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Abstract In the article, we discuss the state of art and

perspectives in deterministic and stochastic models of

NFjB regulatory module. The NFjB is a transcription

factor controlling various immune responses including

inflammation and apoptosis. It is tightly regulated by at

least two negative feedback loops involving IjBa and A20.

This mode of regulation results in nucleus-to-cytoplasm

oscillations in NFjB localization, which induce subsequent

waves of NFjB responsive genes. Single cell experiments

carried by several groups provided comprehensive evi-

dence that stochastic effects play an important role in

NFjB regulation. From modeling point of view, living

cells might be considered noisy or stochastic biochemical

reactors. In eukaryotic cells, in which the number of pro-

tein or mRNA molecules is relatively large, stochastic

effects primarily originate in regulation of gene activity.

Transcriptional activity of a gene can be initiated by trans-

activator molecules binding to the specific regulatory

site(s) in the target gene. The stochastic event of gene

activation is amplified by transcription and translation,

since it results in a burst of mRNA molecules, and each

copy of mRNA then serves as a template for numerous

protein molecules. Another potential source of variability

can be receptors activation. At low-dose stimulation,

important in cell-to-cell signaling, the number of active

receptors can be low enough to introduce substantial noise

to downstream signaling. Stochastic modeling confirms the

large variability in cell responses and shows that no cell

behaves like an ‘‘average’’ cell. This high cell-to-cell var-

iability can be one of the weapons of the immune defense.

Such non-deterministic defense may be harder to overcome

by relatively simple programs coded in viruses and other

pathogens.
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Introduction

There are two main ways in which mathematics interacts

with biology. The first leads indirectly through physics and

chemistry. Since mathematics is proved to be an efficient

language of physics, and quantum physics is the basis for

modern chemistry, this approach appears natural and

sound. The idea that biology might be reduced to physics is

at least as old as quantum physics and was supported by

outstanding physicists, such as Bohr and Schrödinger. This

idea seems to be not as widely supported by biologists as it

is by some mathematicians and physicists. Despite a con-

troversy, most scientists on either side will agree that

biology may be reduced to physics in the sense that bio-

logical processes follow, or are not contradictory to,

physical laws. However, this does not mean that one can

solve biological problems, like kinetics of cell cycle, by

solving the Schrödinger equation. In fact, we cannot even

perform a complete numerical simulation of protein

T. Lipniacki (&)

Polish Academy of Sciences, Institute of Fundamental

Technological Research, Swietokrzyska 21, 00-049 Warsaw,

Poland

e-mails: tomek@rice.edu; tlipnia@ippt.gov.pl

T. Lipniacki � M. Kimmel

Department of Statistics, Rice University, 6100 Main St.,

MS-138, Houston, TX 77005, USA

M. Kimmel

Systems Engineering Group, Silesian Technical University,

Akademicka 16, 44-100 Gliwice, Poland

Cardiovasc Toxicol (2007) 7:215–234

DOI 10.1007/s12012-007-9003-x



folding, and therefore, from the physical standpoint, we

cannot determine the protein function based on the amino

acid sequence. This latter problem may be possibly over-

come by application of faster computers. Nevertheless, it

appears naive to expect that we may ever have enough

computing power to solve the cell evolution based purely

on physical laws.

This impossibility justifies the existence of mathemati-

cal biology. Mathematical biology starts from elementary

biological experimental findings in order to make the more

complex predictions. In the area of molecular biology the

experimental finding may have a form of matrix M1 of

interactions between a set of proteins Pi or of matrix M2 of

interactions between transcription factors Fi and genes Gi.

We may determine the second matrix by microarray

experiments, but in most cases we may not predict by pure

physical considerations that the transcription factor Fi

binds stably to the promotor region of gene Gi. Although

from the physical standpoint, this is not the solution, we

may build a mathematical model based on experimental

knowledge collected in matrices M1 and M2 and make

useful predictions about the behavior of the regulatory

pathway involving the components. Obviously mathemat-

ical modeling may not contradict physical laws, but it may

not necessarily be based on physical reasoning. The gaps,

too difficult to be solved by physical calculations, can be

filled by experimental knowledge.

We should keep in mind that the status of mathematical

modelling in biology is weaker than in physics or chem-

istry. In physics there are a few elementary laws, and

mathematics used to derive more complex relations from

the elementary laws. In mathematical biology, we do not

start from elementary laws, and typically we do not have

enough data to make our models unique. There always

exists the risk that new experiments will contradict our

predictions. One might only hope that rapidly developing

experimental techniques, allowing quantitative description

of processes at molecular level, together with steadily

improving computational methods, will bring biophysics

and mathematical biology closer. This should result in

more accurate physical–mathematical models of biological

processes.

Modeling of regulatory networks typically starts from

cartoons summarizing preliminary knowledge, in which

the potentially important interactions between the com-

ponents are depicted by ‘‘suppressing’’ or ‘‘activating’’

arrows. Such cartoons may relatively simply describe very

complicated metabolic or regulatory networks. However,

to allow quantitative analysis, they must be transformed

into mathematical models in which arrows are replaced

by differential equations in a deterministic description or

by particle–particle interactions in a stochastic

description.

Most regulatory network models are based on the

assumption that the reacting substrates are well-mixed in

the cell nucleus and in the cytoplasm and consider only

transport between but not within these two compartments.

This assumption, when used in modeling of single cells,

expresses lack of knowledge of spatial distribution of cell

components. However, this set up is also commonly used

in modeling of cell populations, as if cell populations could

be represented by aggregate nucleus and aggregate cyto-

plasm, with boundaries of cells dissolved. For this, the only

justification is practical usefulness.

Deterministic modeling hinges upon the assumption that

the number of reacting particles is fairly large, so the

chemical reactions between the components might be

modeled using ordinary differential equations (ODEs)

based on mass action law. In bacteria such approximation

is poorly justified since typically the number of mRNA

transcripts and proteins is very low. Mammalian cells are

about three orders of magnitude larger than bacteria, so the

deterministic approximation is much better justified.

However, even in this case, some reactions such as mRNA

transcription involve very small numbers of molecules

(two DNA copies), which limits the accuracy of the mass

action formulas.

As noted above, ordinary differential equations some-

times are considered adequate to describe cell population

models, i.e., models which predict the average behavior in

the population. However, the average behavior may be

very different from the behavior of any cell in the popu-

lation. If, for example, half of cells in the population

choose proliferation pathway and the other half the apop-

totic pathway, then the average will not correspond to any

biological process.

The most accurate tool of modeling of single cells,

involving low-molecule number effects, is the Gillespie

stochastic simulation algorithm [1]. This algorithm is

widely applied for regulatory networks in bacteria, how-

ever, in mammalian cells, in which the number of reacting

proteins may be of order of 105, it becomes numerically

inefficient.

There are several way to speed up the Gillespie algo-

rithm. The simple and natural one, proposed by Haseltine

and Rawlings [2], splits the reaction channels into fast and

slow. Fast reactions are described by the deterministic-rate

equations, while the slow reactions are considered sto-

chastic. This approach typically speeds up simulations by

several orders of magnitude. This advantage may become

less important in nearest future due to growing numerical

capabilities, which might allow direct Monte Carlo simu-

lations of large networks. The other advantage of splitting

reactions into slow and fast is that it helps to identify

‘‘switching points’’ in a regulatory network. At such points,

the stochastic effects dominate and may control the fate of
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individual cells in population. Detailed analysis of these

switching points is crucial for understanding of the whole

pathway.

The aim of the present review is to discuss general

issues of deterministic and stochastic modeling of regula-

tory and signaling pathways with a special focus on recent

developments on NFjB signaling. Nuclear factor jB

(NFjB) regulates numerous genes important for pathogen

or cytokine inflammation, immune response, cell prolifer-

ation and survival (reviewed by Brasier [3] and Hoffmann

and Baltimore [4]). In mammals, the NFjB family of

transcription factors contains five members but the ubiq-

uitously expressed p50 and RelA heterodimer is

responsible for the most common inducible NFjB binding

activity. In resting cells, p50|RelA heterodimers referred

herein to as NFjB are sequestered in the cytoplasm by

dimerization with members of another family of proteins

called IjB. This family includes several proteins, but most

of the IjB-family inhibitory potential is carried by IjBa,

whose synthesis is controlled by a highly NFjB-responsive

promoter, resulting in autoregulation of NFjB signaling

[5]. Activation of NFjB requires degradation of IjBa,

which allows NFjB to translocate into the nucleus, bind to

jB motifs present in promoters of numerous genes and

upregulate their transcription. NFjB activating signals

converge on the cytoplasmic IjB kinase (IKK), a multi-

protein complex that phosphorylates IjBa leading to its

ubiquitination and then to its rapid degradation by the

proteasome. Activation of IKK kinase is induced by vari-

ous extracellular signals including tumor necrosis factor-

alpha (TNFa), interleukin-1 (IL-1) and lipopolysaccharide

(LPS) through complicated, not fully resolved, transduction

pathways. IKK inactivation is controlled by the zinc finger

protein termed A20, the transcription of which, like that of

IjBa, is strongly NFjB responsive and generates a second

negative feedback loop in NFjB signaling [6]. Mice defi-

cient in A20 develop severe inflammation and cachexia,

are hypersensitive to TNF, and die prematurely [7].

