RESEARCH & DEVELOPMENT

Leszek Jarecki,
Andrzej Ziabicki

Institute of Fundamental Technological Research
Polish Academy of Sciences

Swietokrzyska 21, 00-049 Warsaw, Poland

E-mail: ljarecki@ippt.gov.pl;aziab@ippt.gov.pl

Introduction

Fundamental equations of the fiber melt
spinning processes proposed by Ziabicki
[1-4], Andrews [5], and Kase [6-8] in the
1960s, further developed and modified
next by other authors [9-15], are used for
the modelling of the pneumatic process
in non-woven melt blowing. Computer
aided mathematical modelling offers an
alternative method to costly experimental
investigations, which is expected to pro-
vide valuable information on the process
dynamics and role of individual process-
ing parameters. The modelling presented
in our paper concerns pneumatic melt
spinning  with - isotactic polypropylene.
The models of the pneumatic process
presented by other authors [16, 17] who
considered the melt blowing of polypro-
pylene non-woven did not take polymer
viscoelasticity into account, which is im-
portant in the case of polyolefines. They
reported that the diameters of fibers above
50 pm computed using the modelling are
in agreement with the experimental data
presented in [18] for rather thick fibers.
In melt blowing, the main attenuation of
filaments takes place near the spinneret,
within a distance range of about 6 cm
[18], and next the filaments are collected
on a take-up device at a distance of sev-
eral tens of centimeters.

In the pneumatic process we deal with
the dynamic interactions between two
phases — the polymer melt extruded from
a single row of orifices evenly distribut-
ed in a longitudinal spinneret beam and
convergent air jets blown symmetrically
from a dual slot die onto both sides of
polymer filaments. The filaments and
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the air jets interact three dimensionally,
where the system exhibits a symmetry
plane determined by the row of filaments
blown along the centerline of the air jets
from the beam. The dynamics of the melt
blowing process is controlled by the ve-
locity, temperature and pressure fields of
the air jets. Difficulties in determining the
fields are related to the formulation of the
boundary conditions between the phases.

Usually, models of melt spinning proc-
esses consider the velocity and tempera-
ture fields separately for a polymer and
gaseous medium. Such separation is also
assumed for the pneumatic process where
the stationary velocity, temperature, and
pressure fields of the convergent air jets
were predetermined in Part I of the pub-
lication series [19] as well as presented
in [20]. Dynamic fields were computed
for several initial air velocities between
30 and 300 m/s at the output of the slots,
at afixed initial air temperature of 300 °C.
We assume that the air conditions can be
approximated by predetermined air jet
fields for melt blowing processes with a
single row of filaments.

Steady-state models of fiber melt spin-
ning usually consider the distribution
of the velocity, temperature and tensile
stress of the spun polymer in a single-
filament approximation with a predeter-
mined velocity and temperature fields of
the gaseous medium. In the case of the
pneumatic process with a single row of
evenly distributed orifices in a longitu-
dinal spinneret beam, the single-filament
model is well-founded because of the rel-
atively low volume occupied by the fila-
ments in the spinning space. The volume
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density of the filaments is much lower
than in the classical processes where
considerable aerodynamic interactions
take place between the filaments in the
cylindrical bundles. In the linear, single-
row distribution of filaments in the pneu-
matic process, the screening effect in the
velocity and temperature fields is much
reduced and can be omitted.

The model presented in our paper ac-
counts for the effects of viscoelacticity,
viscous friction in the bulk of polymer
spun at high elongation rates, surface
tension and pressure. The model also in-
cludes online stress-induced crystallisa-
tion and its role in the polymer viscoelas-
ticity and process dynamics.

