
A Light-Weight e-Voting System with

Distributed Trust

Aneta Zwierkoa,1 Zbigniew Kotulskia,b,2

a Institute of Telecommunication, Warsaw University of Technology, Warsaw, Poland

b Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland

Abstract

A new agent-based scheme for secure electronic voting is proposed in the paper. The scheme is universal
and can be realized in a network of stationary and mobile electronic devices. The proposed mechanism
supports the implementation of a user interface simulating traditional election cards, semi-mechanical voting
devices or utilization purely electronic voting booths. The security mechanisms applied in the system are
based on verified cryptographic primitives: the secure secret sharing scheme and Merkle’s puzzles. Due to
pre-computations during the generation of agent, the voter need not to do computations. The proposed
distributed trust architecture makes the crucial stage of sending votes elastic, reliable, and effective.

Keywords: electronic elections, secret sharing scheme, Merkle’s puzzles, mixnets, mobile agent security,
distributed trust

1 Introduction

During the recent development of all forms of e-life, like e-commerce, e-democracy

or e-government, e-voting is an area of the permanent research. Lately, we observed

that the time of classical voting systems, based on paper-cards and ID, is coming to

the end. Not only the mechanical voting system can make the results of elections

questionable (e.g., USA 2000 presidential election) but problems can also arise from

methods used to gather results by a central authority or from errors during the

counting made by people. The need for electronic voting systems is growing; some

prototypes are tested within different countries.

The analysis of such systems offered by different vendors in US is presented

in [20]. Most of the commercial systems offer security through obscurity, what is

widely believed to be the worst possible method of protection. Those systems uti-

lize cryptography, but often in an incorrect way, leaving back-doors for intruders.

1 Email: azwierko@tele.pw.edu.pl
2 Email: zkotulsk@ippt.gov.pl , zkotulsk@tele.pw.edu.pl

Electronic Notes in Theoretical Computer Science 168 (2007) 109–126
www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.12.004
1571-0661 © 2007 Elsevier B.V. Open access under CC BY-NC-ND license.

mailto:azwierko@tele.pw.edu.pl
mailto:zkotulsk@ippt.gov.pl
mailto:zkotulsk@tele.pw.edu.pl
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


On the other hand, there exist quite a few cryptographic schemes which fulfill a

wide range of requirements for electronic elections. Their only disadvantage is in-

convenience: they use sophisticated cryptographic tools that make them hard to

implement and require expertise in various fields. In this paper we propose a prac-

tical electronic election scheme that is quite easy to implement, secure, based on

well-known cryptographic primitives. On the contrary to most e-voting protocols,

the scheme does not expect a voter to do any computations; all necessary compu-

tations are done by the authorities. User only needs to obtain the ballots and send

a selected vote.

Our system fulfills the requirements stated below. Due to its efficiency, simplicity

and lack of computations on the voter’s side it can be used in different scenarios:

with voters using a computer for voting or with classical voting booths. It can be

also used in semi-mechanical voting systems.

The requirements for electronic election protocols differ very much: from the

most obvious ones, as privacy, to more sophisticated as a receipt-freeness. Most im-

portant ones are discussed below [5], [25]. Thus, completeness requires that all valid

votes must be counted correctly. Soundness provides that a dishonest voter cannot

disrupt the voting process. Privacy means that all ballots must be secret and there

should be no possibility of tracing a voter that cast a certain vote. Un-reusability

does not permit any voter to cast more than one ballot. Eligibility simply means

that only those who are allowed to vote can vote and the system have to provide

means to validate a voter and a permitted number of votes. Verifiability prevents

falsification of the result of the voting process and a voter should be able to verify

if his vote was correctly accounted. There are two kinds of verifiability: individual

verifiability, when only the voter can verify the results [26] and universal verifiabil-

ity, when everyone can verify that all votes were correctly tallied (in this case some

publication of votes is necessary). Fairness provides that nothing can effect the

voting and no party should be able to compute the partial tally. Robustness means

that all security requirements are completely satisfied despite failure and/or ma-

licious behavior by any (reasonably sized) coalition of parties (voters, authorities,

outsiders). Receipt-freeness claims that the voter is not able to prove any coercer

how he had voted. This notion is similar to privacy and widen its meaning.

It is seen that some of the mentioned features are contradictory to others, like

receipt-freeness and verifiability. It is hard to create a system or a protocol fulfilling

all requirements, especially unconditionally.

The paper [27] describes also some other, additional requirements for the elec-

tronic voting system: dispute-freeness (a voting scheme should provide a method of

resolving all disputes at any stage of voting) and accuracy (a voting scheme must

be error-free). These requirements are typically a part of the verifiability postulate.

Similar to the notion receipt-freeness, the idea of incoercibility was introduced: no

party should be able to coerce the voters.

Some of those presented requirements are complementary but there is no de-

fined set of criteria that can be used to fully describe and analyze an electronic

voting system. The recent work of Chaum [9] noticed the lack of an important

A. Zwierko, Z. Kotulski / Electronic Notes in Theoretical Computer Science 168 (2007) 109–126110



property in most proposed e-voting systems: voter-verifiability. While trying to

provide receipt-freeness and incoercibility, some systems do not offer the user any

confirmation that the ballot was received and tallied correctly (if proofs for votes are

not published immediately). For large-scale elections publishing proofs instantly is

very unpractical. Instead, Chaum introduced a notion of voter-verifiable elections,

where the voter receives the receipt, which is a confirmation of the fact of casting a

ballot and does not contain any information about the vote. From practical point

of view, when users vote in the electronic booth or use some computer application,

this property is very important.

Main contribution of this paper is a novel scheme for electronic election, that

is secure and enables designing multi-interface, mobile voting architecture. The

proposed system is based on an idea of an authentication protocol with revocable

anonymity, which utilizes a combination of Merkle’s puzzles and a secure secret

sharing scheme. The Merkle’s puzzles provide anonymity and a secure secret shar-

ing scheme is a method of group authentication. Both methods can also be used

for the e-voting scheme to protect voters’ privacy and create effective method of

authorization.

Organization of the paper

The Section 2 describes most important solutions for electronic election schemes.

