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Abstract The viscoelastic relaxation modulus is a positive-definite function of time. This property alone
allows the definition of a conserved energy which is a positive-definite quadratic functional of the stress and
strain fields. Using the conserved energy concept a Hamiltonian and a Lagrangian functional are constructed
for dynamic viscoelasticity. The Hamiltonian represents an elastic medium interacting with a continuum of
oscillators. By allowing for multiphase displacement and introducing memory effects in the kinetic terms of
the equations of motion a Hamiltonian is constructed for the visco-poroelasticity.
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List of symbols

]a, b[—the open interval with ends at a, b;
u̇ = ∂u/∂t ;
f ′—distributional derivative of f ;
δa—Dirac delta measure with support at a;

L 2(R+;Σ; m), Σ: page 483;
〈a, b〉 = akl bkl—scalar product on S;

|a| := 〈a, a〉1/2;
A ≥ 0 (A ∈ Σ) is equivalent to 〈v, A v〉 ≥ 0 for all v ∈ S;

λ—the Lebesgue measure on Ω ⊂ R
d ;

S—space of real symmetric tensors of rank 2;
SC = S ⊕ i S—space of complex symmetric rank 2 tensors;
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Σ , ΣC—space of symmetric operators on S, SC;
I : page 483;
〈a, b〉C = akl bkl—scalar product on SC;

da—surface area in R
d .

1 Introduction

An explicit Hamiltonian and Lagrangian are constructed for general linear hereditary viscoelastic media.
The underlying Poisson structure is defined in terms of canonical coordinates on an infinite-dimensional
phase space. Compatibility of dissipation with Hamiltonian and Lagrangian mechanics is thus demonstrated.
Contrary to a widespread belief in fluid dynamics and rheology ([29,34,20,21,15,6]), it is not necessary to
amend the Poissonian formalism by an additional dissipative bracket in order to account for irreversibility and
energy dissipation within the Hamiltonian framework. Since the model represents only the mechanical energy
[9] it is expected that dissipation of mechanical energy should result in a decrease of energy if the system is
isolated from energy supply. Energy conservation is achieved in thermo-viscoelasticity by bringing thermal
variables into play. We demonstrate here that a reasonable conserved energy exists for purely mechanical
viscoelastic systems without introducing thermal variables. The role of thermal energy is then taken over by
a continuum of uncoupled oscillators driven by the elastic field. By a purely mathematical argument, using
only the assumption that the relaxation modulus is a positive-definite function, we arrive at a stored energy
EC consisting of the energy of an elastic subsystem, the energy of a subsystem consisting of a continuum of
uncoupled driven oscillators, and the coupling energy. The forces driving the oscillators are determined by the
strain of the elastic subsystem. The sum of the kinetic energy and EC, integrated over the volume of an isolated
viscoelastic body, is conserved. An apparent contradiction between energy dissipation and energy conservation
is thus resolved by the appearance of a matter subsystem (oscillators) in addition to the elastic field energy.
The matter subsystem, represented by a one-parameter family of oscillators, is similar to the thermal reservoir
[18] except for the absence of randomness. There is thus an analogy with an electromagnetic field interacting
with matter.

Compatibility of dissipation with Hamiltonian and Lagrangian mechanics of finite-dimensional systems
has been the subject of a long-standing debate [5,4,38,39,2,14]. Negative conclusions reported in [5] are
based on excessively restrictive assumptions on the general form of the equations. On the positive side,
Riewe’s Hamiltonian fractional-order equations [38,39,12] provide an example of Hamiltonian and Lagrangian
formalism for dissipative and dispersive media. Riewe’s fractional-order equations formally resemble finite-
dimensional Hamiltonian systems. Riewe’s Hamiltonian is, however, not an integral of motion because the
usual chain rule of differentiation does not apply to fractional-order derivatives. Riewe’s approach is limited
to fractional-order time derivatives and therefore is not applicable to viscoelasticity.

Explicit integrals of motion have recently been found for the damped oscillator [11]. They are in general
not quadratic functionals and the search for them is somewhat ad hoc.

Although there is an abundant literature on classical Poisson and Lie–Poisson structures for nondissipa-
tive continuous media and weakly nonlocal completely integrable systems, including MHD, elasticity, and
hydrodynamics [33,36,27,32], Poisson brackets for dissipative hereditary continuous media have not been
constructed yet. An exception is the Hamiltonian theory of dielectric relaxation developed by Tip [42,43].
Tip’s Hamiltonian theory is based on a reasoning which is roughly consistent with the method adopted in
this paper, although it lacks a rigorous mathematical underpinning. Hamiltonian theory of dielectric media
has proved very useful in quantization of the bulk dielectric interacting with individual molecules. Extending
Tip’s method to the total field momentum Stallinga [41] obtained an energy–momentum conservation in a
generalized Minkowski formulation. A more general Hamiltonian theory of dissipative media, developed by
Figotin and Schenker in [17], can be applied to dissipative and dispersive dielectric media after an appropriate
reformulation of the Maxwell equations but it is not clear how it could be applied to viscoelastic media. It
is based on the spectral characterization of material response in the framework of the Herglotz–Nevanlinna
theory.

It is shown herein that ordinary hereditary linear viscoelasticity is consistent with energy conservation and
can be formulated in the Hamiltonian framework with canonical Poisson brackets (i.e., in Darboux coordinates).

A conserved energy involving a quadratic stored energy functional EC can be constructed under a very
mild restriction on the response functions, satisfied by the viscoelastic behavior of every real material. In the
purely mechanical model of viscoelasticity considered here the dissipated energy turns out to be stored in a
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continuum of driven oscillators. In the conserved energy formulation the driven oscillators play the role of the
heat bath and, in fact, they have the spectral properties of the heat bath model of [28].