Model assumptions

In this study, we consider a dynamic
model of melt air-drawing in convergent
air jets in single-filament approximation.
Such approximation is justified for melt
blowing from a longitudinal spinneret
beam with a single row of orifices. The
relatively low volume concentration of
the filaments in the spinning space and
periodicity of the filaments along the spin-
ning beam allow to consider the process
in a single-filament approximation and
reduce the modelling to two dimensions.
The symmetry of the convergent air jets
leads to melt blowing along their center-
line. The velocity and temperature fields
in a single filament plane, normal for the
spinning beam, exhibit severe changes at
the air-polymer boundary, accompanied
by discontinuity of the material proper-
ties, such as density, viscosity, thermal
conductivity, etc.
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The single-filament model assumes the
cylindrical symmetry of the fields in the
polymer, reducing the problem to two
space variables — the spinning axis z,
and the radial distance from the filament
axis . With the thin-filament approxima-
tion [14, 21], the model for the stationary
processes is reduced to one dimension
— with a single variable z. The thin-fila-
ment approximation is well-founded
because the thickness of filaments in the
pneumatic process is usually smaller than
that of fibers obtained in classical melt
spinning [22-24]. The approximation
allows to neglect the radial distribution
of the polymer velocity V, temperature
T, tensile stress Ap and pressure p. The
basis for neglecting the radial distribu-
tion of the polymer velocity was found
by Ziabicki [2] and Kase [8]. But there
is no reliable basis for neglecting the
radial gradient of the polymer tempera-
ture. Therefore the average temperature
on the radial cross-section of the filament
is considered a good approximation for
thin filaments [14]. Radial distribution of
temperature plays a role in the formation
of radial structure distribution (molecular
orientation, crystallinity). In the model-
ling of pneumatic melt spinning, axial
distributions of the radial-average poly-
mer velocity, temperature, stresses, etc.
are considered.

With the single-, thin-filament approach,
the air jet velocity, temperature and pres-
sure fields can be approximated by the
predetermined fields computed in Part I
[19] because any deviation from the fields
caused by the presence of a single row of
filaments is negligible. Stationary pneu-
matic melt spinning, used for obtaining
uniform fibers in nonwoven, requires sta-
tionary boundary conditions for the fila-
ments and stationary air dynamic fields
along the melt blowing axis, as well as
the stability of the material parameters.

Model equations

A single-, thin-filament model of the sta-
tionary air-drawing in melt blowing of
nonwovens from crystallising polymer
melt is considered, which consists of
a set of ordinary, first order differential
equations for the z-dependent filament
velocity F(z), temperature 7(z), tensile
stress Ap(z), crystallinity X(z) and pres-
sure p(z). The equations result from the
mass, force and energy balance equa-
tions, the constitutive equation of viscoe-
lasticity and structure development equa-
tions, taking into account amorphous ori-
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entation and oriented crystallisation. The
dynamic conditions active in the process
are given by the predetermined velocity,
temperature and pressure fields of the air
jet, along the filament. The fields were
computed in Part I [19] using a turbulent
model considering compressible air jets
with various initial velocities and fixed in-
itial air temperature at the air slots output.

The mass conservation equation of the
polymer filament [4]

D paw@=w )

provides a relation between the local pol-
ymer velocity ¥(z) and its diameter D(z),
where W = const is the mass output per
single filament, and p(z) — the local poly-
mer density. The temperature-dependent
density of amorphous izotactic polypro-
pylene reads [25]

10°
1.145+9.03x107*[T(z) - 273]

inkg/m* (2)

plT(2)]=

and the crystallinity-dependent density in
the two-phase approximation

plX@]=l1-X@)]p,(2)+ X(2)p. (3)

where p, — the density of the crystalline
component. For isotactic polypropylene
p.= 950 kg/m’ [26], and the temperature
dependence of the crystalline component
density is neglected.

