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Summary. In the paper a coupled response–degradation problem for a nonlinear vibrating system is analyzed.

The analysis allows to account for the effect of stiffness degradation (during the vibration process) on the

response and, in the same time, gives the actual stress values for estimation of damage accumulating in the

system. The paper constitutes an extension of the approach (a sequential characterization of the degradation

random process) presented in [4] to vibrating systems with nonlinear restoring term.

1 Introduction

As is well known, dynamic excitation of engineering systems (including randomly varying

excitation) causes variable stress amplitudes generated in mechanical/structural members and, in the

consequence, irreversible changes in the material structure. These changes, known as damage

accumulation, may have different physical content. But despite the diversity of underlying physical/

mechanical phenomena, it is useful to describe them jointly within a single model relating the rate of

damage evolution over time with applied stress. Models of this type operate with a certain damage

measure D(t), which characterizes a damage state at time t. It is usually assumed that D(t) is on the

interval [0, D�], where D� denotes a critical damage, and that is a nondecreasing function of time. In

some situations (e.g., in the case of fatigue accumulation) external actions and generated stresses can

be conveniently related to discrete values of time (e.g., by N, the number of cycles).

Since the variable stress causing damage (and, in the consequence, stiffness degradation) are

generated by a vibratory system it is natural to formulate jointly the system dynamics and damage

accumulation. Such an analysis allows to account the effect of stiffness degradation during the vibration

process on the response and, at the same time, gives the actual stress values for estimation of damage.

A coupled analysis of random vibration and fatigue accumulation (fatigue crack growth) has been

treated by Grigoriu for linear random oscillators in [1] (cf. also [2], [3]). The authors of the present paper

in [4] provided for such a linear systems a sequential approach to the coupled response–degradation

problem. In [5] the analysis of nonlinear systems with fatigue degradation (fatigue crack growth), but in

Correspondence: J. Trebicki, Institute of Fundamental Technological Research, Polish Academy of Sciences,
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the linear elastic component of the system is performed. In this paper, the sequential approach presented

in [4] is extended to nonlinear systems with a wide class of nonlinearities; it includes, e.g., the

degradation due to fatigue in nonlinear elastic components of the system.

2 General formulation

For a wide class of nonlinear vibratory systems with random excitation (both, external or parametric)

the coupled response–degradation problem can be formulated in the following form:

€YðtÞ þ F½ _YðtÞ;YðtÞ;DðtÞ;Xðt; cÞ� ¼ 0; ð1Þ

Q½ _DðtÞ;DðtÞ;YðtÞ; _YðtÞ� ¼ 0; ð2Þ

Yðt0Þ ¼ Y0
_Yðt0Þ ¼ Y1;0Dðt0Þ ¼ D0; ð3Þ

where Y (t) is an unknown response process, D(t) is a degradation process, F[.] is the given function of

indicated variables satisfying the appropriate conditions for the existence and uniqueness of the

solution, X(t, c) is the given stochastic process characterizing the excitation; c 2 C, and C is the space

of elementary events in the basic scheme (C, B, P) of probability theory, Q[.] symbolizes the

relationship between degradation and response process; its specific mathematical form depends on the

particular situation; Y0, Y1,0, D0 are given initial values of the response and degradation, respectively.

An important special class of the response–degradation problems is obtained if relationship (2)

takes the form of a differential equation, that is, Eqs. (1), (2) are

€YðtÞ þ F½ _YðtÞ;YðtÞ;DðtÞ;Xðt; cÞ� ¼ 0; ð4Þ
_DðtÞ ¼ G½DðtÞ;YðtÞ; _YðtÞ�; ð5Þ

where G is the appropriate function specifying the evolution of degradation; its mathematical form is

inferred from the elaboration of empirical data, or it is derived from the analysis of the physics of the

process. In Eq. (5) dependence on Y(t) and _YðtÞ is regarded here in a more relaxed sense than usual.

The degradation rate _DðtÞ may depend on the actual values of YðtÞ; _YðtÞ; but it can also depend on

some functionals of YðtÞ; _YðtÞ; for example, on the integral of Y (s), s 2 [t0, t]. In fatigue degradation

problem the degradation D(t) can be interpreted as a ‘‘normalized’’ crack size (cf. [4]) calculated

according to the Paris law, or as a ‘‘normalized’’ damage calculated according to the Palmgren–

Miner rule, when Y(t) is not included itself, but the stress range DS ¼ Smax @ Smin, i.e., a quantity

related to the response amplitude H ¼ (Ymax @ Ymin)=2.