The construction of conserved energy depends on the assumption that the relaxation modulus is a positive-
definite function. Hereditary constitutive equations in continuous media subject to relaxation processes involve
Volterra operators which have positive-definite kernels. The last property can be justified by the fluctuation–
dissipation theorem [30,13]. A spectral representation of positive definite functions implied by the Bochner
theorem provides a systematic tool for the construction of quadratic integrals of motion for linear models of
dissipative–dispersive continuous media.

Viscoelastic relaxation in real materials is additionally characterized by a positive relaxation time spectrum,
which also ensures that the viscoelastic relaxation modulus is a positive-definite function [26]. Therefore
viscoelastic relaxation moduli belong to a special subclass of positive-definite functions consisting of locally
integrable completely monotone (LICM) functions. LICM relaxation moduli additionally admit a dissipative
energy functional EM that can be derived from the Bernstein theorem [24]. The dissipative energy functional
involves Debye elements instead of oscillators. The dissipative energy functional plays a key role in the proof
of existence and uniqueness of solutions of initial-value problems in visco- and thermo-viscoelastic media
[23].

Our first step is to use Bochner’s theorem to construct the stored energy component of the conserved energy.
Hamiltonian formulation of viscoelasticity is then achieved by constructing generalized coordinates and the
conjugate momenta for the conserved energy EK + EC. The Lagrangian theory of viscoelasticity follows by
a Legendre transformation.

2 Formulation of linear dynamic viscoelasticity

Let S denote the space of symmetric rank-2 tensors on R
d , and let Σ be the space of symmetric operators on S.

The dimension of S is D := d(d +1)/2. The elements of Σ can be considered as rank-4 tensors with the minor
and major symmetries known from the theory of elasticity. The convolution of a function F : [0,∞[ → Σ
and an S-valued function g : R → S is defined by the formula

F ∗ g(t) =
∞∫

0

F(s) g(t − s) ds (1)

or

(F ∗ g)kl(t) =
∞∫

0

Fklmn(s) gmn(t − s) ds (2)

componentwise.
The viscoelastic medium occupies a domain Ω ⊂ R

d and satisfies the momentum balance

ρ v̇ = divσσσ + f (3)

as well as the constitutive equation

σσσ = G ∗ ė (4)

where v = u̇ is the particle velocity and ekl = (uk,l + ul,k)/2 is the strain.

σkl(t, x) =
∞∫

0

Gklmn(s, x) ėmn(t − s, x) ds, (5)

where Gklmn(s, x) = Gmnkl(s, x) = Glkmn(s, x).



478 A. Hanyga, M. Seredyńska

Assumption 1

∞∫

−∞
〈f(t), G ∗ f(t)〉 dt ≥ 0 (6)

for all square integrable functions f : R → S with compact support.

We shall define a complex space SC = S ⊕ iS of pairs (v, w) ∈ S ⊕ S such that multiplication by complex
numbers is defined by (a + ib) (v, w) = (a v − b w, b v + a w). By ΣC we shall denote the complex linear
space of complex linear mappings SC → SC.

Assumption 1 asserts that G is a tensor-valued causal positive-definite function (or function of positive
type in the terminology of [19]). A generalized version of the Bochner theorem implies that G is the Fourier
transform of a tensor-valued Radon measure M satisfying some positivity property. We shall state the Bochner
theorem in a form appropriate for our purposes:

Theorem 1 If Assumption 1 is satisfied and the function G has a finite limit G0 := limt→0+ G(t), then there
is a ΣC-valued Radon measure M satisfying the inequalities:

〈y, M([a, b]) y〉C ≥ 0 ∀y ∈ SC, ∀a, b ∈ R, a < b (7)

such that

G(s) =
∞∫

−∞
eiξs M(dξ), s ≥ 0. (8)

The inverse of (8) is

M(ξ) = 1

2π

(
Ĝ(ξ) + Ĝ(ξ)†

)
, (9)

where the circumflex denotes the inverse Fourier transform (in the distributions sense):

Ĝ(ξ) :=
∞∫

0

e−iξ t G(t) dt. (10)

Theorem 1 follows from Theorem 16.2.7 in [19] by identifying the complex space SC and its subspace S with
the space C

D and its subspace R
D , D = d(d + 1)/2.

By Lemma A1 the tensor-valued Radon measure M is positive, it can be factored into a positive real-valued
measure m1(dξ) and an m1-integrable tensor-valued function N, which is the Radon–Nikodym derivative of
M with respect to m1:

M(dξ) = N(ξ) m1(dξ).

Growth conditions satisfied by m1 are rather complicated [40].
The last equation has to be modified to allow for inhomogeneous viscoelastic media:

M(dξ, x) = N(ξ, x) m1(dξ, x). (11)

Equation (8) can be expressed in terms of a Stieltjes integral

G(s, x) =
∞∫

−∞
eiξs N(ξ, x) dξµ1(ξ, x), (12)

where µ1(ξ, x) := m1([0, ξ ], x), dξ µ1(ξ, x) := m1(dξ, x) and

lim
ξ→∞ µ1(ξ, x) = µ∞

1 (x) < ∞. (13)
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Equation (13) follows from the fact that µ∞
1 (x) = m1([0, ∞[ , x) = |M|([0,∞[ , x). The function µ1(·, x)

is nondecreasing and continuous from the right, while the function N(ξ, x) ∈ Σ satisfies the inequalities

N(ξ, x) ≥ 0 (14)

and |N(ξ, x)| ≤ 1 for m1 × λ-almost all (ξ, x) ∈ R × Ω .
If we set

m({0}, x) := m1({0}, x) a.a. in Ω, (15)

m(U , x) := 1

2
m1(U , x) for every measurable U such that 0 ∈ U , a.e. in Ω (16)

and µ(ξ, x) := m([0, ξ ], x), then, by Lemma 2 (ii),

G(s, x) =
∫

[0,∞[
cos(s ξ) N(ξ, x) m(dξ, x). (17)

For the construction of the Hamiltonian we shall need an additional assumption:

Assumption 2 N(ξ, x) is invertible m1 × λ-almost everywhere.