The following section introduces cryptographic primitives utilized in the proposed

protocol: zero-knowledge and secure secret sharing scheme. Section 4 gives a short

overview of the authentication scheme providing revocable anonymity, which was

an inspiration for the new solution. Section 5 exactly describes the developed pro-

tocol. The next section contains deep analysis of the protocol, both in means of

computational and communication complexity, as well as the security analysis. The

last section concludes the paper and describes some possible improvements to the

discussed solution.

2 Related Work

E-voting systems utilize different cryptographic primitives: mixnets (encryption

nets, decryption nets, DC-nets), blind signatures, homomorphic secret sharing

schemes, bulletin boards, proofs (interactive and non-interactive) or homomorphic

encryptions.

Mixnets are similar to anonymous channels that can be used to anonymously

distribute to users credentials needed for voting. A mix is a trusted party that

randomly distributes messages to users, so any eavesdropper is unable to trace the

sender or recipient of a given message. It was first proposed by Chaum [7]. Mixnets

can be based on decryption or on re-encryption [24]. DC-nets (dining cryptogra-

phers networks) are an alternative to anonymous broadcast channels, proposed also

by Chaum.

Blind signature was initially utilized to create the first protocols for e-cash

applications. Shortly afterward it was used by Fujioka et al [14] to validate votes

A. Zwierko, Z. Kotulski / Electronic Notes in Theoretical Computer Science 168 (2007) 109–126 111



in an election scheme. The idea is that an authority validates the vote not knowing

its value (the vote is blinded).

Homomorphic secret sharing scheme was first time introduced in [4]. The

vote is shared among n authorities and then tallied by at least t of them. Those

systems have high communication cost and are not easy to implement.

The homomorphic encryption model utilizes special features of homomor-

phic encryption algorithms. It defines two operations, ⊕ and ⊗, that, for two

proper votes v1 and v2 and an encryption algorithm E, have the following property:

E(v1) ⊗ E(v2) = E(v1 ⊕ v2). This method was introduced in [10].

The bulletin board is a public, broadcast communication channel with mem-

ory [10]. All broadcast information is stored in the memory and any participant can

read it. Voters have an access to write to specific sections of the board, where they

can publish their votes. Such a board can be implemented using multiple servers.

Proofs are mainly used by voters to prove the authorities the correctness of the

votes they sent. Proofs may be interactive (e.g., classical zero-knowledge proofs) or

non-interactive and simply attached to the vote. They are used mainly in systems

with homomorphic encryptions.

To present the complete survey of e-voting systems we start from Chaum [7].

This scheme is an example of the mixnet model and consists of at least two trusted

parties: TA, the trusted administrator and the mix. TA creates a cryptogram

E(r,K, π) for each voter, where π is a pseudonym for a voter, K is a public key and

r is a random number. TA sends all cryptograms to the mix. Voters obtain their

cryptograms from the mix, which has to know who is eligible for voting. Afterward,

voters prepare their votes utilizing the public key K from the cryptogram: EK(q, v),

where q is a random number and v is a vote. Along with the data previously received

from the mix, the new cryptogram E(r, π,EK(q, v)) is sent to the mix. The mix

compiles a list of pseudonyms and cryptograms with votes to TA, which validates

π and decrypts the vote if π is proper. A modified version of the protocol was

published later in [8].

The work [26] presents another approach to e-voting based on re-encryption

mixnets. All mixes in this system have a unique private key for the El-Gamal

encryption scheme. There exists a public key for an anonymous channel. Mixes

produce encrypted ballots with proofs for users. They are delivered to voters by

an untappable channel. During the voting stage, the voters choose their votes and

send them via decryption networks. Each mix posts a proof of proper decryption.

Then votes are counted. Eligibility, privacy, fairness and universal verifiability

properties are satisfied. The last property is provided by usage of the verifiable

mixnet together with the publicly accessible bulletin board. The receipt-freeness

property is satisfied assuming one-way untappable channels, since a voter cannot

prove its vote to adversary. However, usage of untappable channels makes the

scheme unpractical.

The Fujioka et al. protocol [14] is more convenient for large scale elections.

Apart of voters, it has two parties: counter and administrator, and three phases:

registration, voting and summing. It assumes existence of an anonymous channel

A. Zwierko, Z. Kotulski / Electronic Notes in Theoretical Computer Science 168 (2007) 109–126112



used by the counter and voters to communicate, usage of a blind signature scheme

by the administrator and that each voter has a different digital signature and uses

the commitment scheme to compute the ballot. The protocol is complete, sound,

fair, verifiable; privacy is achieved along with un-reusability and eligibility. Also the

maximal fairness is accomplished, since, even if all authorities collude, they cannot

compute the partial tally. However, to obtain this the voter has to take part in

tallying phase (post-vote-casting), which is rather impractical and would make the

scheme hardly scalable. The disadvantage of the scheme is ability of the authority

to add votes for abstained users.

The election protocols based on the homomorphic encryption are described in

various papers: [2], [10], [11]. In the system proposed in [10] the authorities create

a pair of shared private and public keys. Utilizing El-Gamal scheme and those keys

the voters can create their ballots: encrypt their votes and produce a non-interactive

proof of validity, with the zero-knowledge property. After checking the proofs from

the voters, the coalition of honest authorities can combine all correct votes and

utilize proofs to decrypt the product. In the result they obtain the exponentiated

tally of votes, use it to search the tally space for a match and compute the final

tally. The scheme fulfills most of requirements described in Section 1, but the

form of votes and necessity of the proofs (and their complexity) makes the scheme

non-scalable. The protocol described in [12] is similar and utilizes the generalized

Pallier’s cryptosystem. A more effective method of decryption and computing the

result is presented in [10].

Another system utilizing the homomorphic encryption scheme was proposed

in [24] and improved in [1], [15] and [23]. During the initial stage the authority

publishes the shared public key (a (t, n) threshold scheme is utilized). Then, voters

register and compute their votes. They post their votes on the bulletin board (here

also correctness of the votes can be checked). All votes are then sent through a

re-encryption mixnet (proofs are generated during this process and can also be

published on bulletin board). Then the votes are verified and the tally is computed.

The proposed system not only fulfills most of the requirements but also is scalable

and efficient (due to use of mixnets). It can also be modified to provide receipt-

freeness.

