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Abstract

Assuming plastic hardening of metals are specified by the stress–strain curve in the form s ¼ s0 þ k�m
p , the material parameters s0, k and m are

identified from spherical indentation tests by measuring compliance moduli in loading and unloading of the load–penetration curve. The curve

P(hp) is analytically described by a two term expression, each with different exponents. Here, ep and hp denote the plastic strain and permanent

penetration. The proposed identification method is illustrated by specific examples including numerical and physical identification tests.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction and review of previous work

Conventional spherical indentation is one of the most
convenient methods of identification of elastic moduli and
plastic hardening parameters. The fundamental variables
measured during the test are indentation force P,
geometrical parameters such as contact radii at and ap,
penetration depths ht and hp determined in loaded and
unloaded configurations, respectively, and the sphere
diameter D. A review of extensive research related to
identification methods based on indentation tests was
presented in previous papers by the authors.

The fundamental solution of the spherical indentation
problem for nonlinear elastic, rigid plastic and rigid visco-
plastic materials was proposed in papers by Hill et al. [1],
and Biwa and Storakers [2]. Attempts to make use of
spherical indentation testing to identify material para-
meters has been considered in numerous papers. Let us
mention Field and Swain [3], Adler and Dogan [4], Taljat et
al. [5], Kucharski and Mróz [6,7]. In these papers, the
authors try to eliminate the effect of elastic deformation on
the measured indentation parameters and then make use of
the ‘‘analytical’’ formulae given in papers [1,2].
e front matter r 2007 Elsevier Ltd. All rights reserved.
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The identification method proposed by Huber and
Tsakmakis [8] is based on their numerical solution of the
indentation problem. They have assumed constant moduli
of isotropic and kinematic hardening, E

ðisÞ
t , E

ðkinÞ
t , and

formulated the problem in dimensionless quantities. The
two modes of hardening can be identified from the
hysteresis loops that develop during the unloading–reload-
ing test. In Refs. [9,10], these authors have proposed an
identification procedure, which makes use of indentation
test and neural networks methods. The global response
data required in the identification procedure are load and
penetration depth and the developed neural network
method is applied in the cases of pure kinematic, pure
isotropic, and mixed hardening.
An extensive numerical study of spherical indentation in

an elasto-plastic half-space has been presented in the paper
by Mesarovic and Fleck [11]. They considered the
following modes of the indentation test: elastic (Hertzian)
deformation, elastic–plastic, plastic self-similar, finite
elastic deformation, and finite plastic deformation. The
results of the elastic–plastic analyses are compared with
rigid–plastic similarity solutions and the limits of validity
of the similarity solution are investigated. Two elastic–
plastic constitutive laws were considered:

� ¼
�o

so

s forspso, (1)
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� ¼
s
K 0

� �n

fors4so, (2)

where

so

�o

¼ E;
1

ðK 0Þn
¼

1

E

1

so

� �n�1

(3)

and

�

�o

¼
s
so

þ
s
so

� �n

, (4)

which corresponds to the familiar Ramberg–Osgood
relation.

In Eq. (2), the total strain is expressed by a power law
and in Eq. (4) only the plastic strain is expressed by this
law. We note that the elasto-plastic constitutive laws (3)
and (4) contain three independent parameters
so;E ¼ ðso=�oÞ; n. The numerical simulations were per-
formed for two values of n: n-N and n ¼ 3. The
following relations were calculated for different values of
E/so:

pav

ða=RÞ1=n
�

a

R
or

pav

ða=RÞ1=n
�

a

R

E

so

, (5)

c2�
a

R
or c2�

a

R

E

so

, (6)

P

pR2so

�
h

R
. (7)

These quantities were compared with the values of a, c2,
and the function P(h) resulting from the similarity solution.
The role of friction and pre-existing stress within the half-
space was also considered.

The authors conclude that the region of validity of the
plastic similarity solution is limited by elastic effects for
small contact loads and by finite deformation effects for
large contact loads. Friction has a quantitative effect on the
contact size only below the similarity regime, and in this
regime the pre-existing stress has a minor effect on the
indentation response. A result from the analysis is that the
similarity solution cannot be used to identify material
properties by means of simple indentation tests. The
authors have also stated that extraction of material
parameters may require more sophisticated indentation
measurements than those currently practiced.

The procedure which enables the determination of the
stress–strain curve using load–displacement curve mea-
sured in spherical indentation test has been presented in the
series of papers by Nayebi et al. [12,13]. In their method,
the following material model known as the Hollomon law
is used:

s ¼ K�n ¼ sy

�

�y

� �n

; �y ¼
sy

E
, (8)

where e is the elastic–plastic (total) strain, E denotes the
Young’s modulus, sy the yield stress, and n the strain
hardening exponent. Here, the stress-total strain relation is
expressed in terms of a power law similar to Eq. (3). It is
assumed in the identification procedure that the Young’s
modulus is known and only two parameters should be
specified. By means of numerical simulations, the authors
have determined the theoretical penetration curve, which
represents the relationship between applied load P,
indenter displacement h, sy, and n in the form

h ¼ Aðsy; nÞP
Bðsy;nÞ, (9)

where

B ¼
1

ð�0:151sy þ 0:609Þnþ 0:09sy þ 0:975
,

A ¼ ½�3294þ 22170s0:8y Þe
2:9ns�0:323y ��B.