Let

y(t, x; ξ) :=
t∫

−∞
eiξ(t−t ′) ė(t ′, x) dt ′, (18)

w(t, x; ξ) :=
t∫

−∞
cos(ξ(t − t ′)) ė(t ′, x) dt ′, (19)

z(t, x; ξ) :=
t∫

−∞
sin(ξ(t − t ′)) ė(t ′, x) dt ′, (20)

ζζζ(t, x; ξ) := (w(t, x; ξ) − e(t, x))/ξ. (21)

The stress can be expressed in terms of the auxiliary field w:

σσσ(t, x) =
∞∫

0

⎡
⎢⎣

∫

[0,∞[
cos(s ξ) N(ξ, x) m(dξ, x)

⎤
⎥⎦ ė(t − s) ds =

∫

[0,∞[
N(ξ, x) w(t, x; ξ) m(dξ, x) (22)

using the Fubini theorem.
The auxiliary field w satisfies the differential equation

ẅ(t, x; ξ) + ξ2 w(t, x; ξ) = ë(t, x) (23)

while

z(t, x; ξ) =
{−(ẇ − ė)/ξ if ξ > 0,

0 if ξ = 0,
(24)

and y = w + i z. The dots denote derivatives with respect to the time t . The initial data for Eq. (23) can be
determined from Eq. (19):

w(0, x, ξ) =
0∫

−∞
cos(ξ t ′) ė(t ′) dt ′, (25)

ẇ(0, x, ξ) = ė(0, x) + ξ

0∫

−∞
sin(ξ t ′) ė(t ′) dt ′. (26)



480 A. Hanyga, M. Seredyńska

If limt→−∞ e(t, x) = 0, then

w(t, x; 0) = e(t, x), (27)

z(t, x; 0) = 0. (28)

The stored energy density is defined by the following formula

U (t, x) := 1

2

∫

[0,∞[
〈y(t, x; ξ), N(ξ, x) y(t, x; ξ)〉C m(dξ)

= 1

2

∫

[0,∞[
〈w(t, x; ξ), N(ξ, x) w(t, x; ξ)〉 m(dξ) + 1

2

∫

[0,∞[
〈z(t, x; ξ), N(ξ, x) z(t, x; ξ)〉 m(dξ)

= 1

2
〈e(t, x), G∞(x) e(t, x)〉 + 1

2

∫

]0,∞[
〈w(t, x; ξ), N(ξ, x) w(t, x; ξ)〉 m(dξ)

+1

2

∫

]0,∞[
〈z(t, x; ξ), N(ξ, x) z(t, x; ξ)〉 m(dξ), (29)

where

G∞(x) := ∆µ(x) N(0, x) (30)

and ∆µ(x) := µ(0+, x) − µ(0−, x) = m({0}). The second line follows from the fact that N is a real and
symmetric tensor-valued function.

Theorem 2
dU

dt
= 〈σσσ, ė〉

Proof Working out the derivative dU/dt and noting that the terms involving i ξ y cancel,

dU

dt
= 1

2

∫

[0,∞[
〈y(ξ), N(ξ) ẏ(ξ)〉C m(dξ) + 1

2

∫

[0,∞[
〈ẏ(ξ), N(ξ) y(ξ)〉C m(dξ) = 〈σσσ, ė〉,

where the irrelevant arguments t, x have been suppressed. In the last line the symmetry of the operator N and
Eq. (22) were used. ��

The energy balance for a simple material

d

dt

ρv2

2
+ 〈σσσ, ė〉 + div j = f� v, (31)

where j l = −σ kl vl is the energy flux density, implies that the total energy

Etot(t) =
∫

Ω

E(t, x) λ(dx), (32)

where E(t, x) is the energy density

E := ρ v2

2
+ U, (33)

satisfies the following energy balance

dEtot

dt
= −

∫

∂Ω

j�n da +
∫

Ω

f� v λ(dx), (34)

where n is the exterior unit normal on ∂Ω .
If ∂Ω = Σ1 ∪ Σ2, Σ1 ∩ Σ2 = ∅, and v = 0 on Σ1, σσσ n = 0 on Σ2, f = 0 in Ω , then the total energy Etot

is conserved.
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3 Hamiltonian formulation of linear viscoelasticity

The generalized coordinates are the displacement vector u and the auxiliary variables ζζζ(t, x; ξ) := ξ−1 (w(t,
x; ξ) − e(t, x)). Note that Eq. (23) is equivalent to the equation

ζ̈ζζ(t, x; ξ) + ξ2 ζζζ(t, x; ξ) = −ξ e(t, x). (35)

The generalized momenta are defined by the equations

p(t, x) = ρ(x) v(t, x), (36)

q(t, x; ξ) = N(ξ, x) ζ̇ζζ(t, x; ξ). (37)

The Hamiltonian H(u,ζζζ, p, q) is the energy density Etot expressed in terms of the generalized coordinates
and momenta:

H(t) =
∫

Ω

h(t, x) λ(dx) (38)

with

h = 1

2ρ
p(x)2 + 1

2
〈e(x), G0(x) e(x)〉 + 1

2

∫

[0,∞[
ξ2 〈ζζζ(x, ξ), N(ξ)ζζζ(x, ξ)〉 m(dξ, x)

+
〈 ∫

[0,∞[
ξ N(ξ, x)ζζζ(x, ξ) m(dξ, x), e(x)

〉
+ 1

2

∫

[0,∞[
〈q(ξ), N(ξ, x)−1 q(ξ)〉 m(dξ, x), (39)

where the argument t has been suppressed, and

G0(x) :=
∫

[0,∞[
N(ξ, x) m(dξ, x). (40)

In view of (14) and (40) the right-hand side of Eq. (39) is a positive-definite functional of (p, e,ζζζ, q).
In addition to the displacement u and momentum p fields the arguments of the Hamiltonian H include the

one-parameter family of fields ζζζ, q on the space

H 1
m =

⎧⎪⎨
⎪⎩g : [0,∞[ × Ω → S |

∫

Ω

⎡
⎢⎣

∫

[0,∞[
[〈g(ξ, x), g(ξ, x)〉

+ 〈∇ g(ξ, x), ∇ g(ξ, x)〉] m(dξ, x)

⎤
⎥⎦ λ(dx) < ∞

⎫⎪⎬
⎪⎭ .

