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Abstract

An individual eukaryotic cell senses identity and quantity of li-
gands through molecular receptors and signaling pathways,
dynamically activating signaling effectors. A distinct ligand often
activates multiple different effectors, and a distinct effector is
activated by numerous different ligands, which results in cross-
wired signaling. In apparently identical cells, the activity of
signaling effectors can vary considerably, raising questions
about the accuracy of cellular signaling and the interpretation of
heterogeneous responses, as either functional or simply noise.
Cell-to-cell variability of signaling outcomes, signaling dynamics,
and cross-wiring all give rise to signaling complexity, compli-
cating the analysis of signaling mechanisms. Here, we consider
a simple input—output modeling approach of information theory
that is suitable to analyze signaling complexity and highlight
recent studies that have advanced our understanding of the role
different components of signaling complexity play in achieving
effective information transfer along cellular signaling pathways.
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Signaling accuracy
A number of factors limit the accuracy by which a cell
senses ambient ligand concentrations. These include

limited sensitivity to small concentration changes, the
inherent stochasticity of biochemical reactions (noise),
variability in copy number of signaling pathway compo-
nents, and limitations in specificity of ligands, all of
which may result in deterioration of the information
transmitted along signaling pathways. In their seminal
work, Berg and Purcell [1] established a theoretical limit
of best-achievable sensing precision in the simplest
instance of a single receptor. Their work indicated that
signaling precision is inevitably limited by random
ligand binding and unbinding events, which can be
counteracted by increasing the receptor copy number
and temporal averaging of random effects. It has
inspired a number of questions related to experimental
quantification of signaling accuracy and strategies of
achieving sufficient precision to ensure reliable func-
tioning of cellular mechanisms [2,3]. We have learned,
for example, that different cellular systems may require
different signaling accuracy for reliable functioning.
Precise sensing of positional information is required for
formation of the body plan during development [4—
71 (see reviews [8—10]). On the other hand,
nutrient sensing in bacterial populations can cope with
less accurate signaling or potentially no signaling, that is,
by different cells in the population randomly adapting
strategies suitable for different states of available nu-
trients on a bet-hedging basis [11]. For some systems,
including cytokines, hormones, or growth-factor
signaling systems in mammalian cells (on which this
review focuses), the level of signaling precision required
for the effective function within a multicellular organ-
ism begins to be established. Here, we review an
emerging line of signaling research based on information
theory, a mathematical language for studying commu-
nication processes, which is addressing the mechanisms
that ensure reliable signaling, and therefore is beginning
to reveal the roles of different elements of signaling
complexity, including variability of responses, signaling
dynamics, cross-wired signaling architecture, and het-
erogeneity of cellular states.

Information formalism for cellular signaling

Within information theory, a signaling pathway can be
interpreted as a communication device, which for a given
stimulus level x (input), for example, ligand concent-
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2 Theoretical approaches to analyze single-cell data

Box 1. Information formalism for cellular signaling

(A) A biochemical signaling pathway can be represented as a probabilistic input—output relationship, P(Y|X = x), which encodes input, X, using
output, y. Because of stochastic factors, decoding is possible only with a limited precision.

(B) Fisher information quantifies the inverse of the minimal variance with which a given input x can be decoded, which is known as Cramér-Rao
inequality. How precisely can x be decoded depends on sensitivity of the response distribution to changes in x. Therefore, formally, Fisher
information is defined as the average sensitivity of the logarithm of the probability, P(Y|X = x), to changes in the input, x.

(C) Shannon information capacity, C*, quantifies the overall signaling accuracy. It can be interpreted as log, of a number of inputs that a signaling
system can resolve and is approximated by the integration of Fisher information.

(D) Hypothetical response distributions to four inputs (e.g. ligand concentrations) in three scenarios with a different degree of overlaps.
Completely overlapping distributions do not allow for information transfer and imply the capacity of 0 bits. Information capacity increases for
more distinct distributions and reaches 2 bits for completely distinct distributions to four considered inputs.

