This observation suggests that the asymptotic behavior of spatially
extended stochastic systems depends on the substrate diffusivity and size of the reactor. We
confirmed this hypothesis within kinetic Monte Carlo simulations of a bistable reaction–
diffusion model on the hexagonal lattice. In particular, we found that although the
kinase–phosphatase system remains inactive in a small domain, the activatory traveling wave
may propagate when a larger domain is considered.

1. Introduction

Bistability and stochasticity are the key concepts in
molecular biology. Bistable regulatory elements are capable
of introducing heterogeneity in cell population and may allow
cells in a multicellular organism to specialize and specify
their fates [1–5]. Decisions between cell death, survival,
proliferation or senescence are associated with bistability
[6–8]. Ogasawara and Kawato showed that a bistable system
of brain-specific protein kinase Mζ can play role in the long-
term storage of memory [9]. Transitions between stable steady
states occur due to the stochastic switching [10, 11], or, in

spatially extended systems, may follow the traveling wave
propagation [12].

When the magnitude of noise is relatively large, the
stochastic transitions between attracting states are relatively
frequent and the stationary probability distribution (SPD)
associated with the stochastic process has a characteristic
bimodal shape. The maxima of the SPD are approximately
determined by the macroscopic steady states (although they
do not necessarily exactly overlap). Song et al proposed
a stochastic bifurcation concept describing the appearance
of a new mode in the SPD, accompanying the appearance
of a new stable steady state in the bifurcation diagram of
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the deterministic approximation of the process [13]. As the
magnitude of noise decreases, communication between the
two attractors ceases. Consequently, the characteristic time in
which the probability distribution (PD) converges to the
SPD elongates. Kinetics near each attractor can be modeled
as the Gaussian process [14], while jumping between the
attractors can be modeled using the two-lumped-state Markov
chain with transition propensities calculated from the full
Markov process. The relative stability of two or more steady
states depends on the system volume [15]. However, since
the characteristic time spent in each attractor basin grows
exponentially with the volume of the system, when the volume
diverges to infinity, the SPD becomes (generically) unimodal,
concentrated in the vicinity of the ‘most stable steady state’
or the ‘global stochastic attractor’ (GSA) [16, 17]. In this
limit, bistability is manifested by a rapid transition from one
unimodal SPD to the other unimodal SPD in response to the
change of the bifurcation parameter.

For spatially extended bistable systems, considered in
the deterministic approximation, the most stable steady state
can be determined by the direction of the traveling wave
propagation. Intuitively, the traveling wave propagates in
such direction that the whole domain converges to the
most stable steady state—which will be referred to as a
global deterministic attractor (GDA). Interestingly, for a given
system of reactions and parameters, the GDA and GSA may
be different. This implies that the SPD of the stochastic
but perfectly mixed system will concentrate in one steady
state, while the corresponding spatially extended deterministic
system may converge to the other steady state due to traveling
wave propagation. In the case when GDA and GSA do
not collocalize, one could expect that for the corresponding
bistable, stochastic but spatially distributed system, the size of
the compartment and substrate diffusivity control the relative
stability of steady states. We verify this hypothesis simulating
a stochastic kinase–phosphatase reaction–diffusion model on
a hexagonal lattice.

The paper is organized as follows. In section 2, we
consider a general one-dimensional birth–death (B–D) Markov
process, introduce the GDA (subsection 2.1) and GSA
(subsection 2.2), and show that these two attractors may not
overlap.

In section 3, we propose the thermodynamic interpretation
using the concepts of the potential and temperature fields
associated with the B–D process (subsection 3.1). The concept
of the temperature for B–D processes was introduced by
Ross and colleagues [16, 18, 19]. Later, Bialek [20] and Lu
et al [7] proposed that the temperature field is not uniform,
but proportional to the sum of birth and death rates. We
introduce another temperature definition, which converges to
that proposed by Bialek [20] in steady states of the system.

Next, we consider two biological examples. First
(subsection 3.2), we investigate analytically a simplified one-
dimensional B–D process of kinase auto-activation in an open
compartment. We will demonstrate that the temperature field
and thus the SPD is controlled by fluxes of the active kinase
to and out of the compartment, even in the case when these
fluxes are equal and do not influence the deterministic mass

rate equation. In a relatively broad range of parameters the
value of in- and out-flux (which can be associated with
substrate diffusivity) determines the global attractor of the
system. This observation suggests that for stochastic spatially
distributed systems the size of the compartment and substrate
diffusivity control the relative stability of steady states.

We verify this hypothesis in subsection 3.3 introducing
a more realistic kinase–phosphatase model with diffusion
on a hexagonal lattice. In this latter model, by performing
kinetic Monte Carlo (KMC) simulations, we demonstrate
that, despite the fact that the kinase molecules in a small
isolated compartment remain mostly inactive, in a larger
compartment the activatory traveling wave may propagate
leading to persistent activation of the system.

In section 4, we review the main results in the biological
context. The manuscript is supplemented by three appendices.
In appendix A.1 we review and discuss Bialek’s derivation of
temperature. In appendix A.2 we demonstrate that when the
temperature profile is nonuniform (i.e. in the generic case), an
arbitrary steady state may become the GSA, provided that the
temperature in the vicinity of this state is sufficiently low. In
appendix A.3 we show that the parameter range for which the
bimodal SPD distribution is observed decreases to zero as the
system volume diverges to the infinity.

2. Preliminaries

2.1. Global deterministic attractor

We will consider a one-dimensional B–D process:

K → K + 1 : Vλ

(
K

V

)
; K → K − 1 : Vμ

(
K

V

)
, (1)

where K is the number of substrate molecules, V is the volume
of the reactor and λ

(
K
V

)
and μ

(
K
V

)
denote birth and death

intensities, non-negative for K > 0, with μ(0) = 0. The
assumption that birth and death intensities depend on the
concentration x = K

V , rather than on the number of molecules
K, allows for comparing reactors of different volumes. In the
deterministic limit, when the volume of the reactor tends to
infinity, the B–D process follows the law of mass action,

dx

dt
= λ(x) − μ(x) =: W (x) =: −dU (x)

dx
. (2)

The function U (x) can be interpreted as a potential. The stable
stationary states of (2) are in the minima of U (x). We assume
that the potential has two minima in x1 and x3, separated by
a maximum in x2. The trajectories of (2) converge to x1 or x3

depending on the initial state of the system. Equations (1) and
(2) may satisfactorily describe the state of the reactor in the
infinite diffusion limit, in which the concentration x is constant
over the reactor. In the case of finite diffusion, (2) should be
replaced by the reaction–diffusion equation for the substrate
density x(z, t) (here for illustration purposes we assume that x
depends on one spatial coordinate, z),

∂x

∂t
= D

∂2x

∂z2
− dU (x)

dx
, (3)

where D is the diffusion coefficient. The above equation yields
the traveling wave solutions, x = x(z−vt) = x(ζ ) connecting

2
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steady states x1 and x3. For this solution x(z) → x1 for
z → −∞ and x(z) → x3 for z → ∞. The propagation
velocity v may be given in the implicit form (see [21]) as

v = U (x1) − U (x3)∫ ∞
−∞

(
dx
dζ

)2
dζ

. (4)

The sign of velocity v, given by Sgn(U (x1) −U (x3)), ensures
that the region of ‘lower energy’ expands, i.e. x(z, t) → xU

as t → ∞, where U (xU ) is the global minimum. Only in the
non-generic case, when U (x1) − U (x3) = 0, the system has
standing wave solutions in which states ‘x1’ and ‘x3’ coexist.
Intuitively, for a ‘random’ initial condition in the sufficiently
large reactor, in some areas of the reactor x(z) will be in
the basin of attraction of xU . In such a case the traveling
wave or waves will be formed and in the whole reactor the
substrate density x(z, t) will converge to xU . Therefore, for
the deterministic, spatially extended system (3), the state xU ,
where the potential achieves the global minimum, may be
considered a global attractor. We will refer to it as a GDA.

2.2. Global stochastic attractor

Let p(K, t) denote the probability that the number of substrate
molecules equals K at time t in the process (1). The probability
pK (t) obeys the evolution (or Master) equation

∂ p(K, t)

∂t
= p(K − 1, t)Vλ

(
K − 1

V

)
+ p(K + 1, t)

×Vμ

(
K + 1

V

)
− V

(
λ

(
K

V

)
+ μ

(
K

V

))
p(K, t). (5)

In the steady state p(K, t) = pK = const, the net probability
flux between the neighboring states K and K + 1 equals zero,
i.e.

pK λ

(
K

V

)
− pK+1 μ

(
K + 1

V

)
= 0. (6)

Therefore, under the assumption that
∏∞

i=0

(
λ
(

i
V

)
/μ

(
i+1
V

))
<

∞, pK satisfies

pK = p0

K−1∏
i=0

λ
(

i
V

)
μ
(

i+1
V

) , (7)

where p0 is such that
∑

pK = 1. From (7) we have

log pK = log p0 +
K−1∑
i=0

log
λ
(

i
V

)
μ
(

i+1
V

) . (8)

For large V the sum can be replaced by the integral, that leads
to [16, 17, 22, 23]

pK � p(x) = p0 exp(−V�(x)), (9)

where

�(x) := −
∫ x

0
log

λ(y)

μ(y)
dy. (10)

The local minima and maxima of �(x) correspond to stable
and unstable macroscopic steady states of (2), respectively.
The Laplace method implies that for V → ∞, p(x) converges
to the Dirac delta, δ(x�), where �(x�) is the proper global
minimum of �(x), provided that such minimum exists [24].
Only in the non-generic case, when �(x) has two or more
equal minima, the SPD in the zero noise limit (V → ∞)

is distributed between these minima. In this way we showed
that, generically, when V → ∞, the SPD concentrates in
the macroscopic steady state of the mass rate equation, in
which �(x) achieves the global minimum. The steady state
x�, in which �(x) achieves the global minimum, may thus be
considered the GSA. The local maxima and minima of �(x)

correspond to the maxima and minima of U (x). However,
the global minimum of �(x) may not correspond to the global
minimum of U (x); therefore, the GSA may not be collocalized
with the GDA. According to our knowledge this observation
was first explicitly made in the context of the Schlögl model
[25] by Nicolis [23].

Later, in the context of stochastic gene expression, it was
observed that the character of noise defined by the adiabaticity
parameter [26, 27] or coarse graining [28] influences the
SPD. Recently, for a gene expression model with the additive
or multiplicative noise, Frigola et al showed that the SPD
is concentrated in the global minimum of the stochastic
rather than the deterministic potential [29]. Frigola et al
defined the stochastic potential based on the Fokker–Planck
approximation and demonstrated that type of noise dictates in
which of steady states such potential has the global minimum.

3. Results

3.1. Thermodynamic interpretation

In order to provide the thermodynamic interpretation of the
above observation, we consider the problem of particles
diffusing in the potential and temperature fields U (x) and
T (x). Such particles drift with flow JF = −Mρ(x, t)(dU/dx)

where M is the mobility and ρ(x, t) is the local concentration
of particles. In thermal equilibrium, the drift flow is balanced
by the diffusion flow JD = − ∂

∂x [�(x)ρ(x, t)], where �(x) =
MkBT (x) is the diffusion and kB is the Boltzman constant. In
the steady state JD + JF = 0, and one obtains

ρ
dU

dx
= −kB

d

dx
[ρ(x)T (x)],

ρ(x) = ρ0
T0

T (x)
exp

[
−

∫
dU/dx

kBT (x)
dx

]
. (11)

In the uniform temperature field T (x) = T0, the last expression
simplifies to ρ(x) = ρ0 exp [−U (x)/kBT0]. In such a case,
ρ(x) converges to δ(xU ) as T0 → 0. However, the above is not
true when the temperature field T = τ0T (x) is not uniform.
In the case when τ0 → 0 , ρ(x) converges to δ(x�), where
x� is the point of the global minimum of

∫ dU (x)/dx
kBT (x)

dx which
may be different than xU . When temperature gradients are not
very large, the prefactor T0/T (x) can be replaced by a constant
which leads to

ρ(x) = ρ0 exp

[
−

∫
dU/dx

kBT (x)
dx

]
. (12)

This approximation is equivalent to neglecting the component
of diffusion flow JD called spurious flow Jspurious =
−ρ(x, t)d�(x)/dx = −kBρ(x, t)MdT (x)/dx, i.e. flow of
particles induced by the diffusion or temperature gradient,
known also as the Soret effect, see [30] and [31]. By comparing
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Figure 1. Two bistable reaction systems of kinase auto-phosphorylation. (a) A simple model with nonlinear auto-activation (circle-headed
double arrow) defined by equations (14). (b) A multistate kinase model with explicit phosphatase activity described by equations
(27a)–(27d). Phosphorylated kinases have higher catalytic activity (as reflected by the width of circle-headed arrows).

p(x) given by (9) and (10) with the particle density ρ(x) given
by (12), we obtain T (x) as

T (x) = 1

kBV

λ(x) − μ(x)

log (λ(x)/μ(x))
. (13)

That is, in the low-noise limit (large V ), the SPD of the B–D
process is proportional to the density of particles diffusing in
the potential U (x) = ∫

(μ(x) − λ(x))dx and the temperature
field T (x) given by (13). Let us note that T (x) defined by
(13) vanishes when either λ(x) or μ(x) is zero. Points in
which T (x) = 0 are singular, i.e. they can be passed only
in one direction. If such points exist, they bound the absorbing
regions.