Note that the variables

ζζζ(t, x; ξ) = −1

ξ

t∫

−∞
[1 − cos(ξ t ′)] ė(t ′, x) dt ′

and

q(t, x; ξ) = −1

ξ
[1 − cos(ξ t)] N(ξ, x) ė(t, x) − N(ξ, x)

t∫

−∞
sin(ξ t ′) ė(t ′, x) dt ′

vanish at ξ = 0. Therefore the integration over ξ in (38) can be restricted to the open interval ]0,∞[ .
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We assume that the bulk loads f vanish and either u or σσσ n vanishes at every point of ∂Ω . The Hamiltonian
equations are

v = ∂ H

∂p
≡ 1

ρ
p(t, x, ξ), (41)

ζ̇ζζ = ∂ H

∂q
≡ N(ξ, x)−1 q(t, x; ξ), (42)

ρ v̇ ≡ ṗ = −Du H ≡ divσσσ, (43)

N(ξ, x) ζ̈ζζ ≡ q̇ = −DζζζH = −ξ N(ξ, x) w(t, x, ξ) (44)

with w ≡ ξ ζζζ + e. The symbol Du denotes the Gâteaux derivative with respect to u ∈ L 2(Ω; R
d), while Dζζζ

denotes the Gâteaux derivative with respect to ζζζ ∈ Lm . If N(ξ, x) is invertible (m × λ)-almost everywhere,
then the last equation is equivalent to

ζ̈ζζ + ξ2 ζζζ = −ξ e. (45)

The first two equations reproduce the definition of the generalized momenta and are easy to verify. We
shall prove the third and fourth line. Noting that

∫

[0,∞[
ξ N(ξ, x)ζζζ(t, x; ξ) m(dξ, x) = σ̃σσ := σσσ − G0 e,

one arrives at the formulae

Du H [δu] =
∫

Ω

(σ̃kl + [G0 e]kl ) δuk,l λ(dx) = −
∫

Ω

σkl,l δuk λ(dx)

and

DζζζH [δζζζ] =
∫

Ω

⎡
⎢⎣

∫

[0,∞[
ξ2 〈N(ξ, x)ζζζ(t, x; ξ), δζζζ(t, x; ξ)〉m(dξ, x)

+
〈

e,
∫

[0,∞[
ξ N(ξ, x) δζζζ(t, x; ξ) m(dξ, x)

〉⎤
⎥⎦ λ(dx).

The third equation is thus equivalent to the equation of motion (3), while the fourth one is equivalent to (23).
The Hamiltonian represents an elastic medium, defined by the Hamiltonian

H0 = 1

2

∫

Ω

[
p2

ρ
+ 〈e, G0 e〉

]
λ(dx),

which interacts with a one-parameter family of oscillators (23) driven by the strain rate of the elastic medium.

4 Lagrangian formulation of linear dynamic viscoelasticity

The Lagrangian L(u,ζζζ, v, ζ̇ζζ) can now be constructed by applying the Legendre transformation p = ρ v,
q = N ζ̇ζζ,

L(u,ζζζ, v, ζ̇ζζ) =
∫

Ω

⎡
⎢⎣p� v +

∫

]0,∞[
〈q, ζ̇ζζ〉 dµ(ξ) − h

⎤
⎥⎦ λ(dx) (46)
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to the Hamiltonian (38, 39), which yields

L(u,ζζζ, v, ζ̇ζζ) =
∫

Ω

⎡
⎢⎣ρ v(t, x)2

2
+ 1

2

∫

]0,∞[
〈ζ̇ζζ(t, x; ξ), N(ξ, x) ζ̇ζζ(t, x; ξ)〉 m(dξ, x)

⎤
⎥⎦ λ(dx)

−1

2

∫

Ω

〈e(t, x), G0(x) e(t, x)〉 λ(dx)

−1

2

∫

Ω

∫

]0,∞[
ξ2 〈ζζζ(t, x; ξ), N(ξ, x)ζζζ(t, x; ξ)〉m(dξ, x) λ(dx)

−
∫

Ω

〈 ∫

]0,∞[
ξ N(ξ, x)ζζζ(t, x; ξ), e(t, x)

〉
λ(dx). (47)

The viscoelastic boundary value problem can now be expressed in terms of a Hamiltonian action principle

δ

t1∫

t0

L(u,ζζζ, v, ζ̇ζζ) dt = 0 (48)

with δu(t0) = δu(t1) = 0, δζζζ(t0) = δζζζ(t1) = 0.

5 A Poisson structure on the phase space P

For the study of integrals of motion it is convenient to formulate the equations of motion in terms of a Poisson
bracket on a space of functionals of the conjugate fields. For simplicity we shall restrict the Poisson structure
to a class I of functionals.