The force balance equation accounts for
the local tensile force balancing the iner-
tia, air friction, gravity and surface ten-
sion forces in the filament. The take-up
force vanishes because the filaments de-
posit freely onto the collector. The axial
gradient of the tensile force F(z) reads [4,
14]

d—F:Wd—VJrﬂD(z)pzr(Z)—

dZ dZ (4)
D’ (z) _rd
+ P =T [(2)D(2)]

where the terms on the right side are axial
gradients of the inertia, air friction, gravity
and surface tension forces, respectively.
g — the gravity acceleration, y(z) — local
surface tension of the polymer. The shear
stress resulting from the air friction

1 2
P, ()=2p,C, @l (@) -7,

sgnlV (2) -V, (2)]

depends on the local filament diameter
D(z) and the difference between the ax-

)

ial velocities of the filament and the air,
- Wz) - V,(2). C{2) is the air friction co-
efficient.

When there is a negative difference be-
tween the filament and air local veloc-
ity, ¥(z) — V (z) <0, we have a negative
axial gradient of the friction force which
cumulates the tensile force at the close-
to-spinneret part of the filament. This
phenomena explains the sharp decrease
in filament diameter observed near the
spinneret, within a range of 1-2 cm,
which is as a consequence of a sharp
increase in the elongation rate under
the cumulated air friction forces. There-
fore the majority of filament attenuation
takes place at the short distance of a few
centimeters from the spinneret [18]. The
mechanisms of the attenuation and set-
tlement of the filament diameter are af-
fected by the dynamic conditions of the
process along the melt blowing axis and
may be influenced by stress-induced
crystallisation, if present. To explain the
mechanisms, it is necessary to calculate
axial profiles for the polymer velocity,
temperature, tensile stress, amorphous
orientation factor, and the degree of
crystallinity, taking into account orient-
ed crystallisation kinetics.

The air friction coefficient C, commonly
congsidered in the modelling of melt spin-
ning and derived by Matsui [27] from ex-
perimental correlations, reads
C,=pRe,™ ©)

where a, 8 are the correlation constants,

and the Reynolds number

D)V (z) -V, (2)|
v, (2)

with v (z) — the local kinematic air vis-
cosity.

Re,(2) = 0

Usually, in the modelling of classical
melt spinning, one assumes £ = 0.37 and
0.=0.61 [4, 14, 15, 27]. For the melt
blowing process we assume fS=0.78
and o = 0.61, as suggested by Majumdar
and Shambaugh [28] where the value of
B is typical for the case of the turbulent
boundary layer.

The air friction force is a function of
the local air density p,(z) and kinematic
viscosity of the air v,(z), which depend
on the temperature and pressure. The air
density along the melt blowing axis z is
determined from the relation between the
local air pressure P,(z) and temperature
I,(2)
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P,(2)
T,(2)
For dry air and atmospheric pressure, we
have p (z) =352.32/T (z), in kg/m® [14].
Thus for a process at the air pressure
P (z) we have

35232 P,(2)

T’a (Z) thm

where P, is the atmospheric pressure.

®)

p,(z) =const

p.(2) , inkg/m? (9)

The dynamic viscosity of dry air at tem-
perature 7, is given by the Sutherland
formula [14]

32

T
T)=14663x10"°—=¢
7.(T.) T, +114°

inPa-s (10)

and the local kinematic viscosity of dry
air at the pressure P (z)

T>*(z) P

T (z)+114 P(z)’
(1)
The temperature — dependence of the lo-
cal surface tension of the isotactic poly-
propylene filament reads [29]

v,(z)=4.1618x10~°

in m?/s

7(z)=2.94x107 =5.6x10" [T'(z) - 296],
(12)
The energy conservation equation [4, 14]
reads

in N/m.

dT
P(IC, (W ()=
dz

_ dat(2)

- D)

+ p(2)AhX (2) + tr[p(z) - é(2)]
and expresses the axial gradient of the
filament temperature 7(z) as control-
led by the convective heat exchange
between the filament and air jet as well
as by the heat of crystallisation and the
heat of viscous friction in the polymer
bulk, respectively. C,(z) — specific heat
of the polymer, depending on the local
filament temperature, a* — the convec-
tive heat exchange coefficient, Ah — the
heat of crystallisation per unit mass, X(z)

T(2)-T,(2)]+ (13)

the local crystallisation rate, p(z) and é(z)
— the local stress and deformation rate
tensors. For isotactic polypropylene we
have Ah =1.65x10° J/kg [29]. The stress
tensor p(z) is controlled by a constitutive
equation of viscoelasticity, and the defor-
mation rate tensor

-2 0 0 w
é)=| 0 -1/2 0|2 (14
0 0 1

The linear temperature dependence of the
specific heat of the polymer is assumed
as

C,(2)=C,,+C,[T(x)-273] (15)

For isotactic polypropylene we have
C,, = 1.5358x10° J/(kg - K), C,, =10.13
J/(kg - K?) [25].

