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Abstract
We show that the logarithmic (Hencky) strain and its derivatives can be approximated, in a straightforward manner and with
a high accuracy, using Padé approximants of the tensor (matrix) logarithm. Accuracy and computational efficiency of the
Padé approximants are favourably compared to an alternative approximation method employing the truncated Taylor series.
As an application, Hencky-type hyperelasticity models are considered, in which the elastic strain energy is expressed in
terms of the Hencky strain, and of our particular interest is the anisotropic energy quadratic in the Hencky strain. Finite-
element computations are carried out to examine performance of the Padé approximants of tensor logarithm in Hencky-type
hyperelasticity problems. A discussion is also provided on computation of the stress tensor conjugate to the Hencky strain in
a general anisotropic case.

Keywords Logarithmic strain · Padé approximation method · Hyperelasticity · Anisotropy · Finite-element method

1 Introduction

Among different strain measures in the finite-deformation
theory, the logarithmic (Hencky) strain possesses special
properties that have led to a variety of applications in solid
mechanics, e.g. [1–5]. These, for instance, include the fully
uncoupled additive decomposition of deformation into the
volumetric and isochoric parts, or straightforward charac-
terization of the incompressibility constraint. Moreover, the
elastic strain energy defined as a quadratic function of the
Hencky strain (in short, Hencky strain energy) behaves rea-
sonably well for a substantially wider range of elastic strains
compared to the simple St. Venant-Kirchhoff strain energy
and provides a physically more relevant material response at
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finite strains [6,7]. For an overview of the special properties
of the Hencky strain energy, see [8].

The main difficulty related to the use of the Hencky strain
energy is that, in addition to computation of the logarithm
of a 3 × 3 matrix, the first and second derivatives of the
matrix logarithm are required in order to derive the stress
and the tangent operator, respectively. The most common
approaches to represent the matrix logarithm along with its
derivatives are based on the spectral decomposition, e.g. [9],
or series expansion, e.g. [10]. The former requires evalua-
tion of the eigenvalues and eigenvectors, which may pose
numerical challenges in the vicinity of repeated eigenvalues,
while the latter is convergent only when the matrix is close to
identity, and lacks computational efficiency when high-order
approximations are used, see [11] for an overview regarding
the common approaches to compute general matrix func-
tions, see also [12].

The primary motivation for the present study comes from
our work on finite-strain phase-field modelling of marten-
sitic phase transformation in shape memory alloys (SMAs),
e.g. [13]. In the relatedmodels, elastic strain energy functions
are needed for arbitrary anisotropy, e.g. within the diffuse
austenite–martensite interfaces. The St. Venant-Kirchhoff
strain energy is a common choice, as e.g. in [14], but it is
known to behave poorly in some situations, for instance,
under compression (this is also illustrated in the present
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paper). Hence, the Hencky strain energy is an attractive alter-
native, as it behaves well for a much wider range of strains
[7,15]. The Hencky strain energy may also be a reasonable
replacement for the anisotropic St. Venant-Kirchhoff strain
energy in other application areas, for instance, in crystal plas-
ticity [16,17], and inmicromechanics of SMA single crystals
[18,19].

In the present study, the focus is on the use of the ratio-
nal approximation method, known as Padé approximants,
for evaluation of the tensor logarithm (or matrix logarithm,
depending on the context). Padé approximants have proved
to be more accurate with respect to the classical Taylor
series, possess a wider range of applicability and converge
to the solution more rapidly as the order of approxima-
tion increases, see [20] for a general description of Padé
approximation method. The associated derivatives of the
matrix logarithm, needed in practical applications in compu-
tational mechanics, are then computed straightforwardly by
differentiating the corresponding Padé approximant which is
available in an explicit form.

The Padé approximation method is actually a general
approach that can be used to approximate arbitrary tensor
functions. It seems that the only related applications in com-
putational mechanics concern the tensor logarithm [21,22]
and the tensor exponential [21–24]. In particular, the approx-
imated Hencky strain was used by Brünig [21,22] to express
the Hencky strain energy in isotropic elasticity.

In this paper, we examine the applicability of Padé
approximants in finite-element modelling of Hencky-type
hyperelasticity problemswith an emphasis on the anisotropic
elasticity. For this purpose, the performance of Padé approx-
imants is evaluated against the truncated Taylor series, and
the closed-from representation of the matrix logarithm [11]
is considered as a reference for the comparison.

A general description of the Padé approximation method
is presented in Sect. 2. In Sect. 3, we discuss the Hencky-type
constitutive models of hyperelasticity. A side remark on the
stress conjugate to the Hencky strain is provided in Sect. 4.
Finally, performance of Padé approximants in finite-element
computations is examined in Sect. 5.

