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Abstract The present second part of the paper deals with
the virtual displacement fields associated with the optimality
conditions εI (u) = 1, εII (u) = −κ, κ = σT

/
σC , where σT

and σC represent the allowable values of the tensile and com-
pressive stress, respectively. The displacement fields vanish
along a straight segment of a line support and are constructed
within an infinite domain bounded by two half-lines. The
displacement fields are provided by the integral formulae in-
volving the Lamé fields found in part I of this paper. All
the results are expressed in terms of Lommel-like functions.
These results make it possible to determine the volumes of
the optimal cantilevers designs within the feasible domain
considered. Computation of the volumes along with analyses
of concrete cantilevers will be the subject of part IV of the
present paper.

1 Introduction

The Hencky nets found in part I determine the geometry of
the Michell cantilevers constructed within the infinite trape-
zoidal domain. The weight of these cantilevers can be com-
puted by (I.2.12). This weight is proportional to the work
of the concentrated force on the trial displacement satisfy-
ing the conditions (I.2.14) within the domain and (I.2.15) on
its boundaries, along the reinforcing ribs. The subject of the
present paper is a concatenating construction of these trial
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fields in the subdomains RBA, NAC, ABDC, CDG, BDH,
DHJG, GJG2, HJH2 and JH2J2G2 (see Fig. I.19). We ap-
ply two methods of construction of these fields: (a) by using
the auxiliary virtual displacement fields u0, v0 satisfying the
equations Lu0

=0, Lv0
=0 with the hyperbolic operator L de-

fined by (I.6.3) or by (b) a direct integration along the α-lines
or β-lines. All the integration operations are performed ana-
lytically using the Lommel-like functions (see the identities
a.7–a.10) and the integration formulae set up in Lewiński
et al. (1994a) (see a.16, a.31–a.36, a.38–a.41, a.A.1–a.A.12)
and in Graczykowski and Lewiński (2006) in the Appendix,
called Appendix I.A.

The results presented can be viewed as generalization
of the previous results by Chan (1967) and Lewiński et al.
(1994a) concerning the special case of σT=σC. The pa-
per uses the notation and adopts the conventions of part I
(see Graczykowski and Lewiński 2006). In particular, nota-
tion (a.101), Section a.2 means (101), Section 2 of the pa-
per by Lewiński et al. (1994a). Similarly, (b.161), Section
b.7 means (161), Section 7 of the paper by Lewiński et al.
(1994b). We introduce now a new convention: (I.13.1)
means (13.1) of part I or of Graczykowski and Lewiński
(2006). Similarly, Section I.7, Fig. I.6 means Section 7,
Fig. 6 in part I.

2 The methods of construction of the virtual
displacement field by using the geometric
characteristics of the Hencky nets

In part I the characteristics x, y, A, B of the lines α, β within
the infinite domain �0 (the domain bounded by the lines RR1,
NN1 and the line segment RN; see Fig. I.1) have been found
and analytically expressed by Lommel-like functions. Hav-
ing these characteristics we shall find the components (u,v)
of the virtual displacement field u satisfying the optimality
conditions (I.2.14). The components (u,v) represent virtual
displacements along α and β lines, respectively. The strain
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components referred to the (α, β) coordinates are expressed
by (a.62, a.63) or

ε11 =
1
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(
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∂β
v

)
,
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1

B

(
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)
,
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2
(ω1 + ω2), (2.1)

where
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A

∂ B

∂α
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(2.2)

and the quantity

ω =
1

2
(ω1 − ω2) (2.3)

represents the rigid rotation around the normal to the plane
considered.

The lines (α, β) follow trajectories of virtual princi-
pal strains. According to the optimality conditions (I.2.14)
we have

ε11 = 1 , ε22 = −κ , ε12 = 0 , ω1 = ω, ω2 = −ω. (2.4)
The above conditions lead to the following formula for the
virtual displacements

d
[
eiφ(u + iv)

]
= eiφ[A(1 + iω)dα + B(−ω − iκ)dβ],

(2.5)
where φ(α, β)=β−α. The right-hand side must be a com-
plete differential. This condition gives the differential equa-
tions which govern the function ω(α, β). Integration of these
equations leads to the following formula (see Hemp 1973,
(4.21)):

ω = ω0 + (1 + κ) ·

 α∫
0

∂φ(α, 0)