Model analysis of the dynamic fields of
the air jets in Part I [19] indicates that
the air flow is coaxial in the melt blow-
ing, and the normal component of the
air velocity vanishes along the center-
line. The heat exchange coefficient o*
is determined from the correlation be-
tween the Nusselt and Reynolds num-
bers [6, 7]

Nu =0.42 Re, """ (16)

where Nu = a*D/4,,and 1, is the thermal
conductivity of the air. The numeric pa-
rameters in Eq. (16) were confirmed by
Bansal and Shambaugh [18] for the melt
blowing of polypropylene. The tem-
perature dependence of the air thermal
conductivity is given by the Sutherland
formula, and for dry air at atmospheric
pressure we have

Ta3/2 (Z)
T,(z)+114°
inJ/(m-s-K). (17)
The constitutive equation of viscoelastic-
ity for the uniaxial flow deformation of
the polymer defines the uniaxial stress

tensor, which is expressed by the axial,
p.., and radial, p ., stress components.

A,(z) =2.0848x107

Texp(—e Ttrc][(s —(1-&)26-¢]+0= 2nexp[—e 7trc]é ,
n n

r(z)V(z)iAp +Ap(z) exr{— 3e @pﬂ, (2)
dz n(z)

7(2)

L p, +p, (z)exp{— 3¢ 1@, (z)} - Zioa-om
dz 3 dz

Equations 21, 22 and 23.

n(z)
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|4
} = 377(z)d—+ (2)(1-E[Aap-3p,, (z)]dl,
dz dz

The stress components can be expressed
by the tensile stress, Ap =p..—p,,, and
pressure, p =—trp /3 =—(p_. + 2p,.)/3.

In the steady-state process, the stress
tensor is expressed by the local air
pressure P (z) and extra stress tensor
o(z), satisfying the polymer constitu-
tive equation of viscoelasticity with the
formula p(z) = —P,(z)I + o(z), where I is
the unit tensor. In the thin-filament ap-
proximation, the stress tensor represents
the average local stress on the filament
cross-section.

The average local tensile stress Ap(z)
is controlled by the local tensile force
F(z)

Ap(z)=0_(2)-0,(2)= MF)EZ()Z) ., (18)
and the average local pressure
p(2)=PF,(2)+p,(2) (19)

includes the average rheological pres-
sure associated with the extra stress,
pa(2) =-tro(z) / 3.

The product of the local tensile stress
Ap(z) and the filament elongation rate
dV/dz determines the viscous friction
heat term in Equation (13)
wfp2)-e0]=ap . 0)
dz
The Phan-Thien and Tanner constitutive
equation of viscoelasticity is used (Equa-
tion 21) which introduces two additional
material constants: € — responsible for
the non-linear effects, £ — responsible for
the shear thinning effects [30, 31].

For uniaxial flow deformation, Equation
21 is reduced to two scalar equations for
the tensile stress Ap(z) and rheological
pressure p,,(z) (Equations 22 and 23).

For isotactic polypropylene we assume

e =0.015 and &= 0.6. These values were
also used in a computer simulation of the

e2))
(22)

(23)
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conventional melt spinning of polypro-
pylene [32].