Let us note that relation (9) is not consistent from the
point of view of dimensional homogeneity of right and left
sides. The identification procedure is based on error
minimisation between the experimental and theoretical
penetration curves and leads to specification of sy and n.
The identified curves were compared with those obtained
from tensile tests for different steel types. The authors also
proposed a method allowing for specification of the
Vickers hardness from the identified parameters sy and n.
For materials obeying the Hollomon law, a fair accuracy of
identification was achieved. The authors suggest that for
other materials one should introduce an appropriate law in
their theoretical penetration curve model.
The same authors in Ref. [13] have generalized their

approach to identify bimaterial systems. They proposed a
law which accounts for the effect of both thin film and
substrate on the penetration depth:

hb
¼ ahf

þ ð1� aÞhs, (10)

where 0oao1, a ¼ aðss
y; n

s;sf
y; n

f ; ef Þ, ef is the film thick-
ness, and the subscripts b, f, and s correspond, respectively,
to the bimaterial, film, and substrate. They discussed
different formulae to calculate a which take into account
specific plastic energies dissipated in the film and substrate.
The formulae for approximation of dissipated plastic
energy were also proposed and the proposed method
enables the determination of ss

y; n
s; sf

y; n
f for bimaterial

systems, assuming that the Young’s modulus is known. It
was applied to determine mechanical parameters and
Vickers hardness of samples with nitrided layers.
The method of determination of elasto-plastic properties

by sharp indentation tests has been proposed in the paper
by Giannakopoulos and Suresh [14]. They presented a
general theoretical framework for instrumented sharp
indentation and outlined their identification method.
The identification of material parameters by means of

sharp indentation testing has also been proposed in the
paper by Tunvisut et al. [15]. They have considered a three-
parameters material model (8) and proposed the following
formulas, which relate material constants and indentation
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parameters:

Pm

Eh2
m

¼ 73�0:82y � 87:3�0:98y � ð0:24 ln �y þ 0:36Þn0:26 ln �yþ0:10,

(11)

Af

h2
m

¼ 6 ln �y � 178�0:13y þ ð4:54 ln �y þ 5:86Þn0:1 ln �y�0:10

þ 155:7, ð12Þ

where Pm and hm are the maximum indentation load and
depth, respectively, Af is the indentation area after
unloading, where ey ¼ sy/E is the elastic strain limit. The
authors have compared tensile stress–strain curves for steel
specified by the proposed method and obtained in tensile
tests. They have also identified properties of Mo and AlSi
coatings.

To correlate plastic properties of materials with hardness
defined as a ratio of applied load to the projected area of
the indentation, the so-called expanding cavity models were
developed. For elastic–perfectly plastic materials, this
model was proposed by Johnson [16]. Recently, the model
was enhanced for spherical and conical indentation of
elastic power-law hardening and elastic linear-hardening
materials by Gao et. al. [17]. Their approach is based on
elastic–plastic solutions for internally pressurized thick-
wall spherical shells. They have derived relations between
H/sy, E/sy, and strain hardening exponent n. Parametric
study of the developed model was conducted; however, a
procedure for identification of material parameters has not
been proposed.

The identification method based on notion of represen-
tative strain defined for spherical indentation was proposed
by Cao et al. [18]. The Hollomon law, (8), was used as a
material model. To specify sy and n, the indentation test
should be performed at two different penetration depths
and the reduced Young modulus E* should be known. The
authors have emphasized that if h/R is too small, a
deformation is dominated by elasticity and identification is
not possible. The values of h/R assumed in the identifica-
tion procedure are h/R ¼ 0.01 and h/R ¼ 0.06. The
method was verified using the parameters of four typical
metals, 132pE/syp600, 0.1pnp0.25.

The present work constitutes an extension to and
improvement upon the previous identification method
discussed in detail by Kucharski and Mróz [19], where
the compliance moduli of the load–penetration curve were
used in order to specify plastic hardening parameters. The
identification procedure is based on the proposed analytical
expression of indentation force—permanent penetration
depth dependent on a set of material parameters. It is
believed that this expression is more reliable than the
assumed ad hoc empirical expressions, such as those
presented by Eqs. (9) or (11), as it results from the
analytical similarity solution. The permanent penetration
depth and its relation to indentation force was specified by
carrying out consecutive unloading–reloading programs
during the spherical indentation test. The details of the
procedure were described in previous papers [7,19].