2 Padé approximants

2.1 Padé approximants of scalar and tensor
functions

The Padé approximant R(m,n)(x) of order (m, n) of a scalar
function f (x) is defined as a rational polynomial,

f (x) ≈ R(m,n)(x) = N(m,n)(x)

D(m,n)(x)
, (1)

where

N(m,n)(x) =
m∑

j=0

a j x
j , D(m,n)(x) = 1 +

n∑

k=1

bkx
k, (2)

and the coefficients a j and bk are uniquely determined such
that the Maclaurin series expansion of the Padé approximant
R(m,n)(x) agrees with that of the function f (x) up to the
order of m + n. Note that D(m,n) has been normalized such
that the zeroth-order term in D(m,n) is equal to unity, b0 = 1,
and N(m,n) and D(m,n) have no common factors [20]. Both
N(m,n) and D(m,n) depend on the approximation order (m, n),
hence the dual index is used to indicate this dependence.

Consider now an isotropic tensor-valued function f (X)

of a tensor argument X, where X is a second-order tensor in
a three-dimensional vector space. For a symmetric tensor X,
function f (X) can be defined using the spectral representa-
tion, viz.

X =
3∑

i=1

λiωi ⊗ ωi , f (X) =
3∑

i=1

f (λi )ωi ⊗ ωi , (3)

where λi and ωi are, respectively, the eigenvalues and eigen-
vectors of X. Alternatively, the Taylor series expansion can
be used to define f (X), which is applicable also to non-
symmetric X. Here and below, we refer to a tensor function,
but the same argument applies to the respective matrix func-
tion, where the matrix can be treated as a representation of
the tensor in a given orthonormal basis.

In analogy to the scalar function case, the Padé approx-
imant R(m,n)(X) of order (m, n) of function f (X) has the
form

f (X) ≈ R(m,n)(X) = N(m,n)(X)(D(m,n)(X))−1, (4)

where N(m,n) and D(m,n) are the polynomials of the Padé
approximant R(m,n)(x) of the corresponding scalar func-
tion f (x). Clearly, N(m,n)(X) and D(m,n)(X) are here tensor
polynomials of the form (2) with the scalar argument x
replaced by the tensor X, with no restriction on the sym-
metry of X. As in the scalar case, the approximation is
here performed at X = 0. Considering that N(m,n)(X) and
D(m,n)(X) commute, the order in Eq. (4) can be changed, so
that R(m,n)(X) = (D(m,n)(X))−1N(m,n)(X).

As in the case of the original tensor function f (X) with
a symmetric argument X, the Padé approximation of f (X)

amounts to applying the Padé approximant to the eigenvalues
in the spectral decomposition, thus

f (x) ≈ R(m,n)(x), f (X) ≈
3∑

i=1

R(m,n)(λi )ωi ⊗ ωi . (5)
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Note that the above representation is here provided for
illustration purposes only, and the rational polynomial repre-
sentation (4)would always be preferable as it does not require
spectral decomposition.Actually, the spectral decomposition
allows one to compute the exact tensor function according to
Eq. (3) so that the approximation can be avoided.

It has been proved [25] that for a fixed order of Padé
approximant (m + n = constant), the approximation error
is the smallest for diagonal Padé approximants, i.e. when
m = n. Accordingly, the focus of the present study is
restricted to diagonal Padé approximants.

2.2 Padé approximation of the logarithm function

Consider now the logarithm function and apply the Padé
approximation technique to this function. With reference to
the target application in continuum mechanics, the approx-
imation of log(x) is sought in the vicinity of x = 1. Upon
setting x ′ = x − 1, the approximation of log(x) at x = 1 is

log(1 + x ′) ≈ R(m,n)(x
′) = N(m,n)(x ′)

D(m,n)(x ′)
. (6)

The corresponding approximation of the function log(x) can
then be readily obtained in the following form,

log(x) ≈ R∗
(m,n)(x) = N∗

(m,n)(x)

D∗
(m,n)(x)

, (7)

where

N∗
(m,n)(x) = N(m,n)(x − 1), D∗

(m,n)(x) = D(m,n)(x − 1).

(8)

The respective polynomials of the diagonal Padé approxi-
mants of orders (1, 1) through (5, 5) are provided in Table 1.

Clearly, following Sect. 2.1, the Padé approximants of the
tensor logarithm can be obtained by replacing the scalar poly-
nomials N∗

(m,n) and D∗
(m,n) in Eq. (7) by the corresponding

tensor polynomials in terms of X. For instance, the approxi-
mants of order (1, 1) and (2, 2) are given by

log(X) ≈ R∗
(1,1)(X) = 2(X − 1)(X + 1)−1, (9)

log(X) ≈ R∗
(2,2)(X) = 3(X2 − 1)(X2 + 4X + 1)−1, (10)

where 1 denotes the second-order identity tensor.
An alternative method of approximating the tensor loga-

rithm employs the truncated Taylor series. The Taylor series
expansion of the scalar logarithm function f (x) = log(x)
evaluated at x = 1 and truncated to order m reads

log(x) ≈ Tm(x) =
m∑

k=1

(−1)k+1 (x − 1)k

k
, (11)

which is convergent when m → ∞ for 0 < x ≤ 2. The
truncatedTaylor series approximation of the tensor logarithm
is thus given by

log(X) ≈ Tm(X) = X − 1 − 1

2
(X − 1)2 + · · ·

+ (−1)m+1

m
(X − 1)m . (12)

Figure 1 illustrates the performance of the diagonal Padé
approximants (m = n) and of the truncated Taylor series in
approximating the scalar logarithm function log(x). It can be
seen that the Padé approximants behave well in a very wide
range of values of x (0.01 < x < 100), and even the Padé
approximant of low-order (2, 2) provides a good approxima-
tion of the logarithm. On the contrary, the truncated Taylor
series rapidly diverge for x > 2 regardless of the truncation
order.