Another, methodologically rigorous, way of deriving
temperature, based on the Fokker–Planck approximation, was
proposed by Bialek [20] and then followed by Lu et al [7].
It led to T̃ (x) = (λ(x) + μ(x))/(2kBV ). We discuss Bialek’s
approach in appendix A.1; see also [32] for a recent detailed
review. Finally, we mention the recent study by Feng and
Wang [33] who introduced the other concept of the effective
temperature for gene networks based on the correlation and
the response functions. This is an entirely different approach,
leading for example to negative temperatures for a self-
repressing gene.

As shown in appendix A.2, any of the U (x) minima may
become a global attractor depending on the temperature profile
T (x). This implies that two stochastic processes converging to
the same mass rate equation in the V → ∞ limit may have
two different GSAs. In the following section, we illustrate this
unintuitive observation and its consequences using a simple
bistable kinase auto-activation model, a version of the Schlögl
model [25], classified as one of the simplest bistable systems
[34]. The auto-activation is characteristic for Src, Syk, and Tec
family kinases important in the immune cell signaling [35, 36].

3.2. Simplified kinase auto-activation model

In the model we will assume that the total concentration of
kinase molecules remains constant and equals 1; thus their
number is equal to the volume of the compartment V . Kinases
can be in either active or inactive state, and the number of
active kinases will be denoted by K (see figure 1). Inactive
kinases, number of which is V − K, can be activated by

active kinases with rate proportional to the square of the active
kinase concentration x = K/V , or by other kinase species with
some small constant rate c1. The second-order nonlinearity
arises either when the active unit of the kinase is a dimer
or when double phosphorylation is required to activate the
kinase [37, 38]. In turn, active kinases are inactivated with the
constant rate d1. Under the above assumptions the number of
active kinases K follows the B–D process with rates:

K → K + 1 :

(
c1 + c2

(
K

V

)2
)(

1 −
(

K

V

))
V ;

K → K − 1 : d1

(
K

V

)
V. (14)

Let us note that since the total number of kinases remains
constant, the number of active kinases is limited by V , which
is reflected by the fact that the birth intensity is zero for K = V .

Next, we will assume that active kinases can translocate to
and out of the compartment, with fluxes f1 and f2, respectively.
Such a situation arises when the considered compartment is a
subvolume of a larger reactor. As a consequence, we obtain
the following birth and death intensities, where concentration
x = K/V is used instead of the number of molecules K,

λ(x) = (c1 + c2x2)(1 − x) + f1; μ(x) = d1x + f2. (15)

For the sake of simplicity and illustration purposes, we will
assume that the in-flux and out-flux are equal, f1 = f2 = f .
Such simplifying assumption ensures that the (deterministic)
mass rate equation for x,
dx

dt
= λ(x) − μ(x) = (c1 + c2x2)(1 − x) − d1x =: W (x),

(16)

does not depend on f . We will see, however, that f controls
the SPD and determines the most stable stochastic attractor.
We focus on the bistable case when W (x) has three real roots
0 < x1 < x2 < x3 < 1. In the further analysis, we will use the
roots x1, x2, x3 as parameters describing the polynomial W (x).
The original coefficients c1, c2, d1 may be recovered from the
roots using Vieta’s formulas by the following relations:

c1 = d1x1x2x3

(x1 + x2)(x1 − 1)(x2 − 1)
,

c2 = d1

(x1 + x2)(x1 − 1)(x2 − 1)
. (17)
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Let us note that since c1 and c2 are proportional to d1, the
last coefficient determines only the timescale of the process,
τ = 1/d1. Since the quotient of coefficients at the third- and

at the second-order term in W (x) equals −1, roots of W (x)

satisfy x1 + x2 + x3 = 1, and thus the parameter space may be
reduced to the two-dimensional domain 
, defined as follows:


 ={
(x1, x2) ∈ R2

∣∣∣ x1 > 0, x2 > 0, x1 < x2, x2 <
1

2
− x1

2

}
(18)

(see figure 2). Domain 
 splits into two subdomains, 
1 and

3, such that for (x1, x2) ∈ 
1, the SPD of the process
(14)–(15) in the V → ∞ limit converges to δ(x1) and
for (x1, x2) ∈ 
3, the SPD converges to δ(x3). The curves
separating 
1 and 
3 depend on f , x1(x2; f ). They are shown
for f = 0, f = 0.1, f = 1 and f = ∞ in figure 2, and are
given analytically based on (10) in the implicit form by

�(x3) − �(x1) = −
∫ x3

x1

log
λ(y)

μ(y)
dy = 0. (19)
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Figure 3. The case of zero flux, f = 0. Left column: (x1, x2) = A = (0.05, 1
3 ) (see figure 2). The potential field U (x) is symmetric with

respect to the unstable steady state x2. In this case, as the system volume V grows, the SPD concentrates on the colder attraction basin of
steady state x1 = 0.05. Right column: potential U (x), temperature T (x) and function �(x) for (x1, x2) = B ≈ (0.05, 0.2818) on the
separatrix f = 0 shown in figure 2. The SPDs p(x) for B− = (0.05, 0.2818 − 0.001) below the separatrix and B+ = (0.05, 0.2818 + 0.001)
above the separatrix are shown in two bottom panels. As V → ∞, p(x; B−) converges to δ(x3) and p(x; B+) converges to δ(x1).
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temperature profile is flatter than for f = 0 and the SPD p(x) concentrates in the global potential minima at x3 = 0.67. The potential U (x) is
the same for both columns.

In the case with zero flux, f = 0, the temperature profile is
not uniform and for the symmetric potential U (x), the SPD is
not symmetric, but is concentrated in the colder attraction
basin of point x1 (figure 3, left column). The temperature
effect may be balanced by the asymmetry of the potential
(figure 3, right column). For the point B = (x1, x2(x1))

on the separatrix f = 0, in the V → ∞ limit the SPD
p(x) converges to αδ(x1) + βδ(x3). However, this cannot
be explicitly numerically demonstrated, because even a tiny
deviation from the separatrix causes the SPD to be redistributed
either to x1 or x3 asV → ∞ (figure 3, right column, two bottom
panels). As shown in appendix A.3, in figure 9, the bimodal
SPD expected for bistable systems may be observed only if the
magnitude of noise is sufficiently large. Interestingly, as shown
in the lowest panel of figure 3, the SPD for large temperatures
concentrates mostly in the x1 basin, and then in the T → 0
limit it converges to δ(x3). This confirms the observation made
by Vellela and Qian that the relative stability of steady states
depends on the system volume [15].

When the system communicates with environment, i.e.
when f > 0, the temperature profile T (x) is modified,
figure 4. For f = 0 (figure 4 , left column) the temperature
is much lower in the left attraction basin and thus the SPD
concentrates in this basin. For f = 1 (figure 4, right column),
the temperature profile is flatter and the SPD concentrates in

the global potential minimum x3 as V → ∞. For f → ∞,
the temperature profile T (x) becomes uniform, and SPD
converges to δ(xU ) as V → ∞, where xU is the steady state
in which potential U (x) has the global minimum. It should
be noted that for larger f , larger V is required to reach the
unimodal SPD, figure 4. In the f → ∞ limit, �(x) becomes
proportional to U (x) and SPD f (x) becomes symmetric for the
symmetric potential U (x), i.e. when U (x1) = U (x3), which
implies x2 = (x1 + x3)/2 = 1/3.

At this point, let us recall the reaction–diffusion system
(3). As follows from (4), forU (x1) = U (x3) the traveling wave
velocity is v = 0. In our specific example, (3) takes the form
of the Nagumo equation [21],

∂x

∂t
= D

∂2x

∂z2
+ (x1 − x)(x2 − x)(x3 − x), (20)

which yields the traveling wave solutions

x(z − vt) = x(ζ ) = x3 + x1 exp [(2D)−1/2(x3 − x1)ζ ]

1 + exp [(2D)−1/2(x3 − x1)ζ ]
(21)

with

v = (x1 − 2x2 + x3)

√
D

2
. (22)

The last result implies that in the f → ∞ limit the stochastic
process is diffusion driven and the associated temperature field
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Figure 5. Evolution of the PD based on Monte Carlo simulations for (x1, x2) = ( 1
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3 + 0.005) with V = 2000. For
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3 ) and x3 = 1 − x1 − x2 = 1

2 the potential U (x) is symmetric with respect to x2. At t = 0, the PD is uniform; at intermediate
times it becomes bimodal, determined by the size of attraction basins; then at t → ∞ it becomes unimodal, determined by the global
attractor.

becomes uniform. As f increases, the parameter range for
which GSA and GDA are localized in different steady states
decreases and only for the f → ∞ limit the two attractors
must collocalize.

In summary, we found that there is a broad range of
parameters (figure 2 , between separatrices for f = 0 and
f = ∞) in which GDA corresponds to the active state x3,
while GSA corresponds to the inactive state x1. That is, there
exists a broad parameter range in which

• the discrete, perfectly mixed stochastic system,
considered in the isolated reactor, will converge to the
inactive state,

• while in its spatially extended deterministic counterpart
the activatory traveling waves will propagate, leading to
the activation of the system.

This suggests that in stochastic spatially distributed
systems the global attractor is determined by the diffusion and
size of the reactor. In the following section, we will confirm
this hypothesis considering a more realistic reaction–diffusion
model on a hexagonal lattice.

Remark. The SPD may inadequately represent the behavior of
bistable systems in the low noise limit. As noise decreases,
the communication between steady states ceases, and the
characteristic state-to-state transition time lengthens, and thus
time in which the PD approaches the SPD may become longer
than time in which external conditions defining potential may
be considered constant. In the low noise limit the bistable
system has two distinct timescales: the intermediate (in which
the initially uniform PD becomes bimodal) and the asymptotic
timescale in which the PD converges to the unimodal SPD
(figure 5). At intermediate timescale the system behavior
is close to deterministic. Depending on the nature of the
biochemical process, each of the two timescales and associated
‘limiting’ PDs can be important.

3.3. Kinase auto-activation reaction–diffusion model on a 2D
hexagonal lattice

In the model, we consider two molecular species, kinase K
and phosphatase P . We assume that the kinase molecules
can be in one of three states, unphosphorylated K, singly
phosphorylated Kp and doubly phosphorylated Kpp. Kinases
may activate one another, and in turn are dephosphorylated by
phosphatases with intensity d. The phosphorylation intensities
c1, c2 and c3, of, respectively, K, Kp, and Kpp, increase with
the kinase phosphorylation level. The following reactions are
considered.