2. Proposed relation of load–permanent penetration

We assume the small strain theory and decompose the
total strain e into elastic and plastic portions, e ¼ ee+ep.
When a rigid–plastic material model is considered, the
elastic strain is neglected, ee ¼ 0, and the plastic strain can
be expressed as a function of stress. When the power
hardening rule is used, then the stress–strain curve in
uniaxial tension can be described by the relation

�p ¼
s
k

� �1=m

or s ¼ k�m
p (13)

where s denotes the Cauchy stress and m, k are the material
parameters. For this type of homogeneous relation, a self-
similar solution can be generated and the relation
force–penetration depth, for 0omo1 denoted as Pm(hp),
is expressed in the form, cf. Biwa and Storakers [2]

Pm ¼ pakbm
½cðmÞ�2þmD2 hp

D

� �ðm=2Þþ1
, (14)

where a ¼ 3.07, b ¼ 0.32 are constants, D the sphere
diameter, and the parameter c is defined as

c2 �
a2

hpD
(15)

(a is radius of contact) and depends only on the hardening
exponent m according to the formula

c2ðmÞ ¼ 1:41 expð�0:97mÞ. (16)

Introducing notation c(m 6¼0) ¼ ch we can rewrite (14) as
follows:

Pm ¼ pakbmc2þm
h D2 hp

D

� �ðm=2Þþ1
.

In particular, when m ¼ 0, a perfectly plastic response is
predicted from Eq. (13) with k identified as the yield stress

s ¼ k ¼ so (17)

and the relation force–penetration depth, here denoted as
P0(hp), has a form

P0 ¼ pas0c20D2 hp

D
, (18)

where c0 ¼ c(0), c20 ¼ 1:41, and a linear dependence of force
on hp occurs. It should be noted that in the case of
rigid–plastic material law (13), the self-similar solution
(14), (18) results from exhaustive dimensionless analysis
presented in Refs. [1,2] and can be considered as an ‘‘exact’’
analytical solution of the indentation problem.
A more complex case occurs when the plastic strain

develops after exceeding the yield stress, so that

�p ¼
s� s0

k

� �1=m

fors4so and �p ¼ 0 forsoso,

(19)
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and the familiar Ludwig relation is obtained

s ¼ s0 þ k�mp (20)

The self similar solution (14) does not occur in this case.
However, as the material stress–strain relation (20) is a
superposition of laws (13) and (17), we postulate that the
relation P�hp, which in this case is denoted as PT(hp), can
be expressed as a weighted superposition of solutions (14)
and (18) which in turn correspond to two terms of the
stress–strain relation (20), thus

PT ðhpÞ ¼ w1PoðhpÞ þ w2PmðhpÞ, (21)

where w1, w2 are coefficients which should be determined.
Let us analyze the characteristic response curves obtained
for self-similar solutions (14) and (18) for 0omo1 and
m ¼ 0 presented in Fig. 1a,b. Following this analysis we
can confirm the form of Eq. (21) and specify the
coefficients w1 and w2. It is seen that c2 does not depend
on P and is a function of m, c2 ¼ c2(m), reaching the
maximal value for m ¼ 0 and decreasing with m. The
contact compliance dhp/dP is constant for m ¼ 0 but for
σ
σ=kεp

m

εp P

c2

hp

σ
σ=σ0m=0

εp

c2

1.41

P

P=Th

hp

P P

P=Qhm/2+1

dP

dhp

dP

dhp

P

Cp(0)=1/T(σ0)

P

Fig. 1. Characteristic response curves for the similarity solution: (a)

plastically hardening material, 0omo1; (b) perfectly plastic material,

m ¼ 0.
m40, when PE0 then dhp/dP tends to infinity and then
decreases with growing P.
When the non-homogeneous material stress–strain rela-

tion (20) is used, we postulate that these curves should have
the form shown in Fig. 2. In fact, as (20) can be
approximated by (17) and (13) respectively for ep-0 and
for increasing values of ep, we assume that the form of
curve PT(hp) is similar to (18) for small penetration depths
(i.e. Pm/P0-0 when hp-0) and can be approximated by
(14) for large penetration depths. Consequently, the
contact compliance will decrease from its initial finite value
1/T, Fig. 2, corresponding to a perfectly plastic response,
where T cf. (29) depends uniquely on initial yield stress s0

and does not depend on hardening parameters (oppositely
to similarity solution where the initial compliance tends to
infinity for m40). This assumption is close to the
conclusion made by Gao et al. [17] and Park and Pharr
[20]. In fact they have observed that for the Hollomon law,
the value of hardness does not depend on strain hardening
exponent for small penetration depths.
In particular, c2 now depends on P, c2 ¼ c2(P, m, k, so),

and decreases from its initial value c2o ¼ 1:41. This initial
value (for P-0) does not depend on material parameters
in the law (20) and corresponds to the similarity solution
for m ¼ 0. The assumption on the variation of c2 was
confirmed in numerical experiments presented in the next
section, where the cyclic loading–unloading–reloading
curves were determined by means of FEM for all materials
presented in Table 1. Next, the curves hp(P) were generated
using a segment subtraction method described in Ref. [7],
and the values c according to definition (15) were
calculated from

c2ðPiÞ ¼
a2ðPiÞ

DhpðPiÞ
(22)

for different values of force reversals Pi. Alternatively, the
function hp(P) can be calculated by integrating the plastic
compliance curve dhp/dP. The diagram c2(P) for materials
II and IV, cf. Table 1, is presented in Fig. 3 where one can
σ

σ0

εp

σ=σ0+kεm
p

c2

1.41

hp

T=T(σg)

arc tg 1
T

P=Qhm/2+1+Th

h'p =
dhp

dP
hp(0) = 1

T(σ0)