The shear viscosity is strongly influenced
by polymer crystallinity [33] and is ex-
pressed by the product of the tempera-
ture- and crystallinity-dependent func-
tions [14, 15]

n(2) =nlT(2), X(2)]=n,,,[T(@)]n [X(2)]
(24)

The temperature-dependent viscosity
of the melt is assumed in the Arrhenius
form

E
M - T>T

0 T<T,
(25)

nmelf (T) =

where the pre-exponential factor 7, de-
pends on the average molecular weight,
M,, E, is the activation energy, T, — the
glass transition temperature, and £ — the
Boltzmann constant. For isotactic poly-
propylene we have E /k=5.292x10°K
and 7, = 253K [4,29]. The dependence of
7, on the average molecular weight M,
known for entangled polymer melts is as-
sumed as [26]

ny(M )= Const-M}* (26)

Using the reference shear viscosity of
polymer melt of molecular weight M,
at a reference temperature 7, , the pre-
exponential factor can be expressed in

the form of Equation 27.

M,
770 (Mw) = nmelt (Trc’/’ ;Mw,ré;f' )(“

w,ref

n(z)

In the model, the reference melt viscosity of
3000 Pa - s is chosen for isotactic polypro-
pylene of M, . = 300,000 at 220 °C [26].

The effects of crystallisation on polymer
viscosity are accounted for by the func-
tion 7, derived by Ziabicki [34] from the
cross-linking theory

7y (X) = (1—;(*) (28)

where X* is the critical degree of crys-
tallinity at which the polymer solidifies,
o — the critical exponent. In the model-
ling of melt spinning, we usually assume
X*=0.1and a=1[14,15].

The local viscosity of polymer #(z) which
accounts for the average molecular
weight M, , temperature 7(z) and degree
of crystallinity X(z), related to the refer-
ence melt viscosity, reads (Equation 29).

The local relaxation time z(z) is deter-
mined from the ratio 7(z) = #(z) / G(z) of
the shear viscosity of the polymer and the
modulus of elasticity. We assume that the
modulus G(z) is dependent on the poly-
mer temperature and crystallinity, which
is expressed by the product of functions
[35-37]

G(2)=G,, TG [X(2)] (30)

where the modulus of the melt
G,.1T(z)] = BT(z) and the function re-
sponsible for the effects of crystallin-

34 E
exp| ——2-| .
kTmf/‘

3.4
() SEm )]
nmelt (7:'61 ;Mw,rejf ) Mw,ref p k T(Z) Tre;f 1 - X(Z)/Ol .

V4 Trc
t(z) = 1z =T, (T ysM,, ,0) .

G(z)

And  An An!

a

T(z)

ity G,[X(z)] = exp[3.2X(z) / X,] [36, 37].
X, is the maximum degree of crystal-
linity achievable by the polymer. For
isotactic polypropylene we can assume
that X =0.55 [37, 38]. The constant
B=(1-¢)7kv is proportional to the
average number of sub-chains between
the entanglements per unit volume,v,
irrespective of the polymer molecular
weight [30]. Thus the dependence of 7(z)
on the molecular weight results from the
dependence of shear viscosity on M. We
consider the modulus of elasticity at the
local temperature 7(z) and crystallinity
X(z) as expressed by a reference modulus
of the melt G,,,(T,) at a reference tem-
perature 7, '

G(2)
Gmelt (T

ref

) Tf‘cf/'

oo

= () exp {3.2);(2)}

€2))

where G, (L) = Neil Trep) ! Teid Trep)-
The local relaxation time of the polymer
is expressed by the reference relaxation
time (T, ; M,,,) at T, and average
molecular weight M, (Equation 32).

In the model of melt blowing from iso-
tactic polypropylene, we assume that
et s M,,..) = 0.035 sec at a reference
temperature of 220 °C and weight aver-
age molecular weight of 300,000. This
value was estimated from a relaxation
time of 0.04 s reported for polypropylene
grade with a shear viscosity of 3420 Pa-s
at 210 °C [37].