Phosphorylation by an unphosphorylated kinase:

K + K → K + Kp : 2c1, (23a)

K + Kp → K + Kpp : c1. (23b)

Phosphorylation by a singly phosphorylated kinase:

Kp + K → Kp + Kp : 2c2, (24a)

Kp + Kp → Kp + Kpp : c2. (24b)

Phosphorylation by a doubly phosphorylated kinase:

Kpp + K → Kpp + Kp : 2c3, (25a)

Kpp + Kp → Kpp + Kpp : c3. (25b)

Dephosphorylations:

P + Kp → P + K : d1, (26a)

P + Kpp → P + Kp : 2d1. (26b)

7



Phys. Biol. 9 (2012) 055002 P J Zuk et al

Fr
ac

tio
ns

 o
f 

ki
na

se
s

Spatial coordinate, z

(d)

kpp

k
kp

t0 t0 + 15

 0

 1

 0  1000

SP
D

Fractions kp and k

(a)

 0

 5

 10

 15

 20

0 1 Fractions kp and k

(b)

 0

 5

 10

 15

 20

0 1 Fractions kp and k

(c)

 0

 5

 10

 15

 20

0 1

Figure 6. Comparison of behavior of stochastic perfectly mixed systems with their deterministic spatially extended counterpart. (a), (b)
and (c) SPDs estimated in the Gillespie algorithm (assuming spatial homogeneity of the system) simulations of the stochastic system
(23a)–(26b), containing 80, 160 or 320 interacting kinases, respectively. SPDs concentrate in the decreasing vicinity of the inactive state
(k = 0.94, kp = 0.06, kpp = 0.00) as the number of kinases grows. (d) Profile of the activatory traveling wave, that propagates from the
active to inactive state (the assumed diffusion coefficient D = 625 corresponds to the motility M = 5000). The SPD in Gillespie algorithm
simulations was estimated from long trajectories containing more than ten switches between the active and inactive states in the case of
320 molecules, and much more switches for 160 and 80 molecules.

By convention, the first molecule on both reaction sides
is considered the enzyme, while the second represents
the substrate. The factor 2 multiplying rates of reactions
involving K and Kpp as a substrate reflects the fact that an
unphosphorylated kinase can be phosphorylated at any of its
two residues, and similarly the doubly phosphorylated kinase
can be dephosphorylated at any of its two residues.

The deterministic approximation of the system leads to
three partial differential equations for concentrations of K,
Kp and Kpp. We confine to the case in which the diffusion
coefficient D is equal for all kinase forms regardless of
their phosphorylation level. In such a case we may assume
that the total surface concentration of kinase CK remains
constant and uniform over the surface. The phosphatase
surface concentration will be denoted by CP . The fractional
concentrations of K , Kp and Kpp will be denoted by k, kp and
kpp; thus by definition k + kp + kpp = 1.

∂k

∂t
= D

∂2k

∂z2
+ d1CPkp − 2(c1k + c2kp + c3kpp)kCK, (27a)

∂kp

∂t
= D

∂2kp

∂z2
+ 2(c1k + c2kp + c3kpp)kCK + 2d1CPkpp

(27b)

− (c1k + c2kp + c3kpp)kpCK − d1CPkp, (27c)

∂kpp

∂t
= D

∂2kpp

∂z2
+ (c1k + c2kp + c3kpp)kpCK − 2d1CPkpp.

(27d)

Here for the sake of simplicity we assume the dependence
on only one spatial coordinate z. The above system exhibits
bistability in a broad range of parameters. Let us note that in
the deterministic approximation the system dynamics depends

on only four parameters, values of which will be set constant
for the rest of these considerations:

C1 = c1CK = 0.02; C2 = c2CK = 0.15;
C3 = c3CK = 4; D1 = d1CP = 1. (28)

The values of parameters are chosen so that the system (27a)–
(27d) has three steady state solutions, two stable (active with
low level of unphosphorylated kinase, k = 0.15, and inactive
with high level of unphosphorylated kinase, k = 0.94) and one
unstable:

• inactive: (k = 0.94, kp = 0.06, kpp = 0.00),
• unstable: (k = 0.50, kp = 0.41, kpp = 0.08),
• active: (k = 0.15, kp = 0.48, kpp = 0.37).

For these parameters we found the following.

(1) The SPD obtained in Gillespie algorithm simulations
for the stochastic perfectly mixed system defined by
reactions (23a)–(26b) concentrates in the decreasing
vicinity of the inactive state as the number of kinases
grows, figures 6(a)–(c). Values of parameters employed
for Gillespie algorithm simulations are c1 = C1/NK,

c2 = C2/NK, c3 = C3/NK, d1 = D1/NP , where NK and
NP are the numbers of kinase and phosphatase molecules.
That is, the reaction rates are scaled by the number of
molecules, which is equivalent to the assumption that the
concentrations are independent of the number of substrate
molecules. In spatially homogeneous systems the kinases
dephosphorylation rate D1 is a product of phosphatase
activity and the number of phosphatases D1 = CPd1 = 1.

In reactions (23a)–(26b) the number of phosphatases
remains unchanged, and is unimportant for the system
dynamics.

(2) The system (27a)–(27d) with parameters C1, C2, C3, D1

(28) describes an activatory traveling wave solution, i.e.
waves that propagate from the active to inactive state,
figure 6(d).
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Figure 7. KMC simulations of the system (23a)–(26b) on the hexagonal lattice of size 20 × 20, for motility equal M = 5000. A fraction of
lattice sites χK = 0.4 is occupied by kinase molecules, while phosphatase molecules occupy χP = 0.1 of the lattice. (a) Fraction of
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The above finding implies that for the system defined
by reactions (23a)–(26b) and parameters (28), the stochastic
and deterministic global attractors diverge, and are defined,
respectively, by the inactive and active states. Therefore,
although a potential may not be defined for the system (27a)–
(27d), the system exhibits an analogous behavior as the simpler
system (16) analyzed in the previous section.

Finally, to confirm the hypothesis stated in the previous
section, we performed KMC simulations on hexagonal lattices,
20 × 20 (with periodic boundary conditions, i.e. toroidal
topology) and 20 × 1000 (with periodic-reflecting boundary
conditions, i.e. cylindrical topology). In these two simulations
we assumed that fraction of lattice sites χK = 0.4 is occupied
by kinases, while fraction of lattice sites χP = 0.1 is
occupied by phosphatases. In KMC simulations, molecules
can interact only when in contact. All molecules move with
the same motility M = 5000, that is, the propensity that a
given molecule jumps to a neighboring empty site is M/6.
The relation between diffusion and motility on 2D lattice is
D = (1−χK−χP )s2M/4, where (1−χK−χP ) is the fraction
of empty sites on the lattice, and s is the distance between the
centers of adjacent hexagonal cells. Thus, in units in which
s = 1, we obtain for χK = 0.4 and χP = 0.1, D = M/8.
For KMC simulations, we set ĉ1 = C1/nK, ĉ2 = C2/nK,

ĉ3 = C3/nK, d̂1 = D1/nP , where nK = 6χK (and nP = 6χP )
are expected values of the number of kinase (and phosphatase)
molecules that are in the immediate vicinity of any molecule.
The use of coefficients c1 = C1/NK, c2 = C2/NK, c3 =
C3/NK,d1 = D1/NP in Gillespie simulations, and coefficients
ĉ1 = C1/nK, ĉ2 = C2/nK,ĉ3 = C3/nK, d̂1 = D1/nP in KMC
simulations, provides that these two approaches converge in
the infinite diffusion limit [39].

In simulations performed on a small toroidal lattice,
20 × 20, we found, as already expected from Gillespie
algorithm simulations shown in figure 6(b), that the system
remains in the inactive state for most of the time (figure 7). In
these two simulations (shown in figure 6(b) and figure 7) the
number of kinase molecules was the same (equal 160). The
assumed large motility M = 5000 implies that the relatively
small reactor 20 × 20 can be considered to be almost perfectly
mixed, and thus the obtained SPD is nearly identical to the one
obtained in Gillespie algorithm simulations for 160 kinases,
figure 7(b). In both approaches more than 0.99 of mass is
concentrated in the vicinity of the inactive state.

In contrast to simulations on the small toroidal lattice,
20×20, in simulations performed on the 20×1000 lattice, we
observed propagation of an activatory traveling wave, followed
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Figure 9. Width of the bistability zone σ in the (x1, x2) plane as a
function of V for three values of x1. The width σ decreases as 1/V .
For a given system volume V , σ decreases as the distance between
the two stable steady states x1 and x3 grows (i.e. when the value of
x1 decreases).

by persistent activity of the system (figure 8). The system
remains persistently active because, even when any region is
inactivated due to stochastic fluctuations, it is quickly sealed by
the activatory traveling wave. On the other hand, the motility
M = 5000 is about three orders of magnitude too small to
render the 20 × 1000 reactor mixed.

The behavior observed in KMC simulations remains in
agreement with the expectations coming from the deterministic
approximation of the system (figure 6). Activation of the
systems on the 20 × 1000 lattice can be interpreted on
the basis of the analysis we made in the previous section.
The 20 × 1000 lattice can be viewed as an array of small
20×20 compartments. When these compartments are isolated,
as in simulations shown in figure 7, the in-flux and out-flux
of active kinase f equals zero, and the system remains in
the vicinity of GSA—in this case the inactive state (figure 4).
However, when compartments are connected, the flux f makes
the temperature profile flatter and the system converges to
GDA, which corresponds to the active state (figure 4 and
figure 8). In summary, we demonstrated that the spatially
extended system converges to GSA when diffusion is fast
enough to make the reactor perfectly mixed, but when the
same system is considered in a larger reactor, the traveling
waves may form and can drive the system to GDA.

4. Conclusions

Bi- and multistable systems play a prominent role in signal
processing. The attractors of molecular dynamical systems
control the cell evolution and fate. Transitions between
attractors can be due to stochastic switching, or may result from
the traveling wave propagation. The first mode is characteristic
for perfectly mixed systems for which noise provides the
unique possibility of selecting the most stable steady state—
termed here the global stochastic attractor (GSA). The second
transition mode dominates in spatially extended systems
characterized by relatively slow diffusion. These systems may
achieve the global deterministic attractor (GDA) due to the
traveling wave propagation in which the more stable steady
state expands. Interestingly, as we discussed in this study, in
bistable systems these two attractors (i.e. GSA and GDA) can
be different.

We studied analytically the one-dimensional birth–death
process for which potential and temperature fields may be
constructed. In such a case, the GDA is defined by the
global minimum of the potential, while the GSA can be in
any of the potential minima for a particular temperature
profile. As an example, we consider the bistable kinase auto-
activation model in the open compartment, such that the active
kinase can flow in and out of the compartment. Even in the
case when the in-flux and out-flux are equal and do not
influence the deterministic mass rate equation and the related
potential, they control the temperature profile, and as a
consequence, the GSA. When the in-flux and out-flux increase
(which can be interpreted as the increase of kinase diffusivity),
the temperature grows and its profile becomes uniform, and
in the infinite flux limit the GSA is determined by the global
minimum of the potential, i.e. it collocates with the GDA.
This finding allows us to put forward the hypothesis that in
stochastic spatially extended biochemical reactors the relative
stability of attractors is governed by the substrate diffusivity
and size of the compartment. When for a given diffusion, the
reactor is small enough to be considered as perfectly mixed,
the system of interacting molecules converges to the GSA. In
a much larger reactor, in which traveling waves can be formed,
the same system converges to GDA.

We confirmed this hypothesis by performing KMC
simulations for the kinase–phosphatase system, in the
parameter range in which the GSA is located in the inactive
steady state, while the GDA is located in the active steady state
(figure 6). Accordingly, we found that the kinase–phosphatase
system simulated in a small toroidal compartment remains
in a mostly inactive state (figure 7), while the same system
simulated in a long cylindrical compartment is activated due
to the traveling wave propagation and remains active (figure 8).

In summary, we found that the relative stability of
attractors in bi- (or multi-)stable systems is controlled by
the diffusivity of substrates and the size of the compartment.
These two parameters can be controlled and modified in cell
evolution. Buffers, extracellular ligands, can control diffusivity
of cytoplasmic or membrane proteins. The effective size of the
reactor can be modified by plasma membrane deformation,
formation of lipid rafts and other barriers. It is thus tempting
to speculate that cells may employ these mechanisms for
their activation or inactivation. Such modes of activation may
be relevant in immune cell signaling, which requires the
aggregation of membrane receptors.

Appendix

A.1. Temperature derivation based on the Fokker–Planck
approximation.