Some other approach to electronic voting, also based on the homomorphic en-

cryptions, was proposed in [2] and [18]. The system is additionally based on tokens

and re-encryption nets. The work [2] improved results of [18]. The system preserves

the receipt-freeness property (and incoercibility, providing the adversary does not

have access to the registration phase), since a voter can generate a false token.

However, the trade-off is quite high: the verifiability and scalability were the price.

Also usage of anonymous broadcast channel makes the scheme impractical (since it

is hard to implement).

Moreover, there exist different systems, fulfilling the criteria from Section 1

and not based on the mentioned primitives, e.g., based on anonymous multi-party

computations.

A distinct approach is based rather on information-theoretical security than on

A. Zwierko, Z. Kotulski / Electronic Notes in Theoretical Computer Science 168 (2007) 109–126 113



computational security, as in previously discussed cases.

Some systems based on more practical approaches are being currently developed

or tested in Switzerland: Geneva and Neuchatel developed an Internet voting sys-

tems, which is offered as an extension of the postal voting. Zurich developed also

mobile voting systems [13]. The other prototype was developed in Portugal [17],

called REVS. It utilizes blind signatures and is based on EVOX system. The pa-

per [17] describes solutions for failures of communication or problems with servers.

Also a secure authentication mechanism for voters was added. A prototype of the

system is utilized for student surveys.

3 Cryptographic Primitives

Our scheme involves two cryptographic primitives: the secure secret-sharing scheme

and the Merkle’s puzzles. Below we present a short description of all of them.

A secure secret sharing scheme with (t, n) threshold [25] distributes a secret

(block of bits) among n participants in such a way that any t of them can recreate

the secret, but any t− 1 or fewer members gain no information about it. The piece

held by a single participant is called a share or shadow of the secret. Secret sharing

schemes are set up by a trusted authority, called a dealer, who computes all shares

and distributes them to the participants via secure channels. The participants hold

their shares until some of them decide to combine their shares and recreate the

secret. The recovery of the secret is done by the combiner, who on behalf of the

co-operating group, computes the secret. The combiner is successful only if the

reconstruction group has at least t members. Our system utilizes the Asmuth-

Bloom [3] secret sharing scheme. The dealer randomly chooses n prime or co-prime

numbers, called public moduli, so that p0 < . . . < pi−1 < pi < . . . < pn for

i = 1, . . . , n. They are publicly known. Then, he selects at random an integer s0,

such that 0 < s0 <
∏t

i=1 pi. He computes the secret: Ks ≡ s0 (mod p0) and shares:

si ≡ s0 (mod pi). One has to have at least t shares to recreate the secret. The

combiner recreates the secret by solving the following system of equations:

s0 ≡ si1 (mod pi1)

· · ·

s0 ≡ sit (mod pit)

This system has a unique solution (modulo
∏t

j=1 pij) according to the Chinese

Remainder Theorem.

Merkle’s puzzles were introduced in [22]. The goal of this method was to enable

a secure communication between two parties: A and B, over an insecure channel.

The assumption was that the communication channel can be eavesdropped (by any

third party, called E). Assume that A selected an encryption function (F ). F is

kept by A in secret. A and B agree on a 2nd public encryption function, called G.

A will now create N puzzles (denoted as pi, 0 ≤ i ≤ N) in the following fashion:

pi = G((R,Xi, F (Xi)), Yi), where R is simply a publicly known constant term which

remains the same for all messages (called redundancy bits). Xi are selected by A

A. Zwierko, Z. Kotulski / Electronic Notes in Theoretical Computer Science 168 (2007) 109–126114



at random. Yi are the ”puzzle” part, and are also selected at random from the

range (N · (i − 1), N · i). Guessing Yi allows B to recover the message within the

puzzle: the triple (R,Xi, F (Xi)). Now, he can transmit Xi in clear and F (Xi) can

then be used as the encryption key in further communications. E cannot determine

F (Xi) because E does not know F , and so the value of Xi tells E nothing. E’s

only recourse is to solve all the N puzzles until he encounters the unique puzzle

that B has solved. So, for B it is easy to solve one chosen puzzle, but for E it is

computationally hard to solve all N puzzles.

In our paper any symmetric cipher (e.g., AES ) can serve as G function. To

solve such a puzzle, the key has be guessed (so, the key is Yi from the previous

description). The key for the puzzle should be weak. We are not using Xi and

F (Xi) mechanism the same way as presented in the original Merkle’s paper. We

take advantage of the fact that it is hard for the adversary to solve a whole set

of puzzles in a reasonable time (if the number of puzzles is high enough). Thus,

this mechanism can be utilized to provide anonymity. Moreover, we utilize Xi and

F (Xi) not in bilateral communication but in a more complex way.

4 Authentication with Revocable Anonymity

The protocol that is a basis for the proposed architecture was described in [30]. It

was created to fulfill the need for a sensible trade-off between a user’s need of privacy

and the legal requirements for service providers. It is based on the observation that

the most important users of all networks, including the Internet are companies and

organizations. From the networking point of view, they are built of many single

users that trust some authority, use mostly the same authentication method (in

context of the service) and are somehow managed. Sometimes the trust relationship

between the companies cannot be complete: the service provider cannot be fully

trusted. The companies wish to preserve some information and protect them even

from the service provider. The ability to identity each user would be probably the

most important, e.g., for control reasons. Still the service provider should be able

to link each action with each user. These requirements are contradictory, but can

be balanced. The protocol [30] allows an organization or an authority to identify

each user based on data collected by the service provider. It provides users (within

an organization) with anonymity (called partial or revocable anonymity, because

the user still can be identified) also enabling the service providers, when needed, to

trace the user with a help of his/her organization.

The goal of the protocol is to provide a user and service provider with efficient

method of anonymous authentication. The anonymity of the user can be revoked by

the service provider with the cooperation of the organization. The protocol consists

of at least five parties. TTP is the trusted third party, O is an organization, TAO

is a trusted authority within the organization, SP is a service provider, and u is a

user, a member of O.