@7

(29)

1

34
M, exp Epf L _ L -32 X () X
M, k\T(z) T, X.,

2
o)=L | ap2 )= ap(a)
7\ A’

a

1-1/n
oA Xx@) (X
X@=r@ —n(l ¥ j{ ln(l X H K,(z) .

oo

Kst (Z) = K.rt (T’ Ap) =
0

Egquations 27, 29, 32, 33, 34 and 35.

20

K exp{— 4In2

oo

(r2)-T,,)
2

1/2

T(z)>T!

1-X(2)/X*' (32)

(33)

(34

(35)
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Structure evolution equations concern
the development of molecular orienta-
tion and the degree of crystallinity under
uniaxial flow deformation. Molecular
orientation is considered using the fol-
lowing non-linear stress-optical formula
[15] between the amorphous orienta-
tion factor f(z), or birefringence An,(z),
and the local tensile stress Ap (Equation
33). An? denotes the birefringence of
perfectly oriented amorphous polymer,
C,, — the stress-optical coefficient. For
isotactic polypropylene An’=60.0x107
and C,,, = 9.0x10"°m*N [39].

The stress-induced crystallisation rate
under non-isothermal conditions is
determined from the Avrami equation
and reads [40, 41] (Equation 34) where
K, (z) is the crystallisation rate func-
tion dependent on the temperature and
tensile stress. The following Gaussian
dependence on temperature and expo-
nential dependence on the amorphous
orientation factor, f,, of the crystalli-
sation rate function is assumed as [4]
(Equation 35).

For isotactic polypropylene we have
K,..=055s", T =338K,D,,=60K,
and the equilibrium melting temperature
T =453 K [4]. The factor A4 is reported
only for PET [42], with the values in the

range 100 — 1000.

Boundary conditions

The mathematical model of non-woven
melt blowing by crystallising viscoelastic
polymer consists of five first order differ-
ential equations for axial profiles of the
polymer velocity V(z), temperature 7(z),
tensile force F(z), rheological pressure
P,i(2), and the degree of crystallinity X(z).
The equations derived from Equations 1,
4, 13, 22, 23, 34 assume a general form
df, 1 dz = g[V(2), Tz), F(2), p,(2), X()]
where f{(z) are the axial profiles, g[-] —
functions dependent on the axial profiles.
Initial values f{(z = 0) of the profiles are
defined for the initial polymer velocity
Mz =0)=V,, temperature 7(z=0)=T,,
crystallinity X(z=0)=0 and the rheo-
logical pressure p,,(z=0) = 0. The value
of F(z=0) does not exist because it is
difficult to control the initial force di-
rectly. In the modelling of classical
melt spinning, the initial tensile force is
adjusted to the take-up velocity by the
inverse method. In the melt blowing of
nonwovens, the filaments deposit freely
onto the collector; however, it is diffi-
cult to control the take-up velocity. The

1.6
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Figure 1. Reduced air jet velocity V(z/b)/V, vs. the distance from the spinneret z/b
(lines), matching the computer simulation data (points) [19] for various initial air velocities,
a) short distances, b) longer distances from the spinneret. T,, = 300 °C.

condition of the vanishing tensile force
on the collector allows to determine the
initial force by adjusting it by the in-
verse method.

Axial distributions of the air veloc-
ity, temperature and pressure along the
filament between the initial point, z = 0,
and collector, z = L, also constitute some
kind of boundary conditions which con-
trol the melt blowing dynamics. The
predetermined air jet conditions along
the filament axis were computed in Part
1 [19] on the basis of the k — ¢ aerody-
namic model for convergent air jets
blown from a dual slot die. The center-
line distribution of the air jet conditions
was obtained form the simulation as a
set of numerical data; however, for the
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modelling they should be represented by
analytical formulae.