A Signaling pathway as the information channel
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ration, generates a response y (output), for example,
activation of a transcription factor (TF) (Box 1A). Because
of the stochasticity of cellular biochemistry, the input—
output relationship is subject to random fluctuations
and can be represented as a probability distribution, P(Y |
X = x). A high amount of information about x contained in
Y would enable accurate estimation (decoding) of x fromY,
which inspired the mathematical concepts of information
defined by R.A. Fisher and C. Shannon [12]. The lowest
possible variance with which a specific x can be estimated
is the inverse of the Fisher information, FI(x) [12] (Box
1B). High Fisher information implies the possibility of
accurate decoding: Var(x) > 1/FI(x), where Var(X) is the
variance of an estimate xof a true value x—the relationship

known as Cramér-Rao inequality. Fisher information can
vary for different values of x, for example, some ligand
concentrations can be sensed more accurately than others,
and therefore, it does not quantify the overall signaling
accuracy. On the other hand, an overall measure of
signaling accuracy is known as Shannon information ca-
pacity [12], ¢ . Information capacity'* (Box 1C) is
expressed in bits, and broadly speaking, 2 represents the
maximal number of different inputs that a system can
effectively decode, for example, different ligand concen-
trations. If, for example, the derived ¢ = 2, then 4
different ligand concentrations can be resolved with
negligible error. Shannon information capacity can be
expressed through integration of Fisher information over a
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An information theory perspective of cellular strategies to achieve high signaling capacity. (a) Hypothetical response distributions of a population of cells
exhibiting considerable overlaps between distributions corresponding to different inputs, which implies low information capacity. (b) The hypothetical
temporally resolved responses to two inputs. Temporal averaging (left panel): responses to two inputs (solid lines) might overlap at any given time point,
but their averages (dashed lines) are distinct, which allows for input discrimination and, hence, increases information capacity. Differential signaling
dynamics (right panel): two inputs may induce responses that are similar over one time window but distinct over another, which, again, allows for input
discrimination and increases information capacity. (¢) Activation of several distinct signaling effectors by a single ligand enhances information transfer and
provides a basis for parallel (multiplexed) information transfer about concentrations of several distinct ligands, increasing information capacity. (d) Re-
sponses of several cells can be jointly considered as an output of a signaling system. Information capacity of a system composed of N cells scales with />
logo(N), implying that a population has a considerably higher information capacity than an individual cell. () Shown are hypothetical response distri-
butions of individual cells exhibiting low response variability compared with population responses. Limited overlaps between distributions predict
considerably higher information capacity than population responses. Individual cells can be in different states, which determine signaling responses,
and therefore, the cell-to-cell heterogeneity of responses is not necessarily equivalent to signaling noise.

range of input values (Box 1C) with high Fisher informa-
tion implying high Shannon information capacity [13].
Intuitively, how much information can be transmitted
through a signaling system depends on how distinct the
response distributions corresponding to different inputs
are (Box 1D). For example, four distinct response distri-
butions imply four resolvable inputs and two bits of
transferred information, whereas full overlapping distri-
butions imply one resolvable input and zero bits

transferred. In the intermediate scenarios, the informa-
tion can vary between zero and two bits depending on the
degree of overlaps.

Population response distributions predict
low signaling accuracy

After the initial use of information theory to study
developmental signaling pathways [14,15], Shannon’s
framework was initially deployed in the context of
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Table 1

Selected most recent studies examining different mechanisms enhancing information transfer.

Mechanism

Reference

Signaling model

Main conclusion

Temporal averaging & Differential
signaling dynamics

Cross-wiring

Differential signaling dynamics of
cross-wired effectors

Population sensing

Heterogeneity of cellular states

Selimkhanov et al. [19]

Jetka et al. [20]

Nandagopal et al. [21]

Sampattavanich et al. [22]

Harper et al. [23]

Komorowski and Tawfik [25]

Pope et al. [26]

Granados et al. [27]

Lane et al. [29]
Jetka et al. [13]
Suderman et al. [18]
Wada et al. [30]
Jetka et al. [13]

Yao et al. [36]
Guilbert et al. [37]
Voliotis et al. [38]
Keshelava et al. [39]
Gross et al. [40]

Spencer et al. [41]

Phillips et al. [42]