The article is organized as follows; first we discuss

background issues of NFjB models, then we review

existing deterministic and stochastic models and conclude

with discussion and further perspectives.

Background on NFjB Pathway Models

Immune response is regulated by a number of intercon-

nected regulatory and signaling pathways, see [8] for recent

review. These pathways have some features in common

and their modeling encounters common problems. Signal-

ing pathway involves several distinct stages and process:

Accommodation of extracellular or intracellular signals

(receptors), amplification of the signal (transduction

pathways), transport between nucleus and cytoplasm, gene

regulation, mRNA transcription, and protein translation.

The core of the pathway is typically the regulatory module,

which involves feedback or feedforward loops. In the case

of NFjB this core is formed by the IjBa–NFjB signaling

module. The inhibitory protein IjBa suppresses NFjB

transcriptional activity by binding to NFjB molecules and

keeping them inactive in the cytoplasm. In turn, NFjB

positively regulates IjBa transcription by binding the IjBa
promoter. The module is driven by activated IKK kinase,

which phosphorylates IjBa, which leads to its ubiquitina-

tion and then to its rapid degradation by the proteasome

(reviewed in [9]). Activity of IKK kinase results from

various stimulations, and is attenuated by another NFjB-

responsive protein A20, which provides the second nega-

tive feedback loop. In Fig. 1, we present the schematic

NFjB regulatory pathway based on models by Hoffmann

and coworkers [10, 11], Lipniacki et al. [12] and Park et al.

[13]. The core may be stimulated by various signals like

TNFa, IL-1, LPS, and viruses or other pathogens, which

converge at the level of IKK. The output signals stream

from the core by means of over 100 gene products, whose

transcription is regulated or coregulated by NFjB. There

are at least three classes of NFjB regulated genes

expression of which peaks at about 1, 3, and 6 h of con-

tinuous NFjB stimulation. Two NFjB inhibitors IjBa and

A20, as well as inflammation controlling interleukines

belong to the first group of early genes, which may be

upregulated even by a short 5-min pulse of TNFa stimu-

lation. The later genes require prolonged stimulation. In the

first approximation the feedback-regulated core can be

understood as an input–output box, which transforms the

external signal to pulses of active nuclear NFjB.

The common building blocks of deterministic models

are ODEs based on the mass action law, supplemented by

cytoplasm–nucleus exchange ODEs. In many cases, the

fast catalytic reactions are modeled by Michaelis–Menten

formulas which allows reducing the number of equations.

In modeling of the NFjB pathway, the key processes are

– mRNA transcription and protein translation of NFjB

inhibitory proteins: IjBa (and other IjB isoforms) and

A20;

– inter compartment transport of IjBa, NFjB and their

complexes;

– formation of protein complexes;

– catalytic activation of IKK;

– catalytic degradation of IjBa (and other IjB isoforms)

due to IKK-induced phosphorylation and subsequent

ubiquitination.

In stochastic modeling the same reactions are consid-

ered, but part or all of them they are simulated by

stochastic algorithms. As already said the exact method is
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the Gillespie algorithm in which all the reaction are con-

sidered stochastic. We highlight the approximate approach

in which only reactions involving gene activation and

inactivation are modelled as stochastic, while the rest of

reactions involving transcripts and proteins are modeled by

ODEs.

Modeling Stochastic Gene Expression

Stochasticity in gene expression may arise from fluctuation

in gene activity [14], mRNA transcription, protein trans-

lation and oligomerization [15–18], reviewed recently in

[19]. Figure 2 illustrates the main steps in gene expression.

Control of gene activity is mediated by transcription factors

which may bind to the specific promoter regions and switch

the gene on or off. When the gene is active, RNA poly-

merase may bind to the gene promoter and initiate mRNA

transcription. Next, mRNA is edited and exported from the

nucleus to the cytoplasm, where the protein translation

occurs. Accordingly, a single event of gene activation

results (if the activation period is sufficiently long) in a

burst of mRNA molecules, which is then translated into an

even larger burst of proteins [14, 20, 21]. Stochasticity in

gene expression causes that the population of cells exhibits

a large cell-to-cell variability, as observed for example, by

Takasuka et al. [22] and Stirland et al. [23], for mamma-

lian cells, Raser and O’Shea [24], for budding yeast

(Saccharomyces cereviciae) or Elowitz et al. [25], for

bacteria (Escherichia coli).

Fig. 1 Schematic of the NFjB regulatory pathway activated by

TNFa, including the features of Hoffmann et al. [10, 11], Lipniacki

et al. [12], Park et al. [13] models. (a) TNFR1 receptor activation and

signal transduction. Ligand binding leads to trimerization of the

TNFR1 receptor. Formation of the active receptor complex involves

binding of the several proteins including TRADD, TRAF2, and RIP.

Active receptor activates the IKKK (IKK kinase) transforming it from

the neutral IKKKn to the active form IKKKa. In turn IKKKa activates

IKK by transforming it to the active state IKKa, in which it is capable

of phosphorylating the IjB proteins (IjBa, IjBe, IjBb). (b)

NFjBjIjBa=IjBe autoregulatory loop. NFjB is found in an inacti-

vated complex in the cytoplasm with its inhibitor IjBa. IKKa,

phosphorylates and degrades both free and NFjB complexed IjBs.

Liberated NFjB enters the nucleus to induce transcription of IjBa,

IjBe and A20 genes. The IjBa protein is rapidly resynthesized, enters

the nucleus and recaptures NFjB back into the cytoplasm. The IjBe
protein is also degraded due to IKKa-induced phosphorylation and

then resynthesized [11] but at slower rate than IjBa. However, in the

continued presence of IKKa, the resynthesized IjBa/IjBe are

continuously degraded, resulting in a continued nuclear NFjB

translocation. (c) The NFjB-A20 autoregulatory loop. A second

level of negative autoregulation occurs with the synthesis of A20.

A20 is an ubiquitin ligase that degrades signaling intermediates

coupling the TNFa receptor with continuous IKK activation, and

directly associates itself with IKKa, converting it to the catalytically

inactive IKKi. It leads also to RIP ubiquitination and degradation

attenuating receptors activity
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Let us consider a single haploid gene, expression of

which is controlled by regulatory factors Fi. These can be

transcription factors which promote mRNA polymerase

binding and thus transcription or repressors which switch

the gene off. The simplified model depicted in Fig. 2

involves three classes of processes, namely; gene activa-

tion/inactivation, mRNA transcription/decay, and protein

translation/decay. It is assumed that the gene can be

transformed into the active state denoted by A with a

propensity (rate) c(Fi), and transformed into inactive state

denoted by I with propensity b(Fi), due to binding and

dissociation of regulatory factors, respectively. We further

assume that mRNA transcript molecules are synthesized at

a rate G(t)H, where G is a binary variable describing the

state of a gene: G(A) = 1 and G(I) = 0 [14, 26–28]. Protein

translation proceeds at a rate Kx(t), where x(t) is the

number of mRNA molecules. In addition mRNA and

protein molecules are degraded at rates s1 and s2, respec-

tively. The reactions described can be summarized as

follows:

I�!cðFiÞ
A; I�!bðFiÞ

A; ð1Þ

A�!GH
mRNA�!s1 /; ð2Þ

mRNA�!K protein�!s2 /; ð3Þ

where the degradation of gene products is represented by

symbol /. The resulting protein may then form complexes

with other proteins, may translocate between cytoplasm

and nucleus, and eventually may be itself the regulatory

protein for other genes or for its own gene.

The state of the system is given by the triple (x(t),

y(t), G(t)), where y(t) is the number of protein molecules. It

the case when the transition coefficients c and b are con-

stant, equations (1–3) describe the so-called Markov

process, i.e., the process without memory, for which the

propensity function of the transition from state (x(t), y(t),

G(t)) to the state ðx0ðt þ DtÞ; y0ðt þ DtÞ; G0ðt þ DtÞÞ
depends solely on the triple (x, y, G). In the case, when

functions c(Fi) and b(Fi) are not constant, in order to make

the system Markovian, one must include the processes

governing the evolution of Fi. Unfortunately, in most cases

the evolution of regulatory proteins Fi will depend to the

other proteins or protein complexes. Finally, we may end

up on the system describing the evolution of the whole cell,

which again is Markovian only if we neglect the extra-

cellular influence. The are two exact methods to analyze

evolution of the Markovian systems. The most straight-

forward is direct simulation using the Gillespie algorithm

[1]. In this method, for a given state of the our system

(x, y, G) the propensity ri of each possible reaction, such as

the change of a gene state, synthesis of mRNA or protein

and degradation of mRNA or protein, is determined. The

total propensity function is r =
P

ri. Now, we randomly

chose two numbers p1 and p2 from the uniform distribution

on (0,1). The first number is used to calculate time

t ¼ � lnðp1Þ=r at which the nearest reaction occurs. The

second number yields the index k of the nearest reaction

that occurs, based on the condition

Xk�1

i¼1

ri \ p2r �
Xk

i¼1

ri: ð4Þ

The other method is to compute a pair of probability

mass functions:

fxy ¼ P½# mRNA ¼ x;# protein ¼ y;G ¼ 0�; ð5Þ

gxy ¼ P½# mRNA ¼ x;# protein ¼ y;G ¼ 1�; ð6Þ

which constitute the joint probability that the number of

mRNA molecules (of considered species) is equal to x and

the number of protein molecules is equal to y, and the cell

is in the inactive (G = 0) or active (G = 1) state.