P P

P

Fig. 2. Characteristic response curves for the proposed weighted super-

position solution.
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Table 1

Parameters of plastic stress–strain curves for considered materials

Number of s�ep curve

I II III IV V VI

Stress–plastic strain

relation
s ¼ 290þ 610�0:56p

(MPa)

s ¼ 290þ 1350�0:65p

(MPa)

s ¼ 490þ 610�0:56p

(MPa)

s ¼ 490þ 1650�0:7p

(MPa)

s ¼ 290

(MPa)

s ¼ 490

(MPa)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 200 400 600 800 1000

P[N]

c2

material IV

material II

Fig. 3. Variation of c2 for materials obeying Ludwig law.
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observe that c2(P) decreases. Its variation is greater for low
loading ranges than for larger values of loading (large
deformation), where it is close to a constant value. This
results from the fact that for large deformations, the
Ludwig tension curve (20) can be approximated by a power
curve for which the similarity solution is valid and c2 does
not depend on P, cf. Eq. (16). Generally, in the case of
material law (20), for small loading the response curves are
close to those obtained from the similarity solution for
m ¼ 0; in the range of large indentation forces, the
response curves corresponding to Eq. (20) are close to
those obtained from the similarity solution for m40.

Consider now an indentation test of three materials: an
actual material described by the Ludwig law (20), a
material denoted as M0 which fulfils power law (13) for
m ¼ 0, and a material denoted as Mh, which fulfils power
law (13) for m40. Materials M0 and Mh can be considered
as fictitious components of the actual material character-
ized by the law (20). Let us note that a2 ¼ c2hpD, so for the
same penetration depth hp ¼ hpa the contact areas Fo, Fh,
Fa for material M0 (m ¼ 0), material Mh (0omo1) and the
actual material are different, thus we have

Fa

Fo

¼
a2

a

a2
o

¼
c2a
c2o
;

F a

F h

¼
a2

a

a2
h

¼
c2a
c2h
; ahoaaoao; chocaoco,

(23)

where aa and c2a correspond to the tested actual material
(20), ao and c2o ¼ c2ðm ¼ 0Þ ¼ 1:41—to the material M0,
and ah, c2h ¼ c2ðma0Þ correspond to the material Mh, cf.
Fig. 4. Note, that both values c2o and c2h can be determined
from formula (16) resulting from the similarity solution
and c2a should be determined from Eq. (15) or (22) (the
subscripts a, o, h correspond to materials: actual, M0 and
Mh, respectively). Assuming that the actual material is a
compound of M0 and Mh and taking into account different
contact areas produced in the indentation of each
component, we postulate that the mean pressure which
appears in the indentation test of the compound material is
a simple sum of mean pressures developed by indentation
of each component at the same penetration depth hp ¼ hpa:

PT ðhpÞ

a2
a

¼
PoðhpÞ

a2
o

þ
PmðhpÞ

a2
h

. (24)

In view of (23), we can now determine the correcting
weight factors w1 and w2 in Eq. (21) accounting for
different contact areas, thus

PT ðhpÞ ¼
c2a
c2o

PoðhpÞ þ
c2a
c2h

PmðhpÞ

¼ paD2 soc2a
hp

D
þ kc2ab

mcm
h

hp

D

� �1þm=2
" #

. ð25Þ

Let us introduce the transformed load

ZT ðhpÞ ¼
PT ðhpÞ

c2aðPT Þ
¼ paD2 so

hp

D
þ kbmcm

h

hp

D

� �1þm=2
" #

,

(26)

where c2a ¼ c2aðhpÞ or c2a ¼ c2aðPÞ; is a decreasing function of
hp or P. The ca(PT) curves were determined from numerical
experiments using (22) for all identified materials (Table 1),
and the results for materials II and IV are presented in
Fig. 3. Taking into account a form of experimental ca(PT)
curves in Fig. 3, we can describe them using the following
function:

c2aðPÞ ¼ ðc
2
h � c2oÞð1� e�ZPÞ þ c2o, (27)

where co is the initial value, ch is the asymptotic value
corresponding to large P, and Z denotes a parameter of
actual material. Note, that co ¼ 1.41, ch is the unique
function of m specified by (16), and the constant Z can
easily be determined using curve fitting procedure when the
points ca(Pi) are known. Eqs. (26) and (27) will constitute
the foundation for the identification procedure; however
this procedure requires the function ca(PT) to be specified
only at some discrete set of points Pi.
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hp

D/2
a0

aaah

material Mh, 0.4<m<0.9, ch<1, sink-in

material M0, m=0, c0=1.41, pile-up

actual material ca>1

Fig. 4. Contact geometries for materials I and II and the actual material.
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3. Identification of material parameters

Formula (26) can be presented in a simplified and
modified form

ZT

hp

D

� �
¼ TðsoÞ

hp

D
þQðm; kÞ

hp

D

� �1þm=2þw

, (28)

where

Tðs0Þ ¼ paD2so; Qðm; kÞ ¼ paD2kbm
1 cm

h , (29)

and the exponent in the second term of (28) was assumed as
1þm=2þ w instead of 1+m/2, where w may constitute a
correction factor used to improve the accuracy of predic-
tion. For the same reason in Eq. (29) the parameter b is
replaced by b1. The constants b1 and w should be calibrated
by means of numerical simulations of indentation tests for
numerous sets of material parameters.

