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Mathematical Modelling of the Pneumatic 
Melt Spinning of Isotactic Polypropylene 
Part II. Dynamic Model of Melt Blowing
Abstract
A single-, thin-filament model for stationary melt blowing of nonwovens from isotactic poly-
propylene is proposed. The Phan-Thien and Tanner constitutive equation of viscoelasticity 
is used, as well as the effects of stress-induced crystallisation on polymer viscosity and 
relaxation time during the processing are accounted for. The predetermined air velocity, 
temperature and pressure fields are assumed, which are computed for different initial air
velocities as well as a fixed initial temperature, and approximated along the melt blowing
axis by analytical fit formulae. The model is more general and can be applied to the melt
blowing of nonwovens from other crystallising polymers and other air fields. The axial
profiles of polymer velocity, temperature, tensile stress, pressure, amorphous molecular
orientation and the degree of crystallinity can be computed using the model presented. 

Keywords: melt blowing of nonwovens; modelling of melt air-drawing; dynamic functions 
in melt air-drawing; air jet dynamics in melt blowing.

 Introduction
Fundamental equations of the fiber melt
spinning processes proposed by Ziabicki 
[1-4], Andrews [5], and Kase [6-8] in the 
1960s, further developed and modified
next by other authors [9-15], are used for 
the modelling of the pneumatic process 
in non-woven melt blowing. Computer 
aided mathematical modelling offers an 
alternative method to costly experimental 
investigations, which is expected to pro-
vide valuable information on the process 
dynamics and role of individual process-
ing parameters. The modelling presented 
in our paper concerns pneumatic melt 
spinning with isotactic polypropylene. 
The models of the pneumatic process 
presented by other authors [16, 17] who 
considered the melt blowing of polypro-
pylene non-woven did not take polymer 
viscoelasticity into account, which is im-
portant in the case of polyolefines. They
reported that the diameters of fibers above
50 µm computed using the modelling are 
in agreement with the experimental data 
presented in [18] for rather thick fibers.
In melt blowing, the main attenuation of 
filaments takes place near the spinneret,
within a distance range of about 6 cm 
[18], and next the filaments are collected
on a take-up device at a distance of sev-
eral tens of centimeters.

In the pneumatic process we deal with 
the dynamic interactions between two 
phases – the polymer melt extruded from 
a single row of orifices evenly distribut-
ed in a longitudinal spinneret beam and 
convergent air jets blown symmetrically 
from a dual slot die onto both sides of 
polymer filaments. The filaments and

the air jets interact three dimensionally, 
where the system exhibits a symmetry 
plane determined by the row of filaments
blown along the centerline of the air jets 
from the beam. The dynamics of the melt 
blowing process is controlled by the ve-
locity, temperature and pressure fields of
the air jets. Difficulties in determining the
fields are related to the formulation of the
boundary conditions between the phases. 

Usually, models of melt spinning proc-
esses consider the velocity and tempera-
ture fields separately for a polymer and
gaseous medium. Such separation is also 
assumed for the pneumatic process where 
the stationary velocity, temperature, and 
pressure fields of the convergent air jets
were predetermined in Part I of the pub-
lication series [19] as well as presented 
in [20]. Dynamic fields were computed
for several initial air velocities between 
30 and 300 m/s at the output of the slots, 
at a fixed initial air temperature of 300 °C.
We assume that the air conditions can be 
approximated by predetermined air jet 
fields for melt blowing processes with a
single row of filaments.

Steady-state models of fiber melt spin-
ning usually consider the distribution 
of the velocity, temperature and tensile 
stress of the spun polymer in a single-
filament approximation with a predeter-
mined velocity and temperature fields of
the gaseous medium. In the case of the 
pneumatic process with a single row of 
evenly distributed orifices in a longitu-
dinal spinneret beam, the single-filament
model is well-founded because of the rel-
atively low volume occupied by the fila-
ments in the spinning space. The volume 
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density of the filaments is much lower
than in the classical processes where 
considerable aerodynamic interactions 
take place between the filaments in the
cylindrical bundles. In the linear, single-
row distribution of filaments in the pneu-
matic process, the screening effect in the 
velocity and temperature fields is much
reduced and can be omitted.

The model presented in our paper ac-
counts for the effects of viscoelacticity, 
viscous friction in the bulk of polymer 
spun at high elongation rates, surface 
tension and pressure. The model also in-
cludes online stress-induced crystallisa-
tion and its role in the polymer viscoelas-
ticity and process dynamics.

 Model assumptions
In this study, we consider a dynamic 
model of melt air-drawing in convergent 
air jets in single-filament approximation.
Such approximation is justified for melt
blowing from a longitudinal spinneret 
beam with a single row of orifices. The
relatively low volume concentration of 
the filaments in the spinning space and
periodicity of the filaments along the spin-
ning beam allow to consider the process 
in a single-filament approximation and
reduce the modelling to two dimensions. 
The symmetry of the convergent air jets 
leads to melt blowing along their center-
line. The velocity and temperature fields
in a single filament plane, normal for the
spinning beam, exhibit severe changes at 
the air-polymer boundary, accompanied 
by discontinuity of the material proper-
ties, such as density, viscosity, thermal 
conductivity, etc.
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The single-filament model assumes the
cylindrical symmetry of the fields in the
polymer, reducing the problem to two 
space variables – the spinning axis z, 
and the radial distance from the filament
axis r. With the thin-filament approxima-
tion [14, 21], the model for the stationary 
processes is reduced to one dimension 
– with a single variable z. The thin-fila-
ment approximation is well-founded 
because the thickness of filaments in the
pneumatic process is usually smaller than 
that of fibers obtained in classical melt
spinning [22-24]. The approximation 
allows to neglect the radial distribution 
of the polymer velocity V, temperature 
T, tensile stress Δp and pressure p. The 
basis for neglecting the radial distribu-
tion of the polymer velocity was found 
by Ziabicki [2] and Kase [8]. But there 
is no reliable basis for neglecting the 
radial gradient of the polymer tempera-
ture. Therefore the average temperature 
on the radial cross-section of the filament
is considered a good approximation for 
thin filaments [14]. Radial distribution of
temperature plays a role in the formation 
of radial structure distribution (molecular 
orientation, crystallinity). In the model-
ling of pneumatic melt spinning, axial 
distributions of the radial-average poly-
mer velocity, temperature, stresses, etc. 
are considered.

With the single-, thin-filament approach,
the air jet velocity, temperature and pres-
sure fields can be approximated by the
predetermined fields computed in Part I
[19] because any deviation from the fields
caused by the presence of a single row of 
filaments is negligible. Stationary pneu-
matic melt spinning, used for obtaining 
uniform fibers in nonwoven, requires sta-
tionary boundary conditions for the fila-
ments and stationary air dynamic fields
along the melt blowing axis, as well as 
the stability of the material parameters. 

 Model equations
A single-, thin-filament model of the sta-
tionary air-drawing in melt blowing of 
nonwovens from crystallising polymer 
melt is considered, which consists of 
a set of ordinary, first order differential
equations for the z-dependent filament
velocity V(z), temperature T(z), tensile 
stress Δp(z), crystallinity X(z) and pres-
sure p(z). The equations result from the 
mass, force and energy balance equa-
tions, the constitutive equation of viscoe-
lasticity and structure development equa-
tions, taking into account amorphous ori-

entation and oriented crystallisation. The 
dynamic conditions active in the process 
are given by the predetermined velocity, 
temperature and pressure fields of the air
jet, along the filament. The fields were
computed in Part I [19] using a turbulent 
model considering compressible air jets 
with various initial velocities and fixed in-
itial air temperature at the air slots output. 

The mass conservation equation of the 
polymer filament [4]
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where ρc – the density of the crystalline 
component. For isotactic polypropylene 
ρc = 950 kg/m3 [26], and the temperature 
dependence of the crystalline component 
density is neglected. 