To assess the approximation error quantitatively, the abso-
lute relative error of selected diagonal Padé approximants
and truncated Taylor series is shown in Fig. 2. It follows that
for 0.2 < x < 5, the relative error for the Padé approx-
imant of order (2, 2) lies mostly below 10−2 and that for
order (5, 5) below 10−5. For x close to unity, the accuracy of
Padé approximants is remarkably high, for instance, the Padé
approximant of order (5, 5) is exact to the machine precision
for 0.9 < x < 1.1. On the other hand, the relative error for
the truncated Taylor series is significantly higher than that
for the Padé approximants. It can be seen that, as the order of
approximation increases, the accuracy of the truncated Tay-
lor series does not grow as rapidly as in the case of the Padé
approximants.

As shown by Kenney and Laub [25], under the condition
that ‖X‖ ≤ c, where ‖ · ‖ denotes a matrix norm, the error
in the approximation of the matrix logarithm, log(X), by a
Padé approximant of order (m, n) is bounded by the error
in the approximation (of the same order) of the scalar loga-
rithm function log(c). Accordingly, in view of the excellent
performance of Padé approximants and their superiority over
truncated Taylor series in the approximation of the scalar log-
arithm, see Figs. 1 and 2, Padé approximants can be used for
approximation of the matrix logarithm with a higher degree
of confidence.

3 Hencky-type hyperelasticity

Let us first recall the basic notions of the finite-strain frame-
work. The primary kinematic quantity is the deformation
gradient F, defined as the reference gradient of the defor-
mation mapping. The deformation gradient admits the polar
decomposition, F = RU, where U is the symmetric stretch
tensor and R is a rotation tensor. The right Cauchy–Green
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Table 1 Polynomials N∗
(m,n)(x) and D∗

(m,n)(x) of selected diagonal Padé approximants of log(x)

(m, n) N∗
(m,n)(x) D∗

(m,n)(x)

(1, 1) 2(−1 + x) 1 + x

(2, 2) 3(−1 + x2) 1 + 4x + x2

(3, 3) −11 − 27x + 27x2 + 11x3 3(1 + 9x + 9x2 + x3)

(4, 4) 5(−5 − 32x + 32x3 + 5x4) 6(1 + 16x + 36x2 + 16x3 + x4)

(5, 5) −137 − 1625x − 2000x2 + 2000x3 + 1625x4 + 137x5 30(1 + 25x + 100x2 + 100x3 + 25x4 + x5)

(a) (b)

Fig. 1 Approximation of the scalar logarithm function log(x) at x = 1 by a Padé approximants and b truncated Taylor series of selected orders

(a) (b)

Fig. 2 Relative error of the approximation of the scalar logarithm function log(x) by a Padé approximants and b truncated Taylor series of selected
orders. The dashed line in panel b shows the relative error of the Padé approximant of order (3, 3), as in panel a. The vertical line at x = 2 in panel
b indicates the upper limit of convergence of the Taylor series
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deformation tensor C,

C = FTF = U2, (13)

is used to define the Green strain tensor E,

E = E(2) = 1

2
(C − 1), (14)

and the Hencky (or logarithmic) strain tensor H,

H = E(0) = log(U) = 1

2
log(C), (15)

both belonging to the Seth–Hill family [26]. The well-known
benefit of the logarithmic strain measure is that its trace,
trH = log(J ), J = det F, describes the volumetric defor-
mation, and the corresponding split into volumetric and
isochoric parts is additive, as in the small-strain framework.

A hyperelastic material model is specified by the elastic
strain energy W = W (F) such that

P = ∂W

∂F
, (16)

where P is the first Piola-Kirchhoff stress tensor. The stan-
dard transformation rules relate P to the Cauchy stress,
σ = J−1PFT, and to the second Piola-Kirchhoff stress ten-
sor S = F−1P.

In theSt.Venant-Kirchhoffmodel, the elastic strain energy
is quadratic in the Green strain tensor E,

WSVK = 1

2
E · LE, W (iso)

SVK = κ

2
(trE)2 + μE′ · E′, (17)

where W (iso)
SVK corresponds to the special case of isotropy.