To derive temperature Bialek [20] used the Fokker–Planck (or
diffusion) approximation of the Master equation (5), see e.g.
[30],
∂ p(x, t)

∂t
= ∂

∂x

(
dU (x)

dx
p(x, t)

)
+ ∂2

∂x2

(
λ(x) + μ(x)

2V
p(x, t)

)
. (A.1)
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In the stationary case the above equation can be solved
explicitly:

p(x) = p0
2V

λ(x) + μ(x)

× exp

[
−

∫ x

0

dU (x′)
dx′

2V

λ(x′) + μ(x′)
dx′

]
. (A.2)

It is known, however, that the Fokker–Planck approximation
obtained by truncating the Kramers–Moyal expansion after the
second term is not a satisfactory approximation for bistable
systems [40]. As a result, the SPD p(x) given by (A.2) differs
from the ‘exact’ p(x) obtained directly from the stationary
Master equation in theV → ∞ limit, (9) and (10). In particular,
equation (A.2) may lead to the incorrect determination of the
GSA. In equation (A.1) �(x) = kBT (x) = λ(x)+μ(x)

2V is the
diffusion coefficient. Thus the effective temperature is (Bialek
writes it simply as Teff = (λ(x) + μ(x))/2))

T̃ (x) = λ(x) + μ(x)

2kBV
. (A.3)

Our and Bialek’s expressions for temperature converge in the
limit |λ(x) − μ(x)|/(λ(x) + μ(x)) → 0, i.e. in the steady
states of (2). The main difference between Bialek’s and our
expression is that T (x) defined by (13) vanishes when either
λ(x) or μ(x) is zero, that is when the direction of motion
is deterministic, while T̃ (x) vanishes when both birth and
death rates are zero, i.e. there is no motion at all. Points in
which T (x) = 0 bound absorbing regions for the original
Markov process; however, these points state no barrier when
the process is considered in the diffusion approximation. This
intuitively explains the observation by Hänggi et al [40] that the
Fokker–Planck approximation overestimates transition rates
between steady states. For that reason we prefer our definition.
Finally, let us recall that Ross et al and Chu et al [16, 19]
considered �(x) given in (10) as a ‘stochastic potential’,
which leads to a constant temperature equal to 1/(kBV ). In
a sense our approach is equivalent to that of Ross et al , i.e.
our temperature (13) combined with deterministic potential
U (x) gives the same SPD as Ross’ temperature and stochastic
potential �(x).

A.2. Each of the minima of the potential U(x) may become a
global attractor for a particular noise characteristic.

Two stochastic processes, characterized by B–D rates λ(x),
μ(x) and λ∗(x) = λ(x) + f (x), μ∗(x) = μ(x) + f (x) have
the same deterministic mass rate equation, but are associated
with different temperature fields and thus have different SPDs.
In particular, let us consider the case in which (2) has three
steady states x1 < x2 < x3, such that x1 and x3 are stable and
x2 is unstable. This implies that W (x) = λ(x) − μ(x) < 0 on
(x1, x2) and W (x) > 0 on (x2, x3). Without loss of generality
we may assume that for the process characterized by transitions
λ(x) and μ(x), the function �(x) has the global minimum in
x1, and thus the SPD of this process converges to δ(x1). We
will demonstrate that there exists a function f (x) such that
the SPD of the B–D process with transitions λ(x) + f (x) and
μ(x) + f (x) converges to δ(x3). The function f (x) must thus

satisfy

�∗(x3) − �∗(x1) = −
∫ x3

x1

log
λ(x) + f (x)

μ(x) + f (x)
dx < 0, (A.4)

which holds when∣∣∣∣∣
∫ x2

x1

log
λ(x) + f (x)

μ(x) + f (x)
dx

∣∣∣∣∣ <

∫ x3

x2

log
λ(x) + f (x)

μ(x) + f (x)
dx. (A.5)

The last inequality holds when

(i) f (x) is sufficiently large on (x1, x2) and equals zero
elsewhere, that is equivalent to the increase of T (x) in
the attraction basin of x1, or

(ii) f (x) is negative on (x2, x3) and equals zero elsewhere, and
the new death rate μ∗(x) < λ∗(x) is sufficiently small on
(x2, x3). Such a choice of f (x) is equivalent to the decrease
of T (x) in the basin of x3. In particular, we can take f (x)

such that min μ∗(x) = 0 on (x2, x3). In such a case the
system is no longer ergodic, and the domain x > xmin

(where μ∗(xmin) = 0) is absorbing.

We thus demonstrated that in the bistable B–D process,
the SPD in the zero noise limit (generically) converges to
the Dirac delta in one of the two minima of the corresponding
potentialU (x), but the choice of a particular minimum depends
on the temperature field T (x) of the process. The proof for a
multistable system is analogous. In the field of evolutionary
games it has been shown similarly that the long-run behavior
of a population depends on its size and the mutation intensity
[41].

A.3. The parameter range in which the bimodal SPD is
observed decreases to zero as the system volume diverges to
infinity.

The bimodal probability distributions are typically associated
with bistability. This is true when the magnitude of noise
is sufficiently large, i.e. when the volume of the system
is sufficiently small. However, when the system volume
grows, the bimodal distribution is replaced by the unimodal
distribution concentrated around the most stable steady state
or the GSA. As shown in figure 9, the parameter range in
which the bimodal SPD p(x) associated with the process (14)
is observed decreases to zero as 1/V . By the bimodal SPD in
this context we understand p(x) that satisfies

0.1 <

∫ x2

0
p(x) < 0.9. (A.6)
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[25] Schlögl F 1971 On thermodynamics near a steady state Z.
Phys. A 248 446–58

[26] Hornos E M, Schultz D, Innocentini G C P, Wang J,
Walczak A M, Onuchic J N and Wolynes PG 2005
Self-regulating gene: an exact solution Phys. Rev.
E 72 051907

[27] Feng H, Han B and Wang J 2011 Adiabatic and non-adiabatic
non-equilibrium stochastic dynamics of single regulating
genes J. Phys. Chem. B 115 1254–61

[28] Morelli M J, Allen R J, Tanase-Nicola S and ten Wolde P R
2008 Eliminating fast reactions in stochastic simulations of
biochemical networks: a bistable genetic switch J. Chem.
Phys. 128 045105

[29] Frigola D, Casanellas L, Sancho J M and Ibañes M 2012
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Stochastic transitions in a bistable
reaction system on the membrane
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Transitions between steady states of a multi-stable stochastic system in

the perfectly mixed chemical reactor are possible only because of stochastic

switching. In realistic cellular conditions, where diffusion is limited, tran-

sitions between steady states can also follow from the propagation of

travelling waves. Here, we study the interplay between the two modes of tran-

sition for a prototype bistable system of kinase–phosphatase interactions on

the plasma membrane. Within microscopic kinetic Monte Carlo simulations

on the hexagonal lattice, we observed that for finite diffusion the behaviour of

the spatially extended system differs qualitatively from the behaviour of the

same system in the well-mixed regime. Even when a small isolated sub-

compartment remains mostly inactive, the chemical travelling wave may

propagate, leading to the activation of a larger compartment. The activating

wave can be induced after a small subdomain is activated as a result of a sto-

chastic fluctuation. Such a spontaneous onset of activity is radically more

probable in subdomains characterized by slower diffusion. Our results show

that a local immobilization of substrates can lead to the global activation of

membrane proteins by the mechanism that involves stochastic fluctuations fol-

lowed by the propagation of a semi-deterministic travelling wave.

1. Introduction
Living cells receive stimuli and process information with a circuitry of interacting

genes and proteins. From the mathematical perspective, cell fates can be identified

with attractors of the dynamical system defined by the interaction network [1].

Accordingly, cellular decisions correspond to transitions between multiple

steady states of this dynamical system [2], allowing for phenotypical differen-

tiation of genetically uniform cells [3]. Remarkably, many key biological

regulatory and signalling modules are controlled by bistable switches, often lead-

ing to binary cellular responses of crucial importance, such as death or survival,

senescence or proliferation [4,5]. In this work, we consider state-to-state transitions

leading to the activation of proteins diffusing on the plasma membrane.

1.1. State-to-state transitions in homogeneous and
heterogeneous reactors

Transitions between steady states in the perfectly mixed chemical reactor are poss-

ible only because of stochastic switching. (The classic monographs on stochastic

processes covering material used in this study are those by van Kampen [6],

Gardiner [7] and Nicolis & Prigogine [8].) In well-mixed reactors, however,

the expected time to switch t depends exponentially on the system size,

t/ expðaVÞ, a . 0, assuming a constant concentration of molecules N/V [9].

The number of reacting molecules in the plasma membrane is of order N ¼ 103 to

105 [10,11], implying an infinitesimal rate of switching between macroscopic

states of activity and inactivity in the well-mixed approximation. In spatially

extended reactors, the characteristic size of the well-mixed subcompartment is effec-

tively controlled by diffusion. Relatively small diffusion coefficients of membrane

proteins, D � 1022 to 1021 mm2 s21 [12,13], coinciding with fast reaction rate con-

stants of order c � 1/s [14] imply a correlation length l/
ffiffiffiffiffiffiffiffiffi
D=c

p
shorter than

1 mm. The membrane can be therefore heterogeneous without any molecular

& 2013 The Author(s) Published by the Royal Society. All rights reserved.



structure imposed by cytoskeletal corrals, protein scaffolds or

lipid rafts. In stochastic spatially extended bistable systems, the

diffusion-limited number of interacting molecules controls

the transition rates between macroscopic states. Interestingly,

even when in the deterministic approximation a system is mono-

stable, the volume of the well-mixed stochastic reactor can

serve as a ‘bifurcation parameter’ controlling the emergence of

noise-induced bimodality [15].

In deterministic spatially extended reactors, transitions

between steady states of bistable systems can result from the

propagation of heteroclinic travelling waves. (See the book by

Murray [16] for an extensive introduction.) A local state-to-

state transition can initiate the propagation of a travelling

front driving the whole system towards the ‘more stable’

steady state, in which the system would eventually persist.

Crucially, for a bistable birth–death process, the deterministi-

cally preferred steady state (global deterministic attractor)

can be different from the steady state in which the stationary

probability distribution (SPD) concentrates (global stochastic

attractor) [17,18]. For gradient systems, the macroscopic (deter-

ministic) state-coexistence line in the parameter space is

obtained for the potential which exhibits minima of equal

depth. In spatially extended systems, this coexistence line corre-

sponds to standing heteroclinic wave solutions. The stochastic

state-coexistence line results from the solution of the (stochastic)

chemical master equation, and in particular cases can be found

analytically in the limit of zero noise by the Maxwell-type con-

struction [19]. This implies that the spatially extended reactor

may remain in a stochastically preferred steady state until a

local but sufficiently large fluctuation initiates a semi-determi-

nistic transition of the whole reactor to the state preferred in

the deterministic approximation [20].

Simulations of Newtonian hard sphere dynamics provided

evidence [21] that in the bistable perfectly stirred system the

global attractor is correctly defined by the (stochastic) master

equation, while using the Fokker–Planck equation with

either linear (additive) or nonlinear (multiplicative) noise

may lead to incorrect predictions [9]. Baras et al. [21] used the

Bird’s direct simulation Monte Carlo method [22] to study

the chemical kinetics in a homogeneous Boltzmann gas by

associating the entire system volume with a single collisional

cell. The method was proposed to perform simulations of

rarified gas for which the Knudsen number is greater than 1,

which is equivalent to the assumption of perfect homogeneity.

By employing on-lattice kinetic Monte Carlo (KMC) simula-

tions, we recapitulate here this result in the infinite diffusion

limit (see [23]). We will demonstrate, however, that in reactors

characterized by finite diffusion the global attractor can be

prescribed either through the deterministic or through the

stochastic approach, depending on the diffusion coefficient.

Interestingly, the deterministic description in which the system

is modelled by means of reaction–diffusion equations predicts

the same global attractor as that obtained in the Langevin

approach based on the macroscopic (deterministic) law of

evolution into which an external additive noise term is incor-

porated. This places the discrepancy between the master

equation and the diffusion approximation in the new context.