The force balance equation accounts for 
the local tensile force balancing the iner-
tia, air friction, gravity and surface ten-
sion forces in the filament. The take-up
force vanishes because the filaments de-
posit freely onto the collector. The axial 
gradient of the tensile force F(z) reads [4, 
14]
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– V(z) – Vα(z). Cf (z) is the air friction co-
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tween the filament and air local veloc-
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β is typical for the case of the turbulent 
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the local air density ρa(z) and kinematic 
viscosity of the air νa(z), which depend 
on the temperature and pressure. The air 
density along the melt blowing axis z is 
determined from the relation between the 
local air pressure Pa(z) and temperature 
Ta(z) 



19FIBRES & TEXTILES in Eastern Europe January / December / A 2008, Vol. 16, No. 5 (70)

6

with νa(z) - the local kinematic air viscosity.  

 Usually, in the modelling of classical melt spinning, one assumes β = 0.37 and 

α = 0.61  [4,14,15,27]. For the melt blowing process, we assume β = 0.78 and α = 0.61, as 

suggested by Majumdar and Shambaugh [28] where the value of β is typical  for the case of 

the turbulent boundary layer.  

 The air friction force is a function of the local air density ρa(z) and kinematic viscosity 

of the air νa(z), which depend on the temperature and pressure. The air density along the melt 

blowing axis z is determined from the relation between the local air pressure Pa(z) and 

temperature Ta(z)

)(

)(
)(

zT
zPconstz

a

a
a =ρ  .       (8)  

For dry air and  atmospheric pressure, we have )(/32.352)( zTz aa =ρ (in kg/m3) [14]. Thus 

for a process  at the air pressure Pa(z) we have 

)kg/min(
)(

)(

32.352
)( 3

atm

a

a
a P

zP
zT

z =ρ       (9) 

where Patm denotes the atmospheric pressure. 

 The dynamic viscosity of dry air at  temperature Ta is given by the Sutherland formula 

[14]

)sPain(
114

104663.1)(
3/2

6 ⋅
+

×= −

a

a
aa T

T
Tη      (10) 

and the local kinematic viscosity of dry air  at the pressure Pa(z)

)/smin(
)(114)(

)(
101618.4)( 2

2/5
9

zP
P

zT
zT

z
a

atm

a

a
a +

×= −ν  .   (11)  

 The temperature dependence of the local surface tension of the isotactic polypropylene 

filament reads [29] 

[ ]296)(106.51094.2)( 52 −×−×= −− zTzγ    (in N/m) .   (12)  

The energy conservation equation [4,14] reads 

    (8) 

For dry air and atmospheric pressure, we 
have ρa(z) = 352.32/Ta(z), in kg/m3 [14]. 
Thus for a process at the air pressure 
Pa(z) we have

6

with νa(z) - the local kinematic air viscosity.  

 Usually, in the modelling of classical melt spinning, one assumes β = 0.37 and 

α = 0.61  [4,14,15,27]. For the melt blowing process, we assume β = 0.78 and α = 0.61, as 

suggested by Majumdar and Shambaugh [28] where the value of β is typical  for the case of 

the turbulent boundary layer.  

 The air friction force is a function of the local air density ρa(z) and kinematic viscosity 

of the air νa(z), which depend on the temperature and pressure. The air density along the melt 

blowing axis z is determined from the relation between the local air pressure Pa(z) and 

temperature Ta(z)

)(

)(
)(

zT
zPconstz

a

a
a =ρ  .       (8)  

For dry air and  atmospheric pressure, we have )(/32.352)( zTz aa =ρ (in kg/m3) [14]. Thus 

for a process  at the air pressure Pa(z) we have 

)kg/min(
)(

)(

32.352
)( 3

atm

a

a
a P

zP
zT

z =ρ       (9) 

where Patm denotes the atmospheric pressure. 

 The dynamic viscosity of dry air at  temperature Ta is given by the Sutherland formula 

[14]

)sPain(
114

104663.1)(
3/2

6 ⋅
+

×= −

a

a
aa T

T
Tη      (10) 

and the local kinematic viscosity of dry air  at the pressure Pa(z)

)/smin(
)(114)(

)(
101618.4)( 2

2/5
9

zP
P

zT
zT

z
a

atm

a

a
a +

×= −ν  .   (11)  

 The temperature dependence of the local surface tension of the isotactic polypropylene 

filament reads [29] 

[ ]296)(106.51094.2)( 52 −×−×= −− zTzγ    (in N/m) .   (12)  

The energy conservation equation [4,14] reads 

,  in kg/m3 (9)

where Patm is the atmospheric pressure.

The dynamic viscosity of dry air at tem-
perature Ta is given by the Sutherland 
formula [14]

             ,

6

with νa(z) - the local kinematic air viscosity.  

 Usually, in the modelling of classical melt spinning, one assumes β = 0.37 and 

α = 0.61  [4,14,15,27]. For the melt blowing process, we assume β = 0.78 and α = 0.61, as 

suggested by Majumdar and Shambaugh [28] where the value of β is typical  for the case of 

the turbulent boundary layer.  

 The air friction force is a function of the local air density ρa(z) and kinematic viscosity 

of the air νa(z), which depend on the temperature and pressure. The air density along the melt 

blowing axis z is determined from the relation between the local air pressure Pa(z) and 

temperature Ta(z)

)(

)(
)(

zT
zPconstz

a

a
a =ρ  .       (8)  

For dry air and  atmospheric pressure, we have )(/32.352)( zTz aa =ρ (in kg/m3) [14]. Thus 

for a process  at the air pressure Pa(z) we have 

)kg/min(
)(

)(

32.352
)( 3

atm

a

a
a P

zP
zT

z =ρ       (9) 

where Patm denotes the atmospheric pressure. 

 The dynamic viscosity of dry air at  temperature Ta is given by the Sutherland formula 

[14]

)sPain(
114

104663.1)(
3/2

6 ⋅
+

×= −

a

a
aa T

T
Tη      (10) 

and the local kinematic viscosity of dry air  at the pressure Pa(z)

)/smin(
)(114)(

)(
101618.4)( 2

2/5
9

zP
P

zT
zT

z
a

atm

a

a
a +

×= −ν  .   (11)  

 The temperature dependence of the local surface tension of the isotactic polypropylene 

filament reads [29] 

[ ]296)(106.51094.2)( 52 −×−×= −− zTzγ    (in N/m) .   (12)  

The energy conservation equation [4,14] reads 

in Pa · s  (10)

and the local kinematic viscosity of dry 
air at the pressure Pa(z) 

6

with νa(z) - the local kinematic air viscosity.  

 Usually, in the modelling of classical melt spinning, one assumes β = 0.37 and 

α = 0.61  [4,14,15,27]. For the melt blowing process, we assume β = 0.78 and α = 0.61, as 

suggested by Majumdar and Shambaugh [28] where the value of β is typical  for the case of 

the turbulent boundary layer.  

 The air friction force is a function of the local air density ρa(z) and kinematic viscosity 

of the air νa(z), which depend on the temperature and pressure. The air density along the melt 

blowing axis z is determined from the relation between the local air pressure Pa(z) and 

temperature Ta(z)

)(

)(
)(

zT
zPconstz

a

a
a =ρ  .       (8)  

For dry air and  atmospheric pressure, we have )(/32.352)( zTz aa =ρ (in kg/m3) [14]. Thus 

for a process  at the air pressure Pa(z) we have 

)kg/min(
)(

)(

32.352
)( 3

atm

a

a
a P

zP
zT

z =ρ       (9) 

where Patm denotes the atmospheric pressure. 

 The dynamic viscosity of dry air at  temperature Ta is given by the Sutherland formula 

[14]

)sPain(
114

104663.1)(
3/2

6 ⋅
+

×= −

a

a
aa T

T
Tη      (10) 

and the local kinematic viscosity of dry air  at the pressure Pa(z)

)/smin(
)(114)(

)(
101618.4)( 2

2/5
9

zP
P

zT
zT

z
a

atm

a

a
a +

×= −ν  .   (11)  

 The temperature dependence of the local surface tension of the isotactic polypropylene 

filament reads [29] 

[ ]296)(106.51094.2)( 52 −×−×= −− zTzγ    (in N/m) .   (12)  

The energy conservation equation [4,14] reads 

,

in m2/s  (11) 
The temperature – dependence of the lo-
cal surface tension of the isotactic poly-
propylene filament reads [29]

6

with νa(z) - the local kinematic air viscosity.  