Time evolution of the distribution (5–6) is given by the

following system of chemical master equations [26, 29],

dfxy

dt
¼ bgxy � cfxy þ GðIÞHfx�1;y þ s1ðxþ 1Þfxþ1;y

� ðGðIÞH þ s1xÞfxy þ Kxfx;y�1 þ s2ðyþ 1Þfx;yþ1

� ðKxþ s2yÞfxy; ð7Þ

dgxy

dt
¼� bgxy þ cfxy þ GðAÞHgx�1;y þ s1ðxþ 1Þgxþ1;y

� ðGðAÞH þ s1xÞgxy þ Kxgx;y�1 þ s2ðyþ 1Þgx;yþ1

� ðKxþ s2yÞgxy: ð8Þ

Since x 2 N and y 2 N; the above is an infinite system

of equations. The first two terms in Eqs. (7 and 8)

correspond to the time change of probability, due to the

regulation of gene activity, next three terms correspond to

the time change of the probability due to the synthesis/

degradation mRNA molecules, while the last three terms

correspond to the synthesis/degradation of protein

molecules. Note that since G(I) = 0, the mRNA synthesis

terms are absent in Eq. 7. The master equations (7 and 8)

describe exactly the time-dependent distribution of the

Fig. 2 Simplified schematic diagram of gene expression
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underlying stochastic process, and thus their solution is of

primary interest. Although these equations may not be

solved analytically even for constant c and b, they can be

used to calculate the moments of distributions fxy, gxy.

As already said the two described approaches can be

applied to more complicated systems of arbitrary number

of genes expressing interacting proteins. However, they

become computationally very inefficient, when the number

of interacting molecules is large.

In recent years several approximate methods were

proposed that accelerate the Gillespie algorithm. One is

the s-leap method [30, 31], in which time is divided into

intervals of length s. It is required that s be short

enough so that the propensity functions for all reactions

remain almost unchanged. Assuming that this is satis-

fied, the number of reactions in each reaction channel is

a Poisson random variable with parameter equal to the

s-interval propensity for the reaction channel

considered.

Another method has been devised by Haseltine and

Rawlings for the case, when it is possible to separate the

system into slow and fast reaction channels [2, 32]. The

idea is to approximate the ‘‘fast’’ reactions either deter-

ministically or using chemical Langevin equations, and to

treat the ‘‘slow’’ reactions, as stochastic events with time-

varying reaction rates. Langevin equation [29] itself com-

bines deterministic description of evolution of, say,

variable x with a stochastic process, typically white noise,

g(t)

dx

dt
¼ f ðxÞ þ gðtÞ ð9Þ

and provides a more accurate description than a deter-

ministic equation. Recently the idea of Haseltine and

Rawlings has been improved by Cao et al. [33], who

introduced a virtual fast system, being Markovian, which

makes the analysis simpler. This improves the analysis in

the cases, when fast reactions are described by Langevin

equations. In the case in which the fast reactions are fast

enough to be described by the deterministic-rate equations,

the Cao et al. [33] method is reduced to that of Haseltine

and Rawlings [2]. Combining the s-leap method and Ha-

seltine and Rawlings’ idea, Puchalka and Kierzek [34]

proposed an approach in which slow reactions are simu-

lated exactly while fast reaction are simulated by s-leap

method.

Assuming that all reactions except these of gene acti-

vation and inactivation are fast, we may approximate

system (1–3) by the following [28],

I�!cðFiÞ
A; I �bðFiÞ

A; ð10Þ

dx

dt
¼ HGðtÞ � s1x; ð11Þ

dy

dt
¼ Kx� s2y: ð12Þ

In this approximation, stochasticity related to the

synthesis/degradation of mRNA and proteins is neglected.

We consider x and y as continuous variables and replace

Eqs. 2 and 3 by the deterministic reaction-rate equations.

In the next section, we show the implementation of this

approach to the NFjB model.

Experiment Versus Modeling

From the modeling perspective there are three classes of

experimental data:

– Population measurements, such as Electrophoretic

Mobility Shift Assay (EMSA) Western and Northern

blots, kinase activity assays, and DNA-microarrays.

– Single cell, single time point measurements, such as

flow cytometry and in situ hybridization.

– Single cell evolution experiments, such as experiments

with use of fluorescently tagged proteins, and stable

and transient transfections.

The main advantage of population measurements in

addition to their relative simplicity is that they measure

a relatively unperturbed system or the system perturbed

in the way we want it to be. The disadvantage is the

averaging, which can make single-cell effects invisible.

Single cell, single time point measurements provide

information about time dependent distribution. The accu-

racy of such experiments is typically low but compensated

by a large number of cells which can be measured. Time

evolution of the distribution does not however contain

enough information to deduce single-cell dynamics. For

example the fact that the distribution is not time dependent

does not imply that single cell trajectories are constant in

time. As we will see, at later times from the beginning of

the TNFa stimulation, NFjB distribution remains almost

constant but all cells oscillate.

The stochastic models considered show that both

intrinsic and extrinsic noise can cause population of

oscillating cells to become desynchronized. In the case of

NFjB regulation, for the first 2–3 h after stimulation most

cells remain quite well synchronized, so the population

analysis make sense. Later on, the single-cell oscillations

are cancelled out by averaging. Therefore, at later time

points, data obtained by from population experiments can

be very misleading and may lead to wrong models.
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In contrast, in single-cells experiments, we may trace

single cell evolution but typically the system is strongly

perturbed. In transfection experiments the amount of

interacting proteins may be substantially increased. Since

the regulatory networks are nonlinear, it is naive to expect

that evolution of transfected cells will be identical as in

wild type cells. In the case of NFjB regulation the

increased level of RelA molecules leaves the period of

oscillations almost unchanged. This may be due to the

fact that even the normal level of RelA is high enough to

activate the NFjB dependent genes once NFjB enters the

nucleus. The same is not true for IjBa transfection; the

increased expression of the inhibitors substantially chan-

ges the oscillations [35]. The best solution would be to

replace genes of interest by their homologs coding for the

fluorescent protein, which is difficult experimentally.

Before such experiments are done, the natural but also

difficult solution for modelers is to run the model for

normal and elevated number of alleles. The model with

elevated expression should be then compared to single-

cell experiments, and the model with normal number of

alleles averaging over many runs with the population

data.

In recent years, several important studies of NFjB

regulation at the single-cell level have been performed

[36–39]. Using fluorescently tagged RelA and IjBa pro-

teins, these experiments enable observation of inter-

compartment translocations of both proteins, showing a

large heterogeneity in kinetics of cell responses to TNFa
or IL-1 stimulation. Nelson et al. [37], showed that the

rate of nuclear RelA accumulation in response to TNFa
stimulation depends on the initial RelA:IjBa ratio. In

cells with enhanced initial concentration of IjBa, the

nuclear import is considerably slower. In agreement with

Nelson et al. [37], Schooley et al. [39] found a broad

distribution of nuclear RelA levels in the cell population

at 10–90 min after IL-1 stimulation. Although these

experiments indicate a large variability in cell kinetics, it

is not straightforward to determine to which extent this

variability is caused by stochastic regulation of gene

expression, rather than being introduced by cell-to-cell

variation in the amount of transfected plasmids (or their

expression levels). In a recent experiment, Nelson et al.

[35], proved existence of long persisting single-cell

oscillations in NFjB signaling. Since cell-to-cell syn-

chronization decreases with time, these oscillations either

do not appear or appear strongly damped when observed

at the population level, but as concluded by the authors

they are important in control of expression of numerous

NFjB inducible genes. The point is that NFjB must

circulate between nucleus and cytoplasm where it may

become activated by a post-translational modification,

such as phosphorylation. Inhibition of its nuclear export

results both in NFjB dephosphorylation at Ser 536 after

about 3 h and in transitory jB-dependent luciferase

reporter gene expression that peaks after about 5 h [35].

In order to build reliable models, of paramount impor-

tance are experiments, which use various stimulation

protocols, such as with pulse and continuous stimulation,

pulse–pulse stimulation, knock outs, mutations blocking

particular protein functions. Such perturbations are in most

cases easy to simulate by the model, and they allow clar-

ifying the role of various components and relations

between these components.

Model Fitting

Typically many kinetic parameters are unknown, so the

model must be fitted based on experimental data. The

problem is far from trivial. The deterministic models are

commonly considered as population models and fitted to

population data, which have the form of blots, EMSA

assay, kinase activity assays, or microarray data. How-

ever, if the cells are not synchronized, the model which

accurately agrees with population data may not describe

any biological process. For example the single-cell

experiments and stochastic models suggest that in the case

of NFjB regulatory module several hours after TNFa
stimulation none of cell behave like the ‘‘average cell’’.

This is even more pronounced when one considers the

eventual fate of a particular cell, which in the case of

TNFa stimulation is either proliferation (survival) or

apoptosis.

For a reliable fit, one needs data collected using various

simulation protocols for most of model variables. For

example, the Hoffmann et al. [10] model was fitted based

on data coming from continuous and pulse stimulation

(with pulse duration of 5, 15, 30 and 60 min) for wild type

cells and cells with various knockouts of IjB isoforms.

