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Summary. The Taylor-Lin polycrystal model is used to simulate plastic deformations of a polycrystal.

These propagate a corner in the subsequent yield surface due to the intersection of the yield loci of a

number of slip mechanisms. Two approaches to identify subsequent yield surfaces and the development of

the yield vertex at the applied stress are discussed. A linear regression analysis of the rounded corner is

used to identify the corner angle and its development for different strain processes. On deformation paths

composed of two aligned segments, the development of a secondary vertex is shown to follow similar laws.

1 Introduction

In crystal plasticity, a number of distinct plastic glide mechanisms contribute simultaneously to

the plastic flow. Each one is activated if its critical resolved shear stress is reached and addi-

tional loading takes place. For multi-slip, the yield surfaces of the distinct slip systems form a

vertex at their intersection [1], forming the multi-faceted crystallite yield locus.

For polycrystals, the number of mechanisms is growing rapidly with the number of grains

that interact on the microscale, resulting in the macroscopic plastic flow. However, each slip

system of any grain must obey the condition of consistency and thus a vertex results from

theoretical considerations at the actual stress point [2].

The effect is an irregular shaped yield locus that has been of particular interest to experi-

mental investigation over many years [3]–[5]. Moreover, due to the interaction of several

mechanisms, the direction of plastic flow is not a priori fixed to a single direction, as prescribed

by the normality rule applied to a smooth yield surface. Accordingly, there is a transitory range

between total loading and total unloading processes [1], [2], [6], [7].

Thus the amount and direction of plastic strain and in the consequence the incremental

moduli depend on the direction of the stress rate. Due to the presence of a nonsmooth yield

surface, this effect is called vertex effect [8]–[12]. This additional incremental nonlinearity is of

particular importance for nonproportional processes and connected with the delay effect [13].

Micromechanical models of polycrystals based on crystal plasticity models are nowadays

widely used and are able to predict the vertex effect as well as a number of internal structural

parameters. However, their solution needs numerical methods that are comparatively costly.

Models that include the vertex effect in phenomenological approaches have been proposed by

several authors. Stören and Rice [14] identified the fully active range with the J2 deformation

theory. Christoffersen and Hutchinson [15] introduced a transition function in the partial

unloading range between the incremental moduli of fully active and total unloading range.

Petryk and Thermann [16], [17] enhanced a two-surface model with a yield vertex and
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numerically determined shear bands. Kuroda and Tvergaard used a smooth yield surface but

included the vertex effect in their flow rule [10] also for shear band investigations.

Other phenomenological theories of plasticity that incorporate the vertex effect are due to

Gotoh [8], Goya and Ito [18], Hu et al. [19], and Tsutsumi and Hashiguchi [12]. The quite

general microplane model of plasticity and failure has also been interpreted as a theory with

vertex effect by Caner et al. [11].

All these approaches have in common that the transition that describes the nonlinear

dependence of the stress rate on the strain rate is the main constituent. Often it is formulated as

a function of the outer corner angle at a yield vertex, which is p
2
for a smooth yield surface.

Increased values indicate a more pronounced vertex.

Hutchinson [20] estimated this angle by self-consistent homogenization schemes. In many

approaches it is assumed to be constant, at least after an initial phase of vertex development.

In this paper, the development of a vertex during inelastic processes is computed for a whole

deformation process, using the classical Taylor-Lin polycrystal model and a viscous grain

model (Sect. 2). A large-strain formulation takes texture effects into account. Two distinct

indicator functions for the inelastic behavior are used to obtain surrogates for subsequent yield

loci and discussed in Sect. 3. In general, the corner angle depends on the deformation history,

as the vertex effect is not present in virgin materials. Thus, different standard processes as used,

e.g., in [21] are used alone and in two-staged combination in Sect. 4. A linear regression

analysis is used for determination of the primary and secondary vertex in such processes.

Recently, Zattarin et al. [22] used a self-consistent scheme to investigate the development of

subsequent yield surfaces. They used a different definition of the yield point that prevented the

detection of vertices. Accordingly, the corner angle is not subject of their study.