 Usually, in the modelling of classical melt spinning, one assumes β = 0.37 and 

α = 0.61  [4,14,15,27]. For the melt blowing process, we assume β = 0.78 and α = 0.61, as 

suggested by Majumdar and Shambaugh [28] where the value of β is typical  for the case of 

the turbulent boundary layer.  

 The air friction force is a function of the local air density ρa(z) and kinematic viscosity 

of the air νa(z), which depend on the temperature and pressure. The air density along the melt 

blowing axis z is determined from the relation between the local air pressure Pa(z) and 

temperature Ta(z)

)(

)(
)(

zT
zPconstz

a

a
a =ρ  .       (8)  

For dry air and  atmospheric pressure, we have )(/32.352)( zTz aa =ρ (in kg/m3) [14]. Thus 

for a process  at the air pressure Pa(z) we have 

)kg/min(
)(

)(

32.352
)( 3

atm

a

a
a P

zP
zT

z =ρ       (9) 

where Patm denotes the atmospheric pressure. 

 The dynamic viscosity of dry air at  temperature Ta is given by the Sutherland formula 

[14]

)sPain(
114

104663.1)(
3/2

6 ⋅
+

×= −

a

a
aa T

T
Tη      (10) 

and the local kinematic viscosity of dry air  at the pressure Pa(z)

)/smin(
)(114)(

)(
101618.4)( 2

2/5
9

zP
P

zT
zT

z
a

atm

a

a
a +

×= −ν  .   (11)  

 The temperature dependence of the local surface tension of the isotactic polypropylene 

filament reads [29] 

[ ]296)(106.51094.2)( 52 −×−×= −− zTzγ    (in N/m) .   (12)  

The energy conservation equation [4,14] reads 

,
in N/m.  (12) 

The energy conservation equation [4, 14] 
reads

7

[ ] [ ])()()()()()(
)(

)(*4
)()()( zztrzXhzzTzT

zD
z

dz
dTzVzCz ap ep && ⋅+∆+−−= ραρ    (13) 

and expresses the axial gradient of the filament temperature T(z) as controlled by the 
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For isotactic polypropylene we have Cp0 = 1.5358×103  J/(kg⋅K), Cp1 = 10.13 J/(kg⋅K2) [25]. 

 Model analysis of the dynamic fields of the air jet in Part I [19] indicates that the air 

flow is coaxial in the melt blowing, and the normal component of the air velocity vanishes 

along the centerline. The heat exchange coefficient α* is determined from the correlation 

between the Nusselt and Reynolds numbers [6,7]  
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and expresses the axial gradient of the 
filament temperature T(z) as control-
led by the convective heat exchange 
between the filament and air jet as well
as by the heat of crystallisation and the 
heat of viscous friction in the polymer 
bulk, respectively. Cp(z) – specific heat
of the polymer, depending on the local 
filament temperature, α* – the convec-
tive heat exchange coefficient, Δh – the 
heat of crystallisation per unit mass, Ẋ(z) 

the local crystallisation rate, p(z) and ė(z) 
– the local stress and deformation rate 
tensors. For isotactic polypropylene we 
have Δh = 1.65×105 J/kg [29]. The stress 
tensor p(z) is controlled by a constitutive 
equation of viscoelasticity, and the defor-
mation rate tensor
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For isotactic polypropylene we have 
Cp0 = 1.5358x103 J/(kg · K), Cp1 = 10.13 
J/(kg · K2) [25].

Model analysis of the dynamic fields of
the air jets in Part I [19] indicates that 
the air flow is coaxial in the melt blow-
ing, and the normal component of the 
air velocity vanishes along the center-
line. The heat exchange coefficient α* 
is determined from the correlation be-
tween the Nusselt and Reynolds num-
bers [6, 7] 
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where Nu = α*D/λa, and λa is the thermal 
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The constitutive equation of viscoelastic-
ity for the uniaxial flow deformation of
the polymer defines the uniaxial stress
tensor, which is expressed by the axial, 
pzz, and radial, prr, stress components. 

The stress components can be expressed 
by the tensile stress, Δp = pzz – prr, and 
pressure, p = –trp / 3 = –(pzz + 2prr)/3. 

In the steady-state process, the stress 
tensor is expressed by the local air 
pressure Pa(z) and extra stress tensor 
σ(z), satisfying the polymer constitu-
tive equation of viscoelasticity with the 
formula p(z) = –Pa(z)I + σ(z), where I is 
the unit tensor. In the thin-filament ap-
proximation, the stress tensor represents 
the average local stress on the filament
cross-section.

The average local tensile stress Δp(z) 
is controlled by the local tensile force 
F(z) 
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includes the average rheological pressure associated with the extra stress, 3/)()( ztrzprh σ−= .

The product of the local tensile stress ∆p(z) and the filament elongation rate dV/dz

determines the viscous friction heat term in Eq.(13)   
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which introduces two additional material constants: ∈ - responsible for the non-linear effects, 

ξ - responsible for the shear thinning effects [30,31].  

For uniaxial flow deformation, formula (21) is reduced to two scalar equations for the 

tensile stress )(zp∆  and rheological pressure prh(z)

 (18) 
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dV/dz determines the viscous friction 
heat term in Equation (13) 
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For isotactic polypropylene we assume ∈ = 0.015 and ξ = 0.6. These values were also used in 

a computer simulation of the conventional melt spinning of  polypropylene [32].  

The shear viscosity is strongly influenced by polymer crystallinity [33] and is 

expressed by the product of the temperature- and crystallinity-dependent functions [14,15] 
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where the pre-exponential factor η0 depends on the average molecular weight, Mw, Ea is the 

activation energy, Tg – the glass transition temperature, and k – the Boltzmann constant. For 

isotactic polypropylene we have Ea/k = 5.292×103K and Tg = 253K [4,29]. The dependence 

of η0 on the average molecular weight Mw known for entangled polymer melts is assumed as 

[26]
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In the model the reference melt viscosity of 3000 Pa⋅s is chosen for isotactic polypropylene of 

Mw,ref = 300,000 at 220oC [26]. 

 The effects of crystallisation on polymer viscosity are accounted for by the function ηX

derived by Ziabicki [34] from the cross-linking theory  

Usunięto: ¶
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Equations 21, 22 and 23.
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conventional melt spinning of polypro-
pylene [32]. 

The shear viscosity is strongly influenced
by polymer crystallinity [33] and is ex-
pressed by the product of the tempera-
ture- and crystallinity-dependent func-
tions [14, 15] 

9

[ ]
dz
dVzppz

dz
dVzzp

z
zzpp

dz
dzVz rhrh )(3)1)(()(3)(

)(

)(
3exp)()()( −∆−+=













∈−∆+∆ ξτη
η
ττ ,

            (22) 

dz
dVzpzzp

z
zzpp

dz
dzVz rhrhrh )()1)((

3

2
)(

)(

)(
3exp)()()( ∆−−=













∈−+ ξτ
η
ττ   . (23) 

For isotactic polypropylene we assume ∈ = 0.015 and ξ = 0.6. These values were also used in 

a computer simulation of the conventional melt spinning of  polypropylene [32].  