Lipniacki et al. [12] model was fitted to data with various

time protocols and to wild type and A20 deficient cells.

One of methods is ‘‘manual’’ fitting. Its advantage is that

it can employ data which are not quantified, the second is

that it allows to base the fit on intuitive criteria and

information from different researchers. The main disad-

vantage is that is extremely time-consuming and thus

restricted to relatively small systems. The other disadvan-

tage is that the final result is researcher-dependent. In

Lipniacki et al. [12] the following fitting method was

proposed:

(1) Start from a reasonable set of parameters, which

produces a correct steady state for non-stimulated

cells.
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(2) Proceed with the signal initiated by stimulation along

the autoregulatory loops.

(3) Iterate item 2 until the fit to all data is satisfactory.

If there were no feedback loops in the pathway, the

proposed method would be quite efficient, but, since they

exist, it is necessary to iterate the signal tracing step several

times, until the fit is satisfactory. Once a satisfactory fit is

found, we observe that the set of parameters chosen to fit

the data is by far not unique. This ambiguity is mainly

caused by the lack of measurements of absolute values of

protein or mRNA amounts. The action exerted by some

components of the model on the rest of the pathway is

determined by their amounts multiplied by undetermined

coupling coefficients. Hence, once we have a good fit, we

may obtain another one using a smaller coupling coeffi-

cient and by proportionately increasing the absolute level

of the component. There also exist single parameters, the

value of which can be changed over a very broad range

without a significant influence on the time behavior of any

substrate or complex for which the data available.

In addition to the time-consuming manual fitting meth-

ods there exist several fitting engines. All these methods

encounter two major problem: first is data quantification,

which is sometimes difficult because of nonlinearities in

signal to data transformation. Second is ambiguity in

choosing the good fit criteria. The most popular least square

criterion can be very misleading for oscillatory trajectories:

For example, according to this method, the profile with

oscillations with slightly different period may give a worse

fit than no oscillations at all. As noted by Mendes [40] the

least-square criterion, when applied to oscillatory behavior

is biased toward optimizing frequency rather than ampli-

tude and overall qualitative shape of the curve. This is

because even a small shift in frequency can lead to a sub-

stantial increase in the sum of residuals, see Hoffmann et al.

[10] Supplementary Data and Mendes [41] for discussion.

Recently, Fujarewicz et al. [42] discussed the use of

reverse-time adjoint dynamical system to accelerate com-

putation of gradients in the steepest descent method. This

method was tried with a success on the same data set that

was used in [12].

There are still open issues regarding fitting the stochastic

models. In the case when stochasticity is only a corollary to

deterministic evolution, one may fit the deterministic

approximation to population data. However, when sto-

chastic effects dominate the evolution, the population data

can be quite misleading and may not be used to fit the

single cell trajectories. In such case a well-fitted model

should reproduce the average only after averaging over

many single cell simulations. It should also reproduce

experimentally measured time-dependent covariance of

model variables.

Review of Models of the NFjB Module

Deterministic Models

One-feedback Model: Interplay Between IjB Isoforms

The first comprehensive mathematical model of the IjB–

NFjB signaling module was proposed by Hoffmann et al.

[10] to analyze the interplay between three IjB isoforms.

The model describes oscillations in cytoplasm-to-nucleus

localization of NFjB upon the TNFa stimulation. These

oscillations are due to the negative feedback loop regula-

tion, and time delay. In resting cells NFjB is sequestered in

the cytoplasm by association with three IjB isoforms. The

feedback regulation is induced by the active IKK, which is

assumed to appear immediately after TNFa stimulation and

leads to phosphorylation and degradation of IjB. The

nuclear translocation of the transcriptional factor NFjB

causes induction of synthesis of its principal inhibitor

IjBa, which then binds to NFjB and carries it to the

cytoplasm. The time delay is due mainly to subsequent

processes of IjBa mRNA transcription, IjBa translation

and transport to the nucleus. These processes introduce

about half-an-hour gap between IjBa induction and NFjB

repression.

Oscillation damping is controlled by action of two other

members of IjB family: IjBb and IjBe, which also inhibit

NFjB by sequestering it in the cytoplasm, but are not

NFjB responsive. It is assumed that the mRNA tran-

scription efficiency of IjBb and IjBe is constant, while

that of the IjBa is a sum of constant term and a term

proportional to the square of the nuclear concentration of

NFjB. The model shows that the oscillation damping

decreases with decreasing magnitude of transcription speed

of IjBb and IjBe genes, eventually without any IjBb and

IjBe expression the oscillations are almost undamped. This

is confirmed by experiment in which the knockout of IjBb
and IjBe genes substantially lowers the oscillation damp-

ing. The experiment also shows that the knockout of IjBa
and any of IjBb and IjBe genes causes the cells no longer

to exhibit any oscillations, Fig. 3. In this case NFj B enters

the nucleus and remains there at almost unchanged level

for 6 h. Interestingly, it takes more time for NFjB to enter

the nucleus in the case when IjBa gene is knocked out.

This shows the higher stability of IjBb and IjBe proteins,

which bind NFjB in the absence of IjBa. The behavior of

the system upon the knockout of IjBa and any of IjBb and

IjBe genes is well predicted by the model, however, it is

necessary to increase 7-fold the transcription rate of IjBb
and IjBe genes compared to that assumed to fit the

experiment without any knockout. This, as stated by the

authors, suggests some crossregulation between IjB iso-

forms. It may also imply that IjBb and IjBe are to some
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extent NFjB responsive, in fact recently Kaerns et al. [11]

found that IjBe is the NFjB responsive, and it provides

negative feedback to control NF-jB oscillations. In this

case, the knockout of IjBa, increasing the level of nuclear

NFjB in resting cells, will result in higher expression of

IjBb and IjBe genes.

The mathematical representation of the model consists

of 23 ordinary differential equations (see [10] Supple-

mentary data) accounting for:

I. Transport between compartments: all IjB isoforms and

NFjB as well as IjBjNFjB complexes may exits in

cytoplasm and nucleus and their translocations are key

to the regulation. It is assumed that free NFjB quickly

translocates to the nucleus while IjBjNFjB complexes

translocate to the cytoplasm. Free IjB isoforms

migrate between two compartments. IKK is assumed

to be purely cytoplasmic.

II. Spontaneous degradation of IjB mRNA and proteins,

and active degradation of IjB proteins due to phos-

phorylation by the active IKK.

III. Formation of protein complexes, dimers IjBjNFjB

and Ij B/IKK, and trimers IjBjNFjBjIKK:

IV. mRNA transcription of jB isoforms: as already

stated, it is assumed that the transcription efficiency

of IjBb and IjBe is constant while the IjBa is a sum

of constant term and the term proportional to the

square of the nuclear concentration of NFjB.

The model describes the core of NFjB signaling mod-

ule, i.e., the IjBa–NFjB negative feedback loop, together

with IjBb and IjBe dampers. In last 4 years the model was

modified and used by various groups of researchers.

Further Work Expanding Hoffmann et al. Model

After Hoffmann et al. [10] model had been published,

Werner et al. [43] compared TNFa and LPS induced NFjB

activation, see Fig. 4. TNFa stimulation results in a sharp

narrow peak of IKK activity at about 10 min of stimula-

tion, followed by low tail. In the case of LPS stimulation

Werner et al. [43] found that the IKK activity gradually

grows due to the positive feedback loop controlled by

NFjB and IRF3 (interferon-regulatory factor 3) and

resulting in the TNFa synthesis, which in turn activates the

TNFa receptors. As a result the IKK activity peaks at

60 min and remains at a high level for the next hour. The

authors took as an input the experimentally determined

IKK profile and then calculates the evolution of the

downstream pathway, with the aid of Hoffmann et al. [10]

model. In this version of the model an even higher coop-

erativity is assumed in NFjB binding; the transcriptional

Fig. 3 Hoffmann et al. [10] model describing genetically reduced

systems. (a) Analysis of NFjBn by EMSAs of nuclear extracts

prepared at indicated times after stimulation fibroblasts with the

indicated genotype and wild type cells with TNFa (10 ng/ml). Arrows

indicate specific nuclear NFjB binding activity; asterisks indicate

nonspecific DNA binding complexes. (b) Computational modeling of

indicated genotypes. (c) Models of the signaling module, with

increasing IjBb and IjBe constitutive transcription rates, keeping the

IjBa transcription rate constant. mRNA constitutive synthesis for

IjBb and IjBe are increased fivefold (top to middle) and then

sevenfold (middle to bottom). The bottom panel represents the NFjBn

output predicted by a model with mRNA synthesis parameters

identical to those employed in the single IjB isoform models of (b)
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efficiency is now proportional to the third power of NFjB

concentration. Prolonged IKK activity results in prolonged

NFjB nuclear localization, which peaks at about 70 min

and then remain almost constant for the next 3 h.

According to Covert et al. [44], the lack of oscillations in

the case of LPS stimulation, is due to the fact that NFjB

oscillatory module is stimulated through two separate

pathways introducing two different time delays. The fast

pathway involving MyD88 (myeloid differentiation pri-

mary response gene 88) results in IKK activation at

15 min, while the slower pathway involving Triff (TIR

domain-containing adaptor inducing IFN-beta) is delayed

by 30 min. This hypothesis is confirmed by experiments on

wild-type, and then MyD88 or Triff deficient mouse

embryonic fibroblast (MEF).