The special class of problems characterized generally by Eqs. (1) and (2) is obtained if the

functional relationship (2) does not include _DðtÞ; and D(t) depends on some statistical characteristics

of the response process Y (t); a good example could be a vibrating system in which a degradation

process depends on the time which the response Y (t) spends above some critical level y�. This is the

case of an elasto-plastic oscillatory system with D(t) interpreted as accumulated plastic deformation

governed by the plastic excursions of the response Y (t) into the plastic domain (in this situation y�

may be regarded as the yield limit of the material in question). Formally, the situations indicated

above can be characterized by the equations

€YðtÞ þ F½ _YðtÞ;YðtÞ;DðtÞ;Xðt; cÞ� ¼ 0; ð6Þ

DðtÞ ¼ D0 þ
XNðtÞ

i¼1

diðcÞ; ð7Þ
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where di(c) ¼ DDi(c) are random variables characterizing the elementary degradations associated

with the specific degradation process; the magnitude of di(c) depends on characteristics of the

process Y (t) above a fixed level y�. The process N(t) is a stochastic counting process characterizing

a number of degrading events in the interval [t0, t].

3 Nonlinear random vibration with stiffness degradation

A nonlinear symmetric relationship between stress S and strain e in uniaxial tension–compression

can be represented as

SðeÞ ¼ E0

XM

k¼1

mke
k ¼ E0gðe; m1; . . .; mMÞ; �e�\e\e�;

Sð�eÞ ¼ �Sð�eÞ;
ð8Þ

where (cf. [6])

gðe; m1; . . .; mMÞ ¼ E0

XM

k¼1

mke
k; ð9Þ

where E0 is an empirical modulus of elasticity and e� is a certain fixed strain satisfying the condition

e� � eyield(eyield – yield strain). The parameters mk(k ¼ 1,. . ., M) are nondimensional empirical

parameters characterizing the physical nonlinearity of the elastic element in the vibratory system.

The function g(e) is nondecreasing function on the interval [@e�, e�] and satisfying the condition

g(@e) ¼ @g(@e).
From the above the relation between nonlinear force F and displacement x takes the following

form:

FðxÞ ¼ k0gðx; g1; . . .; gMÞ; gð�xÞ ¼ �gð�xÞ; �x�\x\x�; ð10Þ

where

gðx; g1; . . .; gMÞ ¼ k0

XM

k¼1

gkxk; k0 ¼
E0sl

l0
; gk ¼

mk

lk�1
0

; x� ¼ e�l0: ð11Þ

The parameters gk are dimensional parameters of nonlinearity of the restoring force, k0 is the

stiffness of the linear elastic element with initial length l0 and cross-sectional area sl, respectively.

The analysis of random vibration problems coupled with degradation creates serious difficulties.

Due to this fact it is not easy to construct an analytical and general method for the solution of the

system of equations presented in the previous section. The appropriate simplifications and

approximations have to be introduced.

Let us consider vibrations of the oscillator with nonlinear restoring force g(x; g1, . . . ,gM)

subjected to Gaussian white noise excitation. Assume that during the vibration process a fatigue

damage develops in the component which affects the stiffness (or natural frequency) of the

vibrating system under consideration (cf. Fig. 1, for illustration). Let us denote by k(D) the

stiffness dependence on the degradation measure D. In addition we assume that the static

displacement y0 (equilibrium state, which in general is also the function of degradation measure

D, i.e., y0(D)) due to the gravity force acting on the mass M is close to zero and is very small in

relation to the vibration amplitude of the system. In such a case y0(D)%0 and the governing

equation can be written in the form
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M€yðtÞ þ c _yðtÞ þ kðDÞgðy; g1; . . .; gMÞ ¼ nðt; cÞ; ð12Þ

where n (t, c) is a random process assumed to be stationary Gaussian white noise. The response process

y(t) characterizes the displacement and M, c are the mass and damping coefficients, respectively.

Dividing, both sides of Eq. (12) by M and then introducing new variables Y ¼ y=ry, s = x0 t, where ry

denotes a standard deviation of the stationary response of the linear system g(y) ¼ y without

degradation (i.e., when x2
0 ¼ k(D0)=M, D0 ¼ 0), we obtain a dimensionless form of Eq. (12)

€YðsÞ þ 2f _YðsÞ þ qðDÞgðY ; b1; . . .; bMÞ ¼ n1ðs; cÞ; bk ¼
mkrk�1

y

lk�1
0

; ð13Þ

where x2
0 q(D) ¼ k(D)/M and q(D) is a monotonically decreasing function of the degradation

measure D satisfying the condition qðD0Þ ¼ 1; n1ðs; cÞ ¼ nðs=x0; cÞ=k0ry is the stationary

Gaussian white noise with correlation function Kn1
ðs2 � s1Þ ¼ 4fdðs2 � s1Þ where d(.) is the Dirac

delta function. When q (D0) ¼ 1 and g(y) ¼ y the Eq. (13) has a property that rY ¼ r _Y ¼ 1; where

r _Y is the standard deviation of the velocity.