2 The polycrystal model

2.1 The constitutive model for single crystals

The elastic behavior of single crystals is described by a linear law in the undistorted state,

~S ¼ ~C
1

2
ð~C� 1Þ

� �
; ð1Þ

using the second Piola-Kirchhoff tensor ~S and the right Cauchy-Green tensor ~C ¼ ~F
>~F. In

elastic-plastic behavior, we introduce the unimodular inelastic transformation P, and the elastic

transformation ~F ¼ FP. According to the concept of isomorphic elastic ranges [23], [24], the

elastic law after a plastic deformation can be re-mapped to the reference law Eq. (1) by the

isomorphy conditions

S ¼ P~C
1

2
ðP>CP� 1Þ

� �
P>;

s ¼ ~F~C
1

2
ð~F>1~F� 1Þ

� �
~F
>
:

ð2Þ

Herein, S and C are the second Piola-Kirchhoff stress tensor and the right Cauchy-Green

tensor, respectively. s ¼ FSF> is the Kirchhoff stress tensor. The latter is completely deter-

mined by the elastic transformation. The equivalence to the multiplicative decomposition of the

deformation gradient F is established by the simple identity
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F ¼ ~FP�1: ð3Þ

Geometrical interpretation of ~F as operator between vectors in the undistorted state (lattice

vectors) and in the actual placement yields the resolved shear stress in the a-th slip system

characterized by the slip system normal na ¼ ~F
�>

~na, the slip direction da ¼ ~F~da, and the

Schmid tensor ~Ma ¼ ~d
a � ~na,

sa ¼ da � sna ¼ ~C~S � ~Ma: ð4Þ

For face-centered cubic metals like copper, the octahedral slip systems are used [25, Table 1].

During elastic processes, P is constant, while changing according to

P�1 _P ¼ �
X

a

_ca
~Ma ð5Þ

during inelastic processes. Each slip system contributes an elementary shear at its slip rate _ca.

Here, we use a mildly rate-sensitive nonlinear viscous regularization [26]

_ca ¼ _c0

sa

sc
a

����
����
n

sign sa ð6Þ

with a power law exponent n and a reference slip rate _c0. The critical shear stresses sc
a are

process-dependent hardening variables that require a hardening rule, or in case of perfect

plastic material are constant. For the present approach, a viscous flow potential is applied [27],

x ¼ 1

nþ 1
_c0

X
a

sc
a

sa

sc
a

����
����
nþ1

;

_ca ¼
@x
@sa

:

ð7Þ

The evolutions of ~F and F are governed by the spatial velocity gradient L,

_FF�1 ¼ L;

_~F~F�1 ¼ L�
X

a

_ca
~F ~Ma

~F�1:
ð8Þ

2.2 Polycrystal model

As a simple polycrystal model, the fully constrained Taylor-Lin model was used. The locali-

zation yields for each grain j the local velocity gradient from the prescribed global one �L:

Lj ¼ L: ð9Þ

The overall stress is obtained by

�s ¼ 1

N

X
j

sj: ð10Þ

The initial orientations of the grains were chosen to have an initially isotropic aggregate. A

total number of N ¼ 1024 grains have been optimized for isotropy [28]–[30].

Each of them was modelled using the octahedral slip systems. Material data for copper is

summarized in Table 1.
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3 Dissipation and flow potential as indicators of yield

In a strict sense, a single crystal is elastic if all slip rates vanish, _ca ¼ 0. For the chosen model,

this is only the case for vanishing stress. However, for small stresses, the deviation from

elasticity is small and can often be neglected.

By the introduction of indicator functions for inelastic behavior we are able to define a

critical threshold. The point where it is reached on a radial path defines the boundary of the

‘practical’ elastic domain.

Dissipation criterion. In [31], based on an inelastic micromechanical simulation, the dissipated

power fraction

dj :¼
P

a sa _ca

sj �Dj
ð11Þ

was successfully used. Total elastic behavior is characterized by _ca ¼ 0) dj ¼ 0, while rigid-

perfect plastic behavior would lead to total dissipation, the other extremal case dj ¼ 1.

In the present model, a part of the stress power is dissipated (gross effect of dislocation glide),

another part is stored (elastic lattice distortion due to external agents and residual stresses on

intergranular scale). Residual micro-stresses that would give another, hardening-dependent

storage mechanism are not accounted for.