Here, L is the usual fourth-order elastic stiffness tensor,
cf. [27], κ is the bulk modulus, μ the shear modulus, and
E′ the deviatoric part of E, E′ = E − 1

3 (trE)1. The St.
Venant-Kirchhoff model is the simplest generalization of
the linear small-strain elasticity to the finite-deformation
framework. At the same time, as it is well known, the St.
Venant-Kirchhoff strain energy lacks important properties,
notably rank-one convexity and polyconvexity [28,29].

The Hencky elastic strain energy is quadratic in the
Hencky strain H,

WH = 1

2
H · LH, W (iso)

H = κ

2
(trH)2 + μH′ · H′, (18)

and, as above, W (iso)
H corresponds to the isotropic case. The

Hencky strain energy is not rank-one convex everywhere
[8,30]. However, compared to the St. Venant-Kirchhoff strain
energy, it possesses a much larger domain of rank-one con-
vexity. Therefore, the range of strains in which the model

behaves well is much wider [7,15]. For instance, it has been
shown that, for positive Lamé constants in the isotropic
case, the respective elastic strain energy is elliptic when-
ever every principal stretch is between 0.212 and 1.396 [31].
The Hencky elastic strain energy is thus favoured over the St.
Venant-Kirchhoff energywhen the analyses are not restricted
to small elastic strains, e.g. [13].

Recently, the exponentiatedHenckymodel has been intro-
duced [8] as a modification of the isotropic Hencky model in
the following form,

W (iso)
eH = κ

2k̂
exp(k̂(trH)2) + μ

k
exp(kH′ · H′), (19)

where k and k̂ are two additional dimensionless mate-
rial parameters. This energy is polyconvex in the two-
dimensional case for positive shear and bulk moduli and
when k > 1/3 and k̂ > 1/8 [32], and has a larger domain of
rank-one convexity with respect to the Hencky elastic strain
in the three-dimensional case. The exponentiated Hencky
model has also been extended to the anisotropic cases of
transverse isotropy and orthotropy [33].

The common drawback associated with practical applica-
tion of the Hencky-type models is that the tensor logarithm
must be computed along with its first and second derivatives
that are needed to determine the stress and the tangent oper-
ator, respectively. Here, it is appealing to employ the Padé
approximants that have a simple, explicit form and deliver a
good approximation of the tensor logarithm, as illustrated in
Sect. 2.2. For instance, application of the Padé approximant
of order (2, 2) leads to the following approximation of the
Hencky strain, cf. Eq. (10),

H ≈ H(2,2) = 3

2
(C2 − 1)(C2 + 4C + 1)−1, (20)

whereH(m,n) is introduced as a notation for the approximate
Hencky strain based on thePadé approximant of order (m, n).

Importantly, since H(m,n) is given as an explicit formula,
its derivatives can be derived directly, also by employing
general-purpose automatic differentiation (AD) tools.1 Note
that a closed-form representation of the matrix logarithm has
been recently developed by Hudobivnik and Korelc [11],
which relies on the AceGen system [35] and its imple-
mentation of the AD technique. However, the closed-form
matrix logarithm is not directly available in other computing
environments, thus the Padé approximants may be an attrac-
tive alternative, particularly when a small approximation

1 Automatic differentiation, also called algorithmic differentiation, is a
technique to numerically evaluate the derivative of a function specified
by a computer program or algorithm [34] and should not to be confused
with symbolic differentiation available, e.g., inMathematica.
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error is not a major drawback. For instance, in Hencky-
type hyperelasticity, the specific form of the elastic strain
energy is anyway a model of a more complex reality, so that
a reasonable approximation of the logarithmic strain seems
acceptable.

In Sect. 5, performance of the Padé approximants of
the matrix logarithm is examined in sample finite-element
computations. The computations are carried out using the
AceFEM system, which is integrated with the AceGen sys-
tem, hence the closed-form representation of the matrix
logarithm, available in AceGen, is used as a reference.

4 Remark on the stress conjugate to the
logarithmic strain

The logarithmic strain H has definite advantages and is
frequently used in various contexts. However, its work-
conjugate stress, denote it by T(0), is not available in closed
form. In the case of isotropic elasticity, T(0) is simply the
rotated Kirchhoff stress τ = Jσ , namely T(0) = RTτR. In
the general case, the form ofT(0) depends on the multiplicity
of the principal stretches [36]. In view of the ill-posedness
of the eigenproblem in the vicinity of repeated eigenvalues,
the mentioned closed-form expressions may be inconvenient
in practice. The stress conjugate to the Eulerian logarithmic
strain log(V) is discussed in [37].

The stress power can be expressed in terms of any pair
of conjugate strain and stress measures. Consider thus the
logarithmic strain H with its conjugate stress T(0) and, for
instance, the Green strainE = E(2) with its conjugate second
Piola-Kirchhoff stress S = T(2). The stress power then reads

S · Ė = T(0) · Ḣ = T(0) · HĖ = (HTT(0)) · Ė, (21)

where H = ∂H/∂E is a fourth-order tensor such that Ḣ =
HĖ. Since Ė is arbitrary, we have

S = H
TT(0), T(0) = H

−TS. (22)

Note that tensorsH andE are uniquely definedone in terms of
the other, i.e. H = 1

2 log(2E+ 1) and E = 1
2 (exp(2H) − 1).