The space of auxiliary variables ζζζ is the completion

Σ = L 2(R+;Σ; m)

of the space of Σ-valued functions ζζζ : ]0,∞[ → Σ with finite norm

‖v‖2
m :=

∫

]0,∞[
|v(ξ)|2 m(dξ). (49)

The phase space is P := R
d ×R

d ×Σ×Σ. We shall define a Poisson structure on the set I of functionals
F : P → R of the form

F(u, p, q(·),ζζζ(·)) =
∫

Ω

f0(x, u(x), p(x)) λ(dx) +
∫

Ω

∫

]0,∞[
F0(x, ξ,ζζζ(x, ξ), q(x, ξ)) m(dξ, x) λ(dx)

(50)

(λ denotes the Lebesgue measure on R
d ), where f0, F0 are Carathéodory functions twice differentiable with

respect to the field variables u, p,ζζζ, q. The functional F ∈ I can thus be identified with the pair ( f0, F0) of
functions. We shall express the relation (50) in short by F = Φ( f0, F0). Note that H ∈ I .

The functional derivatives of F ∈ I can be calculated explicitly:

DζζζF[ζζζ] =
∫

Ω

∫

]0,∞[

∂ F0

∂ζζζ
(x, ξ,ζζζ(x, ξ), q(x, ξ))ζζζ(x, ξ) m(dξ, x) λ(dx).

In general the functional derivatives of F with respect to the fields are Gâteaux derivatives in Λ := L 2(
Ω, R

d ; λ
)×L 2

(
Ω, R

d; λ
)×L 2

(
Ω × R+, R

d; λ ⊗ m
)×L 2

(
Ω × R+, R

d; λ ⊗ m
)
. If the derivatives of
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f0, F0 with respect to the field variables are bounded, then the functional derivatives of F are also Fréchet
derivatives in Λ.

We shall define the Poisson structure on I by the following canonical Poisson bracket:

{F, G}1(u, p,ζζζ, q) :=
∫

Ω

[
d∑

k=1

[
∂ f0

∂uk

∂g0

∂pk
− ∂ f0

∂pk

∂g0

∂uk

] ]
λ(dx)

+
∫

Ω

⎡
⎢⎣

∫

[0,∞[

d∑
k=1

[
Dζk F0 Dqk G0 − Dqk F0 Dζk G0

]
m(dξ, x)

⎤
⎥⎦ λ(dx)

=: Q0( f0, g0) + Q1(F0, G0), (51)

where F = Φ( f0, F0) and G = Φ(g0, G0). Before performing the integration in the second line the integrands
are evaluated by substituting the fields u(x), p(x), ζζζ(x, ξ), and q(x, ξ).

If the Hamiltonian flow u(t, x, I D), p(t, x, I D),ζζζ(t, x, ξ, I D), q(t, x, ξ, I D), (where I D stands for the
initial data at t = 0), is substituted into a functional F ∈ I , the functional becomes a function of time and its
time derivative can be expressed in terms of the Poisson bracket with H :

dF

dt
= {F, H}1

by the chain rule of differentiation and equations (41–44)

dF

dt
=

∫

Ω

[
Du f0(t, x, u(t, x), p(t, x)) u̇(t, x) + Dp f0(t, x, u(t, x), p(t, x)) ṗ(t, x)

]
λ(dx)

+
∫

Ω

∫

]0,∞[

[
Dζζζ F0(x, ξ,ζζζ(t, x, ξ), q(t, x, ξ)) · ζ̇ζζ(t, x, ξ)

+ Dq F0(x, ξ,ζζζ(t, x, ξ), q(t, x, ξ)) q̇(t, x, ξ)
]

m(dξ, x) λ(dx),

where Dx f := ∂ f/∂x .
We now proceed to prove that the Poisson bracket {·, ·}1 satisfies the Jacobi identity

T (F, G, H) := {{F, G}1 , H}1 + {{H, F}1 , G}1 + {{G, H}1 , F}1 = 0 (52)

for arbitrary F, G, H ∈ I .
We begin by recalling the Jacobi identity for finite-dimensional systems

Lemma 1 The bilinear form

{ f, g} :=
D∑

k=1

[
∂ f

∂ Xk

∂g

∂Yk
− ∂ f

∂Yk

∂g

∂ Xk

]
, (53)

defined on C 2
(
R

D × R
D, R

)
, satisfies the Jacobi identity.

Proof Each term of the expression

T0( f, g, h) := {{h, f } , g} + {{g, h} , f } + {{ f, g} , h} (54)

is a product of the second-order derivative of one of the functions by first-order derivatives of the other two
functions with respect to the corresponding variables X, Y with the corresponding indices. The second-order
derivatives of g appear in those terms of (54) which contain g in the inner bracket.

It is sufficient to show that the terms involving a fixed type of second-order derivatives of g cancel. The
terms involving the second-order derivatives of f, h differ by relabeling of the functions and therefore they
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cancel analogously. We begin by showing that the sum of the terms involving the second-order derivative of g
with respect to Xk, Xl for a fixed pair k, l vanishes:

− ∂ f

∂Yk

∂2g

∂ Xk ∂ Xl

∂h

∂Yl
+ ∂h

∂Yk

∂2g

∂ Xk ∂ Xl

∂ f

∂Yl
= 0.

The terms involving ∂2g/∂Yk ∂Yl cancel in a similar way.
The terms involving ∂2g/∂ Xk ∂Yl add up to

∂ f

∂ Xk

∂2g

∂Yk ∂ Xl

∂h

∂Yl
+ ∂ f

∂Yk

∂2g

∂ Xk ∂Yl

∂h

∂ Xl
− ∂ f

∂Yl

∂2g

∂Yk ∂ Xl

∂h

∂ Xk
− ∂ f

∂Yk

∂2g

∂ Xk ∂Yl

∂h

∂ Xl
= 0.