TNF-a. — NF-kB, EGF — Erk,
ATP — Ca?*; live imaging
TNF-o. — NF-kB; live imaging

DII1 or DI4, Notch; live imaging

Growth factors — FOXO3; live
imaging

TNF-o. — NF-kB; live imaging

Theoretical model

Insulin, EGF — AKT, ERK;
immunofluorescence

Environmental stress — multiple
transcription factors; live imaging
(yeast)

Bacterial infections — NF-kB and
MAPK; live imaging

IFN-a,, IFN-A1 — STAT1, STAT2;
theoretical model

TRAIL — Casp-3, Casp-8; flow
cytometry

Electrical pulse stimulation — Ca?*,
live imaging

Theoretical derivation

ATP — Ca?*; live imaging

Heat stress — nuclear stress bodies;
immunostaining

GnRH — NFAT; live imaging

Acetylcholine — Ca?*; live imaging

IGF — FOXOf1; live imaging

TRAIL — apoptosis; live imaging

Transcriptional activity; live imaging

Dynamic responses increase signaling accuracy.

Dynamic response improves discrimination of high TNF-o. doses and
introduces an R-package SLEMI for calculation of Shannon information
based on multivariate experimental data: https:/github.com/sysbiosig/
SLEMI

Ligand identity is encoded in pulsatile or sustained Notch activation dynamics.

FOXO83 dynamics can encode growth factor identities and concentrations.

NF-kB dynamics and target gene expression are modulated by temperature
and can transmit multidimensional information.

Duplication of cross-reactive receptors doubles information capacity even with
minimal divergence.

Joint activity of two effectors carries tangibly more information than each
effector considered individually.

Dynamics of several transcription factors constitutes a precise representation
of extracellular environments.

NF-kB and MAPK (monitored through JNK) dynamics vary with bacterial
location, pathogenicity, and replication.

Information about identity and quantity of IFN-a. and IFN-A1 can be transmitted
despite activating the same signaling effectors.

High cell-to-cell heterogeneity is advantageous when a system needs to
regulate the behavior of populations of cells.

Variable binary activation of individual myotubes leads to better discrimination
of stimulation intensity in skeletal muscles.

Expressing Shannon information in terms of Fisher information predicts
information capacity of cellular populations.

Most of calcium cell-to-cell response variability can be explained by variability
in intracellular receptor activity.

Most of heat shock response cell-to-cell variability can be explained by
variability of the basal level of heat shock proteins.

Based on the single-cell response to a first stimulation, the response to the
second stimulation can be accurately predicted.

Each individual cell has distinct dynamic range and a high signaling capacity.

Single cells exhibit reproducible responses to repetitive stimulations.

Nongenetic determinants of death probability can be passed from mother to
daughter cells.

Transcriptional activity is strongly correlated in sister cells as well as in
daughter—mother pairs.
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cytokine signaling to examine the overall fidelity of
tumor necrosis factor o0 (TNNF-a) and platelet-derived
growth factor (PDGF) responses [16]. Mouse embry-
onic fibroblasts were stimulated with a range of TNF-o
or PDGF doses, considered as input, x. Single-cell re-
sponses of signaling effectors, nuclear factor KB (NF-kB)
and activating transcription factor-2 (ATF-2), were
measured at a single time point, using immunostaining,
and considered as output, Y. The response distributions
in cellular populations stimulated with different doses
were then used as distributions of signaling output, Y,
and analyzed using the Shannon information formula.
Quantification revealed ~1 bit of information was
transferred, which was interpreted as cells having the
potential to discriminate between the presence and
absence of the stimulants but lacking the ability to
resolve intermediate concentrations. Examining other
signaling systems using an analogous framework yielded
similar conclusions regarding signaling accuracy. In
particular, quantification of information transmission
from the gonadotropin-releasing hormone (GnRH) to
extracellular signal-regulated kinase (Erk) or to the
nuclear factor of activated T-cells (NFAT) in GnRH-
sensitive Hel.a cells both yielded < 1 bit [17]. In
addition, measured activities of caspase-8 and caspase-3,
in response to the TNF-related apoptosis-inducing
ligand (TRAIL) in Hel.a cells, gave ~1 and ~0.5 bits
of information, respectively [18]. These studies showed
that if cell-to-cell heterogeneity of responses is inter-
preted as signaling noise, the predicted capacity is low
because response distribution of population cells to
different doses exhibited considerable overlaps
(Fig. 1a). Strongly responding cells stimulated with a
low dose of a ligand had responses higher than weakly
responding cells stimulated with a high dose, which does
not allow for errorless discrimination between low and
high doses based on the measured response alone and
resulted in low capacity.