Initialization phase. First, TTP creates the secret and the shares: Ks and

s1, . . . , sn. Each, subset of generated shares, containing t elements, can be used to

A. Zwierko, Z. Kotulski / Electronic Notes in Theoretical Computer Science 168 (2007) 109–126 115



restore the secret. TTP mark each subset with t shares with identifier, denoted as

xi, 1 ≤ i ≤ n− t−1. From each subset t−1 shares are destined for SP and a single

one for O. Table 1 shows possible subsets.

Table 1
Subsets of shares generated by TTP

No. SP ’s shares O’s share

x1: s1, . . . , st st + 1

· · ·

xn−t−1: s1, . . . , st sn

Shares for each participant are wrapped into puzzles. TTP generates three

random keys k, ki1 and ki2 , 1 ≤ i ≤ n− t−1. The first key is weak and only utilized

to create puzzle for O: Ek(R,xi, st+i, ki1). The second key, ki1 , is utilized to create

the puzzle for SP : Eki1
(R,xi, s1, . . . , st, ki2). The third key will be later used for

secure communication between SP and TTP , during the verification of the restored

secret. TTP stores in its database {xi,Ks, ki1 , ki2}.

After creation, all puzzles can be sent via an open channel to SP and O. For

each puzzle TAO creates multiple tickets Tj for a given period (consisting of a

timestamp, a validity period and a share) and an identifier zj for a new puzzle:

Ek(R, zj , Tj , ki1) (1 ≤ j ≤ M , where M is the required number of puzzles for users).

M depends on multiple parameters, including life-time of system, number of users

and desired security level. TAO sends Eki1
(zj) to TTP for each created puzzle with

a ticket.

Authentication phase. When a user wishes to authenticate itself to SP , he/she

is provided by TAO with a set of puzzles of a form Ek(R, zj , Tj , ki1). The user sends

to SP the whole set of puzzles. SP chooses one puzzle and ”solves” it extracting

zj , Tj = {tj , pj, si} and ki1 . SP checks if tj and pj are valid. SP uses the key ki1

to decipher all his puzzles: if ki1 is proper, one of SP ′s puzzles should be encrypted

with it. The amount of time needed for this is almost the same as for ”solving” one

puzzle. SP extracts from his puzzle ki2 and xi and combines all shares to recreate

the secret (Ks). To validate the secret SP encrypts the pair zj and Ks with the

key ki2 (from its puzzle) and sends them to TTP , along with xi. TTP uses xi to

find the appropriate key ki2 , decrypts zj and Ks. The TTP checks if the extracted

Ks is exactly the same as the one stored for the xi. It also uses corresponding

ki1 to check if zj can be obtained from encrypted values sent by TAO. If the

validation is successful, TTP replies to SP . The message is encrypted with the key

ki2 . SP can then send the identifier of the puzzle, zj , to the user and the rest of

the communication can be encrypted with the key ki1 .

The formal description of the protocol is done in a common syntax based on [6]

and examples from [28]. It is presented in Fig. 4.

A. Zwierko, Z. Kotulski / Electronic Notes in Theoretical Computer Science 168 (2007) 109–126116



Step Initial phase Authentication phase

1 TTP → O: {R,xi, st+i, ki1}k O → U : {R, zj , Tj , ki1}k

2 TTP → SP : {R,xi, s1, . . . , st, ki2}ki1
U → SP : {R, zj , Tj , ki1}k

3 O → TTP : {zj}ki1
SP → TTP : {Ks, zj}ki2

4 TTP → SP : {Y es/No}ki2

5 SP → U : {Y es/No}ki1

Fig. 1. The formal description of the protocol

5 The Proposed Scheme

Our system has at least four parties: TA (the trusted authority), mix, counter and

voters (users).

The trusted authority (TA) is responsible for creating a list of users who are

eligible to participate in the election and for authentication data that allows them

later to vote. It is similar to a manager in an agent system.

The mix distributes the data required for an election to all voters, checking if

they are eligible. The mix is similar to the organization, or rather TAO, in the

original scheme. Its main goal is to protect the voters’ privacy. It is realized as an

agent, rather stationary than mobile, residing at a specific host and denoted as AM .

The counter collects the votes and validates the voters’ credentials with TA. It

also tallies the votes and publishes them for verification. The counter, denoted as

AC , is also a kind of stationary agent.

The voter’s application can be also an agent of different type: an application

in a cell phone, an mobile agent that user will sent to the host with mix agent or

counter, or an agent in the electronic booth (it is denoted as AV ). The number of

users is denoted as Nu.

The basic steps of the election are:

(i) TA creates the set of credentials and the list of registered users and sends them

to the mix agent AM .

(ii) For each voter requesting credentials, the mix agent AM creates credentials

from data received from TA. First, it checks if a user has the right to vote.

(iii) The user sends its vote along with credentials to the counter agent AC : the

counter checks the credentials with TA and if they are proper the counter

agent AC sums up the vote, publishing a proof attached to the vote.

Assumptions: TA is trusted to create the valid credentials for voters and validate

them properly during the voting. The mix is trusted by voters not to link them to

credentials created by TA. The counter is trusted to accept votes received from the

voters, providing their credentials are correct, and to publish the proper proofs for

verification. All three parties are independent and are trusted not to cooperate (at

least, the mix and TA are trusted not to conspire).

A. Zwierko, Z. Kotulski / Electronic Notes in Theoretical Computer Science 168 (2007) 109–126 117



5.1 The Detailed Scheme

The architecture of the proposed solution is presented in Fig. 2. The scheme has

four major phases: initialization, registration, voting and publication of results.

��
��
TA

��
��
AC ��

��
AM

��
��
AV

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���
initialization

voting

initialization

registration

registrationvoting

Fig. 2. The architecture of the proposed system

The following notation is used in the protocol:

• secret symmetric keys: k, kC
i and kM

i are the secret keys for a symmetric cipher,

created by TA,

• functions: E (encryption), h (hash function) and g (will be described later),

• votes: V = {v0, · · · , vL} is a set of all possible votes (e.g., v0 can be yes, v1 can

be no, or v0 can be a first candidate, etc), vf denotes a user’s selected vote, L

denotes a number of different possible votes,

• ballots: B = {b0, · · · , bL} is a set of ballots (utilized by the user to vote),

• secret sharing scheme values: s denotes a share (si denotes the i share), Ks is the

secret, t denotes the threshold and n is a number of shares,

• other: x (is an identifier), R denotes redundancy bits for Merkle’s puzzles (as

described in Section 3).