Recently the modified and expanded version of Hoff-

mann et al. [10] model was used to analyze NFjB

induction at a broad range of TNFa doses. Following

Lipniacki et al. [12] model, Cheong et al. [45] took into

account the difference in nuclear and cytoplasmic vol-

umes and included IKK activation with the rate

proportional to the initial TNFa dose. They found that, in

order to obtain the correct IKK activity profile, the rate of

IKK activation must decrease in time. As we will see the

same property is present in Lipniacki et al. [12] model, in

which the activation coefficient remains constant but

activation rate decreases due to depletion of the pool of

neutral IKK.

Two-feedback Model: A20 Controls IKK Activity

The aim of the second model [12] was to highlight the role

of the second negative feedback loop in NFjB regulation

involving A20 which controls IKK activity. The idea was

to simplify Hoffmann et al. model by approximating action

of three IjB isoforms by IjBa—the single species from

IjB family whose knockout is lethal [46], and which binds

the majority of cytoplasmic NFjB, and then to analyze

NFjB–A20–IKK feedback regulation by considering

behavior of wild type and A20 knockout cells. Like IjBa,

A20 is highly NFjB responsive and has a similar kinetics.

By incorporating the second inhibitor, the model accurately

predicts the profile of IKK activity for both wild type and

A20 knockout cells under TNFa stimulation.

The model involves two-compartment kinetics of the

activators IKK and NFjB, the inhibitors A20 and IjBa,

and their complexes. It is assumed that the cytoplasmic

complex IKK may exist in one of three forms:

• neutral (denoted by IKKn), synthesized ‘de novo’ and

specific to resting cells without any extracellular stim-

ulus such as TNFa or IL-1;

• active (denoted by IKKa), arising from IKKn upon

TNFa or IL-1 stimulation;

• inactive, but different from the neutral form, arising

from IKKa possibly due to overphosphorylation

(denoted by IKKi).

Fig. 4 Stimulation of NF-jB module by LPS, Werner et al. [43]. (a)

The schematic illustrates the core of IjBjNFjB signaling module:

many physiological signals impinge on the signaling module to

produce different physiological responses. (b) IKK activity is

regulated by a signaling pathway—specific negative and positive

feedback loops. The schematic shows the A20-mediated negative

feedback loop in the TNFR signaling pathway, and a positive

feedback/feedforward loop in the LPS signaling pathway that is

controlled by NFjB and possibly by IRF3, resulting in the expression

of TNFa. Both feedback mechanisms allow stimulus-specific tempo-

ral profiles of IKK activity, which result in stimulus-specific NFjB

and gene expression patterns
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In resting cells, the unphosphorylated IjBa binds to

NFjB and sequesters it in an inactive form in the cyto-

plasm. In response to extracellular signals such as TNF,

IKK is transformed from its neutral form (IKKn) into its

active form (IKKa), capable of phosphorylating IjBa,

leading to IjBa degradation. At the same time NFjB is

activated by RelA phosphorylation [47]. Degradation of

IjBa enables activated NFjB to enter the nucleus, where it

rapidly upregulates the transcription of mRNAs of inhibi-

tory proteins A20 and IjBa, as well as that of numerous

other genes. The newly synthesized IjBa leads NFjB out of

the nucleus and sequesters it in the cytoplasm, while A20

inhibits IKK by converting IKKa into the inactive form

IKKi, a form different from IKKn, but also not capable of

phosphorylating IjBa. Considering IKK, we assume that

each form of IKK undergoes degradation with the same

degradation rate, and that IKKa can form transient com-

plexes with IjBa proteins or IjBajNFjB complexes.

Formation of these complexes leads to IjBa phosphoryla-

tion, ubiquitination, and degradation in the proteasome.

The inhibitor IjBa migrates between the nucleus and

cytoplasm and forms complexes with IKKa and NFjB

molecules. The nuclear IjBa|NFjB complexes quickly

migrate into the cytoplasm. The second inhibitory protein

A20 is considered only in the cytoplasm, where it triggers

the inactivation of IKK. It is assumed that the transfor-

mation rate from IKKa into IKKi is a sum of a constant

term and a term proportional to the amount of A20. The

total amount of NFjB is kept constant, i.e., it is assumed

that its degradation is balanced by synthesis, but the syn-

thesis and degradation terms are omitted. For IKK, we have

synthesis and degradation terms, but since all IKK forms

degrade with the same degradation rate, after the equilib-

rium is reached, the total amount of IKK (i.e., IKKn +

IKKa + IKKi) remains roughly constant.

Transduction Pathway: From Receptors to IKK Activation

Both models discussed do not analyze how the signal is

transduced from the receptors to IKK. The original Hoff-

mann et al. [10] model simply assumes the IKK activity

profile. In our model this profile (in the case of TNFa
stimulation) results from the modeling of A20 feedback

loop, but still the analysis of pathway between the TNFa
receptors and IKK is missing. The first attempt to fill the

gap between TNFa receptors and NFjB signaling module

was made by Cho et al. [48] who proposed the model for

TNFa mediated-signaling cascade leading to NFjB liber-

ation (IjBa degradation) or to formation of a FADD

complex and apoptosis. The signaling pathway involves

activation of TNF receptor 1 (TNFR1) by TNFa and the

formation of the TNFR1jTRADDjRIPjTRAF complex

(TRADD = TNFR-associated death domain, RIP = recep-

tor interacting protein, TRAF = TNF receptor-associated

factor) in a series of enzymatic reactions. Then the receptor

complex activates IKK, which in turn phosphorylates IjBa.

Authors assume the classical scheme for enzymatic

reaction

E þ S�
k1

k2

ES�!k3
E þ P; ð13Þ

where E is an enzyme which combines with substrate S to

form an enzyme–substrate complex with rate constant k1. The

process is reversible, and the complex may dissociate into E

and S with rate constant k2 or it may further proceed to form a

product P with a rate constant k3. The whole pathway is

described by the system of 18 ordinary differential equations.

Since the transition rates were not available, the proposed

model is not realistic from the biological perspective; the

assumed concentrations of substrates are of order of 20 lM,

what seems too large. As a result all reactions proceed too fast

and for example the peak of IKK activity happens after about

30 s, while in reality IKK activity reaches its maximum at

about 10 min of TNFa stimulation. Nevertheless the model

constitutes a step towards understanding of the TNFa medi-

ated signaling pathway and clearly showed the transient

nature of IKK activity.

Further developments of TNF-NF-jB signaling are due

to Park et al. [13] who combined Hoffmann et al. [10]

model and the model of transduction pathway proposed by

Cho et al. [48] in a more comprehensive model consisting

of 52 ODEs. The aim of the model was to analyze

responses of HepG2 cells and HepG2.2.15 cells (HepG2

cells producing hepatitis B virus) to TNFa stimulation.

Hepatitis B virus (HBV) infection induces sustained NFjB

activation, in a manner similar to TNFa stimulation.

However, the response to the virus and TNFa does not add

up. In contrast, when HepG2.2.15 cells are stimulated by

TNFa, their response (the magnitude of NFjB oscillation)

is weaker then in the case of uninfected cell. This makes

them more vulnerable to apoptosis ([48], Fig. 1).

The model offers the following explanation of this

‘‘paradox’’: the amplitude and period of NFjB oscillations

do not depend on the absolute level of active IKK (IKKa),

but rather on the change of this level. The drop of the IKKa

level induces oscillations, but of the opposite phase. In

HepG2 cells not producing HBV, the initial IKKa level is

low and TNFa stimulation results in sharp rise of IKKa

inducing NFjB oscillations with high amplitude. In

HepG2.2.15 cells, according to experimental data, initial

levels of IKKa and nuclear NFjB are substantially higher,

thus one may expect a smaller change in IKKa level after

the TNFa stimulation. In order to obtain initial levels of

nuclear NFjB and IKKa in HepG2 and HepG2.2.15 cells in

accordance with the experimental data, additional factors
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X and Y are added to the model. This modification of

initial conditions enables to obtain the high-amplitude

oscillations for HepG2 and lower amplitude oscillations

with shorter period for HepG2.2.15 cells.

Paradoxically, experiments show that the TNFa stimu-

lation of HepG2.2.15 cells induces NFjB oscillations,

which are in the opposite phase to the uninfected HepG2

cells. After the TNFa stimulation the level of active NFjB

first decreases then grows. In order to simulate this

undershot effect, a further modification to the model is

introduced. Namely it is assumed that in HepG2.2.15 cells

TRAF is inhibited by phosphorylated form of NIK which

attenuates IKKK and the IKK activity.

The strongest discrepancy between Park et al. [13] and

Lipniacki et al. [12] is in the IKK activity profile.

According to Lipniacki et al. model, IKK activity is

transient, the high peak at about 10–15 min after the TNFa
stimulation is followed by a very low tail. In the case of

A20-deficient cells the tail is higher, but still much lower

then the peak. Elevated tail prevents the IjBa resynthesis

and the NFjB oscillations, as shown by the model and Lee

et al. [7] experiments. Once NFjB enters the nucleus, it

remains there at very high level. The transient character of

IKK activity was observed first by Delhase et al. [49] in

HeLa cells and then by Lee et al. [7] in mouse fibroblasts,

and then by Werner et al. [43]. This transient nature of IKK

activity is possibly due not to the phosphatase dephos-

phorylation but rather, as shown by Delhase et al. [49] to

overphosphorylation.