A homogenization of the stress power is possible, and the global dissipation criterion for

discrete grains of equal size can be formulated by

�d ¼
1
N

P
j

P
a sa _ca

�s � �D
: ð12Þ

Figure 1a shows the development of this value during an elastic-plastic tension process. It

is constant about 0:8 in spite of hardening, that affects both the dissipated and the total

stress power in the same manner. In Fig. 1b, the influence of different prescribed process

Table 1. Octahedral slip systems [25] (top) and material parameters (bottom)

a ~da ~na

1 ð0; 1; 1Þ=
ffiffiffi
2
p

ð1; 1;�1Þ=
ffiffiffi
3
p

2 ð1; 0; 1Þ=
ffiffiffi
2
p

ð1; 1;�1Þ=
ffiffiffi
3
p

3 ð1;�1; 0Þ=
ffiffiffi
2
p

ð1; 1;�1Þ=
ffiffiffi
3
p

4 ð0; 1;�1Þ=
ffiffiffi
2
p

ð1;�1;�1Þ=
ffiffiffi
3
p

5 ð1; 0; 1Þ=
ffiffiffi
2
p

ð1;�1;�1Þ=
ffiffiffi
3
p

6 ð1; 1; 0Þ=
ffiffiffi
2
p

ð1;�1;�1Þ=
ffiffiffi
3
p

7 ð0; 1; 1Þ=
ffiffiffi
2
p

ð1;�1; 1Þ=
ffiffiffi
3
p

8 ð1; 0;�1Þ=
ffiffiffi
2
p

ð1;�1; 1Þ=
ffiffiffi
3
p

9 ð1; 1; 0Þ=
ffiffiffi
2
p

ð1;�1; 1Þ=
ffiffiffi
3
p

10 ð0; 1;�1Þ=
ffiffiffi
2
p

ð1; 1; 1Þ=
ffiffiffi
3
p

11 ð1; 0;�1Þ=
ffiffiffi
2
p

ð1; 1; 1Þ=
ffiffiffi
3
p

12 ð1;�1; 0Þ=
ffiffiffi
2
p

ð1; 1; 1Þ=
ffiffiffi
3
p

c0 1e� 3

n 80

sc 16:0 MPa

c1111 168:0 MPa

c1122 121:4MPa

c2323 75:4 MPa
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velocities is shown. A small influence of kLk is visible that does not inhibit the usage as a yield

criterion, if the threshold is chosen for a fixed strain rate. Subsequently kLk ¼ _c0 will always be

used [9].

Equation (12) can be used to define a macroscopic elastic domain based on the known

inelastic behavior on the micro scale.

Flow potential. Another suitable indicator with a physical background is the viscous flow

potential introduced in Eq. (7) [27], [32]. Its transferrability to the macroscale is secured:

�x ¼ 1

B

Z
B

xdV : ð13Þ

In contrast to �d, it can be computed from a simple elastic computation. Thus, it does not rely

on a microscopic plasticity model (but is of course related to it). It is therefore possible to define

a ‘practical’ elastic domain in a classical manner, i.e., by an indicator function that is a function

of stress only at frozen plastic state variables.

In Fig. 2a, out of the virgin state the isoline of the flow potential at �x ¼ 1 in the psc-tens (see

Table 2 for definition) section of stress space was determined. In addition, radial inelastic

processes lead to isolines of the dissipation at �d ¼ 25%. Both yield comparable curves that

approximate Tresca’s criterion of maximum shear stress. A rounding of the vertices is obvious,

an effect that is stronger for the flow potential.
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The exact usage of both indicators for the first yield is shown in Fig. 2b. A plane strain

compression test with �L ¼ _c0
Apsc

kApsck was started out of the virgin state. Together with the von

Mises equivalent stress, the dissipative power ratio (inelastic process) and the viscous flow

potential (elastic process) were plotted.

A ‘practically’ linear elastic behavior is found up to �d ¼ 0:25 or �x ¼ 1 (marked C). At the

same time, the dissipation increases massively.

Elastic reversal of the process reveals the plastic proof strain remaining at label A. Unloading

can be judged by �x that reaches values as small as 10�99. A value of �log ¼ 2� 10�5 is found.

This can be regarded a very strict criterion for the onset of yield, differing orders of magnitude

from technical definitions.

It is possible to define even sharper criteria, such as �x ¼ 10�9. From Eq. (7) we conclude for

only one slip system contributing,

s
sc
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðnþ 1Þ

_c0sc
�x

½nþ1�

s
� 0:93; ð14Þ

thus �x ¼ 10�9 really establishes an approximate criterion for first yield.