The identification procedure is composed of the follow-
ing steps:
1.
 Measurement of the cyclic loading–unloading–reloading
penetration curve with load reversals at P ¼ Pi;
determination of points dhp=dPðPiÞ of the plastic
compliance curve Cp(P), cf. Ref. [19], and of the plastic
penetration curve, h

p
(Pi), calculated as an integral of the

compliance curve

hpðPiÞ ¼

Z Pi

0

CpðPÞdP.
2.
 Measurement of contact radius a for values of Pi

corresponding to load reversals; calculation of c2aðPiÞ

specified by (22) and Ziðhpi=DÞ ¼ Piðhpi=DÞ=c2aðPiÞ ac-
cording to (26).
3.
 Specification of T and then so using the intersection point
of the plastic compliance curve with the ordinate axis

so ¼
T

c2ð0ÞpaD2
¼

1

CpðP � 0Þ

1

1:41paD2
. (30)
4.
 Specification of k and m based on the condition of the
best fit of function

s ¼ Qðm; kÞ
hp

D

� �1þm=2þw

, (31)
to the points

hpi

D
;Z0i

� �
,

where

Z0i ¼ Zi � T
hpi

D
.

It should be mentioned that the approximate formulae
(25–29) and identification Eqs. (30,31) correspond to the
rigid–plastic material (20). As it is seen from identification
procedure, the following functions should be specified:
(1)
dhp

dP
ðPÞ
(2)
 a(P) and h
p
(P) which in turn are used to calculate c2aðPÞ.
The identification procedure can be applied to identify
both rigid plastic and elastic–plastic material. In the case of
rigid–plastic material, the functions h

p
(P), a(P) can be

specified directly from the experiment consisting of
monotonic loading, and then from the specified function
h

p
¼ h

p
(P) one can calculate dh

p
/dP by simple differentia-

tion. The accuracy of the determination of these functions
does not depend on the material parameters.
In the case of an elastic–plastic material, the function

a ¼ a(P) can also be specified directly from measurement,
provided it is assumed that a has the same value in loaded
and unloaded configurations. It follows from this assump-
tion that a can be measured in the unloaded configuration
with indenter removed from residual imprint, as a half of
diameter of boundary of the imprint. This assumption was
discussed in our previous work [6], and was accepted by
other researchers. It is justified if the ratio E/so is
maintained in a range common for metals and a/D is in
a range for which the similarity solution is valid and it
enables to specify a with a sufficient accuracy. The
remaining functions, h

p
¼ h

p
(P) and dhp=dP ¼ h0pðPÞ should

be evaluated from the cyclic elastic–plastic penetration
curve. This evaluation is composed also of two steps but
their order is different than in the case of a rigid–plastic
material. First the values of function h0pðPÞ in discrete
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Fig. 5. Stress–plastic strain curves for selected parameters values.
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Fig. 6. Loading–partial unloading–reloading curve for material II

determined numerically for sphere diameter D ¼ 2.5mm.
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points Pi should be extracted from the cyclic loading–un-
loading–reloading penetration curve using elastic–plastic
and elastic compliance subtraction at the load reversal
points Pi, cf. Ref. [19],

dhp

dP
ðPiÞ ¼

dhep

dP
ðPiÞ �

dhe

dP
ðPiÞ. (32)

Next the h
p
(P) function is calculated by means of

integration. These curves correspond to a certain fictitious
rigid plastic material which fulfils the law (20), and the
strain hardening parameters so, n, k of this material are the
same as for the tested actual elastic–plastic material.

The accuracy of determination of the compliance
modulus h0pðPiÞ depends on material parameters, namely
on the ratio E/so. Thus, for the elastic–plastic material, the
evaluation of hp(P) and dh

p
/dP should be performed very

carefully as its accuracy affects the accuracy of the whole
identification process. The advantage of the method lies in
the fact that the accuracy of determination of h0pðPÞ, and
consequently the accuracy of identification of plastic
hardening parameters, is not affected by an experimental
frame compliance; that is, the effect of elastic compliance is
automatically removed when Eq. (32) is applied. The
elastic and plastic parameters of the stress–strain curve are
now specified independently. These observations are
illustrated in the examples presented below.

4. Application of the proposed identification method:

numerical experiments

To verify the proposed method for the case of
elastic–plastic materials, several numerical experiments
have been performed. Numerical simulation of cyclic
indentation tests was performed for materials labeled as
I, II, III, IV, V, VI for which the material parameters so, k,
and m were assumed as presented in Table 1. These
parameters were then determined by applying the proposed
identification procedure.

As observed, materials I and II are characterized by the
same initial yield stress so ¼ 290MPa and different hard-
ening exponents. Similarly, materials III and IV have the
same yield stress and differing hardening parameters.
Materials V and VI are introduced to illustrate specific
cases of the identification procedure for the elastic–per-
fectly plastic response with yield stress values the same as
for materials I, II and III, IV respectively. The respective
curves s�ep, for six materials are shown in Fig. 5. To
illustrate the range of applicability of the proposed method
and its sensitivity on the material parameters, different
ratios E/so are considered.