∂α
dα −

β∫
0

∂φ
(
α, β

)
∂β

dβ

,

(2.6)
where ω0=ω(0,0). Taking into account that φ(α, 0) = −α
and φ

(
α, β

)
= β − α, one finds

ω(α, β) = ω0 − (1 + κ)(α + β). (2.7)
Integration of (2.5) leads to the following integral formulae
for the integration along

(a) the α-line

u(ξ, η) = ûθ (ξ, η) +

ξ∫
θ

[cos (ξ − α) − ω(α, η)

× sin (ξ − α)] A(α, η)dα

v(ξ, η) = v̂θ (ξ, η) +

ξ∫
θ

[sin (ξ − α) + ω(α, η)

× cos (ξ − α)] A(α, η)dα

(2.8)

where ω(α, η) is given by (2.7)

ûθ (ξ, η) = cos (ξ − θ) · u(θ, η)

− sin (ξ − θ) · v(θ, η)

v̂θ (ξ, η) = sin (ξ − θ) · u(θ, η)

+ cos (ξ − θ) · v(θ, η) (2.9)

(b) the β-line

u(λ, µ) =
^

uθ (λ, µ) +

µ∫
θ

[− cos (β − µ) · ω(λ, β)

+ κ sin (β − µ)] B(λ, β)dβ

v(λ, µ) =
^
vθ (λ, µ) −

µ∫
θ

[κ cos (β − µ) + sin (β − µ)

× ω(λ, β)] B(λ, β)dβ,

(2.10)

where
^

uθ (λ, µ) = cos (θ − µ) · u(λ, θ)

− sin (θ − µ) · v(λ, θ)

^
vθ (λ, µ) = sin (θ − µ) · u(λ, θ)

+ cos (θ − µ) · v(λ, θ). (2.11)

In the domains, where the rule (I.6.1) holds, the differen-
tial equations (I.6.2) are valid. Substitution of these equations
into (2.1) gives

ε11 =
1

A

(
∂u

∂α
+ v

)
, ε22 =

1

B

(
∂v

∂β
+ u

)
. (2.12)

Thus, the optimality conditions (2.4) lead to the equations

∂u

∂α
+ v = A,

∂v

∂β
+ u = −κ B , (2.13)

hence,

Lu = (κ + 1)B; Lv = −(κ + 1)A , (2.14)

where L is given by (I.6.3).
The displacement fields u, v can be found by the integra-

tion formulae (2.10), (2.11) or by solving the set of differen-
tial equations (2.14). This set can be simplified by a change
of unknowns. Let us note that the auxiliary fields

u0(α, β) = u(α, β) − (κ + 1)αA(α, β)

v0(α, β) = v(α, β) + (κ + 1)β B(α, β) (2.15)

satisfy the hyperbolic equations

Lu0
= 0; Lv0

= 0 . (2.16)
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We remember that the fields x, y, A, B satisfy the same equa-
tion (see (I.6.2), (a.52) and (a.56)). Thus, the fields u0, v0 can
be found by Riemann’s method (see Section a.2.2). The for-
mulae (2.15) are generalization of the formulae (a.66) for the
case of κ 6=1.

Upon finding the fields u0, v0 by Riemann’s method one
can easy find the fields u, v directly from (2.15).

The geometric analysis of the Hencky net within �0
leads to a subdivision of this domain into the subdomains
I(or RAN), II upper (RBA), II lower (NAC), III(ABDC), IV
upper (BDH), IV lower (CDG), V(DHJG) etc. (see Fig. I.19).
The functions x, y, x, y, A, B have been constructed step-by-
step, starting from domain I and then extending the solution
to further domains, which is typical for solving hyperbolic
problems. The fields (u,v) will be constructed in the same
sequence, starting from the domain RAN.

3 Displacement fields (u,v) in the domain RAN

The components
(
ux0 , u y0

)
of this field were found in

Section I.4 (see (I.4.7)), referring to the coordinate system
(x0,y0). It is helpful to find these components in the coordi-
nate system (x,y) determined by the lines RA and AN (see
Fig. I.4 and I.10). Instead of performing the transformation
of the fields (I.4.7) we impose the conditions (2.4), assum-
ing that (u,v) represent the components of the vector u in the
direction of the x, y lines (see Fig. I.10):

∂u

∂x
= 1 ,

∂v

∂y
= −κ ,

∂u

∂y
+

∂v

∂x
= 0 . (3.1)