Further, the reversed process exhibits a small Bauschinger effect as the critical flow potential

is reached in negative direction at a lower stress level (D). This effect has been explained by the

residual macrostresses by many authors, e.g., [33], if kinematical hardening is absent.
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Subsequent surfaces. For determination of subseqent isosurfaces after a defined prestrain, the

same methods were applied. A tens process up to �log ¼ 0:1 was applied, followed by an

unloading process and computation of isolines in the tens-shear stress plane. Figure 3 shows

initial and subsequent isolines of the flow potential, for critical values from �x ¼ 10�9 by

multiples of 10. After prestrain the values reached in prestrain direction vary strongly.

�x ¼ 10�3 is a suitable indicator for the actual prestrain. Thus a threshold different from the

virgin state would be necessary.

In contrast, the plotted dissipation �d at the same critical value (25% of stress power) lies in

close proximity to the stress.

Both indicators clearly exhibit a strong distortion, in particular the formation of a ‘‘nose’’ or

rounded vertex. The angle at the outer flanges is similar between the different potential lines,

but differs completely from the dissipation line.

4 Corner development at moderate strain

4.1 Identification of corner data

For the identification of the outer corner angle that is regarded as the main descriptive

parameter of a yield vertex, the straight parts of the potential isolines have been approximated
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by a linear regression (Fig. 4) using two-dimensional coordinates x ¼ T �Ax and y ¼ T �Ay.

Note that Ax and Ay have not been normalized.

The resulting linear equation in plot sheet coordinates ðx; yÞ, y ¼ mixþ bi; i ¼ 1; 2 can be

retransferred to the deviatoric Cauchy stress space, using the information which two-dimen-

sional section of stress space is represented by the plot. Thus, lines in the deviatoric stress space

according to

TðxÞ ¼ x
Ax

Ax �Ax

þmi

Ay

Ay �Ay

� �
þ bi

Ay

Ay �Ay

ð15Þ

are generated. Here, Ax and Ay denote two of the orthogonal direction tensors as defined in

Table 2, or any other pair. Accordingly, the direction of these lines is given by

Bi ¼
Ax

Ax �Ax

þmi

Ay

Ay �Ay

; ð16Þ

and the outer corner angle hc (Fig. 5) can be calculated from their full contraction after

normalization,

hc ¼ p� 1

2
arc cos

B1

kB1k
� B2

kB2k
: ð17Þ

The intersection of the two regression lines is at

x ¼ b2 � b1

m1 �m2
: ð18Þ

Using Eq. (15), the according stress point Tc can be computed. It is regarded as the idealized

vertex if no rounding were present:

Tc ¼ b2 � b1

m1 �m2

Ax

Ax �Ax

þm1b2 �m2b1

m1 �m2

Ay

Ay �Ay

: ð19Þ

Table 2. Definition of standard processes and process stages

Strain rate tensor Description

1 0 0

0 �1
2

0

0 0 �1
2

2
64

3
75

Volume-preserving tension

0 1 0

1 0 0

0 0 0

2
64

3
75 Symmetric shear

0 0 0

0 1 0

0 0 �1

2
64

3
75 Plane strain compression (idealized rolling)

�log 0 2:5� 10�4 4� 10�4 6� 10�4 1� 10�3 2� 10�3

Label A

�log 4� 10�3 8� 10�3 1:6� 10�2 3:2� 10�2 1� 10�1

Label B C
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4.2 Corner development in volume-preserving tension processes

By application of a tensile prestrain, the equivalent strain finally reached �eq ¼ 0:1 (moderate

strain). At different stages in between, elastic unloading and drawing of isolines of the viscous

flow potential and the dissipated power in certain sections of stress space was performed. These

stages are shown by arrows in Fig. 6. Definitions of process directions and stages are shown in

Table 2. Note that symmetric shear and plane strain compression are practically equivalent to

each other for an initially isotropic polycrystalline aggregate.
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For �x ¼ 1, the result is given in Fig. 7a. In the beginning, a strong distortion of the initially

ellipsoidal shape can be seen. In the first subsequent line at a prestrain as small as

�log ¼ 2:5� 10�4 at the very onset of plasticity, a rounded nose is already present. The

rounding could be minimized by using a smaller critical value.

From the line corresponding to �log ¼ 2� 10�3 (labeled A), after the range of incipient plastic

flow, the distortion is not predominant any more. Instead, a nearly self-similar growth takes

place.

By the procedure prescribed in Sect. 4, the outer corner angle has been determined. Its

development with growing prestrain has been shown in Fig. 8a. One finds saturation-type

behavior at an outer corner angle of about 174�. At stage A, it has already reached 164�.