The numerical indentation experiments were performed
using MARCs finite element code. The finite element mesh
of the indented half-space was composed of 5666 elements
and 5817 nodes. The spherical indenter of diameter
D ¼ 2.5mm was modeled as a rigid body. The details of
the finite element mesh have been discussed in the previous
paper [6].
The identification procedure starts from determination
of the loading–partial unloading–reloading curve in the
spherical indentation test. For materials shown in Table 1,
the penetration curves were determined by means of the
finite element simulation. One of these curves, calculated
for material II in the range of 0–326N for load reversals at
73, 98, 133, 179, 242, and 326N, is presented in Fig. 6.
Next, the points of the plastic compliance h0pðPÞ and

plastic penetration hp(P) curves are specified (at values of P

corresponding to load reversals) by subtracting at these
points compliances of loading and unloading curves [19],
and then the integration. However, the curves h0pðPÞ, hp(P)
so generated, differ from those specified by the postulated
P�hp relation (25), Fig. 2, corresponding to a rigid–plastic
material (20). The difference is significant in the initial
stage of indentation when only elastic strains occur and the
plastic strains develop at a finite value of indentation force
and finite contact area. On the other hand, for a
rigid–plastic model, the plastic deformation develops in
the initial stage of indentation. The penetration depth
attained before the onset of plastic strain in the elastic–
plastic material depends on the ratio E/so. The difference
between the responses of elastic–plastic and rigid–plastic
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models diminishes with the growth of the ratio E/so, when
the elastic–plastic material tends to become rigid–plastic
and for increasing penetration depths when the average
elastic strains are much smaller than the plastic strains.
Similarly, the function c2 ¼ c2(P) shown in Fig. 3 is
E/σ0=345 
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generated by the function hp ¼ hp(P) and for P-0 this
function cannot be accurately specified.
Figs. 7–9 present the specified loading, unloading, and

plastic compliances as functions of the indentation force P.
The plastic parameters s0, k, m are selected from Table 1
and the specification procedure was carried out for
different values of the ratios s ¼ E/so. For materials I
and II, it was assumed that s ¼ E/so ¼ 345 and s ¼ 410,
345 and 260 for materials III and IV.
It can be noted that the plastic compliance moduli

decrease monotonically for increasing value of P; however,
for small values of P there is a local maximum reached by
the moduli. This maximum results from the fact that plastic
deformation develops starting from a finite value of P. The
character and position of the so-determined maximal
plastic compliance depends on the value of s ¼ E/so. For
instance, for materials III and IV and s ¼ 260, the
maximum of Cp occurs for larger values of P, Fig. 8b,
than that for s ¼ 410, Fig. 8a, or for s ¼ 520, Fig. 9. From
the diagrams in Figs. 7–9 it can be observed that the
maximum value of plastic compliance calculated by means
of subtraction method depends on E/so and plastic
400 600 800

P[N]

IV unloading
IV loading
IV plastic penetration
III unloading
III loading
III plastic penetration

III plastic
penetration

IV unloading

IV loading
IV plastic
penetration

0 = 260

0 400 500

ials III and IV: (a) for high ratio E/so, (b) for low ratio of E/so.
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parameters k, m. Let us note that for s ¼ E=so !1, the
rigid–plastic response of contact occurs with the maximum
compliance modulus reached at P ¼ 0, Figs. 1b, 2.

For the identification procedure, the compliance curves
are analytically extended to P ¼ 0, thus neglecting the
response for small values of P before reaching the maximal
plastic compliance modulus. Fig. 10 presents the approxi-
mated compliance evolution of Cp(P) for materials I–VI.
The approximated compliance curves decrease monotoni-
cally in the whole range of loading and reach maximal
values for P ¼ 0.

Noting that for a rigid–plastic material

Cpð0Þ ¼
1

T
¼

1

paD2c2ð0Þs0
, (33)

the yield strength value could be identified from Eq. (33).
Practically, for actual materials which are elastic–plastic, it
is assumed that the value of Cp(0) is specified for very low
value of P, denoted as Poffs (of order of 1N in the case of
materials described in the Table 1, for the assumed value of
D ¼ 2.5mm), cf. Table 2. Generally, this offset value
corresponds to the relative penetration depth hp/D denoted
as hoffs=D which is close to 4.7� 10�5 for all considered
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Fig. 10. Extrapolation of the generated plastic com
materials, cf. Table 2. For such defined values of P, the
function Cp has the same values for materials I, II, V and
III, IV, VI, respectively. It confirms our initial assumption
that T ¼ 1=Cpð0Þ in Eq. (28) depends on so and does not
depend on hardening parameters k, m.
Fig. 11 presents the approximation procedure. To

specify the remaining parameters, the proper curve portion
should be used, namely after reaching the maximum
modulus value. In fact, for larger penetration values, the
compliance curve does not depend on the value of s ¼

E=so and is close to a response predicted by the
rigid–plastic model.
The results presented in Figs. 7–10 are recapitulated in

Fig. 11. Two values of loading force are marked: the value
Py corresponds to the initiation of the plastic deformation
of the indented material (at the Belayev point) and PM

corresponds to a local maximum M of Cp(P) observed in
Figs. 7–9. If E/so-N then PM-0 and Py-0. It should
be noted that for actual materials the value of Py is
relatively small; for example, for E/so ¼ 345, (Fig. 9) there
is Py ¼ 0.4N. Obviously, the loads applied in the
identification procedure should be greater than Py. More-
over, to specify Cp(PE0), the proper portion of the
generated Cp(P) curve has to be used, i.e. it should start
from a force P slightly greater than that corresponding to
400 500 600 700 800
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material  IV (points)

material  III(points)

) perf. pl., points,yieldstr.=490MPa

eldstr.=290MPa material II(appr.)

pliance curves, specification of Cp(0) for P-0.