Moreover, the line RN is parameterized by the equation

y = −
r1

r2
x − r1, (3.2)

where r1=NA and r2=RA. The fields u, v satisfying (2.4) and
vanishing on the line (3.2) have the form

u = x +
r2

r1
y + r2, v = −κy −

r2

r1
x − κr1 . (3.3)

This result is compatible with (I.4.7). Let us compute the rigid
rotation

ω =
1

2

(
∂v

∂x
−

∂u

∂y

)
= −

r2

r1
. (3.4)

By virtue of (I.4.10) we have

ω = −κ1/2. (3.5)

4 Virtual displacement fields within the fan-like
domains

The fan NAC. This domain is parameterized by (α, β1). We
substitute (I.5.4) into (2.1) and find the strain components

ε11 =
1

r1β1

[
∂u

∂α
+ v

]
,

ε22 =
1

r1

∂v

∂β1
,

2ε12 =
1

r1β1

∂v

∂α
+

1

r1

(
∂u

∂β1
−

u

β1

)
. (4.1)

The optimality conditions (2.4), along with the condition of
vanishing of displacements at point N (or for β1=0), yield

u = r1[(κ + 1)αβ1 + Cβ1], v = −r1κβ1 , (4.2)

where C is a constant. Adjustment of displacements (4.2)
with the fields (3.3) along the line AN gives C=r2/r1. Thus,
the fields (u,v) in the domain NAC read

u = (κ + 1)αβ1r1 + β1r2, v = −r1κβ1 . (4.3)

Let us compute the rigid rotation

ω = −
1

r1
[r2 + (κ + 1)αr1]. (4.4)

Along the line NA, where α=0, we have ω=−r2/r1, which
is compatible with (3.4).

The fan RBA. This domain is parameterized by (α1, β). The
Lamé coefficients are given by (I.5.2.) Proceeding as be-
fore, we make use of the optimality conditions (2.4) and find
(u,v) from the conditions of vanishing these fields at point
R and their compatibility with the displacement fields (3.3)
along RA:

u = r2α1 , v = −(κ + 1)α1 β r2 − κα1r1 . (4.5)

The rigid rotation ω along RA is constant and equals
ω=−r2/r1.

5 The Prager–Hill domain ABDC: construction of the
virtual displacement fields

The geometric characteristics of the net were found in Section
I.6. The formulae there reported make it possible to find
the auxiliary fields u0, v0 by solving (2.16) by the Riemann
method.

Along the line AB (α1=1, α=0; see Fig. 1), the values of
v and B are known:

v(0, β) = −(κ + 1)r2β − κr1, B(0, β) = r2 . (5.1)



466 C. Graczykowski, T. Lewiński
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Fig. 1 Geometry of the Michell cantilever

Thus, along this line, we know the values of v0 given by
(2.12):

v0(0, β) = −κr1. (5.2)

Along the curve AC (β1=1, β=0) we have

v(α, 0) = −κr1. (5.3)

Along this line β=0; hence, according to (2.12),

v0(α, 0) = −κr1. (5.4)

Function v0 satisfies (2.13). Thus, it can be expressed by
Riemann’s formula (a.17) for θ1=θ2=0. This formula re-
duces to the form

v0(λ, µ) = v0(0, 0) · G0(λ, µ), (5.5)

since the functions α→v0(α,0), β→v0(0,β) are constant.
Eventually,

v0(λ, µ) = −κr1G0(λ, µ).

Substitution of the formula for B within ABDC (see I.6.8)
into (2.15) gives

v(λ, µ) = v∗(λ, µ), (5.6a)

where

v∗(λ, µ) = −[κr1 + (κ + 1)µr2]G0(λ, µ)

−(κ + 1)µr1G1(λ, µ). (5.6b)

Similarly, one can find u(λ, µ). We note that along AB (α1=1,
α=0),

u(0, β) = r2, u0(0, β) = r2 . (5.7)

The following relations hold along AC (β1=1, β=0):

u(α, 0) = (κ + 1)αr1 + r2, A(α, 0) = r1 ; (5.8)

hence,

u0(α, 0) = r2. (5.9)

Because the functions β→u0(0, β), α→u0(α, 0) are constant,
the Riemann formula (a.17) reduces to its first term

u0(λ, µ) = u0(0, 0)G0(λ, µ). (5.10)