This terminates the proof. ��
Theorem 6.9 in [31] implies the following proposition:

Proposition 1 If the Radon measure m on a domain D in a finite-dimensional space R
n is positive and finite,

then there is a sequence of measures mn on D of the form

mn =
Nn∑

k=1

cn
k δrn

k

with Nn < ∞ such that, for every continuous and bounded function f : D → R,

Nn∑
k=1

cn
k f (rn

k ) ≡
∫

D

f (r) mn(dr) →
∫

D

f (r) m(dr) for n → ∞, (55)

where δa denotes the Dirac measure with support at a:

δa(U ) =
{

1, a ∈ U,
0, a ∈ U.

In the language of measure theory, the measures mn converge narrowly to the measure m.

Theorem 3 If the set Ω is bounded and m(]0, ∞[) < ∞, then the bilinear form {·, ·}1 on I satisfies the
Jacobi identity.

Proof We shall apply discretization to approximate T (F, G, H) by expressions of the form T0( f, g, h)
[Eq. (54)].

T (F, G, H) = Q0(Q0( f0, g0), h0) + Q1(Q1(F0, G0), H0). (56)

The first term on the right-hand side of (56) involves a single integral with respect to λΩ , where λΩ is defined
as the restriction of the Lebesgue measure λ to Ω . The second term involves a double integral, which can
also be converted to an integral with respect to the product measure λΩ ⊗ m, by the Fubini theorem. By
Proposition 1 there is a sequence of positive measures mn with support on a finite set of points ξn

k ≥ 0,
k = 1, . . . , Nn , converging narrowly to m, and a sequence of measures λn with support on a finite set of points
xn

k ∈ R
d , k = 1, . . . , Nn , converging narrowly to λΩ . By the Fubini theorem, the sequence λn ⊗mn converges

narrowly to λΩ ⊗ m. Substituting the approximating measures λn for λΩ and mn for m in T (F, G, H) results
in the expression (54) for the Poisson bracket (53). The X and Y coordinates in the approximating Poisson
bracket (53) are uk := u(xk), pk := p(xk), ζζζkl := ζζζ(xk, ξl), qkl := q(xk, ξl), with k, l = 1, . . . Nn , while
f (X) = ∑

k f0(xk, uk, pk) + ∑
k
∑

l F0(xk, ξl ,ζζζkl , qkl). By Lemma 1 the approximating expressions (54)
vanish, hence their limit T (F, G, H) also vanishes for arbitrary F, G, H ∈ I , which completes the proof.

��
Corollary 1 The bilinear form {·, ·}1 is a Poisson bracket on P .
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6 Examples of scalar viscoelastic relaxation moduli

6.1 Introduction

We shall illustrate the variety of viscoelastic models covered by the above theory.
We shall consider the initial-value problem (IVP)

ρ u,t t = σ,x ,

σ = G ∗ u,t x

}
x ∈ R, t > 0, (57)

u(t, x) = 0, x ∈ R, t < 0, (58)

u(k)(0+, x) = uk(x), x ∈ R, k = 0, 1, (59)

with ρ a positive function of x ∈ R.
The spectral measure m will be calculated for two examples of one-dimensional hereditary viscoelastic

models. Note that the theory does not apply to the Newtonian viscosity (G(t) = c δ(t)) because δ(t) is not the
Fourier transform of a finite Radon measure.

6.2 Hyperbolic models, nonsingular relaxation kernels

We shall consider the following relaxation modulus

G(s) = b θ(s) + ν
(s + a)α−1

Γ (α)
, s ∈ R (60)

with the constants 0 < α < 1, ν, b > 0, a ≥ 0. The second term is a locally integrable completely monotone
function, hence it is causal positive definite. For a = 0 it is unbounded at s → 0. The relaxed modulus
G∞ := lims→∞ G(s) = b is finite, but the instantaneous modulus

G0 := lim
s→0+ G(s) =

{
b + ν aα−1/Γ (α), a > 0,
∞, a = 0,

(61)

can be infinite.
For a > 0 the singularity in the relaxation modulus disappears and the propagation speed c(ω) ≤ c∞ < ∞,

c(ω) := ω/k(ω), where k(ω) denotes the wavenumber.
The Laplace transform of the relaxation modulus can be expressed in terms of the incomplete gamma

function [1]:

G̃(p) = b

p
+ ν epa p−α Γ (α, ap)

Γ (α)
, (62)

hence the measure m in the Fourier integral representation of G is now

m(dξ) = 1

π
lim

p→−iξ+0
Re G̃(p) = b δ(ξ) + ν

π
Re

[
e−iξa (−iξ)−α Γ (α, −iaξ)

Γ (α)

]
dξ

= b δ(ξ) + ν f (ξ) ξ−αdξ, (63)

where

f (ξ) := 1

π
Re

[
cos(πα/2 − |ξ |a) |ξ |−α(a ξ)α Re γ ∗(α, −iaξ)

]
(64)

and γ ∗ is the univalent nonsingular function defined in [1]. Figures 1 and 2 show that f is non-negative as
expected.

It is easy to see from Figs. 1 and 2 that f (ξ) ∼ const for ξ → 0. The tail behavior of m is determined by
f (ξ)/ξα = o[1/ξ ] as ξ → ∞, by a standard asymptotic argument (see, e.g., [16]).

In the limit a → 0 the limit G0 = limt→0+ G(t) becomes infinite and m(dξ) degenerates to an infinite
measure b δ(ξ) + ν

π cos(πα/2)|ξ |−α dξ . Consequently the theory does not apply. The dispersion relation in
the limit case yields an unbounded propagation speed
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Fig. 1 The function f (w) for α = 0.2 and a = 0.4 (solid line), 0.01 (dashed) and 0.001 (dot dashed)
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Fig. 2 The function f (w) for α = 0.5 and a = 0.4 (solid line), 0.01 (dashed) and 0.001 (dotted)

c(ω)2 = b

ρ
+ ν

ρ
|ω|1−α e−iπ(1−α)/2, (65)

indicating that disturbances propagate with infinite speed.