Table 2

Yield strength values identified for six materials

Number

of s�ep

curve

hoffs/D 1/T Poffs s0 (MPa)

I 4.70358E�05 4.49573E�05 1N 286

II 4.76154E�05 4.59836E�05 0.95N 281

III 4.69587E�05 2.62456E�05 1.7N 450

IV 4.69635E�05 2.5391E�05 1.8N 505

V Whole range 4.373E�05 Whole

range

295

VI Whole range 2.5821E�05 Whole

range

496
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the local maximum M, and should not exceed the maximal
force corresponding to the range of the similarity solution.

The identification procedure has to be reduced in the
following special (limiting) cases: elastic–perfectly plastic
and hardening Ramberg–Osgood materials. The elastic–
perfectly plastic material is characterized by a constant
value of the plastic compliance function Cp(P), Fig. 1b, and
thus it can be recognized (detected) at the first step of
identification procedure. As the value of c2 is also constant,
c2 ¼ 1.41, the second step can be skipped and identification
is terminated at step 3. The plastic compliance curve has
the form of a horizontal line, Fig. 10, and its intersection
with the ordinate axis is easy to determine. The parameter
k in Eq. (28) should be assumed to vanish and this equation
is now reduced to the first term, namely

ZT

hp

D

� �
¼ TðsoÞ

hp

D
. (34)

The Ramberg–Osgood material, s ¼ k�m
p , can be recog-

nized at the second step of the identification procedure. For
such material the value of c2 is constant and less than 1.41.
Eq. (28) is reduced to the second term. To identify the
parameters k and m, one should apply the procedure
presented in our previous paper [19].
The results of identification for considered materials

I–VI are shown in Table 2 and in Fig. 12. Table 2 presents
the values of yield stress determined from Eq. (30) in the
first three steps of the identification procedure.
Fig. 12 presents a comparison of the actual and identified

curves for materials I–IV. The accuracy of the method can
be estimated as satisfactory.
To illustrate the sensitivity of results obtained by means

of the proposed method with respect to the small variation
of the identified stress–strain curve, and to demonstrate the
accuracy of the method in a case of simplified linear
hardening stress–strain characteristic, an additional exam-
ple was calculated. In this example, one has identified the
linear hardening material (called as ‘‘CH’’ material) whose
stress–strain curve is specified by the equation s ¼
300+1400ep and presented in Fig. 13, where the s�ep

curve of the material I is also shown. It can be seen that
these two materials (CH and I) are very similar; the CH
material has the slightly greater yield stress but smaller
hardening modulus in the initial stage of deformation than
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material I. For larger values of strain, the slope of the CH
material curve is lower than that of material I.

Fig. 14 shows points of the plastic compliance curves
generated by means of the proposed method for the
materials CH and I. For material CH, the analytical
approximation curve is drawn and next extrapolated to
identify the yield point.

From Figs. 12 and 13, it results that the shape of plastic
compliance curves exactly corresponds to the material
behavior described by means the of s�ep curves. For small
strain range, the CH material is less stiff than material I
and consequently in the indentation test for low loading
values, the plastic compliance curve of material CH is
located above the compliance curve of material I. For
larger values of strain, material CH is stiffer than material I
but the compliance curves of both materials coincide for
higher loading values. This is due to the fact that for large
loading, the penetration curve can be considered as the
mean result of large deformations which appear in the
vicinity of the contact area and lower deformations present
at larger distances from the indenter tip. Thus, the
penetration curve can be considered as a measure of the
material stress–strain curve. The actual and identified stress
strain curves for material CH are compared in Fig. 15.
1
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P[N]
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sample 1

5

Fig. 16. Cyclic penetration curves for aluminium alloy (physical experi-

ment).
4.1. Application of the proposed identification method:

physical experiment

To demonstrate the accuracy of the proposed method, a
physical example was also provided. The method was
applied to identify the stress–strain curve of an aluminium
alloy (commercial mark PA4). The cyclic loading–unloa-
ding–reloading indentation test was done by means of the
spherical indenter (D ¼ 0.4mm). The penetration curve
was measured in two ranges: 0–3N, with load reversals at
0.5, 1, 1.6, 2.4, 3, and 0–17.8N with load reversals at 3, 4,
5.5, 7.5, 10, 13.5, 17.8N. For the latter range, two
measured penetration curves for two samples are compared
in Fig. 16 to illustrate the scatter of results.
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Fig. 14. Comparison of the plastic compliance curves of material I and a