Thus, we have

u0(λ, µ) = r2G0(λ, µ),

and by using (2.15) and (I.6.7), we find the final result

u(λ, µ) = u∗(λ, µ), (5.11a)

where

u∗(λ, µ) = [r2 + (κ + 1)r1λ]G0(λ, µ)

+λ(κ + 1)r2G1(µ, λ). (5.11b)

The results (5.11a, b and 5.6a, b) can be found by means
of formulae (2.8)–(2.11). Let us explain here this alternative
derivation. We apply the equations (2.8) in which integration
runs over the α-line, starting from an arbitrary point (0, η)
on the arc AB (see Fig. I.12). Function ω(α, β) is given by
(2.7), where constant ω0 is given by (3.4) or (3.5); thus,

ω(α, η) = −κ1/2
− (1 + κ)(α + η). (5.12)

According to (4.5) we have

u(0, η) = r2 , v(0, η) = −(κ + 1)r2η − κr1 . (5.13)

Now we have θ=0, and (2.9) assumes the form

û0(ξ, η) = r2 cos ξ + [(κ + 1)r2η + κr1] sin ξ

v̂0(ξ, η) = r2 sin ξ − [(κ + 1)r2η + κr1] cos ξ. (5.14)

We arrive at the following formulae for u:

u(ξ, η) = û0(ξ, η) + u1(ξ, η) (5.15)
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with

u1(ξ, η) =

ξ∫
0

U•(ξ, η; α)[r1G0(α, η) + r2G1(η, α)]dα

(5.16)

and

U•(ξ, η; α) = cos (ξ − α) +

(
κ1/2

+ (κ + 1)(α + η)
)

× sin (ξ − α). (5.17)

We have made use of (I.6.7) for the form of the function
A(α, η) within the domain ABDC. The results reported in
the Appendix (a.A) and (a.16) make it possible to perform
integration in (5.16). By also using (a.7)–(a.14) we find

u1 (ξ, η) = −r2 cos ξ − κr1 sin ξ − (κ + 1)ηr2 sin ξ

+r2G0(ξ, η) + (κ + 1)r1ξG0(ξ, η)

+(κ + 1)ηr2G1(ξ, η). (5.18)

The results (5.14) and (5.18) give the formula (5.11a, b) ob-
tained previously in a different manner.

We omit now a similar and equally lengthy alternative
derivation of (5.6a,b) by using the second equation of (2.8).
One should additionally use (a.40) and (a.41).

The fields u, v found here and the fields A, B found in
Section I.6 are linked by (2.13), which can be confirmed by
using the differentiation rules (a.4).

6 Domains of Chan

6.1 Lower domain of Chan (CDG): construction
of virtual displacement fields

In the previous section two alternative methods of construc-
tion of the displacement fields within domain ABDC have
been presented. The first of these methods, based on using
auxiliary fields u0, v0, does not apply for the region consid-
ered here. We apply the second one based on representations
(2.8). We consider the arc α starting at (0, η) on the arc AB,
going through point (θ1, η) on arc CD and ending at point
(ξ, η) within domain CDG (see Fig. 1). According to (2.8)
we may write

u(ξ, η) = ûθ1(ξ, η) +

ξ∫
θ1

U•(ξ, η; α)A(α, η)dα, (6.1)

where ûθ1(ξ, η) is given by (2.9), and the function U•(ξ, η; α)
is defined by (5.17). Although correct, (6.1) is not helpful.
One should reinterpret (2.8) as follows:

u(ξ, η) = û0(ξ, η) +

ξ∫
0

U•(ξ, η; α)A(α, η)dα, (6.2)

where û0 is given by (5.14), and the Lamé coefficient
A(α, η) is expressed as follows:

A(α, η) =

{
A∗(α, η), if 0 ≤ α ≤ θ1
A∗(α, η) + A•(α, η) α ≥ θ1

, (6.3)

where (see I.7.20)

A∗(α, η) = r1G0(α, η) + r2G1(η, α)

A•(α, η) = −r1G0(α − θ1, η + θ1)−r2G1(α − θ1, η + θ1).