Generally, the function q representing the stiffness dependence on the degradation measure D(s)

can be taken in the form of a polynomial (cf. [4])

qðDÞ ¼ 1�
XK

i¼1

hiD
i; qðD ¼ 0Þ ¼ 1: ð14Þ

However, it can be also approximated by the exponential function (cf. [7])

qðDÞ ¼ a1 þ a2 expð�a3Da4Þ; ð15Þ

where a1, a2, a3, a4 are positive constants, such that a1 ? a2 ¼ 1 (to have q (D0 ¼ 0) ¼ 1). The

values of the empirical parameters ai, hi should be identified from the experiment.

4 Coupled analysis of the response–degradation problem

In order to include into the analysis the explicit dependence of the degradation on the response

amplitude of the system with nonlinear restoring force we assume that we deal with the cumulative

X(t)

M

lo k = k(D)

Fig. 1. Diagram of vibratory system with

stiffness degradation
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model of degradation measure D. When 2 f � 1 (in Eq. (13)) the response process Y (s) is a narrow

band process generating in each response cycle N the stress range DSN. The increment DDN of the

degradation D during the cycle N can be represented as

DDN ¼ C DSNð Þm; ð16Þ

where C and m are empirical constants and DS is the stress range. For example, this is the case of

fatigue accumulation; the Paris–Erdogan equation for fatigue crack growth (in one cycle) in elastic

materials can be transformed to (16) (cf. [4]).

DN(c) characterizes the state of the degradation random process after N cycles. In order to

account for the cumulative nature of the degradation process and its randomness let us represent

DN(c) in the form of a sequence of random variables DDN(c), N ¼ 0, 1, . . . , N�. Therefore

DNðcÞ ¼
XN

i¼1

DDiðcÞ; DDiðcÞ ¼ DiðcÞ � Di�1ðcÞ: ð17Þ

The coupled computational response–degradation model has the form

€YðsÞ þ 2f _YðsÞ þ q½DN�1ðcÞ�gðY ; b1; . . .; bMÞ ¼ n1ðs; cÞ; ð18Þ
DNðcÞ ¼ DN�1ðcÞ þ DDNðcÞ; ð19Þ

where DDN(c) denotes the increment of the degradation process during N-th cycle. It is defined by

formula (16) in which DSN is the stress range in N-th cycle.

It is assumed that the degradation starts when the response Y (t) is in its stationary state and that

the response is a narrow-band process (2 f � 1). Because of the assumption that the equilibrium

state y0(D) % 0 we approximate the range DYi ¼ Ymax;i � Ymin;i by the amplitude Hi of the Y(t).

Because of the nonlinear relationship (9), the stress range DSi in the i-th cycle is

DSi ¼ l�1
0 E0rygðHi; b1; . . .; bMÞ: ð20Þ

Finally, the increment DDN of the degradation process occurring in Eq. (16) has the form

DDNðcÞ ¼ C1gmðHNðcÞ; b1; . . .; bMÞ; ð21Þ

where the constant C1 is obtained during the transformation from a dimensional to a nondimensional

system.

Equations (18) and (19) along with (16) and (21) constitute a complete sequential model for

the characterization of the response–degradation process Y (t), D(t) in discretized time instants

(cycles) N ¼ 0, 1, . . . , N�. Because the degradation process is slow in comparison to the response

itself and the degradation process D starts when the system (18) reached its stationary state for

initial stiffness q(DN¼0) generated by a deterministic or random value of the initial damage

measure DN¼0 ¼ D0, we take the distribution of the amplitude HN given DN@1. In this model the

response after N cycles is affected by the stiffness degradation state after N @ 1 cycles, whereas

the degradation process after N cycles depends on the response amplitude HN at cycle N, given

DN@1.