Also, for the same stages of a tensile process, the dissipated power was used to produce

isolines in Fig. 7b. While the initial isolines are similar in their ellipsoidal shape, there is less

distortion of the subsequent lines than in the flow potential plot. In particular, the lateral

contraction (negative cross effect) is less pronounced. Also the rounding of the vertex is

stronger using the flow potential.

Again, the corner angle has been determined and plotted in Fig. 8b. The resulting angle is

smaller at the same prestrain. Saturation cannot be found, but the outer corner angle grows

sublinear with prestrain (hc / log �n, n < 1).

-40

-30

-20

-10

 0

 10

 20

 30

 40

-100 -50  0  50  100  150  200

st
re

ss
 s

he
ar

 [
M

Pa
]

tension stress [MPa]

potential isolines

A B C

DE

-40

-30

-20

-10

 0

 10

 20

 30

 40

-100 -50  0  50  100  150  200

sh
ea

r 
st

re
ss

 c
om

po
ne

nt
 [

M
Pa

]

tension stress component [MPa]

dissipation Isolines

A B C

a

b

Fig. 7. Flow potential and

dissipation isolines for different
tens prestrains

150 M. Schurig et al.



To explore the differences, the influence of the residual stress and the texture was investi-

gated. Information about both is contained in the statistical distribution of ~Fj. In a polar

decomposition

~Fj ¼ ~Rj
~Uj; ð20Þ

~Rj describes the texture information while in a macroscopically unloaded state ~Uj 6¼ 0 indicates

a residual stress field.

In such a state, replacing ~Fj by ~Rj, the residual stress field has been deleted without changing

the texture and hardening information. Then the isolines of the flow potential have been

computed once more (Fig. 7a, labeled D). For comparison, the elastic transformations ~F have

been reset to the initial ones (Fig. 7a, labeled E, large ellipsoid only shown by part.). These are

also pure rotations, but this time the initial isotropic texture is represented. It is obvious that

the texture information has substantially more influence on the shape of the isoline than the

residual stress field.

4.3 Corner development in shear and plane strain compression processes

Shear prestrain processes (see Table 2 for definition) with the defined stages of equivalent strain

have been performed in the same manner as in the previous Section. The stress strain-curve is

also drawn in Fig. 6. In the plastic range the stress is a little below the tensile process. This

reflects the fact that the equivalent strain has been defined based on the Huber-von Mises

hypothesis. In fact, the isosurfaces of the virgin polycrystal are between the Huber-von Mises

and the Tresca criteria, indicating that shear leads earlier to yield.
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Figure 9a shows the development of potential isolines at �x ¼ 1 enclosing the prestress points.

At an equivalent strain of 2� 10�3 (Fig. 9a, labeled A) the vertex is well developed. On further

stages, the shape of the subsequent isolines degenerates: a strong Bauschinger effect and the

distortion makes it impossible to identify a vertex (Fig. 9a, labeled C). In contrast, the dissi-

pation isolines do not exhibit any degeneration. A vertex is clearly identifiable (Fig. 9b).

The result of a plane strain compression (idealized rolling) process is similar, Fig. 10.

The elastic transformation ~Fj of the single grains has been treated as before to study the

origin of this remarkable difference. The deletion of internal stresses in both cases is expressed

by a translation of the whole isoline (Fig. 9a, labeled D). If in addition the texture information

is reverted to the initial isotropic data (Fig. 9a, labeled E), the distortion of the line vanishes.

This can be explained by non-straight continuation processes.

For the stages of shear prestrain defined in Table 2, elastic continuation processes have been

simulated, and the flow potential has been tracked along the process line. For reversed

processes, the potential dropped during unloading and eventually reached a minimum before

rising again. Similar behavior has been noticed superimposing the reversed strain with some

additional straining in an orthogonal direction.

In Fig. 11 the minima of the flow potential have been plotted. Each line visualizes data

obtained after a certain level of prestrain. The symbols denote different unloading paths. The

lowest minimum is reached for totally reversed processes.
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While tensile prestrain results in very small minima for totally reversed processes, after shear

prestrain it is noticably higher. At stage A, the flow potential does not fall below 1:16� 10�6

(or 0:2% of its value at a straight continuation). By Eq. (14) this means that at least one slip
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system has to be active. Due to the high exponent n in Eq. (6), only few slip systems transi-

tioning the critical stress sc
a are sufficient for a strong increase of the flow potential. The inelastic

dissipation criterion allows for yield on the according mechanisms, considerably lowering their

contribution to �d.