The shear viscosity is strongly influenced by polymer crystallinity [33] and is 

expressed by the product of the temperature- and crystallinity-dependent functions [14,15] 

[ ] [ ] [ ])()()(),()( zXzTzXzTz Xmelt ηη=η=η   .    (24) 

The temperature-dependent viscosity of the melt is assumed in the Arrhenius form 











≤∞

>











=

g

g
a

w
melt

TT

TT
kT
E

M
T

exp)(
)(

0η
η     (25) 

where the pre-exponential factor η0 depends on the average molecular weight, Mw, Ea is the 

activation energy, Tg – the glass transition temperature, and k – the Boltzmann constant. For 

isotactic polypropylene we have Ea/k = 5.292×103K and Tg = 253K [4,29]. The dependence 

of η0 on the average molecular weight Mw known for entangled polymer melts is assumed as 

[26]

4.3
0 )( ww MConstM ⋅=η  .       (26) 

Using the reference shear viscosity of  polymer melt of molecular weight refwM ,  at a 

reference temperature Tref , the pre-exponential factor can be expressed in the form 

















−
















=
ref

D

refw

w
refwrefmeltw kT

E
M
M

MTM exp);()(

4.3

,
,0 ηη  .   (27) 

In the model the reference melt viscosity of 3000 Pa⋅s is chosen for isotactic polypropylene of 

Mw,ref = 300,000 at 220oC [26]. 

 The effects of crystallisation on polymer viscosity are accounted for by the function ηX

derived by Ziabicki [34] from the cross-linking theory  

Usunięto: ¶

(24)

The temperature-dependent viscosity 
of the melt is assumed in the Arrhenius 
form

9

[ ]
dz
dVzppz

dz
dVzzp

z
zzpp

dz
dzVz rhrh )(3)1)(()(3)(

)(

)(
3exp)()()( −∆−+=













∈−∆+∆ ξτη
η
ττ ,

            (22) 

dz
dVzpzzp

z
zzpp

dz
dzVz rhrhrh )()1)((

3

2
)(

)(

)(
3exp)()()( ∆−−=













∈−+ ξτ
η
ττ   . (23) 
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a computer simulation of the conventional melt spinning of  polypropylene [32].  
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expressed by the product of the temperature- and crystallinity-dependent functions [14,15] 
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Mw,ref = 300,000 at 220oC [26]. 

 The effects of crystallisation on polymer viscosity are accounted for by the function ηX

derived by Ziabicki [34] from the cross-linking theory  
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where the pre-exponential factor η0 de-
pends on the average molecular weight, 
Mw, Ea is the activation energy, Tg – the 
glass transition temperature, and k – the 
Boltzmann constant. For isotactic poly-
propylene we have Ea/k = 5.292×103K 
and Tg = 253K [4,29]. The dependence of 
η0 on the average molecular weight Mw 

known for entangled polymer melts is as-
sumed as [26]
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For isotactic polypropylene we assume ∈ = 0.015 and ξ = 0.6. These values were also used in 

a computer simulation of the conventional melt spinning of  polypropylene [32].  

The shear viscosity is strongly influenced by polymer crystallinity [33] and is 

expressed by the product of the temperature- and crystallinity-dependent functions [14,15] 
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where the pre-exponential factor η0 depends on the average molecular weight, Mw, Ea is the 

activation energy, Tg – the glass transition temperature, and k – the Boltzmann constant. For 

isotactic polypropylene we have Ea/k = 5.292×103K and Tg = 253K [4,29]. The dependence 

of η0 on the average molecular weight Mw known for entangled polymer melts is assumed as 

[26]
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Using the reference shear viscosity of  polymer melt of molecular weight refwM ,  at a 

reference temperature Tref , the pre-exponential factor can be expressed in the form 
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In the model the reference melt viscosity of 3000 Pa⋅s is chosen for isotactic polypropylene of 

Mw,ref = 300,000 at 220oC [26]. 

 The effects of crystallisation on polymer viscosity are accounted for by the function ηX

derived by Ziabicki [34] from the cross-linking theory  
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Using the reference shear viscosity of 
polymer melt of molecular weight Mw,ref 

at a reference temperature Tref , the pre-
exponential factor can be expressed in 
the form of Equation 27.

In the model, the reference melt viscosity of 
3000 Pa · s is chosen for isotactic polypro-
pylene of Mw,ref  = 300,000 at 220 °C [26].

The effects of crystallisation on polymer 
viscosity are accounted for by the func-
tion ηX derived by Ziabicki [34] from the 
cross-linking theory 
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where X* is the critical degree of crystallinity at which the polymer solidifies, α – the critical 

exponent. In the modelling of melt spinning, we usually assume X* = 0.1 and α = 1 [14,15].  

The local viscosity of polymer η(z) which accounts for the average molecular weight 

Mw, temperature T(z) and degree of crystallinity X(z), related to the reference melt viscosity, 

reads 
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 The local relaxation time τ(z) is determined from the ratio )(/)()( zGzηzτ = of the  

shear viscosity of the polymer and the modulus of elasticity. We assume that the modulus 

G(z) is dependent on the polymer temperature and crystallinity, which is expressed by the 

product of  functions [35-37] 

)]([)]([)( zXGzTGzG Xmelt=       (30) 

where the modulus of the melt )()]([ zTBzTGmelt =  and the function responsible for the 

effects of crystallinity [ ] [ ]∞= XzXzXGX /)(2.3exp)(  [38,39]. X∞ is the maximum degree of 

crystallinity achievable by the polymer. For isotactic polypropylene we can assume that 

X∞ = 0.55 [39,40]. The constant ( ) νξ kB 21−=  is proportional to the average number of sub-

chains between the entanglements per unit volume,ν, irrespective of the polymer molecular 

weight [30]. Thus the dependence of τ(z) on the molecular weight results from the 

dependence of shear viscosity on Mw. We consider the modulus of elasticity at the local 

temperature T(z) and crystallinity X(z) as expressed by a reference modulus of the melt 

Gmelt(Tref) at a reference temperature Tref
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where ( ) )(/)( refmeltrefmeltrefmelt TτTηTG = .

  (28)

where X* is the critical degree of crys-
tallinity at which the polymer solidifies,
α – the critical exponent. In the model-
ling of melt spinning, we usually assume 
X* = 0.1 and α = 1 [14,15]. 

The local viscosity of polymer η(z) which 
accounts for the average molecular 
weight Mw, temperature T(z) and degree 
of crystallinity X(z), related to the refer-
ence melt viscosity, reads (Equation 29).

The local relaxation time τ(z) is deter-
mined from the ratio τ(z) = η(z) / G(z) of 
the shear viscosity of the polymer and the 
modulus of elasticity. We assume that the 
modulus G(z) is dependent on the poly-
mer temperature and crystallinity, which 
is expressed by the product of functions 
[35-37]
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where X* is the critical degree of crystallinity at which the polymer solidifies, α – the critical 

exponent. In the modelling of melt spinning, we usually assume X* = 0.1 and α = 1 [14,15].  

The local viscosity of polymer η(z) which accounts for the average molecular weight 

Mw, temperature T(z) and degree of crystallinity X(z), related to the reference melt viscosity, 

reads 
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 The local relaxation time τ(z) is determined from the ratio )(/)()( zGzηzτ = of the  

shear viscosity of the polymer and the modulus of elasticity. We assume that the modulus 

G(z) is dependent on the polymer temperature and crystallinity, which is expressed by the 

product of  functions [35-37] 

)]([)]([)( zXGzTGzG Xmelt=       (30) 

where the modulus of the melt )()]([ zTBzTGmelt =  and the function responsible for the 

effects of crystallinity [ ] [ ]∞= XzXzXGX /)(2.3exp)(  [38,39]. X∞ is the maximum degree of 

crystallinity achievable by the polymer. For isotactic polypropylene we can assume that 

X∞ = 0.55 [39,40]. The constant ( ) νξ kB 21−=  is proportional to the average number of sub-

chains between the entanglements per unit volume,ν, irrespective of the polymer molecular 

weight [30]. Thus the dependence of τ(z) on the molecular weight results from the 

dependence of shear viscosity on Mw. We consider the modulus of elasticity at the local 

temperature T(z) and crystallinity X(z) as expressed by a reference modulus of the melt 

Gmelt(Tref) at a reference temperature Tref
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where ( ) )(/)( refmeltrefmeltrefmelt TτTηTG = .