For a satisfactory analytical approxima-
tion of the axial profiles of the air veloc-
ity V,(z), temperature 7,(z) and pressure
P (z), the axial distance is divided into
two ranges — nearby the spinneret 0 —z,
range, and the remaining z, — L range. In
the first range, the simulation data repre-
senting axial profiles of the air fields are
fitted into the following functions using
the polynomial regression method

air| 2 & z !
L= :B()+ZBn —1,0<z<z .
b o b
(36)

The functions f*(z/ b) are fields profiles
reduced by the initial values vs. the axial
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Figure 2. Reduced air jet temperature T,(z/b) / T, vs. the distance from the spinneret z/b
(lines), matching the computer simulation data (points) [19] for various initial air velocities
a) short distances; b) longer distances from the spinneret. T,, = 300 °C.

distance reduced by the width of the air die
at the output, z/b. It concerns air velocity
reduced by its initial velocity, V, (z/b)/V,,
reduced air temperature, 7,(z/b)/T,, and
reduced air pressure, P,(z/b)/P,,. For the
air die considered in [19,20] we have
b=0.5 mm.

Within the remaining z, — L range, the re-
duced air field profiles are approximated
using the third order exponential decay
fit

f“"'(fj—c +ic exp| - —
iy 0 » €XP| bl

n=1 n

z;<z<L (37

The fit coefficients B,, C, and ¢, for the
air velocity and temperature profiles are

presented in Tables 1 and 2 (see pages

22

23 and 24) for various initial air veloci-
ties: 30, 50, 75, 100, 200 and 300 m/s, at
a fixed initial air temperature of 300 °C,
as well as the division point z, and the
non-linear regression fit parameters R.
The air pressure along the spinning axis
decreases to an atmospheric value within
the 0 —z, range. The fit coefficients B,
and the non-linear regression fit param-
eters R to the air pressure data are listed
in Table 3 (see pages 24). The fit func-
tions are illustrated in Figures 1-3, where
the points represent computer simulation
data [19,20].

The axial profiles of the reduced air
velocity (Figures 1) almost overlap at
not too high initial air velocities: up to
100 m/s, and differ more at higher initial
air velocities. At the short distance range

of z<z,=10b=5 mm, the maximum
for the air velocity is predicted as well as
a reverse air flow within a very narrow
range of the order of slot width b at the
spinneret face. At higher axial distances,
z >z, =10b, and at not too high initial air
velocities (up to 75 m/s), the reduced air
velocity profiles follow the power law
decay

V,(2)

a0

-0.572
=4.110(§) for z, <z <L

(38)
with the fit parameter R <0.9997. A
similar power law decay was reported by
Krutka et al. [43] for a computer simu-
lation of dual air jets based on Reynolds
stress model. At initial air velocities
200 m/s or higher, the air velocities com-
puted in [19] deviate from the power low,
Eq. (38).

Contrary to the velocity profiles at not
high initial air velocities, the tempera-
ture profiles at short distances, z < z,, do
not overlap (Figure 2.a) and increase
with a rising V,,. At higher distances,
z>z,, the temperature profiles show
exponential decay (Figure 2.b) and do
not fit any power law with reasonable
accuracy.

The air pressure profiles show an increase
to the maximum, which is more easily
distinguishable at the highest initial air
velocities. Next they are discharged to
the atmospheric pressure within a very
narrow distance range of the order of 3b
from the die. The air pressure axial pro-
files are presented in Figure 3, where the
polynomial regression matches the simu-
lation data [19, 20].

Summary

In this article, we propose a single-fila-
ment model for the stationary melt blow-
ing of nonwovens from isotactic poly-
propylene in the thin-filament approxi-
mation. The model equations account for
the effects of viscoelasticity and stress-
induced crystallisation in the rheological
behaviour of polymer during processing.
The predetermined air velocity, tempera-
ture and pressure fields of the air along
the blown filament are assumed, com-
puted for different initial air velocities
in Part I [19]. The air fields active along
the processing axis are approximated by
analytical fit formulae. The model can be
easily applied to melt blowing processes
involving other crystallising polymers, as
well as other predetermined air dynam-
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ic fields. Axial profiles of the dynamic
functions computed from the model for
the melt blowing of nonwovens from
isotactic polypropylene will be discussed
in Part III [44] of the publication series,
and some of them have been presented in
[20].
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