Stochastic Models

Stochastic Version of the NFjB Model

In this model [50], transcriptional regulation of A20 and

IjBa genes is governed by the rapid coupling between

NFjB binding and transcription. In this situation, stalled

RNA polymerase II is rapidly activated by NFjB binding

to enter a functional elongation mode, and requires con-

tinued NFjB binding for reinitiation. This is represented in

the model by tight coupling of NFjB binding to mRNA

transcription. In fact, the experimental analysis of the

kinetics of IjBa and A20 gene expression indicates that the

patterns of mRNA expression are tightly coupled with

NFjB presence in the nucleus, without appreciable time

delay [51]. This model cannot be extended to other NFjB

dependent genes that show distinct kinetics of induction. In

this situation, the so-called ‘‘late’’ genes, like Naf-1 (Nef-

associated factor 1) or NFjB2 show a peak of induction

6 h after NFjB binding. Activation of the late genes

apparently requires the activation or binding of other rate-

limiting regulatory factors [52]. Let us assume that all cells

are diploid, and both A20 and IjBa genes have two

potentially active homologous copies, each of them inde-

pendently activated due to binding of NFjB molecule to

specific regulatory site in gene promoter. Following [14,

21, 24, 26, 28, 53], we made the simplifying assumption

that each gene copy may exist only in two states; active and

inactive. When the copy is active the transcription is ini-

tiated, when the copy is inactive, transcription stops. The

gene copy is inactivated when NFjB molecule is removed

from its regulatory site due to the action of IjBa mole-

cules, which bind to DNA-associated NFjB, exporting it

out from the nucleus.

The most important is the single assumption that tran-

scription of A20 and IjBa genes turns on and off with

probabilities determined by regulatory factors. This dis-

tinguishes the applied approach from the deterministic one

in which the transcription speed is a function of concen-

trations of these factors.

We split the reaction channels into fast and slow. We

consider all reactions involving mRNA and protein mole-

cules as fast and the reactions of gene activation and

inactivation as slow. Fast reaction are approximated by the

deterministic reaction-rate equations.

According to the above, the mathematical representation

of the model [50] consists of 14 ordinary differential

equations (ODEs) accounting for:

• formation of complexes and their degradation;

• transport between nucleus and cytoplasm; and

• transcription and translation;

and of four algebraic equations expressing the propensity

functions of binding and dissociation of NFjB molecules

to regulatory sites in A20 and IjBa promoters. Let us

assume that both A20 and IjBa genes have two homol-

ogous copies independently activated due to NFjB

binding. It is assumed that in an infinitesimal time interval

Dt, the probability Pb of NFjB binding to regulatory sites

in each allele is proportional to the nuclear amount of

NFjB,

Pbðt;DtÞ ¼ Dt � q1 � NFjBnðtÞ: ð14Þ

NFjB dissociation probability, Pd, is a sum of a constant

term and a term proportional to nuclear concentration of

IjBa, which is capable of removing NFjB from regulatory

sites in both A20 and IjBa genes,

Pdðt;DtÞ ¼ Dt � ðq0 þ q2 � IjBanðtÞÞ: ð15Þ

It is assumed that NFjB binding and dissociation are

independent in homologous gene copies and that binding

and dissociation propensities rbðtÞ ¼ Pbðt;DtÞ=Dt and

rdðtÞ ¼ Pdðt;DtÞ=Dt are equal for each copy. The state of

gene copy Gi (i = 1,2) is Gi = 1 whenever NFjB is bound

to the promoter regulatory site, and Gi = 0 when the site is
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unoccupied. As a result the gene state G ¼ G1 þ G2 can

be equal to 0, 1 or 2. In this approximation the stochasticity

of single cell kinetics solely results from discrete regulation

of transcription of A20 and IjBa genes.

Let us assume that the transcription rate Trate is

Trate ¼ c2 þ c1 � ðG1 þ G2Þ: ð16Þ

Note that Eq. 16 naturally produces saturation in

transcription speed. When the nuclear amount of

regulatory factor NFjB is very large, then the binding

probability is much larger than the dissociation probability,

and the gene state will be G = 2 for most of the time. In

such case the transcription will proceed at a maximum rate,

c2 + 2c1. This rate has been measured for b-actin by single

RNA transcript visualization as four mRNA molecules per

minute per one allele [53]. In our calculations, we assumed

c1 = 0.075 mRNA/s, which corresponds to 4.5 mRNA

molecules per minute. It is worth noting that the protein

production rate is proportional to the product of

transcription and translation efficiencies. Therefore,

having solely information about the amount of protein

one may not determine these two coefficients. When fitting

the model, it was found that even if c2 = 0, transcription is

regulated satisfactorily, and therefore to minimize the

number of free parameters we assume c2 = 0. For the same

reason it was assumed that q0 = 0 in Eq. 15.

In model computations, the amounts of all the substrates

are specified as the molecule counts. Since the ODEs are

used to describe most of the model kinetics, amounts of

molecules are not integer numbers, but since these numbers

are in most cases much greater than 1, such description is

reasonable. The implemented numerical scheme follows

that of Haseltine and Rawlings [2].

Stochasticity of the model implies that simulations

performed with the same model parameters and the same

initial conditions, are different. Since each simulation

corresponds to the evolution in a single cell, therefore, only

the outcome averaged over many simulations corresponds

to experimental data obtained for a population of cells in

culture. As it can be seen in [50], with parameters fitted, the

proposed model is able to faithfully reproduce time

behavior of all variables for which the data is available:

nuclear NFjB, cytoplasmic IjBa, A20 and IjBa mRNA

transcripts, total IKK and IKK kinase catalytic activity

(IKKa) in both wild-type and A20-deficient cells.

The model was fitted based on the experimental data

from Lee et al. [7] and Hoffmann et al. [10] experiments

on wild type and A20-deficient mouse fibroblast cells.

We discuss briefly the main results coming from the

model.

Let us focus first on resting cell regulation ([50], Fig. 2).

In the absence of TNFa signal IKK remains in its neutral

(inactive) form IKKn. This implies that it may not

phosphorylate IjBa, which in turn degrades at a relatively

slow rate due to ‘‘natural’’ degradation. Until the amount of

IjBa exceeds that of NFjB, which is assumed to be con-

stant, equal to 60,000 molecules, all NFjB remains in

cytoplasmic complexes with IjBa. When due to natural

degradation the amount of IjBa falls below 60,000, some

NFjB (typically small fraction of cytoplasmic protein)

enters the nucleus, where it may bind in a stochastic way to

regulatory sites of IjBa and A20 promoters. Binding to

IjBa results in a burst of IjBa transcription followed by an

increase in IjBa protein level. In turn, free IjBa enters the

nucleus, takes NFjB out of its regulatory site and leads

almost all NFjB back into the cytoplasm. Binding to A20

promoter results in a burst of A20 transcription, but A20

may not terminate the NFjB binding. As a result, each time

NFjB enters the nucleus it causes a burst of IjBa, but not

necessarily of A20. Let us note that since all cells in the

population (in absence of external signal like TNF) behave

asynchronously, the average IjBa and A20 transcript and

protein levels in the cell population remain constant (plot

not shown). The relatively low transcript level observed for

IjBa and A20 in the population of unstimulated cells is

usually explained by the existence of some basal tran-

scription, independent to NFjB. However, our model

shows that, even if the basal transcription rate is zero, the

average IjBa and A20 mRNA levels may be positive and

constant in time for unstimulated cells.

In Fig. 5, we show the time behavior of the main vari-

ables of the single cell simulation together with the average

over population of 500 cells. The simulation was per-

formed for wild-type cells, in which all genes were

potentially active. At t = 1 h, the rectangular TNFa signal

is turned on for 6 h, i.e., until the end of the simulation

time. Under the TNFa signal, IKK is promptly transformed

into the active state IKKa and then into the inactive state

IKKi. As a result, the persistent TNFa stimulation causes a

pulse activation of IKK, followed by a low tail. The pulse

of IKKa initiates the cascade. First, the free cytoplasmic

IjBa and cytoplasmic complexes ðIjBajNFjBÞ are

degraded (Fig. 5b). The released NFjB builds up in the

nucleus, where it binds in a stochastic way to the regulatory

sites in IjBa and A20 promoters (Fig. 5d, e). Let us

assume the same binding and dissociation probabilities for

the IjBa and A20 genes. However, due to stochasticity,

their activity in a single run may be considerably different,

although in general it coincides with high nuclear levels of

NFjB. Due to the discrete regulation of trancriptional

efficiency, the IjBa and A20 transcript levels (Fig. 5f, g)

look saw-like, with kinks corresponding to binding and

dissociation events. The newly synthesized IjBa enters the

nucleus and leads almost all NFjB out of it (Fig. 5c), while

A20 (Fig. 5h) triggers IKK inactivation. Let us note that

since some NFjB molecules are present in the nucleus
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even in the absence of TNFa stimulation and may bind to

regulatory sites, the system (single cell) does not have a

steady state, neither in the absence nor in the presence of

the TNFa stimulation. The averaged kinetics is consider-

ably different from kinetics of any particular cell. Despite

the fact that each cell oscillates under extended TNFa
stimulation, all quantities averaged over many cells con-

verge to steady state levels. This effect is caused by a

growing desynchronization of cells. Prior to the TNFa
signal the cells are desynchronized (the single cell simu-

lations are started at 20–30 h prior to TNFa signal), it is the

TNFa signal that induces cell synchronization. The sharp

decrease in total IjBa, followed by build up of nuclear

NFjB is observed in all simulations (Fig. 6). Thereafter the

stochastic nature of NFjB binding causes that the peaks of

gene activity do not match, and this desynchronizes cell

kinetics. The activity of the IjBa and A20 genes, averaged

over a relatively large population, corresponds to the

nuclear NFjB level much better than it does in the singe

cell case.