Hence, if Ḣ = 0 then Ė = 0 is the only solution of the
linear equation HĖ = 0, and thus H is invertible. Tensor
H possesses the minor symmetries, (H)i jkl = (H) j ikl =
(H)i jlk , but not the major symmetry, (H)i jkl 
= (H)kli j , in
general.

It follows that the closed-form representation of thematrix
logarithm, as developed by Hudobivnik and Korelc [11],
allows one to evaluate H as the derivative of H with respect
to E (or another suitable strain measure) and thus to com-
pute a numerically-exact representation of T(0). Note that
the closed-form representation of the matrix logarithm [11]

delivers a computer code (algorithm) that is generated using
theAD technique.The explicit formulae forH andT(0) would
thus not be available, rather, the respective computer code
would be derived using the AD technique.

Assume now that the Hencky strainH is approximated by
H(m,n), H ≈ H(m,n), where (m, n) is the order of the cor-
responding Padé approximant of the tensor logarithm, see,
for instance,H(2,2) given by Eq. (20). Note thatH(m,n) itself
is a strain measure, and thus one can define the correspond-
ing conjugate stress T(0)

(m,n). Starting from the stress power

T(0)
(m,n) · Ḣ(m,n), in analogy to Eq. (22), we have

T(0) ≈ T(0)
(m,n) = H

−T
(m,n)S, (23)

where H(m,n) = ∂H(m,n)/∂E. Since H(m,n) is an approxi-

mation of H, T(0)
(m,n) provides an approximation of T(0). The

accuracy of approximation is controlled by the approximant
order (m, n) and can be very high for moderate strains, as
shown in Sect. 2.2. Note that H(m,n) is given by a single
explicit formula, see e.g. Eq. (20), and thusH(m,n) can also be
derived in an explicit form. Alternatively, a general-purpose
AD tool can be used to generate the respective computer
code.

To summarize, we have shown that T(0), the stress con-
jugate to the logarithmic strain H = E(0), can be computed,
i.e. evaluated numerically, using the AD technique and the
related closed-form representation of the matrix logarithm
[11]. On the other hand, T(0) can be approximated by an
explicit formula, with controlled accuracy, using the Padé
approximants of the tensor logarithm.

5 Performance of Padé approximants in
finite-element computations

5.1 Preliminaries

In this section, a finite-element study is performed with the
aim to examine the applicability and computational effi-
ciency of Padé approximants in Hencky-type hyperelasticity.
Finite-element simulations are performed for Hencky and
exponentiated Hencky models, Eqs. (18) and (19), respec-
tively, employing Padé approximants of the Hencky strain
H and the results are compared to those obtained for the
respective Hencky-type models employing truncated Taylor
series. Hereinafter, to avoid confusion, the Hencky models
in Eq. (18) will be referred to as ‘classical Hencky models’.
Diagonal Padé approximants of order (2, 2) through (5, 5)
and Taylor series truncated to order 2 through 8 are stud-
ied. At the same time, to provide a baseline for this study,
simulations are also performed for Hencky-type models with
the exact closed-form representation of the matrix logarithm
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[11]. In addition, some comparisons aremadewith the results
obtained for the St. Venant-Kirchhoff model, Eq. (17), and
for the neo-Hookean model.2

Indentation of a hyperelastic block is examined as a
model problem and two types of materials are considered,
namely isotropic and anisotropic of cubic symmetry. In
the latter case, simulations are carried out for [001] and
[011] orientations and the material is assumed to possess
the elastic constants of single-crystal austenitic CuAlNi,
which is characterized by high anisotropy (c11 = 142 GPa,
c44 = 96 GPa, c12 = 126 GPa [39], with the Zener ratio
A = 2c44/(c11 − c12) = 12, for the interpretation of
the elastic constants ci j , see [27]). Note that we use the
elastic constants of CuAlNi for illustration purposes only,
and the range of elastic strains considered in the present
finite-element study largely exceeds that of metals. Elas-
tic properties of the isotropic material (μ = 39 GPa and
κ = 128 GPa, so that E = 106 GPa and ν = 0.36) are
determined via averaging the anisotropic elastic constants of
cubic CuAlNi using the Voigt–Reuss–Hill averaging scheme
[40]. The isotropic exponentiated Hencky model, Eq. (19),
involves two dimensionless material parameters in addition
to the bulk and shear moduli. Following [41], k = 2 and
k̂ = 3 are adopted here (the effect of parameters k and k̂ on
the material response is discussed in [8]).

5.2 Finite-element implementation

In the present study, the external load (indentation) is applied
through a frictionless contact interaction between the hyper-
elastic body and a rigid spherical indenter. The contact
problem is solved by enforcing the unilateral contact con-
straint using the augmented Lagrangian technique [42]. The
related formulation is quite standard and thus is not provided
here.