This could be attributed to the residual stress field that is indeed stronger in psc and shear

processes. The flow potential is a measure for the resolved shear stress on the most loaded slip

systems. A small number of slip systems exceeding the average resolved shear stresses due to the

according crystallites residual stress have huge potential influence on the shape of the isoline.

By replacement of ~Fj by ~Rj it has been shown that this is the main source of the translation, but

not of the distortion of the isosurface.

An explanation can be given based on the lattice rotation of individual grains. On tens

processes, the lattice rotation leads to activation of additional slip systems during rotation

towards the stable fibres typical for the drawing texture.

In contrast, on shear and plain strain compression process paths, the set of active slip systems

changes frequently, as mechanisms get active and inactive. By reversal of strain it is thus

possible that the resolved shear stress in some recently inactivated slip systems approaches the

critical value, giving raise to a massively increased flow potential. Hence, already at strain levels

of nearly no texture formation, the small lattice rotations combined with the high selectivity of
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the flow potential for the first active slip systems lead to excessive distortion of the flow

potential isolines. In the dissipation criterion, such slip systems can be filtered out by a

threshold being large enough. Such an approach is prevented by the high exponent of the flow

potential.

The sharpening of the outer corner angle reaches further stages earlier in shear and psc

processes than in tens processes. A similar result has been obtained in the stress-strain curves,

once more indicating that the equivalent stress/strain are not perfectly suitable for the model.

4.4 Shear after unloaded tension

A tensile prestrain up to stage A (see Table 2) was followed by an elastic unloading process.

From that state, the same program as prescribed above for shear has been performed.

Figure 12 shows the resulting potential and dissipation isolines together with the stress path

obtained by this sequence.

Near the stress path, a secondary vertex can be found. While it is developing, the prior shape

including the primary vertex is dissolved.

The outer corner angle of the secondary vertex has been obtained for a secondary shear of

stage A as 135:5�. In comparison, shear without prior tens process at stage A reaches 138:0�.
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4.5 Shear immediately after tension

Without intermediate unloading, after tens prestrain up to stage A, strain has been continued

by shear processes. Figure 13 shows the resulting potential and dissipation isolines together

with the stress path obtained by this sequence. Here, the vertex is not removed but turns along

with the actual stress point. The prior shape of the primary vertex has completely transformed

(Fig. 14). Here, an outer corner angle of 137:7� is finally reached at stage A.

The irregular shape makes a regression analysis difficult in the first stages of secondary corner

development. Thus, based on the judgement of the outer corner angle reached after additional

equivalent accumulated logarithmic strain of �log ¼ 0:001, the secondary vertex develops like

the primary one.

5 Conclusion

Both the viscous flow potential and the dissipated power are suitable indicators for the onset of

yield of a virgin material. For the subsequent surfaces after a prestrain, the elastic range at some

point has to be replaced by an area of negligible plastic activity. This makes it impossible to use

further the viscous flow potential due to its high exponent that inevitably detects the first local

and not global yield.

If the dissipated power is adopted, it is possible to determine the yield vertex that forms near

the actual stress point during plastic deformation. The corner angle develops with strain. A

saturation of the outer corner angle could not be found, but the growth rate declines strongly.

A vertex has already developed at strain levels below typical proof strains of technical defini-

tions of yield.

If the isotropic equivalent accumulated von-Mises strain is used as a measure of deformation,

the growth rate for shear and plane strain compression processes is larger than for tensile

processes. This reflects the fact that the initial yield surface is between the Huber-von Mises and

the Tresca criteria, and plastic deformation begins at earlier stages of deformation on these

processes, too. Thus, a modified equivalent strain could be of advantage.

On non-linear paths, upon reloading a secondary vertex can be found. Its development

occurs after similar amounts of deformation and the outer corner angle is comparable. Also in

non-linear paths without unloading, the vertex travels with the direction of applied stress. Thus,

the vertex tip and the angle develop coherently, once again similar to the primary vertex.
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Fig. 14. Linear regression to identify
the secondary vertex in the last step

of Fig. 13b. Note that the axes have
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[29] Bertram, A., Böhlke, T., Gaffke, N., Heiligers, B., Offinger, R.: On the generation of discrete
isotropic orientation distributions for linear elastic cubic crystals. J. Elast. 58, 233–248 (2001).
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