1.2. State-to-state transitions in biological
membrane systems

The highly organized structure of cells, comprising zones

of confinement [24,25] or altered motility [26–28], should

allow signalling systems to employ intricately both transi-

tion modes, i.e. stochastic switching and semi-deterministic

travelling wave propagation. Thus far, selected aspects of

these phenomena have been investigated in the context

of membrane-proximal signalling and spontaneous cell polar-

ization. It has been shown that the self-recruitment of

cytoplasmic proteins to the cell membrane leads to the gener-

ation of a single cluster of active molecules and thus may

define a unique axis of cell polarity [29]. A local increase in

the density of molecules in the presence of positive feedback

is able to work as an activating switch [30]. In the context of

Ras nanoswitches, it has been demonstrated that at uniform

slow motility the sole positive feedback in the interaction net-

work of membrane-anchored proteins generates expanding

activity patches [31]. In excitable networks, transient clans of

activated molecules emerge and vanish spontaneously, even

without directional spatial cues [32,33]. Spatio-temporal oscil-

lations of membrane-recruited Min proteins in Escherichia coli
were demonstrated to be enabled by the inherent noise [34];

on the other hand, macroscopically stable homogeneous oscil-

lations can be abolished by local fluctuations, depending

critically on the size and dimensionality of the reactor [35]. In

stimulated thin neuronal protrusions, it has been observed

that slowly diffusing autocatalytic CaMKII kinases exhibit

pulsatile compartmentalized activity [36]; a spatially extended

bistable system can spontaneously generate subregions, where

different steady states dominate [37]. Self-organized foci of

activity can generate activating travelling waves [38]. Propa-

gation of waves can give rise to long-lasting cell polarity

when the fast-diffusing inhibitor accumulates proportionally

to the amount of slow-diffusing activated molecules so that

the wavefront can be stalled. This mechanism, known as

wave pinning, has been investigated for bistable systems

[39,40]. When the diffusion coefficient of the inhibitor is very

large (in principle, infinite), the mechanism of polarization is

known as the local excitation, global inhibition [41,42].

1.3. Overview of results
In order to provide a comprehensive view and to be able to recog-

nize new mechanisms of macroscopic state-to-state transitions

available in spatially extended systems, we study a generic

bistable system of membrane-bound autophosphorylating

kinases and phosphatases by means of KMC simulations on

the hexagonal lattice. These simulations are compared with the

simulations of the Markov process in the perfectly mixed reactor

and with the deterministic approximation, i.e. reaction–diffusion

partial differential equations (PDEs).

In the limit of infinite diffusion, unsurprisingly, the

SPD in the spatial on-lattice KMC simulations converges

to the SPD obtained from Gillespie algorithm simulations

of the well-mixed system. For slower diffusion, however,

we observe that the SPD is qualitatively different from the

case of the perfectly mixed system; specifically, the bimo-

dality can emerge or vanish. We demonstrate that the

probability mass fraction concentrated in the stochastically

and deterministically preferred steady states depends on

the speed of diffusion and properties of the reactor, such as

volume and shape. We show that the state-to-state transitions

in large reactors can follow from the propagation of semi-

deterministic travelling waves. These waves can be induced

deterministically by the externally triggered state transition

in a sub-volume of the spatially extended reactor; they can
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also arise spontaneously as a result of to local stochastic fluc-

tuations. We found that the expected time to transition on the

membrane grows exponentially with diffusivity. For a given

diffusion coefficient, the expected time to transition increases

exponentially with the volume of the reactor V as long as the

reactor is perfectly mixed, and then it decreases as 1/V. At

slow diffusion, for some parameters, the reactor may exhibit

a dynamical structure of perpetual local activations and inac-

tivations, and refrain from assuming uniformly a single

steady state. Finally, we identify a novel mechanism in

which the coexistence of stochastic and deterministic effects

can give rise to the global activation of membrane proteins

in response to a localized cue.

2. Material and methods
2.1. Model
The analysed system of reactions involves two molecular species:

kinases and phosphatases. Each kinase molecule contains two indis-

tinguishable phosphorylation sites, hence it can assume three states:

dephosphorylated, monophosphorylated or bisphosphorylated.

The (auto)phosphorylation activity of a kinase increases with its

phosphorylation level. Phosphatases are explicitly present in the

system although they are not modified in any process.

The interaction network comprises the variant of the two-

step phosphorylation–dephosphorylation motif, where kinases

autophosphorylate one another and are dephosphorylated by

phosphatases, which act non-specifically with respect to the

level of phosphorylation of a substrate kinase [15,43]. The system

encompasses the simplest case of the ubiquitous multi-site phos-

phorylation and exhibits bistability [44,45]. Since it consists of

eight reactions, it may be viewed as far from minimal [46]; however,

in contrast to other small bistable systems [47,48], all its reactions

are bimolecular and elementary (i.e. only one of two reacting

molecules changes its state), rendering the system appropriate

for microscopic lattice-based simulations of diffusion-influenced

reaction kinetics.

2.2. Reaction – diffusion system: kinetic Monte Carlo on
the lattice

The spatial and stochastic simulations of the system are per-

formed using the on-lattice KMC at the single molecule

resolution. Molecules are allowed to hop between adjacent sites

of a hexagonal lattice with propensity proportional to the dif-

fusion coefficient. It is assumed that two molecules cannot

occupy the same lattice site. Kinases K and phosphatases

P can react only when in adjacent sites according to the

following rules:

Phosphorylation by a dephosphorylated kinase:

KþK �2cL
1! KþKp, ð2:1aÞ

KþKp �
cL

1! KþKpp: ð2:1bÞ

Phosphorylation by a monophosphorylated kinase:

Kp þK �2cL
2! Kp þKp, ð2:2aÞ

Kp þKp �
cL

2! Kp þKpp: ð2:2bÞ

Phosphorylation by a bisphosphorylated kinase:

Kpp þK �2cL
3! Kpp þKp, ð2:3aÞ

Kpp þKp �
cL

3! Kpp þKpp: ð2:3bÞ

Dephosphorylation (by a phosphatase):

P þKp �
cL

0! P þK, ð2:4aÞ

P þKpp �
2cL

0! P þKp: ð2:4bÞ

The relative activity of a kinase increases strongly with its phos-

phorylation level: c1 , c2 , c3 (parameter values are given in the

electronic supplementary material, table S1). Two molecules can

diffuse away without reacting; on the other hand, a series of reac-

tions involving two molecules is allowed, and such consecutive

events are more probable at small diffusion coefficients when

contacts last longer. The total numbers of kinases NK and phos-

phatases NP are constant in a simulation and their fractional

surface concentrations (i.e. the fraction of lattice sites occupied

by a species) are assumed to be rK ¼ 0:4 and rP ¼ 0:1, respect-

ively. For the sake of simplicity, we assume the same motility

M of kinases and phosphatases; the propensity of hopping to a

neighbouring empty site of a hexagonal lattice is M/6. We will

consider both spatially uniform and non-uniform motility to

account for subdomains of slower diffusion, e.g. large lipid

rafts [27]. In a two-dimensional reactor, the macroscopic diffu-

sion coefficient D depends on the total fractional concentration

of membrane molecules r ¼ rK þ rP and the lattice constant ‘,

D ¼ ð1� rÞ‘2M
4

: ð2:5Þ

The lattice constant is equal to the characteristic mean centre-to-

centre spacing between neighbouring membrane proteins, which

is of order ‘ ¼ 10 nm [49].

2.3. Spatially homogeneous Markov process:
Gillespie algorithm

The Gillespie algorithm for KMC was employed for stochastic

simulations in the limit of the perfectly mixed chemical reactor

[50]. To provide a basis for the comparison of well-mixed

Gillespie (superscript G) with on-lattice (superscript L) KMC

simulations, kinetic rate constants cL
1 ; c

L
2 ; c

L
3 ; c

L
0 have to be rescaled

according to the general rule

cG
i ¼

nc

V
cL

i ; ð2:6Þ

which reflects the fact that the propensity of each reaction in the

perfectly mixed reactor is inversely proportional to the volume

(or, here, surface) of the reactor V and is proportional to the

number of possible contacts (nc ¼ 6 for the hexagonal lattice).

The scaling ensures that in the limit of M!1 the SPD obtained

in on-lattice KMC simulations converges to that obtained with

Gillespie KMC simulations (see the electronic supplementary

material, figure S1c) [23].

2.4. Spatially extended deterministic approximation:
partial differential equations

We will also consider the deterministic limit of the on-lattice

KMC described by a system of PDEs. For this approximation,

kinetic rate constants cL
1 ; c

L
2 ; c

L
3 ; c

L
0 are scaled according to the fol-

lowing rules:

ci ¼ 6rKcL
i ¼: VKcL

i for i [ f1; 2; 3g, ð2:7aÞ
c0 ¼ 6rPcL

0 ¼: VPcL
0 : ð2:7bÞ

These coefficients are used to parametrize dimensionless reaction–

diffusion PDEs. Since we assume that the diffusion coefficient of

kinase molecules is independent of their phosphorylation level,

we may introduce fractional concentrations of dephosphorylated,

monophosphorylated and bisphosphorylated kinases denoted by
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k, kp and kpp (k þ kp þ kpp ¼ 1). The fraction of phosphorylated

kinases, kp þ kpp, will be considered as a measure of activity of

the system. The resulting PDEs read as follows:

@k
@t
¼ Dr2k þ c0kp � 2ðc1k þ c2kp þ c3kppÞk; ð2:8aÞ

@kp

@t
¼ Dr2kp þ 2ðc1k þ c2kp þ c3kppÞk þ 2c0kpp

� ðc1k þ c2kp þ c3kppÞkp � c0kp; ð2:8bÞ
@kpp

@t
¼ Dr2kpp þ ðc1k þ c2kp þ c3kppÞkp � 2c0kpp: ð2:8cÞ

Evolution of the above system was simulated using the finite-

element method implemented in COMSOL MULTIPHYSICS (Comsol

Inc., Sweden).

For a certain range of parameters, equations (2.8a–c) exhibit

bistability (figure 1). The stable steady state corresponding to a

high and a low value of kp þ kpp will be referred to as the active

and the inactive state, respectively. For default parameters:

c0 ¼ 1, c1 ¼ 0.02, c3 ¼ 4 (see the electronic supplementary material,

table S1) and c2 ¼ 0.2, in the active state kp þ kpp ¼ 0.86 and in the

inactive state kp þ kpp ¼ 0.07 (see the electronic supplementary

material, figure S1b).

2.5. Estimation of the stationary probability distribution
for rarely switching systems

An important characteristic of (homogeneous or heterogeneous)

stochastic bistable systems is the expected time to switch from

one to the other steady state, or the mean first-passage time

(MFPT). Numerical estimates of the MFPT for activation ton

and deactivation toff can be obtained from running multiple

(parallel) simulations with initial conditions in both basins of

attraction. When switches are too rare to provide a reliable esti-

mation of the SPD from a single trajectory, MFPTs allow one to

quantify relative probabilities of finding a system in the basin

of attraction of the active steady state pon ¼ toff/(ton þ toff ) and

inactive steady state poff ¼ 1 2 pon.

If n independent simulations of the initially inactive system

were running until finite times T1�i�n; it could happen that

spontaneous activations were observed only in a fraction of

trajectories at times ti � Ti. Then one can use the maximum-

likelihood estimate for ton,

ton ¼
Xn

i¼1

minðti;TiÞ
non

; ð2:9Þ

where non is the number of observed on switches [51]; toff can be

estimated analogously.

3. Results
3.1. General considerations
We are interested primarily in macroscopic state-to-state

transitions of a bistable reaction–diffusion Markov process

on the membrane. Depending on the chemical reaction rate

parameters, diffusion coefficients of molecules and the size

of the domain, the process can be approximated by means of

the perfectly mixed stochastic system, perfectly mixed deter-

ministic system or the spatially extended deterministic system:

— The reactor can be considered as perfectly mixed when its

diameter L is smaller than the characteristic distance l tra-

velled by a molecule in the characteristic time tr between

two subsequent reactions. In estimations of l and tr, we

employ the rate constant c0, because the dephosphorylation

reaction is both relatively fast and density-independent

(rP is constant, while densities of kinases at a particular

phosphorylation level evolve in time). We assign tr ¼ 1/c0

and obtain l ¼ 2
ffiffiffiffiffiffiffiffi
Dtr

p
¼ 2

ffiffiffiffiffiffiffiffiffiffi
D=c0

p
[6,52]. When l . L, the

positions of a molecule subjected to subsequent reaction

events can be regarded as uncorrelated.

— The process in the well-mixed reactor can be considered in the

deterministic approximation when MFPTs of macroscopic

state-to-state transitions are longer than the duration of

other processes modifying the system; for instance, the dur-

ation of the cell cycle T. The characteristic MFPT t grows

exponentially with the size of the well-mixed reactor [9],

t ¼ 1

c0

� �
expðrPVÞ: ð3:1Þ

When t� T; the process can be considered as deterministic,

in the sense that the chance for a stochastic transition in the

considered time interval T is negligible.