Initialization. The authentication mechanism is based on the secure secret shar-

ing scheme (described in Section 3). TA creates the system with n shares with the

threshold t. The t − 1 shares are for AC , the rest will be distributed among the

users by the mix. For each secret, TA creates an identifier x for all n− t subsets of

shares that allow to recreate the secret. The value of x for each subset is created in

a random way. They are presented in Table 2.

For each subset of shares (identified by xi) TA creates a puzzle for AM , pM =

Ek(R,xi, st+i, k
M
i ), and a cryptogram dC = EkM

i
(R,xi, s1, . . . , st−1, k

C
i ) for AC .

The puzzle pM is encrypted with a weak random key (k) and then sent to AM .

The cryptogram dC is encrypted with a key from an appropriate mix’s puzzle (kM
i )

and destined for AC . For each generated subset TA stores {xi,Ks, k
M
i , kC

i } (and

optionally also shares). For a single secret TA creates n − t puzzles for the mix

and the same number of cryptograms for the counter. After creation, all data

can be sent via an open channel. TA has to create at least Nu puzzles in total

A. Zwierko, Z. Kotulski / Electronic Notes in Theoretical Computer Science 168 (2007) 109–126118



Table 2
Subsets of shares, generated by TA

Identifier Counter’s shares Mix’s share

x1: s1, . . . , st−1 st

x2: s1, . . . , st−1 st+1

· · ·

xn−t: s1, . . . , st−1 sn

(one for each voter). Assuming that all utilized secure sharing secret systems have

parameters (n, t), the TA has to create at least Nu

n−t
secrets. This part of the protocol

is illustrated in Fig. 3(a).

Registration. A voter registers within AM to obtain credentials. The voters

should be validated if they are eligible for elections. There are many different

methods that can be used for this purpose, and it is out of this paper’s scope to

choose the best one. A simple one would be based directly on a Guillou-Quisquater

identification scheme [16]. Each voter obtains from TA its ID and a secret value σ.

The TA creates a list of all proper IDs and sends it to the mix agent as a list of

eligible voters. The voter utilizes the GQ protocol to prove knowledge of the secret

for the presented ID.

In the presented scheme the mix is a method to create an anonymous channel

between the voter and TTP . It also creates ballots for users, performing instead of

them necessary computations.

After validating the user, the mix solves a randomly selected puzzle received from

TA and obtains authentication data for the user: a share si, a key for appropriate

AC puzzle, kM
i , and the identifier xi. Data from a single puzzle is utilized for one

user. This data is used to create a set of ballots (B) for the voter. Each ballot is

encrypted with a weak, random key (similar to the one utilized to create puzzles for

AM ). Each ballot consists of a vote (v) encrypted with xi (utilized as a secret key

for a symmetric cipher), the share and the key from the solved puzzle and a proof.

The proof is a digest of the vote v and g(xi): h(v, g(xi)). The function g is known

only to AM . Its main feature is that it is hard to guess its result not knowing the

argument. It can be, e.g., a hash function used with an additional secret string

of bytes or a symmetric cipher with a secret key. Note that the strong one-way

hash function used with a secret argument has the same functionality as a digital

signature but is much more efficient. To allow TA to verify the proof, the mix sends

EkM
i

(g(xi)) to TA or publishes the list of all created EkM
i

(g(xi)) after registration.

This part of the protocol is illustrated in Fig. 3(b). The final set of ballots for a

single user is presented below.

Voting. The voter sends the ballot bf = Ek(R, kM
i , si, Exi

(vf ), h(g(xi), vf )) with

a chosen vote vf to AC . The counter solves the ballot and extracts si and kM
i .

It uses the key kM
i to decipher all puzzles, which it obtained from TTP in the

initial phase. If the kM
i is proper, one of the puzzles had been encrypted with it.

A. Zwierko, Z. Kotulski / Electronic Notes in Theoretical Computer Science 168 (2007) 109–126 119



vote ballot

v1: b1 = Ek(R, kM
i , si, Exi

(v1), h(g(xi), v1))

· · · · · ·

vL: bL = Ek(R, kM
i , si, Exi

(vl), h(g(xi), vL))

AC extracts from its puzzle kC
i , xi and shares. Next, it combines all shares to

recreate the secret Ks. To validate the secret the counter encrypts Ks with the

key kC
i (from its puzzle) and sends it, along with xi, to TA. TA uses xi to find

the appropriate key kC
i and decrypts the secret. TA compares the extracted Ks

with the one stored in the database. It also uses corresponding kM
i to mark g(xi)

published by the mix agent. If the two operations are successful, TA sends a reply

to AC , encrypted with the key kC
i . The counter now decrypts the vote, adds it to

the tally and sends appropriate information to the voter. The counter can use the

key kM
i to encrypt the information about success or failure of the operation or to

send the result as a clear-text. This part of the protocol is illustrated in Fig. 3(c).

Note, that the protocol does not require user to make any computations, only to

communicate with appropriate parties, as in classical elections. AC can also convey

xi to the voter as a confirmation of the fact of casting the ballot (to fulfill the

voter-verifiability property).

Publication of results. After receiving and verifying all votes the counter agent

publishes the results along with all proofs, so users can verify if their votes have

been counted (Fig. 3(d)). In case of any claims about correctness of the results TA

can verify all pairs of votes and proofs utilizing g(xi) values.

5.2 Formal Specification

The notation used in this specification is based on the one used for SVO logic [29].

An encrypted message m with a key k is denoted as {m}k.