In Fig. 6, we compare oscillations in nuclear NFjB

level predicted by the model, with those measured in

Fig. 5 Numerical solutions of

Lipniacki et al. [50] stochastic

model corresponding to a single

wild-type cell (thin line) and the

average over 500 simulations

(bold line). Persistent TNF a
activation starts at an hour.

Panels (a) to (h) the amounts of

selected substrates are

expressed in numbers of

molecules

Fig. 6 Lipniacki et al. [50] model simulations, and measurements of

Nelson et al. [35]. Four single-cell simulations or experiments are

represented by different lines. (a) Model simulations. Nuclear NFjB

following a persistent TNFa activation starting at t = 0. The total

amount of NFjB was elevated to 120,000 for this simulation. (b)

Nuclear to cytoplasmic RelA-DsRed fluorescence normalized to the

highest peak intensity. Cells were treated with continuous 10 ng/ml

TNFa
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single-cell experiments by Nelson et al. [35]. Since the

model was fitted based on data [7, 10] collected in exper-

iments on mouse embryonic fibroblast, while Nelson et al.

[35] did their experiments on SK-N-AS (human S-type

neuroblastoma) cells only a qualitative comparison is

possible. The cells analyzed were transfected with plasmids

expressing RelA fused to the red fluorescent protein (RelA-

DsRed). As reported, 91% of these control cells showed

prolonged oscillations in RelA nuclear–cytoplasmic local-

ization (N–C oscillations). These oscillations appeared

quite synchronous between cells in the first few cycles, but

than they became out of phase what explains why they

appear to be strongly damped when observed at the pop-

ulation level (Fig. 8). In this simulation the level of total

NFjB was elevated two times (with respect to the value

measured by Carlotti et al. for fibroblasts [36, 54]) to

120,000 in order to mimic transfection. Nelson et al. [55],

estimated that the average overexpression of RelA fusion

protein was 3–5 times that of endogenous RelA level. We

found that the persistence, amplitude, and period of these

oscillations is not very sensitive to the total amount of total

NFjB molecules. In Fig. 7, we compare the model

Fig. 7 Correlation of the total

NFjB level with the peak-to-

peak timing of NFjB

oscillations. Left column:
Nelson et al. [55], experiment

on SK-N-As cells. Right
column: Model predictions. The

line represents the average

calculated based on 100

simulations performed at each

point corresponding to the total

amount of NFjB equal to

10,000, 20,000, 30,000, 60,000,

120,000, and 180,000

molecules. The dots

corresponds to 500 single

simulations, each performed for

the amount of total NFjB

randomly selected from

distribution uniform on (10,000,

180,000)
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prediction of the correlation of the peak-to-peak timing

with the NFjB level to the data of Nelson et al. ([35],

Fig. 1) where, there is little or no correlation between the

RelA-DsRed expression level and subsequent peak timing

for SK-N-AS cells. According to the model, the 18-fold

increase in total NFjB causes about 1.6-fold change in

first-to-second peak timing, but less than 20% change in

subsequent peak timing. Similarly timing of the first peak

is not sensitive to the level of NFjB (Fig. 7).

Recently there was an interesting discussion between

Barken et al. [56], and Nelson et al. [55], concerning the

dependence of oscillation period and oscillation persistence

to the amount of NFjB. Barken et al. [56], based on the

Hoffman et al. [10] model showed that oscillation period

strongly depends on the assumed amount of total NFjB,

concluding that oscillations recorded in the overexpressed

feedback system do not allow one to conclude that oscil-

lations of the same persistence, amplitude, and period

occur in normal genetically unaltered cells. In fact,

according to the Hoffman et al. model [10], the 4-fold

NFjB overexpression causes that the second peak in

nuclear NFjB to appear not at 2 h (as normally) but at

5.5 h of persistent TNFa stimulation ([56], Fig. 1a). Even

the relatively small 1.5-fold NFjB overexpression causes

substantial alternations in the NFjB nuclear profile. This

prediction is not confirmed by experiment ([55], Fig. 1).

Following Nelson et al. [55], we expect that the substantial

delay of the second peak associated with the elevation of

total NFjB level is due to the Hoffmann et al. [10]

assumption that the inducible IjBa expression is a second

order polynomial in nuclear NFjB. As a result the 4-fold

change in NFjB level causes a 16-fold increase in IjBa
expression, which becomes so abundant that it would

inhibit NFjB nuclear re-entry for about 5 h. Such large

increase in IjBa expression seems to us to be biologically

unjustified: there is a maximal physiological expression

efficiency, which cannot be exceeded even if the regulatory

factor is fairly abundant. Our current model shows that

even the normal amount of NFjB is capable of turning

IjBa gene on (Fig. 5) for about 1/2 h during the first pulse,

which implies that further growth of NFjB nuclear level

does not cause a significant rise in IjBa expression.

Equation 16 in our model provides the natural saturation in

transcription speed, but even the simple modification in

which the second order polynomial is replaced by a linear

term results in reduced sensitivity of period to the NFjB

concentration ([12], Fig. 9) and ([55], Fig. 2).

Finally, let us also note that the oscillations predicted

by any of the deterministic models [10, 12, 55] have

essentially a different character than those in single cells,

as shown in Fig. 6b. Oscillation amplitude in determin-

istic models decreases exponentially to zero, or some

positive value with time, as opposed to the single-cell

oscillations for which the amplitude is not a monotonous

function of the peak number. For example in Fig. 6b, one

can observe that the third peak of one of trajectories is

higher than the second one, and that fourth peak of the

other trajectory is higher than the third one. In ([35],

Fig. 2a), the peak amplitude of red trajectory is growing

starting from the second peak, and the green trajectory

has third and fourth peaks higher than the second one. In

the latter case the fluctuations in peak amplitude can be

also due to the different kinetics of IjBa-EGFP and of

endogenous IjBa.

One may visualize the cell-to-cell variability by the

scatter plots showing, for example, the relationship

between nuclear NFjB and its primary inhibitor IjBa,

Fig. 8a. In resting cells, t = 0, there is almost no nuclear

NFjB, which is sequestered by IjBa in the cytoplasm. In

most of cells, the amount of total IjBa molecules is larger

than the amount of total NFjB molecules, which is kept

constant, equal to 60,000, during the time course of the

simulation. At t = 15 min and 30 min, almost all IjBa is

degraded and most of NFjB is present in the nucleus. Then

at 90 min, IjBa rebuilds and again leads most of the NFjB

out of the nucleus. Finally, 6 h after the beginning of TNFa
stimulation the cell population is at apparent equilibrium,

characterized by a relatively broad distribution of NFjB

Fig. 8 Stochasticity in NF-jB

signaling. (a) Scatter plots of

total IjBa versus nuclear NF-

jB at six times after start of

TNF stimulation. (b)

Trajectories projected on the

hyperplane of total IjBa,

nuclear NFjB, and time. Thin
lines denote three single cell

trajectories, while the bold line
denotes the averaged trajectory
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and IjBa levels, an effect caused by desynchronization of

the cell population. Despite the fact that the scatter plots in

Fig. 8a, reveal that variability among cells grows in time,

one may expect that there is a sizable fraction of cells the

evolution of which is close to the averaged evolution. If

fact, however, none of the cells behaves like the average, as

shown in Fig. 8b single-cell trajectories keep oscillating

although the steady state distribution is approached, and the

average trajectory resulting from averaging over 500 sim-

ulated cells stabilizes.

Direct Stochastic Stimulation of Hoffmann Model:

Magnitudes of Various Noise Sources

In order to estimate magnitudes of the potential contribu-

tions to cell-to-cell variability Hayot and Jayaprakash [57]

performed direct simulations of few variants of simplified

Hoffmann et al. [10] model. In all considerations the IjBb
and IjBe proteins are neglected.