The probabilistic characteristics of the response–degradation process YN, DN (where YN ¼ HN

and HN is the amplitude of the process Y at cycle N) can be obtained via conditioning. Let us denote

by HNjDN@1 the conditional amplitude of the process Y (t) at the N-th cycle given a fixed value of

the stiffness in cycle N (specified by the degradation level at (N @ 1)-st cycle). In the case of the

considered nonlinear system the conditional probability distribution (density) of HN, i.e.,

f̂HN
ðhjDN�1Þ has the following form [3]
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f̂HN
ðhjDN�1Þ ¼ qðDN�1Þgðh; b1; . . .; bMÞ exp �qðDN�1Þ

Zh

0

gðz; b1; . . .; bMÞdz

0
@

1
A: ð22Þ

Because the random variable describing the increment DDN in Eq. (21) is a nonlinear transformation

of the random amplitude HN(c), the conditional probability density of the increment DDN at given

degradation DN@1 has the form

f̂DDN jDN�1
ðxjDN�1Þ ¼

duðxÞ
dx

����

����f̂HN
ðuðxÞjDN�1Þ; ð23Þ

where u(x) is the inverse function of g
m(h; b1, . . . ,bM). The joint distribution of DN@1 and DDN

needed to evaluate the probability distribution of the degradation DN(c) at cycle N is represented

by

fDDN ;DN�1
ðx; yÞ ¼ f̂DDN jDN�1

ðxjyÞfDN�1
ðyÞ: ð24Þ

The density function of the random variable DN(c) defined as the sum of DDN(c) and DN@1(c) is

given as following convolution:

fDN
ðzÞ ¼

Zz

0

fDDN ;DN�1
ðz� y; yÞdy ¼

Zz

0

f̂DDN jDN�1
ðz� yjyÞfDN�1

ðyÞdy; ð25Þ

where f̂DDN jDN�1
is given by formula (24).

Therefore, the probability density of the degradation process at the N-th cycle is expressed by the

conditional density f̂DDN jDN�1
given by the explicit formula (23) and by the density of the degradation

process at the cycle N @ 1. This integral recursive formula (25) can serve as base for calculations.

The probability distribution of the response amplitude at cycle N, given the degradation at cycle

N @ 1, is expressed by formula (22).

The above procedure can be easily extended to the more general class of following nonlinear

systems with stiffness degradation:

€YðsÞ þ F½ _YðsÞ;YðsÞ;DN�1ðcÞ� ¼ n1ðs; cÞ; ð26Þ
DNðcÞ ¼ DN�1ðcÞ þ DDNðcÞ; ð27Þ

where DDN(c) is given by (16). Under the assumptions that the response of the degrading system is a

narrow band process (i.e., small damping restriction) and degradation starts when the stationary state

of the system is reached, the conditional probability density function of HNjDN@1 is the conditional

probability density function of local maxima of YNjDN@1 and can be written down in the known

form (i.e., [2])

f̂HN
ðhjDN�1Þ ¼ �

1

mþ0 ðDN�1Þ
�dmþh ðDN�1Þ

�dh
; ð28Þ

where m+
x (DN@1) is the mean value of the x-upcrossing rate of YNjDN@1 given by

mþx ðDN�1Þ ¼
Z1

0

ufY _Y ðx;ujDN�1Þdu: ð29Þ

In all situations when processes YNjDN@1 and _YN jDN�1 can be regarded as statistically independent,

the formula (28) reduces to the form
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f̂HN
ðhjDN�1Þ ¼ �

1

fY jDN�1
ð0Þ

dfY jDN�1
ðyÞ

dy

����
y¼h

; ð30Þ

which is an extension of the formula (22) which-holds-for related to system (18). Indeed, for the

nonlinear oscillator (18) we have the following joint conditional probability density function (cf. [8])

in the stationary state fY :

ðy1; y2jDN�1Þ ¼ fY jDN�1
ðy1Þf _Y jDN�1

ðy2Þ ¼ C2 exp½�qðDN�1ÞWðy1Þ� exp½�y2
2=2�; ð31Þ

where Wðy1Þ ¼
R y1

0 gðz; b1; . . .; bMÞdz: After appropriate calculation according to Eq. (30) we

obtain Eq. (22).

For a wide class of nonlinear oscillators such as Caughey oscillators or the oscillator given in (18)

the stationary response distribution has a closed analytical form and can be directly adopted to

the proposed above analysis of nonlinear systems with stiffness degradation. In other cases the

approximation methods such as the maximum entropy method (cf. [8]) or path integration method

(cf. [9]) could be used to approximate the probability density function fY _Y ðx;ujDN�1Þ:

5 Numerical example

The effectiveness of the method described above is verified for the response–degradation nonlinear

vibratory stochastic system (18) with restoring force of type (11) (see Fig. 2)

gðYÞ ¼ Y � bY2sgnðYÞ; �e�l0=ry\Y\e�l0=ry; ð32Þ

where sgnðyÞ denotes the signum function (i.e., sgnðyÞ ¼ 1 for y [ 0 or and sgnðyÞ ¼ �1 for

y \ 0). To show the effect of the stiffness degradation on the response of the system, the

degradation function defined in Eq. (14) is taken in the form

qðDÞ ¼ 1� D2; Dh i 2 ½ D0h i; D�h i�; ð33Þ

where �h i denotes the mean value. In the calculations the following values of parameters are assumed

both for the linear and the nonlinear system: D�h i ¼ 0:5; the damping coefficient on the system (18) is
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Fig. 2. Example of the nonlinear (soft-

ening) restoring force of an elastic

element in a vibratory system
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f ¼ 0.01 and the values of coefficients in Eq. (21) are as follows: C1 ¼ 1.06 · 10@6, m ¼ 3. The

initial degradation measure is assumed to be a Gaussian random variable D0(c) with mean value

D0h i ¼ 0:01 and standard deviation rD ¼ 10@3. The value of the parameter C1 is the same for the

linear and the nonlinear system to show the difference between damage accumulation in these systems.

To show the effect of the stiffness nonlinearity on the degradation process two cases were

considered. First, the response of the nondegraded (uncoupled system with constant initial stiffness)

and degraded linear system was calculated and then the system with nonlinear (softening) restoring

force (32) was evaluated numerically according to the method described in Sect. 4. Figures 3 and 4

illustrate the evolution of the mean values and standard deviations of the degradation measure D for

the nondegraded and the degraded system with linear and nonlinear stiffness, respectively. In Fig. 3

we see that for the fixed number of cycles the mean value of the degradation measure D for the

degraded system with nonlinear stiffness is smaller than the mean value of the degraded system with

linear stiffness. This is because of the softening stress–strain relation for the nonlinear system. In this

figure we see that the mean value of D for the system with stiffness degradation has nonlinear

behavior, whereas it is linear in the case of the system where stiffness degradation is not taken into

account. This figure also shows that the difference between the mean value of D for the nonlinear

system with stiffness degradation and without stiffness degradation is dependent on the parameter of

nonlinearity b, respectively. Figure 4 visualizes the comparison between standard deviations of the

degradation measure for the considered systems. A significant growth of the standard deviation of the

degradation measure D in degraded systems is observed. Figure 5 shows the probability density

functions of the degradation measure for different numbers of response cycles N. This figure indicates

also that stiffness degradation should play an important role in the reliability analysis of the system.

For example, for fixed level D� ¼ 0.5 and N ¼ 100,000 of cycles we have a probability of failure

PF ¼ 1 @ P(D \ D�) & 0.025 for the nondegraded nonlinear system (see dashed probability

density) and PF ¼ 1 @ P(D \ D�) & 0.27 for the degraded nonlinear system (see continuous

probability density). The similar situation is observed for the linear system. The nondegraded system

is understood here as the system whose stiffness degradation is not taken into account.

Figures 6 and 7 shows the mean and standard deviation of the stiffness degradation q(D) versus

the number of cycles of the response process Y . Figures 8 and 9 illustrate probabilistic

characteristics of the response process Y (s). More specifically, they show the mean and standard
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deviation of the response amplitude both in the case of the system with nondegraded stiffness and the

system with degraded stiffness. Again, the distortion of the results due to stiffness degradation and

degree of stiffness nonlinearity is clearly visible for larger numbers of cycles.

The presented results show that the behavior of dynamical stochastic systems with stiffness

degradation should be investigated by the use of coupled equations describing simultaneously the

response and the degradation processes.

6 Conclusions

In this paper the general formulation and analysis of the response–degradation problems for

randomly vibrating systems are presented. Such a coupled formulation makes it possible to account

for the effect of stiffness degradation (during the vibration process) on the response and,
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simultaneously, it yields the actual stress values for characterization of the accumulation of

degradation.

It has been shown in the paper how such a coupled, vibration–fatigue degradation problem, can be

treated effectively. The method presented in Sect. 4 yields the statistical characteristics of the

process [Y (s), D(s)] as functions of a number of cycles of the response process. Numerical

calculations provide a quantitative and graphical information on the response-degradation process.

Calculations provide a quantitative and graphical information on the response process. This kind of

information may be used in the reliability estimation of real vibrating systems. The results are

obtained for fixed values of the intensity of external noise and the specific stiffness–degradation

function (33). Of course, the form of the function q(D), which usually comes from empirical data

(and depends on the material properties of the vibrating component) may have a significant effect on

the response characteristics. Some preliminary results presented in this paper have been announced

earlier in [10].
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