Initialization

(i) TA → AM : ∀s∈{st,...,sn}{R,xi, s, k
M
i }k

(ii) TA → AC : {R,xi, s1, . . . , s(t−1), k
C
i }kM

i

Registration

(i) AM → TA: {g(xi)}k
M
i

(ii) AM → AV : ∀v∈V {R, kM
i , si, {v}xi

, h(g(xi), v)}k

Voting

(i) AV → AC : {R, kM
i , s,{vf}xi

, h(g(xi), vf )}k

(ii) AC → TA: {Ks}kC
i
, xi

(iii) TA → AC : {Y es/No}kC
i

(iv) AC → AV : {Y es/No}kM
i

A. Zwierko, Z. Kotulski / Electronic Notes in Theoretical Computer Science 168 (2007) 109–126120



��
��
TA

��
��
AM ��

��
AC

�
�

�
�

�
��

�
�

�
�

�
��	

creates a secret
Ks and shares s

EkM
i

(R,xi, s1,
. . . , st−1, k

C
i )

Ek(R,xi, s, k
M
i )

(a) Initialization phase

��
��
AM

��
��
AM

��
��
AM

��
��
AV

��
��
TA

��
��
AV

�

�

� want to register

EkM
i

(g(xi))

b1, . . . , bL

(b) Registration of voters

��
��

AV

��
��
TA

��
��
TA

��
��
AV

��
��
AC

��
��
AC

��
��
AC

��
��
AC




�




�bf

EkC
i
(Ks), xi

EkC
i
(Y es/No)

EkM
i

(Y es/No)

(c) Voting phase of the elections

Results = X

h(g(xi1), vf1
)

h(g(xi2), vf2
)

. . .

h(g(xin), vfn
)

(d) Publication of the results

Fig. 3. Phases of the protocol

6 Analysis

6.1 Performance

All presented results were obtained with the test version of the system, working

on 3.0GHz PC with Windows operating system. The implementation is based on

JADE agents.

Initialization. In this phase only TA has to make computations. It has to create

the secret and shares, generate identifiers, symmetric keys, create subsets, puzzles

and cryptograms for AM and AC . The time to create shares and the secret for

system with n = 100 and t = 75, with the size of public moduli 100 bits is just

around 10 minutes. Generating even 100 such sets (of the secret and shares) is

not time consuming, especially, that it can be done offline. Creating subsets, keys

and identifiers is fast and omitable in further analysis. Computing the puzzles and

cryptograms is simply comparable to encrypting data (dtotal) of the size equal to

sum of all cryptograms and puzzles. The size of a counter’s cryptogram is equal

to the sum of its elements: dCsize
= (t − 1) · ssize + Rsize + xsize + kC

size. Similarly

the size of A′
Ms puzzle can be calculated: pMsize

= ssize + Rsize + xsize + kM
size.

For each secret TA has to encrypt n − t puzzles for AM and cryptograms for AC :

dtotal = (n−t)·(pMsize
+dCsize

). The encryption time of a symmetric cipher amplifies

almost linearly with the size of data (that is an expected result), so, having the size

of public moduli (for secure secret sharing scheme) and the number of shares it is

possible to estimate the time required by TA to generate the puzzles for each secret.

Registration phase. During the registration phase only the mix has to make

A. Zwierko, Z. Kotulski / Electronic Notes in Theoretical Computer Science 168 (2007) 109–126 121



some computations: solve a puzzle from TA and create ballots for users. Solving a

single puzzle is not computationally hard. As the tests indicate the time to solve a

single puzzle is small, from less than a second to over a minute, depending entirely

on the key’s size. Note, that the actual size of a puzzle is not important, since

only the first block of the puzzle has to be decrypted (to validate R). The mix

can either solve the puzzle on-line, while the user is registering or solve all puzzles

offline. Both options are feasible, the only concern could be a number of users

that may want to register at the same time. That problem can be easily solved by

introducing additional mix agent AM . The mix also has to create a proof for each

ballot: h(g(xi), v). We assume, that g is an efficient function (the best candidates

are symmetric ciphers or hash functions), so the time to create g(xi) is negligible. As

discussed previously, the number of votes, L, is relatively small and computing the

hash function is efficient. Thus, we can assume that the total time required by the

mix to create the proofs is equal to NU ·L ·Tproof , where Tproof is the time required

to generate g(xi) and the actual hash (it can be approximated as the double time to

generate the hash). To estimate the time required to create puzzles for voters the

similar reasoning as for initial phase can be used. The mix has to create L ballots

for each user, each one of the size: bsize = ssize + Rsize + kM
isize + Esize(v) + hsize. It

is easy to calculate that the total size of a set of ballots for a single voter is rather

small, since for the typical cipher and one-way hash function bsize < 1Kb. Creating

puzzles for such a small amount of data is very fast. So, even for a large number of

users the whole operation is very efficient.

Voting. During the voting phase there is no operation that is either time con-

suming or requiring a large number of computations. First, the counter needs to

solve the puzzle, which is efficient (as discussed previously). Next, AC has to find

its own suitable cryptogram: at the average it needs to decrypt a half of its cryp-

tograms. The operation of decryption is similar to encryption in the means of time

and computations, so the required time can be easily estimated. The third opera-

tion of the counter is combining the secret. It requires to solve a set of equations,

using a Chinese Remainder Theorem. The results of the tests show that this opera-

tion is rather fast. TA needs just to find appropriate keys in the database, decrypt

the secret and validate it (simply compare it to the stored one). All those actions

are rather fast. Also, the final operation of AC is very efficient, since it is only

encryption of the data replied to the user. The performance problems can occur if

many users at the same moment would like to vote and the counter would have to

find a lot of suitable cryptograms. However, sensibly selected number of voters per

counter can minimize the risk of delays.

6.2 Communication Effort

(i) Initialization phase: TA has to send to AC and AM all cryptograms and puz-

zles. Basing on calculations presented in the previous section, it is possible

to estimate amount of data that has to be conveyed to each party. The time

required to transmit the data to the appropriate party with the speed 2 Mbit/s

is less then 50 milliseconds for systems with n raging from 50 to 500 for data

A. Zwierko, Z. Kotulski / Electronic Notes in Theoretical Computer Science 168 (2007) 109–126122



sent by TA to AM and up to 5 sec for data transmitted to AC .

(ii) Registration: during this phase, there is no significant communication; the mix

only sends the EkM
i

(g(xi)) of the size of approximately 128 bits to TA and a

set of ballots, less than 10KB to a user. Even with a limited bandwidth (e.g.,

2 Mbit/s) and a large number of users system can be efficient (sending the

puzzles to 100000 users would take approximately 45 minutes).