— In the non-mixed reactor, the volume of the mixed

subcompartment in two dimensions can be defined as

V0 ¼ D/c0. The characteristic transition time for such a

sub-volume is

t0 ¼
1

c0

� �
expðrPV0Þ: ð3:2Þ

As we will see, a stochastic transition in any subcompart-

ment, depending on parameters, may trigger travelling

waves leading to the macroscopic state-to-state transition

of the whole reactor. In large reactors for which V0 , V,

the MFPT for such locally induced transition t� is given

as the waiting time of V/V0 concurrent processes,

t� ¼ V0

V

� �
1

c0

� �
expðrPV0Þ ¼

V0

V

� �
t0: ð3:3Þ

It is assumed here that the expected time to switch is

much longer than the time of the wavefront propagation

over the whole reactor, and that every local ignition can

effectively give rise to a propagating front. When

t� � T; the process can be considered deterministic: the

0
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monostable
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c
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c
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stochastic bimodality for  N 

Figure 1. Bistability region of equations (2.8a – c) in the parameter space of
(c1,c2); remaining parameters are fixed: c3 ¼ 4 and c0 ¼ 1. The region is divided
into two lines: the deterministic coexistence line (dashed), obtained numerically
in COMSOL, and the stochastic coexistence line (dotted), obtained numerically as an
approximate limit of curves determined for increasing numbers of molecules in
the perfectly mixed regime. Above and below these lines global deterministic and
stochastic attractors converge in the active and inactive steady state, respectively.
Between these lines, the well-mixed stochastic system is preferentially inactive,
while activating travelling waves may propagate.

rsif.royalsocietypublishing.org
JR

SocInterface
10:20130151

4



chance for a stochastic state-to-state transition is negligible

at the considered time scale.

Although in the above considerations we used D, in the

further analysis of the on-lattice system the speed of diffusion

will be expressed in terms of the motility M. According to

equation (2.5), for default parameters in non-dimensionalized

units M ¼ 8D.

3.2. Different preferred steady states of the stochastic
system and its deterministic approximation

The bistability domain of equations (2.8a–c) in the (c1, c2) par-

ameter space for fixed c3 ¼ 4 and c0 ¼ 1 is shown in figure 1.

The domain is divided by the c2(c1) line (dashed) on which

the standing wave solutions exist. These heteroclinic sol-

utions connect the active and inactive stable steady states.

For parameters from above the dashed line, travelling

waves propagate from the active to the inactive state. This

can be interpreted as the domination of the active steady

state. For parameters below the line, the travelling waves pro-

pagate in the opposite direction, i.e. the inactive state is

dominant. This deterministic separatrix (dashed line) can be

compared with the separatrix for the stochastic perfectly

mixed system (dotted line). For parameters from the latter

line the SPD of the perfectly mixed process described by reac-

tions (2.1a–2.4b) remains bimodal in the limit of the infinite

reactor volume. In the same limit, for parameters above

(below) the line, the SPD converges to the Dirac delta in the

active (inactive) steady state [17]. Interestingly, these two

separatrices do not overlap and they delineate a region

where the system of PDEs prefers the active state, while the

stochastic perfectly mixed system in the limit of the infinite

reactor volume is inactive. The divergence of these separa-

trices suggests that for realistic reactors characterized by a

finite diffusion the choice between the active and the inactive

state depends on the speed of diffusion and the size or even

shape of the reactor [20].

3.3. Diffusion and size of the reactor control
system activity

Here, we analyse the expected activityof the kinase–phosphatase

system by means of the SPD obtained in on-lattice KMC

simulations, as a function of the compartment volume (surface)

V and reactants motility coefficient M. First, let us remember

that when M!1 the SPD from on-lattice KMC simulations

converges to that obtained from Gillespie KMC simula-

tions (M ¼1). For M ¼ 3000, the difference is still discernible

(last two columns in figure 2) but the agreement becomes

nearly perfect for M ¼ 10 000 (see the electronic supplementary

material, figure S1c). In figure 2, we consider the case of

(c1 ¼ 0.02, c2 ¼ 0.2), for which the stochastic system and its

deterministic approximation are preferentially in the active

state. As shown, the probability of the active state increases

with V for finite M as well as in the limit of the perfectly

mixed reactor (M ¼1, last column in figure 2). For large

motility (M � 300), the active state probability increases from

nearly 0 to almost 1 as the compartment volume increases

from V ¼ 10 � 10 to V ¼ 30 � 30. It demonstrates that the rela-

tive stability of steady states is controlled by the volume of the

reactor. For perfectly mixed systems, this effect has been

reported previously by Zheng et al. [53].

In figure 3, we consider a more interesting case of (c1 ¼ 0.02,

c2 ¼ 0.15), for which the stochastic perfectly mixed system is

preferentially in the inactive state, but its deterministic approxi-

mation is preferentially active. In this case, in addition to

the compartment volume, the activity of the system is con-

trolled by the substrate motility M. For chosen parameters,

the system is preferentially in the active state for small motility

(M ¼ 30) and in the inactive state for large motility (M � 1000).

For intermediate values (100 �M � 300), the choice of the

dominant state is controlled by the volume of the reactor.

The tendency of the system to inactivate as M! 1 is visible

also in figure 2, although it is pronounced only for small

system volumes, for which the perfectly mixed system remains

prevalently in the inactive state.
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Figure 2. SPDs for different motility coefficients and square domains of different sizes. The lattice-based KMC simulations were performed on toroidal domains (i.e.
square domains with periodic boundary conditions) for (c1 ¼ 0.02, c2 ¼ 0.2) and the remaining parameters with their default values: c3 ¼ 4, c0 ¼ 1. In the last
column, SPDs were obtained using (spatially homogeneous) Gillespie algorithm simulations. The MFPTs ton and toff are shown in each panel. A small number in
square brackets reports the number of observed switches non or noff if smaller than 20. The SPD is marked as ‘undetermined’ when no switches were observed
during simulations. (Online version in colour.)
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In the subsequent analysis, we employ the mean first-

passage time of the transition from the inactive to active

steady state ton and the time for the reverse transition toff. At

large substrate motility (M � 1000), MFPTs (given in each

panel of figures 2 and 3) increase dramatically with the

volume of the compartment. It is known that in a perfectly

mixed reactor MFPTs increase exponentially with its volume

[9]. In the case of finite motility, the situation is more compli-

cated. Let us consider the case of a fixed motility for which

one can determine a characteristic distance l and the well-

mixed sub-volume V0. When the reactor diameter exceeds l,

it should be considered as a composition of multiple (�V/V0)

well-mixed sub-reactors. In such a structured reactor, the tran-

sition to the active steady state can result from a stochastic

switch occurring in any of these sub-reactors, followed by the

propagation of the activating wave, as discussed in §3.4. In

this regime, ton decreases with the number of well-mixed sub-

compartments (�V/V0), and thus it is inversely proportional

to the volume of the reactor, ton / 1=V. These diverging limit-

ing behaviours jointly result in the non-monotonic dependence

of ton on the volume of the reactor (figure 4a): ton increases

exponentially until the volume of the reactor V exceeds the

volume of the well-mixed compartment V0, and then decreases

with the reactor volume as ton / 1=V. Since larger motility

implies larger perfectly mixed sub-volumes, the volume of

the reactor for which the MFPT reaches its maximum increases

with motility. The activation and inactivation processes are not

symmetric, because for given parameters either activating or

inactivating travelling waves may propagate. For the parameters

considered in figure 4a, the activating travelling waves propagate.

As a result, after a local inactivation, the activity is promptly

recovered by waves from surrounding subcompartments, and

thus the only possible mode of transition towards inactivity

requires simultaneous inactivation of the whole reactor. Conse-

quently, while ton decreases for small motility (V . V0 regime)

and increases for large motility (V , V0 regime), toff grows

exponentially with V in both regimes (figures 2 and 3).

Irrespective of the volume of the reactor and for both con-

sidered values of c2, one can observe that for sufficiently low

motility the active state is preferred. There are two properties

of the system that give rise to such behaviour at decreased moti-

lity: (i) in addition to the less effective distributive mechanism,

the more effective processive phosphorylation reactions are

more likely to happen (when two kinase molecules stay in

contact longer, it is more probable that the substrate kinase

will be phosphorylated twice by the same catalytic kinase;

also, once the substrate kinase is phosphorylated it becomes

more amenable to ‘fire back’ and to activate the first kinase)

and (ii) the catalytic capacity of less abundant phosphatase

molecules becomes dampened after they saturate their
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Figure 3. SPDs for different motility coefficients and square domains of different sizes. The simulations are in the same set-up as for figure 2 but with kinase
activity coefficient c2 ¼ 0.15 (instead of c2 ¼ 0.2). (Online version in colour.)

102

104

103

10

1

ex
pe

ct
ed

 ti
m

e 
to

 a
ct

iv
at

io
n

motility

10

102

103

104

105

106

107

ex
pe

ct
ed

 ti
m

e 
to

 a
ct

iv
at

io
n

volume of the reactor

(a)

(b)

102 202 302 402 502 602 702 802 902 1002

M = 400

M = 300

M = 200

0 500 1000 1500 2000

V = 200 × 200 V = 10 × 200

Figure 4. (a) Mean first-passage time for activation ton as a function of the
volume V of the square-shaped reactor with periodic boundary conditions,
obtained in on-lattice KMC simulations for three values of motility and
(c1 ¼ 0.02, c2 ¼ 0.15), and other parameters with default values. For small
V, ton grows exponentially with V (well-mixed regime), while for large V,
ton decreases as 1/V. Every ton is a maximum-likelihood estimate from a
time series with fixed censoring time, calculated based on thousands of trajec-
tories and at least non¼ 10 observed switches. (b) Dependence of ton on the
motility M for reactors of two different geometries, for the same parameters as
in (a). For the square-shaped reactor, the expected ton grows exponentially
with increasing motility M; for the long rectangular reactor with periodic
boundary conditions, ton grows faster than � expð

ffiffiffi
M
p
Þ but slower than

� expðMÞ.
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neighbourhoods (a phosphatase molecule can dephosphorylate

all kinases in its vicinity, rendering itself idle).

3.4. Propagation of waves of kinase activity on
cylindrical domains

In this section, we consider travelling wave propagation on long

cylindrical domains. Elongated thin membrane protrusions

constitute, for example, pseudopodia of motile cells and dendri-

tic spines of neurons. First, we focus on parameters (c1 ¼ 0.02,

c2 ¼ 0.15) lying in the range in which the preferred steady

states for well-mixed and spatially extended reactors diverge

(figure 1). For these parameters and large motility, M ¼ 3000,

the 30 � 30 reactor is principally inactive (figure 3). However,

in a semi-one-dimensional array of a large number of such reac-

tors the activating travelling waves can propagate as predicted

by the deterministic approximation, equations (2.8a–c). In

figure 5a, we show snapshots from on-lattice KMC simula-

tions of the stochastic travelling wave in the cylindrical

domain 30 � 1100 (top–bottom boundary conditions are peri-

odic, left–right reflecting). At t ¼ 0, the left 30 � 100 area

(‘seed’) is assigned to be in the active steady state and the rest

of the cylinder, 30� 1000, is set to the inactive state. At the

very beginning of the simulation, the transition between the

active and the inactive region becomes smooth and a wave pro-

file is formed, which then propagates so that eventually the

whole reactor adopts the active steady state (figure 5a,b). This

surprising divergence of system behaviours in a small 30 � 30

and in a long 30� 1100 reactor is due to the fact that motility

M ¼ 3000 renders the small reactor mixed, but it is by far too

small to mix the longer reactor: 30=2 , l	 1100, where 30/2

is the effective diameter of the 30� 30 reactor in periodic

boundary conditions, and l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=ð2c0Þ

p
. Therefore, in the

long reactor, the system converges to the attractor preferred

by the deterministic approximation. Moreover, since the

number of molecules on the wavefront (the width of which

grows /
ffiffiffiffiffiffiffiffiffiffiffi
M=c0

p
) is quite large, the stochastic wave profile

resembles the deterministic profile obtained from PDEs

(figure 5c,d).

For parameters (c1,c2) below the deterministic standing wave

line (figure 1), the travelling wave can propagate in the opposite

direction such that the whole system becomes inactive, provided

that the diffusion is sufficiently fast, as discussed in §3.5 (see the

electronic supplementary material, figure S6).