6.3 Hyperbolic models with singular relaxation kernels and smooth solutions

If the relaxation kernel G ′ has an integrable singularity at 0, then the solutions of the IVP (57–59) are infinitely
differentiable at the wavefronts and therefore singularities do not propagate.

An example of this class is G(t) = G1 Eα (−(t/τ)α)+G∞ θ(t), where G1 = G0−G∞, τ > 0, 0 < α < 1
and Eα is the Mittag–Leffler function [1]. Since E ′

α(0) is finite, G ′(t) ∼ a tα−1 for t → 0.
Since

(τ p)α−1

1 + (τp)α
=

∞∫

0

e−pt Eα

(−(t/τ)α
)

dt (66)

[37],

m(dξ) = G∞ δ(ξ) + G1
cos ((1 − α)π/2)

π

|ξ |−α−1

1 + |ξ |2α
dξ. (67)

The total mass m(]0,∞[ ) is finite and the theory developed in the previous sections applies.

7 Hamiltonian and Lagrangian formulation of poroelasticity

Poroelasticity, as developed by Biot [8], and poroacoustics [3], for a multiphase porous medium consisting of
N phases, can be expressed in the form
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K ∗ ü = ∇� G ∗ (∇u̇), (68)

where u : R → V := R
Nd ; K : R → SN ; G : R → Σ ; supp K ⊂ [0,∞[ ; supp G ⊂ [0, ∞[ ; Ω ⊂ R

d ; S
and SN denote the spaces of symmetric tensors of second rank on R

d and V , respectively; SN = S ⊕ · · · ⊕ S
(N copies of S) and Σ is the space of symmetric operators on SN .

We shall ignore the constraint following from the fact that the phases do not overlap on the microscopic
scale and the associated volume fraction variables. We shall only focus on the memory effects specific to
poroelasticity and poroacoustics.

The left-hand side of Eq. (68) can be expressed in the form K′ ∗ u̇, where K′ denotes the distributional
derivative of K. The material response functions K, G may additionally depend on x ∈ Ω .

We shall assume that K′ = δ′ K0 + K1, K0 ∈ SN , K0 > 0, K1 ∈ L 1
loc

(
R+; SN

)
, and the functions K1

and G are causal positive definite:

∞∫

−∞
y� K1 ∗ y dt ≥ 0, (69)

∞∫

−∞
〈z, G ∗ z〉 dt ≥ 0 (70)

for arbitrary y ∈ L 2 (R; V ) and z ∈ L 2 (R; SN ) with compact support.
The energy balance assumes the form

∫

Ω

[
d

dt

1

2
u̇� K0 u̇ + u̇� K1 ∗ u̇ + 1

2
〈∇u̇, G ∗ ∇u̇〉

]
λ(dx) =

∫

∂Ω

g� u̇ a(dx) +
∫

Ω

f� u̇ λ(dx), (71)

where f , g denote the external volume loads and external tractions.
Invoking the Bochner theorem and Lemma A1,

K1(s) =
∫

[0,∞[
cos(ξs) M(ξ) µ(dξ), (72)

G(s) =
∫

[0,∞[
cos(ξs) N(ξ) ν(dξ), (73)

where µ, ν : R → R are positive Borel measures on [0,∞[ , M : [0,∞[→ S is non-negative almost
everywhere with respect to the measure µ and N : [0,∞[→ Σ is non-negative almost everywhere with
respect to the measure ν.

Let un denote the displacement of the nth phase,

u =

⎡
⎢⎢⎢⎣

u1
.
.
.

uN

⎤
⎥⎥⎥⎦ , e :=

⎡
⎢⎢⎢⎣

e1
.
.
.

eN

⎤
⎥⎥⎥⎦ (74)

and en := [∇un + (∇un)
�]

/2, 1 ≤ n ≤ N ,

κκκ(t, x; ξ) :=
⎡
⎣

∞∫

0

cos(ξs) u̇(t − s, x) ds − u(t, x)

⎤
⎦ /ξ, (75)

ζζζ(t, x; ξ) :=
⎡
⎣

∞∫

0

cos(ξs) ė(t − s, x) ds − e(t, x)

⎤
⎦ /ξ. (76)
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The kinetic and stored energy densities are defined in terms of the auxiliary variables κκκ and ζζζ:

Wk := 1

2

∫

]0,∞[
[ξ κκκ(ξ) + u]� M(ξ) [ξ κκκ(ξ) + u]µ(dξ), (77)

Ws := 1

2

∫

]0,∞[
〈[ξ ζζζ(ξ) + e], N(ξ) [ξ ζζζ(ξ) + e]〉C ν(dξ) (78)

where the arguments t, x have been suppressed for brevity. The terms on the left-hand side can now be replaced
by the rate of an energy so that the energy balance is converted to an energy conservation equation. Using
the generalized coordinates κκκ,ζζζ and the generalized momenta p = K−1

0 u̇, qκ(t, x; ξ) = M(t, x; ξ) κ̇κκ, and
qζ (t, x; ξ) = N(t, x; ξ) ζ̇ζζ, the energy conservation equation can be expressed in the form

d

dt

∫

Ω

⎡
⎢⎣1

2
p� K−1

0 p + Wk(t, x) + Ws(t, x) + 1

2

∫

]0,∞[
qκ(ξ)� M(ξ) qκ(ξ) µ(dξ)

+1

2

∫

]0,∞[
qζ (ξ)� N(ξ) qζ (ξ) ν(dξ)

⎤
⎥⎦ λ(dx)

=
∫

∂Ω

g� u̇ da +
∫

Ω

f� u̇ λ(dx). (79)