(iii) Voting: during this operation, the amount of transferred data between the

parties is very small (around 384 bits between the TA and AC and around 1

Kb between AC and a voter), so no communication overhead can be expected,

especially that operations during this phase are rather fast and voter should

not have wait long time for reply from the counter.

6.3 Security

Completeness. If the user casts a correct ballot then the counter is bound to find

appropriate cryptogram and recreate a valid secret. Moreover, it is able to extract

the identifier xi, decrypt the vote and tally it.

Soundness. To produce a valid ballot, an adversary has to forge the credentials:

the share si and the key kM
i . He would also have to produce a valid proof for the

vote h(g(xi), vf ). Since the keys, xi and cryptogram EkM
i

(g(xi)) are stored in the

TA’s database, an adversary would have to guess properly all of them. Chances

of the success are extremely low. Even if the adversary is a dishonest voter and

he has access to already used proofs, ballots and even EkM
i

(g(xi)) list, it is still

computationally hard to find, for a selected proof (h(g(xi), vf )), the values that

were used to create it. For the adversary it is computationally infeasible to guess

proper xi for existing EkM
i

(g(xi)).

A dishonest voter may try to claim that he/she voted other way than it was

tallied, but the counter can prove otherwise by publishing the proof, which is hard

to forge without help of the mix or TA.

Privacy. The ballots are distributed by the mix agent AM and no other party

is able to link a user and a ballot with his/hers vote.

The ballots are encrypted with a symmetric cipher utilizing xi as a secret key.

Since xi is a secret and it is not known to any third party, an eavesdropper observing

the ballots is not able to gain any information on a selected vote.

Un-reusability. The voter obtains a single share as a credential, identified by xi.

He/she can use only one vote and, when his/hers vote is verified by the counter, the

appropriate data in TA’s database is marked and cannot be utilized again.

Eligibility. Only proper users, registered and listed, can obtain credentials from

the mix agent AM . They have to obtain proper identification data and the zero-

knowledge scheme provides that only users knowing the valid secret (σ) can suc-

cessfully complete the protocol.

Verifiability. All users can verify if their votes have been properly tallied by

checking the published list of proofs h(g(xi), vf ). There are two kinds of possible

frauds: the counter does not tally a casted vote or claims the vote was different than

A. Zwierko, Z. Kotulski / Electronic Notes in Theoretical Computer Science 168 (2007) 109–126 123



the one actually casted by the voter. If his/her proof is not published, he/she can

show his chosen ballot to TA and it can verify whether suitable data in the database

was marked as used (or the confirmation stage can be added to the protocol, as

described in Section 5.1). In the second case TA can verify the proof presented by

the counter and settle the dispute. TA can also estimate the minimal and maximal

number of voters taking part in the elections basing on the amount of EkM
i

(g(xi))

values created by AM and the number of successful interactions with AC .

Receipt-freeness. The scheme allows the voter to verify if his/hers vote was

tallied by publishing the proofs (h(g(xi), vf )), but does not enable him proving to

any third party what vote was casted. The voter can present the coercer a ballot

bf = Ek(R, kM
i , si, Exi

(vf1
), hf2

) for the published hash hf2
= h(g(xi), vf2

). The

coercer can verify that the hash is published, but he is unable to verify the claimed

vote, since it is encrypted with xi. Moreover, it is easy for the voter to create a false

ballot with a selected vote and a published hash, since the coercer cannot verify the

proof h(g(xi), vf ), because the function g is secret and known only to the mix, and

the list of produced g(xi) values is known only to TA.

Robustness. The non-participating voter does not influence the course of elec-

tions. All appropriate authorities (counter, mix and TA) have to take part in the

selected stages of elections. The single authority is not able itself to change the

results of elections; all three have to collaborate to falsify the proof and/or ballot

or to identify the user who casted a selected vote.

Scalability. There are multiple ways to extend the application based on the

agents. One of the methods is to create hierarchical structure, based on triples of

agents: AM , AC and ATA (an agent representing TA). Each triple is responsible

for registering users in a certain region and for tallying. Also, a single secret can

be utilized to authenticate more than one user and the system can utilize multiple

mix agents (with different or the same sets of puzzles) and counter agents.

7 Conclusions

To improve efficiency of the presented method some modifications can be introduced.

Registration phase (mix’s actions) can be divided into two independent sub-

phases: the first one, for receiving authentication data from TA and creating bal-

lots, and the second one, for distributing ballots to users. These two phases can

be additionally distributed between two different kinds of agents (denoted as A1
M

and A2
M ), that would provide system with even higher degree of privacy due to

distributed trust. The modified architecture is illustrated in Fig. 4.

The ballot for our scheme is practical and easy to create. Moreover, other

cryptographic primitives along with presented credentials can be used, e.g.: blind

signatures (the user can ask TA or the mix agent to sign the vote), or a public key,

distributed with credentials, unique for each xi, that is later used to encrypt the

vote.

All those methods can be viewed as more secure for a typical e-voting system

than the simple one-way hash function but they require some computations on user’s

A. Zwierko, Z. Kotulski / Electronic Notes in Theoretical Computer Science 168 (2007) 109–126124



��
��
TA

��
��
AC

��
��
A1

M

��
��
A2

M

��
��
AV

�
�

���

���

�
�

�
�	




�

���

�
�

��


�

�

initialization

voting

initialization

registration

registration

voting

registration

Fig. 4. Modified architecture with more distributed trust

side, which is a disadvantage, especially for mobile devices or cards.

The presented system is an efficient and practical scheme for electronic elections.

It utilizes the well-known, secure cryptographic primitives to achieve privacy and

anonymity by distributing trust. It is complete, sound and very scalable due to

usage an agent-based architecture. The system offers possibility of easy extension,

simply by adding an additional mix agent or counter agent, when required. One

of the main advantages of the proposed scheme is avoiding users’ computations.

Therefore it is very flexible and easy to use for all kinds of elections. A user can

vote in a traditional way (the votes can be printed) or in electronic booths. The

system also provides a user with mobility: the user can have an agent program in his

mobile device that will send his chosen ballot to the counter agent; the user just has

to be in a range of any wireless network (GSM/3G/802.11). The system can operate

with many existing technologies to transmit votes and still maintain security due to

utilized cryptographic solutions. A prototype of the EVAS: E-Voting Agent System,

based on mobile agents and utilizing UMTS is currently under development.