(6.4)

Consequently, the displacement u within CDG is represented
by

u(ξ, η) = û0(ξ, η) +

θ1∫
0

U•(ξ, η; α)A∗(α, η)dα

+

ξ∫
θ1

U•(ξ, η; α)
[
A∗(α, η) + A•(α, η)

]
dα. (6.5)

Thus, using (5.15)–(5.18), we arrive at

u(ξ, η) = u∗(ξ, η) +

ξ∫
θ1

U•(ξ, η; α)A•(α, η)dα, (6.6)

where function u*(ξ, η) is defined by (5.11b); the arguments
of the function vary within the following limits:

θ1 ≤ ξ ≤ η + θ1 , 0 ≤ η ≤ θ2 . (6.7)

Using the results of integration reported in the Appendix I.A,
one computes

ξ∫
θ1

U•(ξ, η; α)A•(α, η)dα = u•(ξ − θ1, η + θ1) (6.8)

with

u• (ξ, η)
/

r1 = κ · F1 (ξ, η) + 2κ2/3 F2 (ξ, η)

−κ · F3 (ξ, η) − (κ + 1)

× ξ(G0 (ξ, η) + κ1/2G1 (ξ, η)). (6.9)

We eventually find

u(ξ, η) = u∗(ξ, η) + u•(ξ − θ1, η + θ1). (6.10)

In the case of κ=1 or σT/σC=1, r1=r2=r, the formula above
coincides with (a.119).

Proceeding similarly, we can find the formula for v within
CDG. The second integral formula of (2.8) should be inter-
preted as follows:

v(ξ, η) = v̂0(ξ, η) +

ξ∫
0

V•(ξ, η; α)A(α, η)dα (6.11)
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with v̂0 given by (2.9) for θ=0 and

V•(ξ, η; α) = sin (ξ − α) −

(
κ1/2

+ (κ + 1)(α + η)
)

× cos (ξ − α). (6.12)

The function A(α, η) is given by (6.3). Thus, we have

v(ξ, η) = v∗(ξ, η) +

ξ∫
θ1

V•(ξ, η; α)A•(α, η)dα (6.13)

where v* is given by (5.6b). Integration in (6.13) can be per-
formed analytically by using the results put in the Appendix
I.A to find

ξ∫
θ1

V•(ξ, η; α)A•(α, η)dα = v•(ξ − θ1, η + θ1) (6.14)

with

v•(ξ, η)
/

r1 = 2κ F2(ξ, η)+(κ + 1)η (F1(ξ, η)+F3(ξ, η))

+ (2κ + 1) κ1/2 F3(ξ, η) + (κ + 1)κ1/2η

× (F2(ξ, η)+ F4(ξ, η))+κ1/2 F1(ξ, η) (6.15)

or

v•(ξ, η)
/

r1 = 2κ F2(ξ, η) + (κ + 1)η

×
(
G1(ξ, η) + κ1/2G2(ξ, η)

)
+(2κ+1)κ1/2 F3(ξ, η)+κ1/2 F1(ξ, η) (6.15’)

Eventually, we have

v(ξ, η) = v∗(ξ, η) + v•(ξ − θ1, η + θ1). (6.16)

Functions A, B,u,v within CDG must be linked by the (2.13).
To check it is sufficient to verify

∂u•

∂α
+ v• = A•,

∂v•

∂β
+ u• = −κ B• (6.17)

with

B•(α, η) = −r1G1(α − θ1, η + θ1)−r2G2(α − θ1, η + θ1)

(6.18)

see the second equation of (I.7.20). Note that relations (2.13)
were checked, as remarked in Section 5. Moreover, one can
check that the fields u•, v• vanish along CD.

6.2 The upper domain of Chan (BDH): construction
of virtual displacement fields

To find the values of u at any point within domain BDH we
apply the integration formula (2.10)

u(ξ, η) =
^

u0(ξ, η) +

η∫
0

U •(ξ, η; β)B(ξ, β)dβ, (6.19)

where
^

u0 is given by (2.11) for θ=0 and

U •(ξ, η; β) = κ sin (β − η) +

(
κ1/2

+ (κ + 1)(ξ + β)
)

× cos (β − η) (6.20)

B(ξ, β) =

{
B∗(ξ, β), if 0 ≤ β ≤ θ2
B∗(ξ, β) + B•(ξ, β) β ≥ θ2

(6.21)

with

B∗(ξ, β) = r1G1(ξ, β) + r2G0(ξ, β)

B•(ξ, β) = −r1G1(β − θ2, ξ + θ2)−r2G0(β − θ2, ξ + θ2).