 (30)

where the modulus of the melt 
Gmelt[T(z)] = BT(z) and the function re-
sponsible for the effects of crystallin-

ity GX[X(z)] = exp[3.2X(z) / X∞] [36, 37].  
X∞ is the maximum degree of crystal-
linity achievable by the polymer. For 
isotactic polypropylene we can assume 
that X∞ = 0.55 [37, 38]. The constant 
B = (1 – ξ)2 kv is proportional to the 
average number of sub-chains between 
the entanglements per unit volume,v, 
irrespective of the polymer molecular 
weight [30]. Thus the dependence of τ(z) 
on the molecular weight results from the 
dependence of shear viscosity on Mw. We 
consider the modulus of elasticity at the 
local temperature T(z) and crystallinity 
X(z) as expressed by a reference modulus 
of the melt Gmelt(Tref) at a reference tem-
perature Tref 
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where X* is the critical degree of crystallinity at which the polymer solidifies, α – the critical 

exponent. In the modelling of melt spinning, we usually assume X* = 0.1 and α = 1 [14,15].  

The local viscosity of polymer η(z) which accounts for the average molecular weight 

Mw, temperature T(z) and degree of crystallinity X(z), related to the reference melt viscosity, 

reads 
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 The local relaxation time τ(z) is determined from the ratio )(/)()( zGzηzτ = of the  

shear viscosity of the polymer and the modulus of elasticity. We assume that the modulus 

G(z) is dependent on the polymer temperature and crystallinity, which is expressed by the 

product of  functions [35-37] 

)]([)]([)( zXGzTGzG Xmelt=       (30) 

where the modulus of the melt )()]([ zTBzTGmelt =  and the function responsible for the 

effects of crystallinity [ ] [ ]∞= XzXzXGX /)(2.3exp)(  [38,39]. X∞ is the maximum degree of 

crystallinity achievable by the polymer. For isotactic polypropylene we can assume that 

X∞ = 0.55 [39,40]. The constant ( ) νξ kB 21−=  is proportional to the average number of sub-

chains between the entanglements per unit volume,ν, irrespective of the polymer molecular 

weight [30]. Thus the dependence of τ(z) on the molecular weight results from the 

dependence of shear viscosity on Mw. We consider the modulus of elasticity at the local 

temperature T(z) and crystallinity X(z) as expressed by a reference modulus of the melt 

Gmelt(Tref) at a reference temperature Tref
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where ( ) )(/)( refmeltrefmeltrefmelt TτTηTG = .

(31)

where Gmelt(Tref) = ηmelt(Tref) / τmelt(Tref). 
The local relaxation time of the polymer 
is expressed by the reference relaxation 
time τmelt(Tref ; Mw,ref) at Tref and average 
molecular weight Mw,ref (Equation 32).

In the model of melt blowing from iso-
tactic polypropylene, we assume that  
τmelt(Tref ; Mw,ref) = 0.035 sec at a reference 
temperature of 220 °C and weight aver-
age molecular weight of 300,000. This 
value was estimated from a relaxation 
time of 0.04 s reported for polypropylene 
grade with a shear viscosity of 3420 Pa·s 
at 210 °C [37].
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For isotactic polypropylene we assume ∈ = 0.015 and ξ = 0.6. These values were also used in 

a computer simulation of the conventional melt spinning of  polypropylene [32].  

The shear viscosity is strongly influenced by polymer crystallinity [33] and is 

expressed by the product of the temperature- and crystallinity-dependent functions [14,15] 

[ ] [ ] [ ])()()(),()( zXzTzXzTz Xmelt ηη=η=η   .    (24) 

The temperature-dependent viscosity of the melt is assumed in the Arrhenius form 
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where the pre-exponential factor η0 depends on the average molecular weight, Mw, Ea is the 

activation energy, Tg – the glass transition temperature, and k – the Boltzmann constant. For 

isotactic polypropylene we have Ea/k = 5.292×103K and Tg = 253K [4,29]. The dependence 

of η0 on the average molecular weight Mw known for entangled polymer melts is assumed as 

[26]
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Using the reference shear viscosity of  polymer melt of molecular weight refwM ,  at a 

reference temperature Tref , the pre-exponential factor can be expressed in the form 
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In the model the reference melt viscosity of 3000 Pa⋅s is chosen for isotactic polypropylene of 

Mw,ref = 300,000 at 220oC [26]. 

 The effects of crystallisation on polymer viscosity are accounted for by the function ηX

derived by Ziabicki [34] from the cross-linking theory  
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where X* is the critical degree of crystallinity at which the polymer solidifies, α – the critical 

exponent. In the modelling of melt spinning, we usually assume X* = 0.1 and α = 1 [14,15].  

The local viscosity of polymer η(z) which accounts for the average molecular weight 

Mw, temperature T(z) and degree of crystallinity X(z), related to the reference melt viscosity, 

reads 
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 The local relaxation time τ(z) is determined from the ratio )(/)()( zGzηzτ = of the  

shear viscosity of the polymer and the modulus of elasticity. We assume that the modulus 

G(z) is dependent on the polymer temperature and crystallinity, which is expressed by the 

product of  functions [35-37] 
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where the modulus of the melt )()]([ zTBzTGmelt =  and the function responsible for the 

effects of crystallinity [ ] [ ]∞= XzXzXGX /)(2.3exp)(  [38,39]. X∞ is the maximum degree of 

crystallinity achievable by the polymer. For isotactic polypropylene we can assume that 

X∞ = 0.55 [39,40]. The constant ( ) νξ kB 21−=  is proportional to the average number of sub-

chains between the entanglements per unit volume,ν, irrespective of the polymer molecular 

weight [30]. Thus the dependence of τ(z) on the molecular weight results from the 

dependence of shear viscosity on Mw. We consider the modulus of elasticity at the local 

temperature T(z) and crystallinity X(z) as expressed by a reference modulus of the melt 

Gmelt(Tref) at a reference temperature Tref
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In the model of melt blowing from isotactic polypropylene, we assume that the reference 

relaxation time sec035.0);( , =refwrefmelt MTτ  at a reference temperature of 220oC and  

reference weight average molecular weight of 300,000. This value was estimated from a 

relaxation time of 0.04 s reported for  polypropylene grade with a shear viscosity of 3420 Pa⋅s

at 210oC [39]. 

Structure evolution equations concern the development of molecular orientation and the 

degree of crystallinity under  uniaxial flow deformation in melt blowing. Molecular

orientation is considered using the following non-linear stress-optical formula [15] between 

the amorphous orientation factor fa(z), or birefringence ∆na(z), and the local tensile stress ∆p
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0
an∆ denotes the birefringence of perfectly oriented amorphous polymer, Copt – the stress-

optical coefficient. For isotactic polypropylene 30 100.60 −×=∆ an and 

/Nm100.9 210−×=optC [41].

 The stress-induced crystallisation rate under non-isothermal conditions is determined 

from the Avrami equation and reads [42,43] 
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where Kst(z) is the crystallisation rate function dependent on the temperature and tensile 

stress. The following Gaussian dependence on temperature and exponential dependence on 

the amorphous orientation factor, fa, of the crystallisation rate function is assumed as [4] 
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In the model of melt blowing from isotactic polypropylene, we assume that the reference 

relaxation time sec035.0);( , =refwrefmelt MTτ  at a reference temperature of 220oC and  

reference weight average molecular weight of 300,000. This value was estimated from a 

relaxation time of 0.04 s reported for  polypropylene grade with a shear viscosity of 3420 Pa⋅s

at 210oC [39]. 

Structure evolution equations concern the development of molecular orientation and the 

degree of crystallinity under  uniaxial flow deformation in melt blowing. Molecular

orientation is considered using the following non-linear stress-optical formula [15] between 

the amorphous orientation factor fa(z), or birefringence ∆na(z), and the local tensile stress ∆p
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0
an∆ denotes the birefringence of perfectly oriented amorphous polymer, Copt – the stress-

optical coefficient. For isotactic polypropylene 30 100.60 −×=∆ an and 

/Nm100.9 210−×=optC [41].