The finite-element implementation involves the derivation
of the weak form of equilibrium (virtual work principle)
followed by the discretization of the weak form using the
standard Galerkin method. The resulting discretized govern-
ing equations are then solved by using the Newton method
simultaneously for the nodal displacements and contact
Lagrange multipliers. In the present implementation, the
standard isoparametric 8-noded hexahedral element with tri-
linear interpolation functions is used for the displacement
field.

The finite-element code generation is efficiently per-
formed via the symbolic programming tool, AceGen, which
exploits the automatic differentiation (AD) and expression
optimization techniques [35,43]. As discussed in Sect. 3,

2 The neo-Hookean elastic strain energy is adopted as WnH =
1
2μ(tr C̄ − 3) + 1

4κ(detC − 1 − log(detC)), with C̄ = (detC)−1/3C
as the volume-preserving part of C, see [38].

Fig. 3 Indentation of a hyperelastic block: geometry and finite-element
mesh

AceGen provides a closed-form representation of the matrix
logarithm [11] that allows a straightforward and exact imple-
mentation of theHencky-type hyperelasticitymodels. In fact,
models based on this closed-form representation play an
important role in the present study, as they serve as a ref-
erence and allow a clear evaluation of the performance of
Padé approximants in hyperelasticity problems.

The finite-element computations are performed in Ace-
FEM, a finite-element environment that is fully interfaced
with AceGen. A direct linear solver (MKL PARDISO) has
been used.

5.3 Indentation of a hyperelastic block

An elastic block of the size L×L×H = 40×40×20mm3 is
compressed by a rigid spherical indenter of the radius R = 15
mm, Fig. 3. The vertical displacements are constrained at
the bottom surface, otherwise the block is free to expand
laterally during indentation. By exploiting the symmetry of
the problem, only one quarter of the block is modelled, with
adequate boundary conditions imposed along the planes of
symmetry. The actual computational domain is discretized in
20× 20× 20 hexahedral elements leading to 8000 elements
and 26,901 degrees of freedom, comprising of displacements
and contact Lagrange multipliers.

First, a brief discussion of the simulation results for dif-
ferent hyperelasticity models is provided, and whenever
applicable, the closed-form representation of the matrix
logarithm is used. The normalized load–normalized inden-
tation depth responses (for convenience, referred to as ‘P–h
response’ in the sequel) obtained for isotropic and cubic
anisotropic models are shown in Fig. 4. To make the quan-
tities dimensionless, the indentation depth is normalized by
the radius R, and the load is normalized by ER2, where the
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(a) (b) (c)

Fig. 4 Normalized load–normalized indentation depth responses (P/(ER2) vs. h/R) obtained for a isotropic models, b cubic anisotropic models
with [001] orientation, and c cubic anisotropic models with [011] orientation. The markers represent the last converged load steps. The curly arrow
in panel c indicates the load step at which folding instability occurs

Young’s modulus E is determined as described in Sect. 5.1.
In each case, the simulation, which is carried out using an
adaptive load-step control, is continued up to the failure of the
Newton scheme and the last converged solution is indicated
by a marker at the end of the P–h curve.

It can be seen in Fig. 4 that the P–h responses have the
same slope close to zero indentation depth. This observation
stems from the fact that all isotropic and all cubic anisotropic
models coincide in the small strain regime. In both isotropic
and cubic anisotropic cases, the St. Venant-Kirchhoff model
exhibits a considerably poorer performance with respect to
the other models, as the corresponding Newton schemes
crash at early stages of indentation. As discussed in Sect.
3, this is probably due to the loss of rank-one convexity that
implies the poor performance of the St. Venant-Kirchhoff
elastic strain energy under compression [15,29,44]. Note
also that, even for small indentation depths, the responses
yielded by the St. Venant-Kirchhoff models deviate signif-
icantly from the other responses, see the enlarged views in
Fig. 4. Among isotropic models, the neo-Hookean model
has achieved the largest indentation depth of h/R = 1.28.
The indentation depth of h/R = 1.1 has been achieved by
the exponentiated Hencky model. However, in view of the
strong stiffening characteristic for this model at large elastic
strains, the corresponding maximum normalized load is far
greater than in the other models.

For the purpose of illustration, the deformed configura-
tions obtained for the Hencky-type models at the final load
step of the respective simulations are shown in Fig. 5. The
corresponding maximum and minimum principal stretches
achievedwithin the hyperelastic block are presented in Fig. 6.
These are provided here as a reference for the study reported

below, in which the Padé approximants of the Hencky strain
will be employed, and the accuracy of the approximation of
the tensor logarithm depends on the eigenvalues of its argu-
ment, cf. Sect. 2. For instance, the maximum and minimum
principal stretches of, respectively, 2.89 and 0.16 have been
obtained for the isotropic classical Hencky model. Accord-
ingly, with reference to Figs. 1 and 2, a general idea regarding
the corresponding maximum error of the approximation of
the Hencky strain can be gained.