The overall low signaling fidelity, which would signifi-
cantly hinder effective discrimination between different
ligand concentrations, appears difficult to reconcile with
the seemingly reliable, synchronized activities of indi-
vidual cells observed in many physiological processes,
such as stress responses, immunity, circadian rhythms,
muscle contraction, or wound healing. Several different
mechanisms have been postulated that aim to resolve
this paradox, Table 1, and we discuss each one in the
following.

Signaling dynamics and cross-wiring
enhance information transfer

"Temporal averaging is a simple strategy to reduce noise as
the average of multiple measurements taken over time
has lower variability than a single time-point measure-
ment (Fig. 1b). Following this intuition, temporal inte-
gration of response signals was shown to provide
additional information compared with single time-point

measurements [19]. It was achieved by live imaging of
human and murine cell lines stimulated with epidermal
growth factor (EGF), ATP, or lipopolysaccharides (LLPS)
and measuring the fluorescence-based responses of Erk,
calcium (Ca®"), or NF-kB, respectively. Comparison of
information flow between static and dynamic responses
revealed that signaling dynamics provides up to 0.5 bit
of additional information, which, broadly speaking,
enables discrimination of an additional intermediate
dose. Besides, by providing a simple algorithm for effec-
tive evaluation of Shannon information for multivariate
experimental data, it was demonstrated that dynamic
NF-kB responses only improved discrimination of high
'TNF-o0 concentrations, having limited impact on
discrimination of low doses [20]. In addition to noise
averaging, signaling dynamics can enhance information
transfer via stimuli that control duration, amplitude,
onset, or other characteristics of response so that infor-
mation can be encoded in differential signaling dynamics,
that is, in the shape of temporally resolved responses
(Fig. 1b).

Differential signaling dynamics have been explored, for
example, in the context of myogenesis [21], where au-
thors demonstrated that cells use the dynamics of
Notch activity to discriminate between two types of li-
gands (DII1 and DIl4), which led to distinct cellular
fates. Similarly, Sampattavanich et al. [22] have shown
that the nuclear-to-cytosolic pulsatile dynamics of the
forkhead box O3 transcription factor (FOXO3) help to
discriminate the type and concentration of growth factor
treatment. Furthermore, live-cell imaging of human
neuroblastoma cells was used to show that NF-kB
signaling dynamics can simultaneously encode infor-
mation about the temperature of the ambient environ-
ment and TNF-a dose [23], which has been expanded
into a theoretical framework to study analogous phe-
nomena [24].

Cross-wiring of signaling pathways involves distinct li-
gands activating multiple different signaling effectors,
which raises the question of the role the different
signaling effectors play in encoding information about
quantity and identity of the ligands (Fig. 1c). In a
theoretical work [25], using a simple receptor model,
authors hypothesized that the only way of circum-
venting the loss in signaling capacity due to molecular
noise is by the emergence during evolution of paralogs
that signal the presence of the cross-reactive noncog-
nate ligand. Such a mode of expansion explains the
highly cross-wired architecture of signaling pathways.
The information gain from activating several signaling
effectors was also examined experimentally in the study
by Pope et al. [26], which measured responses to com-
binations of insulin and EGF in terms of activated kinase
pAKT or the activated kinase ppERK. Individually,
pAKT and ppERK carried ~0.75 and ~1.0 bit of infor-
mation, respectively. Accounting for both signaling
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effectors jointly increased information transfer to ~1.75
bits.