 The stress-induced crystallisation rate under non-isothermal conditions is determined 

from the Avrami equation and reads [42,43] 
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where Kst(z) is the crystallisation rate function dependent on the temperature and tensile 

stress. The following Gaussian dependence on temperature and exponential dependence on 

the amorphous orientation factor, fa, of the crystallisation rate function is assumed as [4] 
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In the model of melt blowing from isotactic polypropylene, we assume that the reference 

relaxation time sec035.0);( , =refwrefmelt MTτ  at a reference temperature of 220oC and  

reference weight average molecular weight of 300,000. This value was estimated from a 

relaxation time of 0.04 s reported for  polypropylene grade with a shear viscosity of 3420 Pa⋅s

at 210oC [39]. 

Structure evolution equations concern the development of molecular orientation and the 

degree of crystallinity under  uniaxial flow deformation in melt blowing. Molecular

orientation is considered using the following non-linear stress-optical formula [15] between 

the amorphous orientation factor fa(z), or birefringence ∆na(z), and the local tensile stress ∆p
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0
an∆ denotes the birefringence of perfectly oriented amorphous polymer, Copt – the stress-

optical coefficient. For isotactic polypropylene 30 100.60 −×=∆ an and 

/Nm100.9 210−×=optC [41].

 The stress-induced crystallisation rate under non-isothermal conditions is determined 

from the Avrami equation and reads [42,43] 
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where Kst(z) is the crystallisation rate function dependent on the temperature and tensile 

stress. The following Gaussian dependence on temperature and exponential dependence on 

the amorphous orientation factor, fa, of the crystallisation rate function is assumed as [4] 
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In the model of melt blowing from isotactic polypropylene, we assume that the reference 

relaxation time sec035.0);( , =refwrefmelt MTτ  at a reference temperature of 220oC and  

reference weight average molecular weight of 300,000. This value was estimated from a 

relaxation time of 0.04 s reported for  polypropylene grade with a shear viscosity of 3420 Pa⋅s

at 210oC [39]. 

Structure evolution equations concern the development of molecular orientation and the 

degree of crystallinity under  uniaxial flow deformation in melt blowing. Molecular

orientation is considered using the following non-linear stress-optical formula [15] between 

the amorphous orientation factor fa(z), or birefringence ∆na(z), and the local tensile stress ∆p
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0
an∆ denotes the birefringence of perfectly oriented amorphous polymer, Copt – the stress-

optical coefficient. For isotactic polypropylene 30 100.60 −×=∆ an and 

/Nm100.9 210−×=optC [41].

 The stress-induced crystallisation rate under non-isothermal conditions is determined 

from the Avrami equation and reads [42,43] 
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where Kst(z) is the crystallisation rate function dependent on the temperature and tensile 

stress. The following Gaussian dependence on temperature and exponential dependence on 

the amorphous orientation factor, fa, of the crystallisation rate function is assumed as [4] 
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For isotactic polypropylene we have Kmax = 0.55 s−1, Tmax = 338K, D1/2 = 60K,  and the 

equilibrium melting temperature K4530 =mT  [4]. The factor A is reported only for PET [44], 

with the values in the range 100 – 1000.

Boundary conditions 

 The mathematical model of  non-woven melt blowing by crystallising viscoelastic 

polymer consists of five first order, ordinary differential equations for axial profiles of the 

polymer velocity V(z), temperature T(z), tensile force F(z), rheological pressure prh(z), and the 

degree of crystallinity X(z). The equations derived from Eqs. (1, 4, 13, 22, 23, 34) assume a 

general form [ ])(),(),(),(),(/ zXzpzFzTzVgdzdf rhii =  where fi(z) are the axial profiles, 

gi[⋅] – functions dependent on the axial profiles. Initial values fi(z=0) of the profiles are 

defined for the initial polymer velocity 0)0( VzV == , temperature 0)0( TzT == , crystallinity 

0)0( ==zX  and the rheological pressure 0)0( ==zprh . The value of F(z = 0) does not 

exist because it is difficult to control the initial force directly.  In the modelling of classical 

melt spinning, the initial tensile force is adjusted to the take-up velocity by the inverse 

method. In the melt blowing of nonwovens, the filaments deposit freely onto the collector; 

however, it is  difficult to control the take-up velocity. The condition of the vanishing tensile 

force on the collector allows to determine the initial force by adjusting it by the inverse 

method.

Axial distributions of the air velocity, temperature and pressure along the filament 

between the initial point, z = 0, and  collector, z = L, also constitute some kind of boundary 

conditions which control the melt blowing dynamics. The predetermined air jet conditions 

along the filament axis were computed in Part I [19] on the basis of the k - ε aerodynamic 

model for convergent air jets blown from a dual slot die. The centerline distribution of the air 

jet conditions was obtained form the simulation as a set of numerical data; however, for the 

modelling they should be represented by analytical formulae. 

For a satisfactory analytical approximation of the axial profiles of the air velocity 

Va(z), temperature Ta(z) and pressure Pa(z), the axial distance is divided into two ranges –  

 . (35)

Equations 27, 29, 32, 33, 34 and 35.
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Structure evolution equations concern 
the development of molecular orienta-
tion and the degree of crystallinity under 
uniaxial flow deformation. Molecular
orientation is considered using the fol-
lowing non-linear stress-optical formula 
[15] between the amorphous orienta-
tion factor fa(z), or birefringence ∆na(z), 
and the local tensile stress ∆p (Equation 
33). ∆na

0 denotes the birefringence of 
perfectly oriented amorphous polymer,  
Copt – the stress-optical coefficient. For
isotactic polypropylene ∆na

0 = 60.0×10-3 

and Copt = 9.0×10-10m2/N [39].

The stress-induced crystallisation rate 
under non-isothermal conditions is 
determined from the Avrami equation 
and reads [40, 41] (Equation 34) where 
Kst(z) is the crystallisation rate func-
tion dependent on the temperature and 
tensile stress. The following Gaussian 
dependence on temperature and expo-
nential dependence on the amorphous 
orientation factor, fa, of the crystalli-
sation rate function is assumed as [4] 
(Equation 35).

For isotactic polypropylene we have 
Kmax = 0.55 s-1, Tmax = 338 K, D1/2 = 60 K, 
and the equilibrium melting temperature 
Tm

0 = 453 K [4]. The factor A is reported 
only for PET [42], with the values in the 
range 100 – 1000. 

 Boundary conditions
The mathematical model of non-woven 
melt blowing by crystallising viscoelastic 
polymer consists of five first order differ-
ential equations for axial profiles of the
polymer velocity V(z), temperature T(z), 
tensile force F(z), rheological pressure 
prh(z), and the degree of crystallinity X(z). 
The equations derived from Equations 1, 
4, 13, 22, 23, 34 assume a general form 
dfi / dz = gi[V(z), T(z), F(z), prh(z), X(z)] 
where fi(z) are the axial profiles, gi[·] – 
functions dependent on the axial profiles.
Initial values fi(z = 0) of the profiles are
defined for the initial polymer velocity
V(z = 0) = V0, temperature T(z = 0) = T0, 
crystallinity X(z = 0) = 0 and the rheo-
logical pressure prh(z = 0) = 0. The value 
of F(z = 0) does not exist because it is 
difficult to control the initial force di-
rectly. In the modelling of classical 
melt spinning, the initial tensile force is 
adjusted to the take-up velocity by the 
inverse method. In the melt blowing of 
nonwovens, the filaments deposit freely
onto the collector; however, it is diffi-
cult to control the take-up velocity. The 

condition of the vanishing tensile force 
on the collector allows to determine the 
initial force by adjusting it by the in-
verse method. 

Axial distributions of the air veloc-
ity, temperature and pressure along the 
filament between the initial point, z = 0, 
and collector, z = L, also constitute some 
kind of boundary conditions which con-
trol the melt blowing dynamics. The 
predetermined air jet conditions along 
the filament axis were computed in Part
I [19] on the basis of the k – ε aerody-
namic model for convergent air jets 
blown from a dual slot die. The center-
line distribution of the air jet conditions 
was obtained form the simulation as a 
set of numerical data; however, for the 

modelling they should be represented by 
analytical formulae.