linearly hardening material.
The elastic–plastic penetration curves ht(P), Fig. 16, for
loading and unloading were separately approximated with
continuous functions by means of nonlinear curve fitting
procedures. Next, the elastic and elastic–plastic com-
pliances were calculated as derivatives of these functions
at the load reversal points and the points of the plastic
compliance curve were generated. The results are presented
in Fig. 17.
The diameters (2a) of residual indentation imprints for

large loads were measured by means of optical microscopy,
and for small loads by means of scanning profilometry. The
specified values were used to calculate the variation of
c2aðPiÞ. Next the proposed formulae were applied to
determine the initial yield stress and the hardening curve.
The result is presented in Fig. 18 where the identified
stress–plastic strain curve is compared with the actual
curve obtained in tension test.
It can be observed that the difference between the two

curves in Fig. 18 reaches about 10%. The accuracy of
identification is lower as compared to the case of numerical
experiments. The error results from the difficulties in exact
measurement of contact radius a, particularly in the low
range of loading. The inaccuracy occurs also due to higher
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noise to signal ratio in the measurement apparatus in the
low range of loading, which is manifested by a non-
monotonic character of the specified plastic compliance
curve. It should be noted that the identified curve is stiffer
than the actual one. This effect can result from surface
hardening due to the grinding and polishing process before
indentation testing. However, the obtained accuracy seems
to be acceptable.
5. Conclusions

This paper presents a new procedure for determining the
plastic stress–strain curve by means of a cyclic spherical
indentation test. Three model parameters occurring in the
Ludwig law s ¼ s0 þ k�m

p were identified. Starting from the
general solution of the spherical indentation test presented
in the paper by Hill et al. [1], we proposed a new
approximate formulae which correlates an elastic–plastic
penetration curve, its derivatives, and radius of contact
boundary, with three parameters of the constitutive model.
In view of these formulae, the special identification
procedure was developed. To apply the procedure, one
should measure the cyclic loading–unloading–reloading
penetration curve and the radius of contact boundary at
the points of loading reversals. Taking into account
previous works of the authors, it can be concluded that
the identification of two material parameters (Ramberg–
Osgood model) requires a measurement of two quantities:
force and penetration depth. However, to identify three
parameters (Ludwig model), one should measure three
quantities: force, penetration depth, and contact radius.
Similar conclusions result from the work [15], where both
indentation depth and contact area also have to be
measured in a sharp indentation test. It should be noted
that most identification methods reviewed in Section 1 are
concerned with identification of two plastic hardening
parameters of the stress–strain curve.
To verify the procedure, the parameters of seven

materials were identified. The required indentation para-
meters were specified using numerical indentation experi-
ments. The accuracy of the results is satisfactory, however
it can be improved by better evaluation of the constants b1
and w in Eqs. (28) and (29). A more accurate evaluation
can be achieved by means of extensive numerical simula-
tions for various combinations of material properties. The
accuracy of the method depends also on the curve fitting
procedure applied to approximate the points of elastic–
plastic penetration curve which have to be differentiated,
thus generating the plastic compliance curve, dhp/dP,
which is used to specify so and then is integrated to obtain
hp(P). The curve fitting process should be executed very
carefully. From the sequence of steps in the identification
procedure, it follows that the error in identification of the
initial yield stress affects the accuracy of parameters k and
m specified in the next step. However, one can observe in
the case of material III, that even if the error of so is
relatively significant, the determined hardening moduli are
greater in the small strain range than the actual values, and
the whole plastic hardening curve is determined with good
accuracy, Fig. 12.
It should be noted that the accuracy of the proposed

method is considerably better in the case of numerical
experiments than in the case of presented physical
experiment. This fact can result from errors in the
determination of compliances (derivatives) of experimen-
tally specified penetration curves and in the measurement
of a.
The accuracy of the physical example can be consider-

ably improved using a more accurate experimental stand.
The method is very sensitive to the accuracy of the contact
radius measurement.
The proposed procedure together with the method of

Young modulus identification presented in Ref. [19] allows
for specification of four parameters of the elasto-plastic
tension curve from the spherical indentation test. This
constitutes an essential improvement with respect to
available methods. However, further work leading to
refinement of the procedure is required.
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S. Kucharski, Z. Mróz / International Journal of Mechanical Sciences 49 (2007) 1238–12501250
Acknowledgements

This paper was partially supported by the grant No.
3T08C 02129 of Ministry of Science and Higher Education.

References

[1] Hill R, Storakers B, Zdunek AB. A theoretical study of the Brinell

hardness test. Proceedings of the Royal Society of London

1989;423:301–30.

[2] Biwa S, Storakers B. An analysis of fully plastic Brinell indentation.

Journal of Mechanics and Physics of Solids 1995;43:1303–33.

[3] Field JS, Swain MV. Determining the mechanical properties of small

volumes of material from submicrometer spherical indentations.

Journal of Materials Research 1995;10(1):101–12.

[4] Adler TA, Dogan ON. Damage by indentation and single impact of

hard particles on a high chromium white cast iron. Wear

1997;203–204:257–66.

[5] Taljat B, Zacharia T, Kosel F. New analytical procedure to determine

stress–strain curve from spherical indentation data. International

Journal of Solids and Structures 1998;35:4411–26.
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