Thefinal deformed configuration obtained for the classical
Henckymodelwith [011] cubic anisotropy reveals an oscilla-
tory deformation mode, which is characterized by formation
of a folding pattern in the mesh layers beneath the indenter
within the y–z plane. The curly arrow in Fig. 4c indicates
the load step at which the folding instability is encountered.
Such instability has also been observed when the improved
enhanced-strain element TSCG12 [45] has been used instead
of the standard isoparametric element, which suggests that
the instability is related to the material model itself (possi-
bly due to the loss of rank-one convexity of the strain energy)
rather than to thefinite-element formulation.The correspond-
ing deformed configuration at the load step just before the
occurrence of the instability is depicted in Fig. 5. A simi-
lar deformation pattern was also noticed for the isotropic St.
Venant-Kirchhoffmodel under compression [44],where such
behaviourwas attributed to the lack of compressive resistance
of the model as a consequence of exceeding the domain of
rank-one convexity. Although the folding instability affects
the reliability of the simulation results, the respective case
has not been excluded from the study of the approximation
methods, which is presented below.
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Fig. 5 The deformed configuration for the isotropic and cubic anisotropic Hencky-type models at the last converged load step of the respective
computations (top). For [011] cubic classical Hencky model, the deformed configuration at the load step just before the occurrence of the folding
instability is also shown (bottom), see the curly arrow in Fig. 4c. The color contours indicate the vertical displacement

Fig. 6 Maximum and minimum principal stretches achieved for the
Hencky-type models at the last converged load step, see Fig. 5

Now, the simulation results are discussed regarding the
performance of the Padé and Taylor-series approximations
in Hencky-type hyperelasticity. Figs. 7, 8, 9 and 10 illus-
trate the P–h responses obtained for theHencky-typemodels
with different representation of the Hencky strain H. Here,
we consider the isotropic classical Hencky model (Fig. 7),
the isotropic exponentiated Hencky model (Fig. 8), and the
anisotropic classical Hencky model with [001] and [011]
orientations (Figs. 9 and 10, respectively). It can be seen
that in both isotropic and cubic anisotropic cases, the mod-

els with Padé approximants outperform those with truncated
Taylor series in terms of the maximum attainable indenta-
tion depth, and the corresponding P–h responses are in a
good agreement with that obtained for the respective models
with the closed-form representation. The superiority of the
models with Padé approximants is pronounced even for the
Padé approximant of low order (2, 2). Interestingly, models
with odd-order Taylor series show a better performance with
respect to those with even-order, note the difference in the
respective approximations of the scalar logarithm function in
Fig. 1b. For instance, in isotropic cases, the former have rea-
sonably approximated the P–h responses in a wide range of
indentation depth, i.e. for h/R < 0.75, but have visibly over-
predicted the response outside this range. The latter, however,
exhibit a narrower range of functionality, e.g. h/R < 0.6 for
the classical Hencky model with the Taylor series of order
8, and terminate at earlier stages of the simulation due to the
failure of the Newton scheme.

It is noteworthy to point out that, despite the occurrence
of the folding instability in the [011] cubic anisotropic case,
the models with Padé approximants have yielded a rea-
sonable approximation of the corresponding P–h response.
Moreover, all the Padé approximant models have correctly
captured the load at which the instability is encountered. On
the other hand, among different Taylor-series models, only
the Taylor-series models of orders 5 and 7 have been able
to capture the instability, however, with an inconsistent load
level with respect to that of the closed-form representation,
see the curly arrows in Fig. 10a,c.
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(a) (b) (c)

Fig. 7 Performance of isotropic classical Hencky model with different representations of the Hencky strain H. The P–h responses for the models
with a Padé approximants, b even-order Taylor series, and c odd-order Taylor series. The markers indicate the last converged load steps

(a) (b) (c)

Fig. 8 Performance of isotropic exponentiated Hencky model with different representations of the Hencky strain H. The P–h responses for the
models with a Padé approximants, b even-order Taylor series, and c odd-order Taylor series. The markers indicate the last converged load steps

Next, a detailed study is carried out with the aim to investi-
gate the computational efficiency of the Hencky-type models
with Padé and Taylor-series approximations. The results
reported in Figs. 7, 8, 9 and 10 indicate an overall poor per-
formance of the low-order Taylor-series models. Moreover,
a relatively narrow range of functionality was observed for
the even-order Taylor-series models. As a consequence, only
the Taylor-series model of order 7 is included in the further
analyses.

Two representative Hencky-type models are considered
in this study, namely the isotropic and [001]-oriented cubic
anisotropic classical Hencky models. Recall that a folding
instability appeared in the case of [011]-orientation, thus the
corresponding model has been excluded from this study. A

twice finer mesh has been utilized, which consists of 64,000
elements and leads to approximately 203,400 degrees of free-
dom. For the sake of illustration, the effect of mesh density
on the final deformed configuration and on the P–h response
for the [001]-oriented Hencky model is shown in Fig. 11.