With increasing motility, the velocity of the wave in on-

lattice KMC simulations approaches the velocity in PDEs,

which is /
ffiffiffiffiffiffiffiffiffi
Mc0

p
(see the electronic supplementary material,

figure S3). The number of molecules on the length of the wave-

front increases with motility and, as a consequence of the

reduced noise, at higher motilities the activating front propagates

more steadily. The size of the activating seed also increases with

motility and at higher motilities seeds are more likely to be swept

away (see the electronic supplementary material, figure S2). Con-

sequently, as we will see in §3.5, at large motility the stochastic

wave initiations are much less frequent: they need the creation

of a larger seed, and thus the initiating stochastic fluctuation

must involve a larger number of molecules.

3.5. Spontaneous wave activation
The two already discussed transition modes, the stochastic

switching in a well-mixed system and semi-deterministic tra-

velling wave propagation in a spatially extended system, can

work in conjunction. The initially inactive system can be

excited owing to a local fluctuation, which could in turn

initiate an activating travelling wave. We investigate this

mechanism in the system with (c1 ¼ 0.02, c2 ¼ 0.15) and

M ¼ 1000 in the semi-one-dimensional reactor of V ¼ 20 �
1000 (figure 6). A spontaneous local activation, occurring in
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Figure 5. Kinase activity wave propagation on the cylindrical domain 30 � 1100 for parameters (c1 ¼ 0.02, c2 ¼ 0.15) and M ¼ 3000. At t ¼ 0, a fragment of
the cylinder (30 � 100) is in the active state. (a) Three snapshots from an on-lattice KMC simulation. (b) Time profile of the kinase activity profile integrated over
the whole domain. (c) Kinase activity profile across the domain at time t ¼ 150, averaged using the sliding window of width w ¼ 11. (d ) Kinase activity profile
obtained from corresponding PDEs in COMSOL. (Online version in colour.)

t = t0
t = t0 + 15
t = t0 + 30
t = t0 + 45

(a)

(b)

t 

fr
ac

tio
ns

 o
f 

ki
na

se
s

0

1

200 400 600 800 1000
t0

k

kp kpp
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cylindrical domain 20 � 1000 for parameters (c1 ¼ 0.02, c2 ¼ 0.15) and
M ¼ 1000. The expected waiting time for the activation is ton ¼ 596 s.
(a) Four snapshots from an on-lattice KMC simulation (inessential parts of
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a random place of the reactor, gives rise to two fronts, which

propagate in opposite directions, driving the whole reactor

to the active state. The average time to switch on was esti-

mated as t20�1000
on ¼ 596 (from non ¼ 16 switches). Based on

the analysis in §§3.3 and 3.4, the activation mechanism can

be understood as follows: the 20 � 1000 reactor can be con-

sidered as an array of 50 smaller 20 � 20 sub-reactors.

These small sub-reactors switch on and off with switching

times t20�20
on ¼ 3:52� 104, t20�20

off ¼ 2:02� 103 (figure 3).

Thus, the expected time to switch on in the whole reactor

can be estimated as ton ¼ t20�20
on =50 ¼ 700, which agrees

(unexpectedly well) with the measured t20�1000
on ¼ 596.

The same reasoning fails for a two-dimensional reactor of

V ¼ 200 � 200. For the same parameters, a spontaneous acti-

vation was not observed in long simulations (with total

simulation time � 2 � 104). In the two-dimensional case, the

spontaneously appearing seeds of activity are extinguished

by the inactive neighbourhood more easily than in the reactor

of cylindrical geometry. The spontaneous activation was

observed only after reducing motility to M ¼ 300 (figure 7).

Increasing motility increases the number of communicated

molecules and thus reduces the switch rate: ton grows exponen-

tially with the motility in the case of the two-dimensional

reactor (figure 4b). One could expect that ton(M) for the one-

dimensional reactor grows / expð
ffiffiffiffiffi
M
p
Þ. However, such

dependence does not fit well to obtained data points, although

it yields a better fit than ton / expðMÞ. The divergence from

the ‘/ expð
ffiffiffiffiffi
M
p
Þ’ prediction can be due to the fact that in the

cylindrical reactor ton(M) spans the large range of motilities

involving the change of the stochastically preferred steady

state (figure 3).

The observation that the reduced motility increases the

probability of system activation suggests that regions of reduced

diffusivity can serve as ignition points for the activation of the

whole reactor. We verified this hypothesis by performing simu-

lations of the 200 � 200 domain with a spatially varying

diffusion coefficient. The overall motility was set to M ¼ 1000,

while in a circular region of r¼ 14 motility was reduced 10

times to Mpatch¼ 100. In order to minimize possible

peculiarities caused by the sharp jump on the brink of the

patch, the motility in its vicinity was increasing linearly, concen-

trically until reaching the outer circle of radius r0 ¼ rþ 10;

beyond which M ¼ 1000. Within this set-up, we observed that

the patch of lowered diffusivity acts as an ignition centre: sto-

chastic activation switches are much more probable in this

region, and the local activation, with some probability, again,

can start the semi-deterministic travelling wave (figure 8). As

one can expect, ton decreases sharply with the radius of the

patch (see the electronic supplementary material, figure S7).

For completeness, it should be noted that, when the sto-

chastic and deterministic global attractors coincide in the

active state (which happens for parameters c1 and c2 above

the stochastic bimodality curve in figure 1), the initially inac-

tive system is more likely to be activated by local stochastic

fluctuations: for small diffusion, the activating seeds plausi-

bly appear in several places simultaneously, giving rise to

several travelling fronts (see the electronic supplementary

material, figure S4).

In the already considered case of (c1 ¼ 0.02, c2 ¼ 0.06)

depicted in the electronic supplementary material, figure S6,

the stochastic and deterministic global attractors coincide

in the inactive state. In this case, simultaneous local inactivations

can occur probably in various places of the compartment. To

avoid spontaneous switching and illustrate the possibility

of the propagation of the inactivating wave, we considered

M ¼ 10 000 in the wider 50 � 1100 reactor, where stochastic

switches are rare.

Interestingly, in the 30 � 1000 toroidal domain at

M ¼ 300, the reactor is able to maintain a fractional activity

(see the electronic supplementary material, figure S5). Since

in the parameter space the point (c1 ¼ 0.02, c2 ¼ 0.06) is

closer to the curve of the deterministic standing wave

than point (c1 ¼ 0.02, c2 ¼ 0.2), it can be expected that for

(c1 ¼ 0.02, c2 ¼ 0.06) inactivating travelling waves are not

formed as easily as activating waves for (c1 ¼ 0.02, c2 ¼ 0.2).

Hence, scattered local on or off switches do not propagate;

they render the reactor dynamically yet persistently spatially

structured. As a consequence, most of the probability mass is

contained between stable steady states of the deterministic

system, in contrast to all previously analysed cases.

4. Discussion
In this study, in order to understand the principal mecha-

nisms of biochemical information processing and cellular
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Figure 7. Spontaneous initiation of the activity wave on the square domain 200 � 200 for parameters (c1 ¼ 0.02, c2 ¼ 0.15) and M ¼ 300. For larger motility
M ¼ 1000, activity waves were not self-initiated. Snapshots in (a) correspond to the trajectory represented by the solid black line in (b). (Online version in colour.)
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decision-making, we systematically investigated transition

modes available to a generic bistable reaction system in the

spatially extended reactor. We used primarily microscopic

simulations on the two-dimensional lattice complemented

by the analysis of approximations neglecting either stochasti-

city or spatial resolution. In the well-mixed compartment (the

size of which is determined by the diffusion coefficient),

the transition rates between macroscopic steady states of the

system decrease exponentially with the number of reacting

molecules or the size of the compartment. In larger, non-

mixed compartments, transition rates are controlled by the

number of diffusively communicated molecules, which is typi-

cally much smaller than the total number of molecules. We

demonstrated that the local stochastic state-to-state transitions

occasionally initiate travelling waves, which expand in the

semi-deterministic manner leading to the (in)activation of

the whole reactor: either a local activation or inactivation can

be amplified spatially, depending on the reaction rate

constants. At increasing diffusivity, more molecules become

communicated and local transitions become less probable.

On the other hand, travelling waves can propagate only

when the diffusion is sufficiently fast. At large diffusion coeffi-

cients, the wavefronts are thicker, contain more molecules

and thus are less affected by fluctuations. As a result, in the

limit of large diffusion, the velocity of a wavefront in the dis-

crete stochastic system converges to that of its deterministic

approximation modelled by PDEs.

Importantly, there exists a range of parameters for which the

macroscopic, stochastically preferred steady state (or global sto-

chastic attractor, i.e. the state which is prevalently occupied in a

perfectly mixed regime) is different from the steady state pre-

ferred deterministically (or global deterministic attractor, i.e.

the state which expands as a result of the propagation of travel-

ling waves) [17,20]. We demonstrated that in this range of

parameters, even when a small compartment is predominantly

inactive, a travelling wave may spread the active state over the

larger reactor. If parameters are such that global stochastic

and deterministic attractors converge (in either the active or

inactive state), the system is effectively monostable, i.e. the

escapes from the ‘less stable’ macroscopic steady state can

arise spontaneously with a high probability. Consequently,

the reactor settles in the more stable steady state or remains

spatially heterogeneous with its regions flipping between

steady states, giving rise to transient clans of activated mol-

ecules [37]. Our macroscopic analysis thus implies that the

well-known mechanism of state-to-state transitions arising in

bistable reaction–diffusion systems is restricted only to the sub-

domain of the bistability domain in the parameter space. Only

these bistable systems which exploit in the parameter space

the region of diverging stochastic and deterministic attractors

are expected to be both resistant to spontaneous autoactiva-

tion (caused by stochastic switching) and sensitive to external

stimuli (allowing for deterministic activation by means of the

propagation of travelling waves). This physiologically rele-

vant region in the parameter space (delineated by two

separatrices in figure 1) grows with the increasing differences

between reaction rate constants, c1 , c2 , c3. We note that the

catalytic activity of a kinase can grow with its phosphorylation

level even stronger than is assumed in the analysed system, i.e.

kinetic rate constants can span several orders of magnitude:

c1 	 c2 	 c3 [54].

In living cells, travelling waves may be induced by an

external stimulus; for example, upon binding of a specific

extracellular ligand (antigen and chemoattractant) by

membrane receptors. We demonstrated that partial immobil-

ization of a tiny fraction of kinases on the membrane may

lead to the global activation of the system. Since the locally

constrained motility does not lead to a locally increased sur-

face concentration of molecules, this activation mechanism

is different from the recently proposed density-dependent

switch [30]. In the mechanism introduced here, there is an

inherent threshold number of activated clustered molecules

required for triggering a travelling wave with a sufficiently

high probability. It has been proposed theoretically and

recently investigated numerically that a tiny fraction of

membrane receptors clustered upon binding of antigens are

capable of initiating immunogenic responses in B cells (see

[55] and references therein). In other cases, proteins can

become co-sequestered in lipid microdomains after the acti-

vation. Such confinement reduces their lateral diffusion and

presumably facilitates subsequent signalling events [56].

We analysed exhaustively the SPD with respect to the dif-

fusion coefficient and size of the reactor. In the context of the

recruitment of cytoplasmic proteins to the membrane milieu,
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Figure 8. Activity wave initiation in the domain 200 � 200 owing to the locally reduced motility coefficient (M ¼ 100 in the inner circle, M ¼ 1000 outside the
outer circle, and gradually increasing M in between circles) for parameters (c1 ¼ 0.02, c2 ¼ 0.15). Snapshots in (a) correspond to the trajectory represented by the
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Abel et al. [57] showed that decreasing motility or altering

the depth of a submembrane layer promotes or suppresses

SPD bimodality, depending on the topology of the interac-

tion network. In their case, the unimodal distribution arises

from averaging over the reactor and peaks between two

steady states. In the system analysed in this study, the

unimodality results from the preference of one of two

steady states of the deterministic approximation. We

showed that the SPD is controlled by both the motility of

molecules and the volume of the reaction chamber. In our

case, a single reaction rate parameter dictates the state to

which the system converges at the increasing diffusivity.

We found that, despite the system being bistable, the SPDs

may be bimodal only in small well-mixed compartments.