(6.22)

Thus, we obtain

u(ξ, η) = u∗(ξ, η) +

η∫
θ2

U •(ξ, η; β)B•(ξ, β)dβ, (6.23)

where u* is defined by (5.11b). By using the results of the
Appendix I.A we perform all the integrations analytically
to find

η∫
θ2

U •(ξ, η; β)B•(ξ, β)dβ = u•(ξ + θ2, η − θ2), (6.24)

where

u• (ξ, η)
/

r1 = −(2κ + 1)F3(η, ξ) − κ F1(η, ξ)

−2κ1/2 F2(η, ξ) − (κ + 1)

× ξ
(
G2(η, ξ) + κ1/2G1(η, ξ)

)
(6.25)

Thus, we arrive at

u(ξ, η) = u∗(ξ, η) + u•(ξ + θ2, η − θ2). (6.26)

Let us find now the field v in this domain. We use (2.10) with
the help of (5.12) to obtain

v(ξ, η) =
^
v0(ξ, η) +

η∫
0

V •(ξ, η; β)B(ξ, β)dβ, (6.27)

where ^
v0 is given by (2.11) for θ=0 and

V •(ξ, η; β) = −κ cos(β − η) +
(
κ1/2

+ (κ + 1)(ξ + β)
)

× sin(β − η). (6.28)

Function B is given by (6.21) and (6.22). Thus, we obtain

v(ξ, η) = v∗(ξ, η) +

η∫
θ2

V •(ξ, η; β)B•(ξ, β)dβ , (6.29)
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where v* is given by (5.6b). By applying the results of the
Appendix I.A we express the integral in terms of Lommel
functions

η∫
θ2

V •(ξ, η; β)B•(ξ, β)dβ = v•(ξ + θ2, η − θ2) (6.30)

where

v• (ξ, η)
/

r1 =κ1/2 [F3(η, ξ)−F1(η, ξ)]−2F2(η.ξ)

+(κ + 1)η
(
G1(η, ξ)+κ1/2G0(η, ξ)

)
.(6.31)

Finally,

v(ξ, η) = v∗(ξ, η) + v•(ξ + θ2, η − θ2). (6.32)

Functions u•, v•, A•, B• are linked by the differential
equations

∂u•

∂α
+ v•

= A•
∂v•

∂β
+ u•

= −κ B• , (6.33)

where

A•(α, β) = −r1G2(β − θ2, α + θ2)

−r2G1(β − θ2, α + θ2). (6.34)

Equation (6.33) follows from (2.13). Moreover, the functions
u, v are continuous along BD.

In case of κ=1 or σT/σC=1, r1=r2=r, θ1=θ2=θ, the
results found above coincide with those reported in Lewiński
et al. (1994a). Moreover, the following relations hold:

u(α, β)AB DC
= −v(β, α)AB DC

u(α, β)B DH
= −v(β, α)C DG,

v(α, β)B DH
= −u(β, α)C DG . (6.35)

7 Construction of virtual displacement fields
within the domain DHJG

The formulae (I.8.6) expressing the Lamé coefficients A, B
in DHJG can be written by using the auxiliary functions
A∗, B∗, A•, A•, B•, B• introduced in the previous section by
the formula

X(α, β)|DH J G = X∗(α, β) + X•(α, β) + X•(α, β), (7.1)

where X stands for A or B.
By using the formulae (2.8)–(2.11) one can show that

the rule (7.1) determines the distribution of the displacement
fields within DHJG. Thus, the substitution X=u and X=v into

(7.1) provides the final analytical formulae for u and v within
DHJG, respectively. We obtain

u(ξ, η)
/

r1 =

[
κ1/2

+ (κ + 1)ξ
]
G0(ξ, η)

+(κ + 1)κ1/2ξG1(η, ξ)+κ F1(ξ − θ1, η + θ1)

+2κ3/2 F2(ξ−θ1, η+θ1)−κ F3(ξ−θ1, η+θ1)

−(κ + 1)(ξ − θ1)

×

[
G0(ξ−θ1, η+θ1)+κ1/2G1(ξ−θ1, η+θ1)

]
−(2κ + 1)F3(η − θ2, ξ + θ2)

−κ F1 (η − θ2, ξ + θ2) − (κ + 1) · (ξ + θ2)

×

[
G2(η−θ2, ξ+θ2)+κ1/2G1(η−θ2, ξ+θ2)

]
−2κ1/2 F2(η − θ2, ξ + θ2) (7.2)

v(ξ, η)
/

r1 = −

[
κ + κ1/2(κ + 1)η

]
· G0(ξ, η)