For a satisfactory analytical approxima-
tion of the axial profiles of the air veloc-
ity Va(z), temperature Ta(z) and pressure 
Pa(z), the axial distance is divided into 
two ranges – nearby the spinneret 0 – z1 
range, and the remaining z1 – L range. In 
the first range, the simulation data repre-
senting axial profiles of the air fields are
fitted into the following functions using
the polynomial regression method 
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nearby the spinneret 0 – z1 range, and the remaining z1 – L range. In the first range, the 

simulation data representing axial profiles of the air fields are fitted into the following 

functions using the polynomial regression method  
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The functions )/( bzf air
i are  air fields profiles reduced by the initial values vs. the axial 

distance reduced by the width of the air die at the output, z/b. It concerns air velocity reduced 

by its initial velocity, Va(z/b)/Va0, reduced air temperature, Ta(z/b)/Ta0, and  reduced air 

pressure, Pa(z/b)/Pa0. For the air die considered in [19,20] we have b = 0.5 mm. 

 Within the remaining z1 – L range, the reduced air field profiles along the filament axis 

are approximated using the third order exponential decay fit
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The fit coefficients Bn, Cn and tn for the air velocity and temperature profiles are 

presented in  Tables 1 and 2 for various initial air velocities: 30, 50, 75, 100, 200 and 300 m/s, 

at a fixed initial air temperature of 300oC, as well as the division point z1 and the non-linear 

regression fit parameters R. The air pressure along the spinning axis decreases to an 

atmospheric value within the 0 – z1 range. The fit coefficients Bn and the non-linear regression 

fit parameters R to the air pressure data are listed in Table 3. The fit functions are illustrated in 

Figures 1.a, b – 3, where the points represent computer simulation data [19,20].  

 The axial profiles of the reduced air velocity (Figures 1.a, b) almost overlap at not too 

high initial air velocities: up to 100 m/s, and differ more at higher initial air velocities. At the 

short distance range of z < z1 = 10b = 5 mm, the maximum for the air velocity is predicted as 

well as  a reverse air flow within a very narrow range of the order of slot width b at the 

spinneret face. At higher axial distances, z > z1 = 10b, and at not too high initial air velocities 

(up to 75 m/s), the reduced air velocity profiles follow the power law decay 
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nearby the spinneret 0 – z1 range, and the remaining z1 – L range. In the first range, the 

simulation data representing axial profiles of the air fields are fitted into the following 

functions using the polynomial regression method  
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The functions )/( bzf air
i are  air fields profiles reduced by the initial values vs. the axial 

distance reduced by the width of the air die at the output, z/b. It concerns air velocity reduced 

by its initial velocity, Va(z/b)/Va0, reduced air temperature, Ta(z/b)/Ta0, and  reduced air 

pressure, Pa(z/b)/Pa0. For the air die considered in [19,20] we have b = 0.5 mm. 

 Within the remaining z1 – L range, the reduced air field profiles along the filament axis 

are approximated using the third order exponential decay fit
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The fit coefficients Bn, Cn and tn for the air velocity and temperature profiles are 

presented in  Tables 1 and 2 for various initial air velocities: 30, 50, 75, 100, 200 and 300 m/s, 

at a fixed initial air temperature of 300oC, as well as the division point z1 and the non-linear 

regression fit parameters R. The air pressure along the spinning axis decreases to an 

atmospheric value within the 0 – z1 range. The fit coefficients Bn and the non-linear regression 

fit parameters R to the air pressure data are listed in Table 3. The fit functions are illustrated in 

Figures 1.a, b – 3, where the points represent computer simulation data [19,20].  

 The axial profiles of the reduced air velocity (Figures 1.a, b) almost overlap at not too 

high initial air velocities: up to 100 m/s, and differ more at higher initial air velocities. At the 

short distance range of z < z1 = 10b = 5 mm, the maximum for the air velocity is predicted as 

well as  a reverse air flow within a very narrow range of the order of slot width b at the 

spinneret face. At higher axial distances, z > z1 = 10b, and at not too high initial air velocities 

(up to 75 m/s), the reduced air velocity profiles follow the power law decay 
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(36)

The functions fi
air(z / b) are fields profiles

reduced by the initial values vs. the axial 

Figure 1. Reduced air jet velocity Va(z / b) / Va0 vs. the distance from the spinneret z/b 
(lines), matching the computer simulation data (points) [19] for various initial air velocities, 
a) short distances; b) longer distances from the spinneret. Ta0 = 300 °C.

a)

b) Reduced distance, z/b
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23 and 24) for various initial air veloci-
ties: 30, 50, 75, 100, 200 and 300 m/s, at 
a fixed initial air temperature of 300 °C,
as well as the division point z1 and the 
non-linear regression fit parameters R. 
The air pressure along the spinning axis 
decreases to an atmospheric value within 
the 0 – z1 range. The fit coefficients Bn 
and the non-linear regression fit param-
eters R to the air pressure data are listed 
in Table 3 (see pages 24). The fit func-
tions are illustrated in Figures 1-3, where 
the points represent computer simulation 
data [19,20]. 

The axial profiles of the reduced air
velocity (Figures 1) almost overlap at 
not too high initial air velocities: up to 
100 m/s, and differ more at higher initial 
air velocities. At the short distance range 

distance reduced by the width of the air die 
at the output, z/b. It concerns air velocity 
reduced by its initial velocity, Va(z/b)/Va0,  
reduced air temperature, Ta(z/b)/Ta0, and 
reduced air pressure, Pa(z/b)/Pa0. For the 
air die considered in [19,20] we have 
b = 0.5 mm.

Within the remaining z1 – L range, the re-
duced air field profiles are approximated
using the third order exponential decay 
fit
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nearby the spinneret 0 – z1 range, and the remaining z1 – L range. In the first range, the 

simulation data representing axial profiles of the air fields are fitted into the following 

functions using the polynomial regression method  
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The functions )/( bzf air
i are  air fields profiles reduced by the initial values vs. the axial 

distance reduced by the width of the air die at the output, z/b. It concerns air velocity reduced 

by its initial velocity, Va(z/b)/Va0, reduced air temperature, Ta(z/b)/Ta0, and  reduced air 

pressure, Pa(z/b)/Pa0. For the air die considered in [19,20] we have b = 0.5 mm. 

 Within the remaining z1 – L range, the reduced air field profiles along the filament axis 

are approximated using the third order exponential decay fit
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The fit coefficients Bn, Cn and tn for the air velocity and temperature profiles are 

presented in  Tables 1 and 2 for various initial air velocities: 30, 50, 75, 100, 200 and 300 m/s, 

at a fixed initial air temperature of 300oC, as well as the division point z1 and the non-linear 

regression fit parameters R. The air pressure along the spinning axis decreases to an 

atmospheric value within the 0 – z1 range. The fit coefficients Bn and the non-linear regression 

fit parameters R to the air pressure data are listed in Table 3. The fit functions are illustrated in 

Figures 1.a, b – 3, where the points represent computer simulation data [19,20].  

 The axial profiles of the reduced air velocity (Figures 1.a, b) almost overlap at not too 

high initial air velocities: up to 100 m/s, and differ more at higher initial air velocities. At the 

short distance range of z < z1 = 10b = 5 mm, the maximum for the air velocity is predicted as 

well as  a reverse air flow within a very narrow range of the order of slot width b at the 

spinneret face. At higher axial distances, z > z1 = 10b, and at not too high initial air velocities 

(up to 75 m/s), the reduced air velocity profiles follow the power law decay 
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nearby the spinneret 0 – z1 range, and the remaining z1 – L range. In the first range, the 

simulation data representing axial profiles of the air fields are fitted into the following 

functions using the polynomial regression method  

1
1

0 0, zz
b
zBB

b
zf

N

n

n

n
air

i ≤≤









+=










∑
=

 .    (36) 

The functions )/( bzf air
i are  air fields profiles reduced by the initial values vs. the axial 

distance reduced by the width of the air die at the output, z/b. It concerns air velocity reduced 

by its initial velocity, Va(z/b)/Va0, reduced air temperature, Ta(z/b)/Ta0, and  reduced air 

pressure, Pa(z/b)/Pa0. For the air die considered in [19,20] we have b = 0.5 mm. 