For any boundary conditions that make the right-hand side vanish the left-hand side is the time derivative of
a Hamiltonian H . The Hamiltonian equations of motion are similar to the equations of linear elasticity. The
additional equation for κ̇κκ = Dqκ H recalls the definition of the generalized momentum qκ , while q̇κ = −Dκκκ H
is equivalent to

κ̈κκ + ξ2 κκκ = −ξ κκκ. (80)

Finally, the equation ṗ = −∂ H/∂u is equivalent to the conservation of momentum

K0 ü = ṗ = −Du H = divσσσ −
∫

]0,∞[
M(ξ) (ξ κκκ(ξ) + u) µ(dξ) = divσσσ − K1 ∗ u̇. (81)

8 Conclusions

A conserved energy can be associated with general hereditary viscoelastic materials. The dynamics of such
materials can be expressed in Hamiltonian form. The conserved energy consists of the kinetic energy and the
stored energy. The latter is the sum of an elastic energy and the energy of a continuum of oscillators driven
by the strain rate. The dissipated energy thus resides in the oscillators and is accounted for by a non-negative
quadratic functional. The Hamiltonian is the sum of the elastic Hamiltonian, the oscillator Hamiltonians, and
a linear interaction term.

The oscillator representation of dissipation in viscoelasticity obtained here resembles some recent models
of an oscillator interacting with a heat bath [18,10]. Such models yield the Langevin equation or a Fokker–
Planck equation for the oscillator. In our case each particle of the elastic subsystem is connected by springs to
its neighbors and to a continuum of oscillators (Fig. 3). We conjecture that thermal effects can be included by
randomizing the initial data for the auxiliary fields.

The stored energy can be expressed as a quadratic functional of the auxiliary fields representing the
oscillators. The integral can be viewed as extending over the imaginary axis iξ in the complex plane. Different
energy concepts can be obtained by varying the complex-plane spectral representation of the material response
functions, as pointed out in [40]. Real viscoelastic materials generally have locally integrable completely
monotone (LICM) relaxation moduli. By a theorem in [19], LICM functions are positive definite and therefore
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ELASTIC SUBSYSTEM   

OSCILLATORS

Fig. 3 A schematic representation of a viscoelastic medium

have the spectral representation in terms of the Fourier transform of a positive Radon measure. By the Bernstein
theorem [44], an LICM function has an alternative spectral representation in terms of the Laplace transform of
a positive Radon measure. A Laplace transform can be viewed as an integral over the negative real axis. The
associated energy is monotonely decreasing if the system is closed [24].

The theory can be extended to single-integral physically nonlinear viscoelastic constitutive equations of
the single-integral type [22,25] by replacing the strain e by a nonlinear function f(e, x) in Eq. (35). Eulerian
formulation requires, however, a transformation of the Poisson brackets to a noncanonical Lie–Poisson form
[36].

The theory is in sharp contrast with earlier approaches to accommodate dissipative memory effects in
pseudo-Hamiltonian theory by including them in a symmetric dissipative bracket, which additionally accounts
for nonconservation of the Hamiltonian [7]. In this case the Hamiltonian is the pure field Hamiltonian corres-
ponding to the elastic part of the energy. The dissipative bracket accounts for the motion of the system out
of symplectic leaves (cf. [35]), while it is restricted to a single symplectic leave with respect to the Poisson
structure defined in Sect. 5.

The Hamiltonian formulation can be used in the quantum-mechanical description of the interaction of
phonon field (the elastic energy component) with matter (the oscillators).

A Factorization of the relaxation spectral measure

We shall prove that the tensor-valued Radon measure M in Theorem 1 can be factored into a positive (real-
valued) Radon measure m and a positive-semidefinite tensor-valued function:

Lemma A1 (i) The measure M in (8) has a Radon–Nikodym derivative N with respect to a positive Radon
measure m. The function N is defined everywhere except for a set E ⊂ [0,∞[ of zero measure m. N(ξ)
is symmetric, positive semidefinite and bounded for m-almost all ξ ;

(ii) m(E) = m(−E) for every Borel subset E ⊂ R and N(ξ) = N(−ξ) for m-almost all ξ ∈ R.

Proof Let E be a measurable subset of the real line R.
Ad (i):

By the Riesz theorem M can be considered as a Borel measure.
Equation (9) implies that the distribution M(ξ) is pointwise self-adjoint, or, more precisely, the measure

M is self-adjoint on SC for every Borel subset E of R+:

M(E)† = M(E).

In view of the symmetry of the operators G(t) and (9) the tensor M(E) is also symmetric on SC:

M(E)� = M(E)

for every Borel E ⊂ R+. Consequently B := M(E) is also real and positive semidefinite and therefore

|v� B w|2 ≤
(

v� B v
) (

w� B w
)

≤ |v|2 |w|2 m(E)2,



Hamiltonian and Lagrangian theory of viscoelasticity 491

where m(E) denotes the trace of B. m is the sum of a finite number of Borel measures; hence it is a Borel
measure. m is a positive measure because the tensor M(E) is real for every Borel E . On account of (7) M(E)
is positive semidefinite for every Borel E .

Since

|v� M(E)w| ≤ |v| |w| m(E), (82)

the components of M are continuous with respect to the measure m and by the Radon–Nikodym theorem the
measure M has a density N, integrable with respect to m.

The density N inherits the symmetry properties of M and is m-almost everywhere real, symmetric, and
positive semidefinite. On account of (82)

|N(ξ)| := sup
|v|=1

〈v, N(ξ) v〉 ≤ 1

for m-almost all ξ ∈ [0,∞[ .
Ad (ii): Eqs. (10) and (9) imply that M(E) = M(−E) for every Borel subset E of R, hence (ii) follows

by the definition of m and N. ��
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27. Holm, D.D., Kupershmidt, B.A.: Poisson brackets and Clebsch representations for Magnetohydrodynamics, multifluid
plasmas, and elasticity. Phys. D 6, 347–363 (1983)
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