A combination of differential signaling dynamics and
cross-wired signaling further boosts information transfer
in terms of both the identities and quantities of stimuli.
Using a yeast system, in the study by Granados et al. and
Cepeda-Humerez et al. [27,28], authors examined
encoding of the type and intensity of extracellular
stresses in the nuclear translocation of multiple TFs.
Taking the dynamics of several TFs into accounting
enhanced signaling information, enabling nearly perfect
discrimination of the type and intensity of stress treat-
ment (four TFs carried information about almost all the
seven states of the stress environment, leading to ~2.5
bits). On the other hand, translocation of mitogen-
activated protein kinases (MAPKs), and NF-kB was
measured in murine macrophages responding to bacte-
rial infection [29]. Cells exposed to different types of
bacteria, either pathogenic Salmonella typhimurium or
nonpathogenic Escherichia coli, exhibited different tem-
poral response profiles, which revealed that integrating
information of NF-kB and MAPK signaling over time
enables the response that is specific to the infection
type. A theoretical approach to analyze models of cross-
wired differential signaling dynamics was proposed in
the study by Jetka et al. [13] by integrating Fisher and
Shannon information measures. The framework quan-
tified how the differential signaling dynamics of
signaling effectors STAT1 and STAT?2, as represented
by phosphorylation state, enables discrimination be-
tween type I and type III interferon variants.

Cellular population as a sensory system

Several works examined the sensing capacity of cellular
populations by considering the signaling output
composed of the responses of several cells jointly, as
opposed to one cell alone (Fig. 1d). As demonstrated in
the study by Suderman et al. [18], cellular populations
exhibiting higher cell-to-cell heterogeneity are respon-
sive over a broader dynamic range of ligand concentra-
tions than populations with lower cell-to-cell
heterogeneity, implying that high cell-to-cell heteroge-
neity might increase the overall information capacity of a
cellular population. Indeed, the information capacity of
a population was found to scale as '/, log, of the number
of cells, a relationship also demonstrated in a general
setting by expressing Shannon information in terms of
Fisher information [13]. The impact of cell-to-cell
heterogeneity on population signaling capacity was
further expanded in the study by Wada et al. [30], where
Ca** signaling in myotubes was studied. Individual cells
were activated by an electrical pulse. Cells exhibited
binary responses with considerable variability in the

current required for activation. Some cells were induced
by low current, whereas others required sixfold higher
current. The variability between cells enabled the cell
population to achieve high signaling sensitivity over a
broad range of currents, with almost perfect discrimi-
nation between the ten levels of stimulation tested.

Cellular state as a determinant of cell
responses

Measurement of different parameters of single cells has
revealed that specific characteristics of individual cells
correlate with their responses to stimuli. For instance,
levels of the signaling effector, NF-kB, before and after
"TNF-o. stimulation, have been shown to be correlated
[31], resulting in fold changes, that is, the ratio between
nuclear NF-kB levels before and after stimulation,
exhibiting considerably lower variability than absolute
levels after stimulation. Similarly, the fold changes
observed in individual cells exhibited a significantly
higher correlation with downstream gene expression
than the absolute response levels. This observation,
when analyzed in the context of information theory
[32], demonstrated a higher information transfer for fold
changes versus absolute levels of the signal effector. In
addition, examination of NF-kB responses to changes in
cytokine concentration showed that negative feedback
loop inhibitory proteins provide a resettable short-term
memory of previous cytokine exposure, shaping cell-
specific states [33].

Transforming growth factor beta (TGF-B)—induced
Smad signaling was shown to have similar properties,
with the temporal dynamics of the fold change in Smad
nuclear levels containing more information than abso-
lute levels [34]. Similarly, the fold change of the early
and late EGF responses carries more information than
absolute levels [35].