Assuming that IBa transcription rate is linear as a

function of the amount of NFjB, the IjBa protein results

from following reactions

NFjBn �!
tr2

NFjBn þ IjBat; ð17Þ

IjBat �!
tr1

IjBat þ IjBa: ð18Þ

The first reaction describes production of IjBa
transcript from nuclear NFjB (with propensity tr2), the

second one synthesis of IjBa protein from IjBa transcript

(with propensity tr1). In this expression model the

fluctuations in gene activity are neglected, or are

considered to be fast enough to assume that average gene

activity is proportional to the amount of the NFjB. It is

shown that for transcription and translation rates

tr2 = 0.0582 min–1 and tr1 = 0.2448 min–1, corresponding

to the original values of Hoffmann model 2002 the

transcription noise is negligible and the cell-to-cell

variability is low. As show by Thatai and Oudenarden

[17], Kierzek [16], and Raser with O’Shea [24] the noise

grows with decreasing transcription speed. After decreasing

transcription rate 10 times and increasing translation rate 10

times (to keep the average protein production unchanged)

the cell-to-cell variability was substantially increased ([57],

Fig. 2 versus Fig. 1 h–j). The point is very interesting since

the inducible transcription rate in Hoffmann model [10] was

overestimated, and recently based on biological

considerations was decreased by the authors almost four

order of magnitude [12, 45]. This implies that the

transcription noise, and thus the cell-to-cell variability can

be even higher.

The next step is to consider the fluctuations in IjBa gene

activity. Now, the reactions considered are the following

DNA þ NFjB �!kb
DNA�; DNA� �!

kf

DNA þ NFjB;

ð19Þ

DNA� �!tr2
DNA þ NFjB þ IjBat; ð20Þ

IjBat �!
tr1

IjBat þ IjBa; ð21Þ

where DNA* denotes active DNA, (with NFjB molecule

bound). The main difference with respect to Lipniacki et

al. [50] transcription model is that these latter authors

assume that gene inactivation is due to binding of IjBa
molecules, which pull NFjB out of DNA. In Hayot and

Jayaprakash model NFjB dissociated at every synthesis of

IjBa mRNA. The difference is crucial since in [50] the

single binding of NFjB can result in transcription of many

IjBa mRNA molecules while in Hayot and Jayaprakash

[57] model it always results in production of a single

transcript molecule. When NFjB binding occurs rapidly

(kb = 1,200 min–1), then the transcription is the limiting

step, and the output is very similar to the previous model in

which the fluctuations in gene activity were neglected.

However, when binding is slow (kb = 12 min–1), and

compensated by 200 times higher translation rate then the

cell-to-cell variability is larger than in the previous model

([57], Figs. 4, 5). In fact since NFjB binding results only in

production of one IjBa molecule, the assumption that the

promoter binding is weak is almost equivalent to the

lowering of the transcription rate. This explains why the

observed variability is still smaller than in our model in

which the fluctuations in gene activity lead to burst of

mRNA molecules.

Hayot and Jayaprakash [57] consider also the extrinsic

noise due to both variability in total amount of NFjB

molecules and initial amount of active IKK molecules.

They found that when the initial distribution of active IKK

is Gaussian with mean 30,000 and standard deviation 5,000

then the trajectories averaged over many cells (1,000 in

simulations) exhibit damped oscillations. Again, the

damping is not a property of any single cell but results of

averaging over population of cells which exhibit less and

less synchronized oscillations.

Conclusions and Perspectives

As a result of work of several groups of experimentalists

and theoreticians, we have now a good quantitative

understanding of some aspects of the core module of the

NFjB pathway. Activity of NFjB as a transcription factor

is triggered by activated IKK kinase, and regulated by two

negative feedback loops, which involve products of NFjB-

dependent genes: first loop involves NFjB inhibitors IjBa
and IjBe. Second loop involves A20 protein, which
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attenuates IKK activity and in this way protects IjBa and

IjBe from degradation. Dynamics of these feedbacks has

been quantitatively modeled in a series of studies, starting

from the seminal paper by Hoffmann et al. [10]. This

model took into account only the first feedback loop. It was

followed by Lipniacki et al. [12], in which the A20 loop

was added and its role in attenuation of IKK activity was

modeled using data on A20 knockout cells [7]. Further

studies by Cho et al. [48] and Park et al. [13] addressed

various aspects of the transduction pathway connecting

TNFa receptors with NFjB module. The works by Covert

et al. [44] and Werner et al. [43] comparing LPS and TNFa
mediated responses proved that specific gene expression is

governed by the temporal control of IKK activity. As

shown by Covert et al. [44] LPS stimulation activates IKK

by Trif and MyD88 mediated pathways, what results in a

prolonged IKK activity and in turn in non-oscillatory

behavior of the NFjB module.

Recently, White’s laboratory in Liverpool and Qwarn-

strom’s laboratory in Shefield produced a range of single-

cell measurements of dynamics of NFjB and IjBa under a

variety of TNFa and IL-1 stimulation regimes [35, 37–39].

The persistent oscillatory trajectories were explained by

stochastic gene transcription model in Lipniacki et al. [50],

based on an approximation of the Gillespie algorithm. In

subsequent work Hayot and Jayaprakash [57] estimated

magnitudes of the potential contributions to cell-to-cell

variability by performing direct stochastic simulations of

simplified Hoffmann model.

As we perceive it, the role of modeling is to find missing

elements in the mechanisms supposed and inferred from

experiments by biologists. This is simply accomplished by

running these incomplete models and demonstrating dis-

crepancies with the experimental data. Then, a correction

or addition may be proposed by the modelers, but the

ultimate purpose is to suggest new experiments, the role of

which is to uncover or to confirm the putative source of

discrepancy. This process integrates the modeler in the

loop, the iterations of which may lead to a more complete

understanding of biology at the system level. This para-

digm seems nicely illustrated by the NFjB modeling story:

Hoffmann et al. [10] model was missing a plausible

explanation for the IKK time change. This was proposed by

Lipniacki et al. [12] in the form of the A20 loop. Next

Werner et al. [43] analyzed IKK activity profile in the case

of LPS stimulation and difference between TNFa and LPS

mediated gene expression was related to the difference in

IKK activity profiles. Subsequently, Nelson et al. [35]

experiments demonstrated that oscillation damping at the

population level seems inconsistent with the more persis-

tent oscillations at the single-cell level. This was explained

by the Lipniacki et al. [50] and Hayot and Jayaprakash [57]

models, which documented the need for stochastic

transcription regulation to understand individual-cell

oscillations. All in all, our understanding of how NFjB is

regulated has thoroughly changed.

However, there is a long list of processes, which are still

puzzling for modelers: as an example, not much has been

accomplished in modeling NFjB phosphorylation. It has

been documented by group of Brasier and coworkers [4,

58] that various phosphorylation sites in NFjB may define

different NFjB active forms, which potentially may reg-

ulate various group of genes. Understanding this

mechanism may lead to a better explanation of different

timing of transcription activation of different groups of

NFjB-dependent genes [51, 52, 59]. Models of crosstalk

with other pathways such as p53, RelB, heat shock protein,

and of the proliferation/apoptosis switch, are still pending.

Last but not least, the role of stochasticity in NFjB

regulation is still equivocal. Is stochasticity a ‘‘side effect’’

due to the low number of reacting molecules, such as gene

copies, mRNAs, receptors or external activating molecules,

or does it play a more distinctive role in the early immune

response? Let us consider stochastic gene activation.

According to the mechanism described, high level of the

transcription factor assures activation of all NFjB depen-

dent genes, whereas the low level of NFjB implies a lower

probability of activation of any particular gene. As a result,

some genes may become activated and some not. Let us

notice, however, that only the probability of gene activa-

tion decreases with NFjB concentration, while the size of

mRNA’s burst is independent of the concentration.

Another example is provided by the low-dose experi-

ments of Cheong et al. [45], and White (private

communication). Such low-dose stimulation is important

for analysis of cell-to-cell signaling—a first step toward

building of tissue models. Cheong et al. [45] found that

average cell response (measured as NFjB nuclear trans-

location) is a decreasing function of TNFa dose, across a

very broad range of TNFa concentrations, from 10 to

0.01 ng/ml. The single-cell experiments performed by

White’s group (private communication) show that the

individual cell responses also decrease with the dose, but in

addition the fraction of cells that respond within a defined

time period becomes smaller. The experiment suggests that

at a very low dose, below 0.1 ng/ml, the single cell

responses are almost dose-independent and only the frac-

tion of responding cells decreases with dose. This may

suggest that stochastic cell activation following such a low

dose stimulation is caused by erratic receptor activation

caused by the limited number of TNFa molecules.

Stochastic gene activation (leading to the burst of pro-

teins) and stochastic cell activation (leading to the massive

NFjB nuclear translocation) provides a specific ‘‘stochastic

robustness’’ in cell regulation. If a given gene is activated,

a large burst of proteins is produced, in order to assure a
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sufficient level of activity of these proteins. Stochastic

robustness assures the minimal response to the signal.

Decreasing magnitude of the signal causes only lowering of

the probability of response, which leads to a smaller fraction

of responding cells. This can be a clever strategy: if the

TNFa signal is low, some cells respond by a massive NFjB

translocation, whereas some do not respond at all. It helps to

avoid ambiguity, such as when a small nuclear concentra-

tion of NFjB lead to activation of an undefined fraction of

NFjB responsive genes. It is natural to expect that such

undefined response might do more harm than good. Thus a

better strategy at the tissue level, with low signal, is to let

some cells respond, and some cells ignore the signal. Sto-

chastic robustness allows cells to respond differently to the

same stimulation, but makes their individual responses

better defined. Both effects could be crucial in early

immune response: diversity in cell responses causes the

tissue defense to be harder to overcome by relatively simple

programs coded in viruses and other pathogens. The more

focused single-cell responses help cells to decide their

individual fates, such as apoptosis or proliferation.
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