References

[1] Abe, M., Universally verifiable mix-net with verification work independent of the number of mix-servers,
IEICE Transactions on Fundamentals E83-A(7) (2000), pp. 1431–1440.

[2] Acquisti, A., Receipt-free homomorphic elections and write-in ballots, Cryptology ePrint Archive,
Report 2004/105, http://eprint.iacr.org/, 2004.

[3] Asmuth, C. and J. Bloom, A modular approach to key safeguarding, IEEE Transactions on Information
Theory IT-29(2) (1983), pp. 208–211.

[4] Benaloh, J., Verifiable Secret-Ballot Elections, Ph.D. dissertation, Yale University, YALEU/CDS/TR-
561, Dec. 1987.

[5] Burmester, M. and E. Magkos, Towards Secure and Practical e-Elections in the New Era, in: D.
Gritzalis, editor, Secure Electronic Voting, Advances in Information Security, Vol. 7 (2003).

[6] Burrows, M., M. Abadi and R. Needham, A logic of authentication, Technical Report 39, Digital
Systems Research Center, Feb. 1989.

[7] Chaum, D., Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms, Communications
of the ACM 24(2) (1981), pp. 84–88.

[8] Chaum., D., Elections with unconditionally secret ballots and distruption equivalent to breaking RSA,
in: Advances in Cryptology – EUROCRYPT’88, LNCS 330, 1988, pp. 177–182.

A. Zwierko, Z. Kotulski / Electronic Notes in Theoretical Computer Science 168 (2007) 109–126 125



[9] Chaum., D., Secret-Ballot Receipts: True Voter-Verifiable Elections, IEEE Security and Privacy 2
(2004), pp. 38–47.

[10] Cramer, R., R. Gennaro and B. Schoenmakers, A Secure and Optimal Efficient Multi-Authority Election
Scheme, in: Advances in Cryptology – EUROCRYPT’97, LNCS 1233, 1997, pp. 103–118.

[11] Damgard, I., J. Groth and G. Salomonsen, The Theory and Implementation of an Electronic Voting
System, in: D. Gritzalis, editor, Secure Electronic Voting, 2003, pp. 77–100.

[12] Damgard, I. and M. Jurik, A generalization, a simplification and some applications of Pailliers
probabilistic public-key system, in: Proceedings of public key cryptography, PKC’01, LNCS 1992, 2002,
pp. 119–136.

[13] eVoting – The Geneva Internet voting system,
http://www.geneve.ch/evoting/english/presentation projet.asp.

[14] Fujioka, A., T. Okamoto and K. Ohta, A practical secret voting scheme for large scale elections, in:
Advances in Cryptology – ASIACRYPT’92, LNCS 718, 1993, pp. 248–259.

[15] Golle, P., S. Zhong, D. Boneh, M. Jakobsson and A. Juels, Optimistic mixing for exit-polls, in: Advances
in Cryptology – ASIACRYPT’02, LNCS 2501, 2002, pp. 451–465.

[16] Guillou, L.C. and J.-J. Quisquater, A practical zero-knowledge protocol fitted to security microprocessor
minimizing both transmission and memory, in: Advances in Cryptology – EUROCRYPT’88, LNCS 330,
1988, pp. 123–128.

[17] Joaquim, R., A. Zquete and P. Ferreira, REVS – A Robust Electronic Voting System, IADIS
International Journal of WWW/Internet 1(2) (2003).

[18] Juels, A. and M. Jakobsson, Coercion-resistant electronic elections, Cryptology ePrint Archive, Report
2002/165, http://eprint.iacr.org/, 2002.

[19] Knuth, D. E., Seminumerical Algorithms, Vol. 2 of The Art of Computer Programming, Addison-
Wesley, NY, 1989.

[20] Kohno, T., A. Stubblefiled, A. D. Rubin and D. S. Wallach, Analysis of an Electronic Voting System,
in: IEEE Symposium on Security and Privacy, 2004.

[21] Malkhi, D., O. Margo and E. Pavlov, E-Voting Without ’Cryptography’, in: Financial Cryptography’02,
LNCS 2357, 2003, pp. 1–15.

[22] Merkle, R., Secure Communications over Insecure Channels, Communications of the ACM (1978), pp.
294–299.

[23] Ogata, W., K. Kurosawa, K. Sako and K. Takatani, Fault-tolerant anonymous channel, in: Proceedings
of the ICICS 97, LNCS 1334, 1997, pp. 440–444.

[24] Park, C., K. Itoh and K. Kurosawa, Efficient anonymous channel and all/nothing election scheme, in:
Advances in cryptology – EUROCRYPT’93, LNCS 765, 1994, pp. 248–259.

[25] Pieprzyk, J., T. Hardjono and J. Seberry, Fundamentals of Computer Security, Springer, Berlin, 2003.

[26] Sako, K. and J. Killian, Receipt-free mix-type voting scheme – a practical solution to the implementation
of a voting booth, in: Advances in cryptology – EUROCRYPT’95, LNCS 921, 1995, pp. 393–403.

[27] Sampigethaya, K. and R. Poovendran, A framework and taxonomy for comparison of electronic voting
schemes, Computers & Security 25 (2006), pp. 137–153.

[28] Security Protocols Open Repository, http://www.lsv.ens-cachan.fr/spore/.

[29] Syverson, P. and P. van Oorschot, On unifying some cryptographic protocols, IEEE Security and Privacy
(1994), pp. 14–28.

[30] Zwierko, A. and Z. Kotulski, A new protocol for group authentication providing partial anonymity, in:
Proceedings 1st EuroNGI Conference on Next Generation Internet Networks – Traffic Engineering –
NGI’05, 2005, pp. 356–363.

A. Zwierko, Z. Kotulski / Electronic Notes in Theoretical Computer Science 168 (2007) 109–126126


	Introduction
	Related Work
	Cryptographic Primitives
	Authentication with Revocable Anonymity
	The Proposed Scheme
	The Detailed Scheme
	Formal Specification

	Analysis
	Performance
	Communication Effort
	Security

	Conclusions
	References