The idea that certain cellular characteristics—which
define an internal ‘state’ of the cell not revealed by
measuring signaling responses alone—determine a cell’s
signaling response and, therefore, cell-to-cell heteroge-
neity is not necessarily equivalent to noise was explored
broadly in the study by Yao et al. [36]. By combining
experimental measurements of ATP-activated Ca**
signaling with mathematical modeling, the authors
showed that 70% of the variability of the response could
be explained by intracellular receptor activity, indicating
that the signaling processes inside the cell may be much
more precise than predicted by the cell-to-cell hetero-
geneity of observed responses. Similarly, Guilbert et al.
[37] showed that most of the observed cell-to-cell
heterogeneity of responses to heat could be explained
by the basal intracellular level of heat shock proteins.
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Analogous results have been observed in research
exploring the responses of individual cells exposed to
repeated stimulation. Cells stimulated twice with
increasing doses of TNF-a revealed that the second
response is proportional to the first, demonstrating that
the cellular response is specific to individual cells, which
show lower variability than predicted by population re-
sponses [32]. Similarly, GnRH responses measured in
the study by Voliotis et al. [38] exhibited variability that
yielded Shannon information capacity of less than 0.5
bits, whereas the variability of repeatedly measured re-
sponses predicted an information capacity of ~1 bit.
Furthermore, human kidney embryo cells stimulated
with different doses of acetylcholine, resulting in Ca**
intracellular influx, were measured as the signaling
output in individual cells [39]. Repeated acetylcholine
stimulation of the same cells with a range of doses
enabled the acquisition of dose—response distributions
not only for population of cells but also for individual
cells. Information transfer, calculated based on the
population response distribution, quantified an infor-
mation capacity of ~1 bit. Using dose—response distri-
butions of individual cells, on the other hand, revealed
~2 bits of information transfer. The considerably higher
information capacity of individual cells indicated that
not all cell-to-cell heterogeneity can be interpreted as
noise that results in information loss within individual
cells. Before stimulation, individual cells might be in
different states that determine their response levels,
such that variability of response is considerably smaller
than the cellular population (Fig. 1e). Similar conclu-
sions have been drawn in the study by Gross et al. [40],
where Hela cells showing the highest responses to
small doses of insulin-like growth factor 1 (IGF-1) also
tend to be in the top percentiles of cells responding to
subsequent, higher doses. In addition, when cellular
lineages were tracked, the siblings’ responses to IGF
were moderately correlated (R? = 0.31), suggesting that
factors influencing the response level can be passed to
daughter cells. Inheritance of cellular states had previ-
ously been shown for TRAIL signaling, where the time
from treatment to apoptosis was more similar in
daughter cells [41], as also seen for transcriptional ac-
tivity [42], demonstrating highly correlated gene
expression profiles for daughter cells.

Conclusions and outlook

Information theory is beginning to provide a clearer
understanding of signaling pathways—via analysis of the
level of precision that can be achieved through molec-
ular signaling. Studies examining the vulnerabilities of
signaling pathways to signaling noise stimulated
research into the mechanisms that ensure accurate,
high-information content signaling, and several mecha-
nisms have been demonstrated to enhance information
transfer, Table 1. The temporal dynamics of stimulation
has the potential to filter out noise, and stimuli may also

control the onset, duration, amplitude, and/or other
characteristics of the response, such that information
can be encoded in temporally resolved responses. In
addition, activation of several signaling effectors by a
single stimulus can further increase information capac-
ity, for instance, by extending signaling sensitivity over a
broader range of concentrations with, for example, low
concentrations activating one effector and high con-
centrations activating another. Activation of the same
signaling effectors by different ligands through cross-
wired architecture enables parallel (multiplexed)
signaling, strongly amplifying information transfer,
especially when combined with differential signaling
dynamics. Finally, substantial cell-to-cell heterogeneity
was initially interpreted as signaling noise leading to
information loss. However, recent research has identi-
fied cell populations as collections of cells in different
states that determine individual cell responses. There-
fore, signaling may be much more precise than predicted
by cell-to-cell heterogeneity—and future research will
reveal how much of the observed cell-to-cell heteroge-
neity results from genuine noise leading to information
loss. Future studies will also lead to more accurate pre-
dictions of how much information signaling pathways
transmit to the inside of the cell. A combination of
multiplexed measurement techniques, live imaging, and
single-cell transcriptomics are providing opportunities
to address these questions in new ways. Adaptation of
information-theoretic tools to understand multiplexed
and composite data could, therefore, offer further in-
sights into the origins, functions, and consequences of
different aspects of signaling complexity.
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