To evaluate the computational efficiency of different
approximation methods, the total number of load steps
required to complete the simulations and the average assem-
bly timeper iteration are compared in the bar charts in Fig. 12.
The average assembly timeper iteration is defined as the aver-
age time required to assemble the global residual vector and
the global tangent matrix and is influenced by the compu-
tational cost of evaluation of the Hencky strain and its first
and second derivatives. It has been observed that the total
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(a) (b) (c)

Fig. 9 Performance of [001]-oriented cubic anisotropic classical Hencky model with different representations of the Hencky strain H. The P–h
responses for the models with a Padé approximants, b even-order Taylor series, and c odd-order Taylor series. The markers indicate the last
converged load steps

(a) (b) (c)

Fig. 10 Performance of [011]-oriented cubic anisotropic classical Hencky model with different representations of the Hencky strain H. The P–h
responses for the models with a Padé approximants, b even-order Taylor series, and c odd-order Taylor series. The markers and curly arrows
indicate, respectively, the last converged load steps and the load steps at which the instability occurs

simulation wall-clock time follows exactly the same trend
as that of the total number of load steps. To make the com-
parisons relevant, all the computations are performed up to
the normalized indentation depth hmax/R = 0.75. Recall
that an adaptive load-stepping procedure is employed in the
simulations, where the size of the load step is automatically
tuned (increased or decreased) based on the number of global
Newton iterations needed to converge to the solution at the
previous load step.

It can be seen from Fig. 12 that, as expected, the aver-
age assembly time increases with increasing the order of
Padé approximant, but only to a small extent, such that in
both isotropic and cubic anisotropic cases, the assembly time

obtained for the model with the Padé approximant of order
(5 ,5) is only about 1.25 times greater than that for the model
with order (2, 2). The computational cost of the model with
the Taylor series of order 7 is similar to that with the Padé
approximant of order (4, 4). However, as illustrated in Figs. 7,
8, 9 and 10, the former performs visibly worse in terms of
overall accuracy. Comparison with the assembly time for the
modelwith the closed-form representation shows ahigh com-
putational efficiency of the implementation based on the Padé
approximants. Recall that code generation is here performed
usingAceGen, which combines automatic differentiation and
expression optimization techniques. The conclusions con-
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(a) (b)

Fig. 11 The effect ofmesh density on a the deformed configuration for [001]-oriented cubic anisotropic classical Henckymodel at the last converged
load step of computation, and b the P–h response. The markers in panel b indicate the last converged load steps

(a) (b)

Fig. 12 Computational performance of the classical Hencky models with different representations of the Hencky strain H in terms of the average
assembly time per iteration and the total number of load steps: a isotropic classical Hencky and b [001]-oriented cubic classical Hencky

cerning the computational efficiency are thus specific for the
present implementation approach.

Concerning the total number of load steps, in the isotropic
case, the model with the Taylor series of order 7 exhibits the
largest value, thus the longest simulation wall-clock time. At
the same time, the total number of load steps of the mod-
els with Padé approximants is not significantly influenced
by the order of approximation. In the cubic case, the best
performance in terms of the number of load steps has been
achieved by the model with Padé approximant of order (2,
2).

6 Conclusion

We have employed the Padé approximants of the tensor log-
arithm as a simple, accurate and computationally efficient
method to approximate the logarithmic (Hencky) strain ten-
sor. For moderate strains, accuracy close to the machine
precision can be obtained depending on the approximation
order. The resulting approximate Hencky strain tensor is
obtained in an explicit form, which admits a straightfor-
ward computer implementation, including evaluation of the
first and second derivatives that are needed to compute the
stress and the tangent operator. In this context, we have also
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discussed the possibility of computing, in an exact or approxi-
matemanner, the stress tensor conjugate to theHencky strain.

As an application, we have considered Hencky-type
hyperelastic models in which the elastic strain energy is
expressed in terms of the Hencky strain, in particular, the
Hencky strain energy that is quadratic in the Hencky strain.
Practical implementation of the Hencky-type models is sig-
nificantly simplifiedwhen theHencky strain is approximated,
e.g., using a Padé approximant. At the same time, the corre-
sponding error introduced to the elastic strain energy function
is justified considering that the specific elastic strain energy
is anyway a model, i.e. an approximation of a more complex
phenomenon.

The results of the finite-element study illustrate a supe-
rior performance of the Hencky-type models employing the
Padé approximants with respect to those employing the trun-
cated Taylor series in both isotropic and cubic anisotropic
hyperelasticity problems. More specifically, the superiority
is reflected in a larger attainable strain range, in a better agree-
ment of the mechanical response with that obtained for the
model with numerically-exact closed-form representation of
the matrix logarithm, and in a competitive computational
efficiency. The results also demonstrate that the models with
odd-order Taylor series possess a wider range of functional-
ity compared to those with even order. A poor performance
of the St. Venant-Kirchhoff model has also been illustrated
in both isotropic and anisotropic hyperelasticity.
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