 Within the remaining z1 – L range, the reduced air field profiles along the filament axis 

are approximated using the third order exponential decay fit
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The fit coefficients Bn, Cn and tn for the air velocity and temperature profiles are 

presented in  Tables 1 and 2 for various initial air velocities: 30, 50, 75, 100, 200 and 300 m/s, 

at a fixed initial air temperature of 300oC, as well as the division point z1 and the non-linear 

regression fit parameters R. The air pressure along the spinning axis decreases to an 

atmospheric value within the 0 – z1 range. The fit coefficients Bn and the non-linear regression 

fit parameters R to the air pressure data are listed in Table 3. The fit functions are illustrated in 

Figures 1.a, b – 3, where the points represent computer simulation data [19,20].  

 The axial profiles of the reduced air velocity (Figures 1.a, b) almost overlap at not too 

high initial air velocities: up to 100 m/s, and differ more at higher initial air velocities. At the 

short distance range of z < z1 = 10b = 5 mm, the maximum for the air velocity is predicted as 

well as  a reverse air flow within a very narrow range of the order of slot width b at the 

spinneret face. At higher axial distances, z > z1 = 10b, and at not too high initial air velocities 

(up to 75 m/s), the reduced air velocity profiles follow the power law decay 
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The fit coefficients Bn, Cn and tn for the 
air velocity and temperature profiles are
presented in Tables 1 and 2 (see pages 

of z < z1 = 10b = 5 mm, the maximum 
for the air velocity is predicted as well as 
a reverse air flow within a very narrow
range of the order of slot width b at the 
spinneret face. At higher axial distances, 
z > z1 = 10b, and at not too high initial air 
velocities (up to 75 m/s), the reduced air 
velocity profiles follow the power law
decay
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nearby the spinneret 0 – z1 range, and the remaining z1 – L range. In the first range, the 

simulation data representing axial profiles of the air fields are fitted into the following 

functions using the polynomial regression method  
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The functions )/( bzf air
i are  air fields profiles reduced by the initial values vs. the axial 

distance reduced by the width of the air die at the output, z/b. It concerns air velocity reduced 

by its initial velocity, Va(z/b)/Va0, reduced air temperature, Ta(z/b)/Ta0, and  reduced air 

pressure, Pa(z/b)/Pa0. For the air die considered in [19,20] we have b = 0.5 mm. 

 Within the remaining z1 – L range, the reduced air field profiles along the filament axis 

are approximated using the third order exponential decay fit
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The fit coefficients Bn, Cn and tn for the air velocity and temperature profiles are 

presented in  Tables 1 and 2 for various initial air velocities: 30, 50, 75, 100, 200 and 300 m/s, 

at a fixed initial air temperature of 300oC, as well as the division point z1 and the non-linear 

regression fit parameters R. The air pressure along the spinning axis decreases to an 

atmospheric value within the 0 – z1 range. The fit coefficients Bn and the non-linear regression 

fit parameters R to the air pressure data are listed in Table 3. The fit functions are illustrated in 

Figures 1.a, b – 3, where the points represent computer simulation data [19,20].  

 The axial profiles of the reduced air velocity (Figures 1.a, b) almost overlap at not too 

high initial air velocities: up to 100 m/s, and differ more at higher initial air velocities. At the 

short distance range of z < z1 = 10b = 5 mm, the maximum for the air velocity is predicted as 

well as  a reverse air flow within a very narrow range of the order of slot width b at the 

spinneret face. At higher axial distances, z > z1 = 10b, and at not too high initial air velocities 

(up to 75 m/s), the reduced air velocity profiles follow the power law decay 
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nearby the spinneret 0 – z1 range, and the remaining z1 – L range. In the first range, the 

simulation data representing axial profiles of the air fields are fitted into the following 

functions using the polynomial regression method  
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The functions )/( bzf air
i are  air fields profiles reduced by the initial values vs. the axial 

distance reduced by the width of the air die at the output, z/b. It concerns air velocity reduced 

by its initial velocity, Va(z/b)/Va0, reduced air temperature, Ta(z/b)/Ta0, and  reduced air 

pressure, Pa(z/b)/Pa0. For the air die considered in [19,20] we have b = 0.5 mm. 

 Within the remaining z1 – L range, the reduced air field profiles along the filament axis 

are approximated using the third order exponential decay fit

     Lz z
bt

zCC
b
zf

n n
n

air
i ≤<















−+=










∑
=

1

3

1
0 ,exp     (37) 

The fit coefficients Bn, Cn and tn for the air velocity and temperature profiles are 

presented in  Tables 1 and 2 for various initial air velocities: 30, 50, 75, 100, 200 and 300 m/s, 

at a fixed initial air temperature of 300oC, as well as the division point z1 and the non-linear 

regression fit parameters R. The air pressure along the spinning axis decreases to an 

atmospheric value within the 0 – z1 range. The fit coefficients Bn and the non-linear regression 

fit parameters R to the air pressure data are listed in Table 3. The fit functions are illustrated in 

Figures 1.a, b – 3, where the points represent computer simulation data [19,20].  

 The axial profiles of the reduced air velocity (Figures 1.a, b) almost overlap at not too 

high initial air velocities: up to 100 m/s, and differ more at higher initial air velocities. At the 

short distance range of z < z1 = 10b = 5 mm, the maximum for the air velocity is predicted as 

well as  a reverse air flow within a very narrow range of the order of slot width b at the 

spinneret face. At higher axial distances, z > z1 = 10b, and at not too high initial air velocities 

(up to 75 m/s), the reduced air velocity profiles follow the power law decay 
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(38)
with the fit parameter R < 0.9997. A 
similar power law decay was reported by 
Krutka et al. [43] for a computer simu-
lation of dual air jets based on Reynolds 
stress model. At initial air velocities 
200 m/s or higher, the air velocities com-
puted in [19] deviate from the power low, 
Eq. (38).

Contrary to the velocity profiles at not
high initial air velocities, the tempera-
ture profiles at short distances, z < z1, do 
not overlap (Figure 2.a) and increase 
with a rising Va0. At higher distances, 
z > z1, the temperature profiles show
exponential decay (Figure 2.b) and do 
not fit any power law with reasonable
accuracy. 

The air pressure profiles show an increase
to the maximum, which is more easily 
distinguishable at the highest initial air 
velocities. Next they are discharged to 
the atmospheric pressure within a very 
narrow distance range of the order of 3b 
from the die. The air pressure axial pro-
files are presented in Figure 3, where the 
polynomial regression matches the simu-
lation data [19, 20].

 Summary
In this article, we propose a single-fila-
ment model for the stationary melt blow-
ing of nonwovens from isotactic poly-
propylene in the thin-filament approxi-
mation. The model equations account for 
the effects of viscoelasticity and stress-
induced crystallisation in the rheological 
behaviour of polymer during processing. 
The predetermined air velocity, tempera-
ture and pressure fields of the air along
the blown filament are assumed, com-
puted for different initial air velocities 
in Part I [19]. The air fields active along
the processing axis are approximated by 
analytical fit formulae. The model can be
easily applied to melt blowing processes 
involving other crystallising polymers, as 
well as other predetermined air dynam-

Figure 2. Reduced air jet temperature Ta(z / b) / Ta0 vs. the distance from the spinneret z/b 
(lines), matching the computer simulation data (points) [19] for various initial air velocities 
a) short distances; b) longer distances from the spinneret. Ta0 = 300 °C.

a)

b) Reduced distance, z/b
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ic fields. Axial profiles of the dynamic
functions computed from the model for 
the melt blowing of nonwovens from 
isotactic polypropylene will be discussed 
in Part III [44] of the publication series, 
and some of them have been presented in 
[20].
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