Large compartments have, generically, unimodal SPDs

analogously to the perfectly mixed systems of large numbers

of molecules [20,58].

In a spatially extended system, which in the case of slow

diffusion can be considered as a composition of multiple

well-mixed reactors, the expected time to activation has

been shown to shorten with increasing volume, which is in

stark contrast to a perfectly mixed reactor, for which the

time increases exponentially with the volume. Furthermore,

spatially extended reactors of similar volumes but different

geometries can have vastly different expected times to acti-

vation. In a two-dimensional reactor, the minimal size of

the ‘nucleation centre’ required for the initiation of a wave is

larger than in a semi-one-dimensional reactor, and thus the

expected time to the stochastic activation is longer. Propagation

of waves is also dependent on the reactor geometry. In a semi-

one-dimensional reactor, the front curvature is negligible,

while in a two-dimensional reactor the curvature reduces the

velocity of the travelling front, and may prohibit spreading of

the wave when the initial cluster is too small [55].

Our work provides further evidence that biochemical

reactions on the membrane can be reproduced only with

spatial stochastic simulations. In addition to the discussed

phenomena, in which local stochastic fluctuations lead to

global state-to-state transitions not captured by deterministic

reaction–diffusion equations, we found that in the discrete

system the effective reaction rates are controlled by the

diffusion. It can be observed that, in the case of slow

diffusion, the more effective processive phosphorylation

mode prevails over the less efficient distributive mechanism,

boosting the system’s activity [59,60]. Additionally, molecular

crowding (and self-crowding), which is reflected explicitly in

our lattice-based simulations and is expected to be significant

at assumed surface densities of reacting molecules, facilitates

consecutive phosphorylation events [61,62]. In the well-

mixed approximation, kinases are dephosphorylated at the

rate proportional to the product of phosphatase activity

and the number of phosphatases. Phosphatases, which

are modelled explicitly in spatial simulations, can become

unemployed after dephosphorylating all their neighbouring

kinases, resulting in the reduction of their effective enzymatic

activity [63].

The applied method of on-lattice KMC simulates the

master equation in continuous time and discretized space

at the single event and single molecule resolution. For large

systems, such simulations are inevitably computationally

demanding, but provide accurate estimations of MFPTs,

which are crucial for the performed analysis. Spatially or tem-

porally coarse-grained algorithms have lower computational

cost but also lower, in fact unknown, accuracy. The results pre-

sented in this paper consumed years of aggregate CPU time of

a computer cluster, but in the hope that they could be used to

calibrate faster approximate algorithms.

In summary, transitions in a bistable system on the

membrane employ both stochastic and deterministic effects.

Transitions between macroscopic steady states of spatially

extended systems are qualitatively different from transi-

tions available in well-mixed compartments. These transitions

employ travelling waves that can be initiated spontaneously

as a result of stochastic fluctuations. We demonstrated that

the SPD and MFPTs depend strongly on the diffusion coeffi-

cient, size and shape of the reactor. These factors (in addition

to reaction rates) decide the activity (or inactivity) of a spatially

extended bistable system.

This study was supported by the Foundation for Polish Science grant
TEAM/2009-3/6 and Polish Ministry of Science and Higher
Education grant no. N N501 13 29 36. Numerical simulations of
on-lattice KMC were carried out at the Zeus computer cluster at
the ACK Cyfronet AGH in Kraków and at the Grafen computer clus-
ter of the Ochota Biocentre in Warsaw.
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ELECTRONIC SUPPLEMENTARY MATERIAL

Stochastic transitions in a bistable reaction system

on the membrane
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Supplementary table

Parameters of the analysed system used in simulations

Parameter
Dimensionless values Dimensional

values for
c0 = 10/s,
ℓ = 0.01 μm

On-lattice KMC Gillespie KMC PDEs On-lattice KMC

c0 1.667 10/V 1 10/s

c1 0.008333 0.05/V 0.02 0.05/s

c2 {0.025,
0.0625,
0.08333}

{0.15/V ,
0.375/V ,
0.5/V }

{0.06,
0.15,
0.2}

{0.15/s,
0.375/s,
0.5/s}

c3 1.667 10/V 4 10/s

M 18 to 6000 ∞ 18 to 6000 300 to 10 000/s

D 2.25 to 750 ∞ 2.25 to 750 3.75×10−3 to
1.25 μm2/s

l 1 — 1 0.01 μm

ρK 0.4 — — 4619/μm2

ρP 0.1 — — 1155/μm2

Table S1: Parameters of the analysed system. Parameters are described in the main text.
Only c2 and M (and D) vary between simulations; other parameters, referred to as default
parameters in the main text, are the same in all simulations.
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Physiological relevance of parameter values used in simulations:

• Rate constants of reactions on the membrane can be as fast as 100/s [S1]; the relation
c1 < c2 < c3 reflects the strong boost to the catalytic activity of a kinase resulting from
the increase in the number of its phosphorylated sites [S2].

• Diffusion coefficients of membrane proteins lie in the range of 10−2 to 10−1 μm2/s (which
is at least an order of magnitude lower than in the cytoplasm) [S3, S4].

• The lattice constant ℓ is assumed to correspond exactly to the average centre-to-centre
spacing of neighbouring membrane proteins [S5]. At ℓ = 10 nm compartment volumes
analysed in simulations correspond well to sizes of plasma membrane confinement zones,
which e.g. in NRK cells have the mean diameter of about 230 nm as revealed by single-
particle tracking experiments [S6]; on the other hand, as we consider isolated chambers,
transient trapping of proteins in zones of confinement is not reflected in simulations.

• A significant fraction of the membrane surface can be covered by proteins [S7]. The
surface density of membrane proteins is of order of 100/μm2, but in some cases can be
even as high as 10 000/μm2 [S8]. (The calculation of dimensional densities of molecules

involves the formula for the surface of a hexagon: A =
√
3
2
ℓ2.)

Supplementary references:

S1 Faeder, J. R., Hlavacek, W. S., Reischl, I., Blinov, M. L., Metzger, H., Redondo, A., Wofsy, C.
& Goldstein, B. 2003 Investigation of early events in FcεRI-mediated signaling using a detailed
mathematical model. J. Immunol. 170, 3769–3781.

S2 Alessi, D. R., Saito, Y., Campbell, D. G., Cohen, P., Sithanandam, G., Rapp, U., Ashworth, A.,
Marshall, C. J. & Cowley, S. 1994 Identification of the sites in MAP kinase kinase-1 phosphorylated
by p74raf-1. EMBO J. 13, 1610–1619.

S3 Elowitz, M. B., Surette, M. G., Wolf, P. E., Stock, J. B. & Leibler, S. 1999 Protein mobility in the
cytoplasm of Escherichia coli. J. Bacteriol. 181, 197–203.

S4 Ramadurai, S., Holt, A., Krasnikov, V., van den Bogaart, G., Killian, J. A. & Poolman, B.
2009 Lateral diffusion of membrane proteins. J. Am. Chem. Soc. 131, 12650–12656. (doi:10.1021/
ja902853g)

S5 Phillips, R., Ursell, T., Wiggins, P. & Sens, P. 2009 Emerging roles for lipids in shaping membrane-
protein function. Nature 459, 379–385. (doi:10.1038/nature08147)

S6 Kusumi, A., Nakada, C., Ritchie, K., Murase, K., Suzuki, K., Murakoshi, H., Kasai, R. S.,
Kondo, J. & Fujiwara, T. 2005 Paradigm shift of the plasma membrane concept from the two-
dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of
membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378. (doi:10.1146/annurev.
biophys.34.040204.144637)

S7 Zhou, H.-X. 2009 Crowding effects of membrane proteins. J. Phys. Chem. B 113, 7995–8005.
(doi:10.1021/jp8107446)

S8 Kalay, Z., Fujiwara, T. K. & Kusumi, A. 2012 Confining domains lead to reaction bursts: reaction
kinetics in the plasma membrane. PLoS One 7, e32948. (doi:10.1371/journal.pone.0032948)
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Supplementary figures

Gillespie algorithm versus on-lattice KMC for large motility

(a) Inactive state Transition Active state

Gillespie KMC simulation (M = ∞) On-lattice KMC simulation (M =      )
(b)
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Figure S1: Comparison of KMC on the lattice simulations for large motility coefficient
M = 104 and the corresponding spatially homogeneous Markov process simulated with Gillespie
algorithm. Domain size: 20 × 20, periodic boundary conditions; parameters: (c1 = 0.02,
c2 = 0.2). (a) Three snapshots from on-lattice KMC simulations (dephosphorylated kinases
– orange, monophosphorylated – red, bisphosphorylated – brown; phosphatases – pale green,
marked with a dot). (b) Trajectories of the fraction of phosphorylated kinases kp + kpp from
the Gillespie algorithm and on-lattice KMC simulations. (c) Bimodal stationary probability
distribution of kp + kpp calculated from long on-lattice (boxes) and Gillespie algorithm (thick
black overlay) KMC simulations. MFPTs τon and τoff are shown for both methods.
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Propagation of induced travelling waves in the semi-1-D reactor

0

1

0 100 200 300 400
0

1

0 50 100 150 200

0

1

0 50 100
0

1

0 25 50

M = 1000 M = 3000

M = 10 000 M = 30 000

(a) (b)

(c) (d)

F
ra

ct
io

n
 o

f
p
h
o
sp

h
o
ry

la
te

d
 k

in
as

es

t

t

t

t

F
ra

ct
io

n
 o

f
p
h
o
sp

h
o
ry

la
te

d
 k

in
as

es

F
ra

ct
io

n
 o

f
p
h
o
sp

h
o
ry

la
te

d
 k

in
as

es
F

ra
ct

io
n
 o

f
p
h
o
sp

h
o
ry

la
te

d
 k

in
as

es
Figure S2: Fraction of phosphorylated kinases kp + kpp averaged over the whole reactor 30 ×
1100 during the induced wave propagation. Travelling wave velocities shown in figure S3 were
estimated from linear fits to these trajectories. When the “seed” had become deactivated, so
that the travelling wave did not form, the corresponding trajectory was not taken into account
in fitting (dashed pale lines). At higher diffusivities the probability that the initially active
area (“seed”) is swept away and cannot induce the wave is larger.
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Figure S3: Travelling wave velocity as a function of motility.
Velocities were calculated from simulations of PDEs and estimated
in on-lattice KMC simulations for (c1 = 0.02, c2 = 0.15) (figure S2).
Error bars – SD.
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Coinciding stochastically and deterministically preferred steady states
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Figure S4: Simultaneous spontaneous activation on the long toroidal domain 30 × 1000.
Parameters: (c1 = 0.02, c2 = 0.2) and M = 300. (a) Snapshots from the on-lattice KMC
simulation, (b) five example time profiles of phosphorylated kinases kp + kpp. Snapshots in (a)
correspond to the trajectory represented by the solid black line in (b).
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Figure S5: Self-sustaining transient patches of activity in a toroidal domain 30 × 1000.
Parameters: (c1 = 0.02, c2 = 0.06) and M = 300. (a) Snapshots from the on-lattice KMC
simulation, (b) time profiles of 10 + 10 trajectories starting from the spatially homogeneous
active and inactive steady states (horizontal dashed lines). Snapshots in (a) correspond to the
trajectory represented by the solid black line in (b).
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Figure S6: Kinase inactivity wave propagation on the cylindrical
domain 50 × 1000 for very large motility M = 10 000. Three snapshots
from an on-lattice KMC simulation. Parameters: (c1 = 0.02, c2 = 0.06).
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Activation due to a locally reduced motility
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Figure S7: Dependence of the expected time to activation τon
on the radius of the patch of lowered motility Mpatch = 100 with
the overall motility M = 1000 obtained from on-lattice KMC
simulations. Parameters: (c1 = 0.02, c2 = 0.06) as in figure 8 in
the main text. The expected τon is estimated based on non observed
switches given in square brackets.

Supplementary movies

✬

✫

✩

✪

Movies are available on-line at:

http://pmbm.ippt.gov.pl/publications/supplementary/

Kochanczyk-2013-JRSocInterface-Movies.zip

Movie S1: Activity wave initiation on the square domain due to the
locally reduced motility coefficient. System parameters as in figure 8
in the main text.

Movie S2: Self-sustaining transient patches of activity in a toroidal
domain. All parameters as in figure S5.
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