−(κ + 1) · ηG1(ξ, η)

+2κ F2(ξ − θ1, η + θ1) + (κ + 1)(η + θ1)

×

[
G1(ξ−θ1, η+θ1)+κ1/2G2(ξ−θ1, η+θ1)

]
+(2κ + 1)κ1/2 F3(ξ − θ1, η + θ1)

+κ1/2 F1(ξ − θ1, η + θ1)

−2F2(η − θ2, ξ + θ2) + (κ + 1)(η − θ2)

×

[
G1(η−θ2, ξ+θ2)+κ1/2G0(η−θ2, ξ+θ2)

]
−κ1/2 F1(η−θ2, ξ+θ2)+κ1/2 F3(η−θ2, ξ+θ2).

(7.3)

In case of κ=1 or σT/σC=1, r1=r2=r, θ1=θ2=θ, the equa-
tions above reduce to

u(ξ, η) = u∗∗(ξ, η) , v(ξ, η) = −u∗∗(η, ξ), (7.4)

where

u∗∗(ξ, η)
/

r = (1 + 2ξ)G0(ξ, η) + 2ξG1(η, ξ)

− 2(ξ − θ)G0(ξ − θ, η + θ)

− (1 + 2ξ − 2θ)G1(ξ − θ, η + θ)

+ 2F1(ξ − θ, η + θ) + 2F2(ξ − θ, η + θ)

− [1 + 2(ξ + θ)]G1(η − θ, ξ + θ)

− 2(1 + η − θ)G0(η − θ, ξ + θ)

+ 2F0(η − θ, ξ + θ) + 2F1(η − θ, ξ + θ).

(7.5)

Function u assumes maximum at point J (see Fig. 2).
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Fig. 2 Virtual displacement field u(α, β), κ=1, θ1 = θ2 =
13π
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8 Chan-like designs of second rank: virtual
displacement fields for the symmetric
case of κ=1

From now onward we shall concentrate on the special
case of κ=1. The general formulae can be found (still by
(2.8)–(2.11)), but the results are lengthy.

8.1 Domain GJG2

In this domain the Lamé coefficient A is expressed by

A(α, η) = A∗(α, η) + A•(α, η) + A•(α, η) + A••(α, η),

(8.1)

where A∗, A•, A• are given in Section 6, whilst

A••(α, η)
/

r =G1(α−2θ, η+2θ)+G2(α−2θ, η+2θ).

(8.2)

Function (5.17) now has the form

U•(ξ, η; α) = cos (ξ − α) + (1 + 2(α + η)) sin (ξ − α).

(8.3)

Similarly, as in Section 6, we write the representation

u(ξ, η) = u∗∗(ξ, η) +

ξ∫
2θ

U•(ξ, η; α)A••(α, η)dα, (8.4)

where u**(ξ, η) is given by (7.5).
The integral in (8.4) can be expressed in terms of the Lom-

mel functions by using the results collected in the Appendix
I.A. One finds

ξ∫
2θ

U•(ξ, η; α)A••(α, η)dα = u••(ξ − 2θ, η + 2θ), (8.5)

where

u••(ξ, η)
/

r = 2ξG1 (ξ, η) − (1 + 2ξ) G2 (ξ, η)

−4F2 (ξ, η) − 4F3 (ξ, η) (8.6)

Finally, we have

u(ξ, η) = u∗∗(ξ, η) + u••(ξ − 2θ, η + 2θ). (8.7)

Similarly, we find the field

v(ξ, η) = v∗∗(ξ, η) +

ξ∫
2θ

V•(ξ, η; α)A••(α, η)dα (8.8)

where v∗∗(ξ, η) = −u∗∗(η, ξ)

V•(ξ, η; α) = sin (ξ − α) − (1 + 2(α + η)) cos (ξ − α).

(8.9)

By using the results set up in the Appendix I.A we compute

ξ∫
2θ

V•(ξ, η; α)A••(α, η)dα = v••(ξ − 2θ, η + 2θ), (8.10)

where

v••(ξ, η)
/

r = −2ξG0(ξ, η)−G2(ξ, η)−2(1+ξ)G1(ξ, η)

+4F1(ξ, η) + 4F2(ξ, η) (8.11)

Thus, we have

v(ξ, η) = v∗∗(ξ, η) + v••(ξ − 2θ, η + 2θ). (8.12)

The function v•• can be also found from the equation

∂u••

∂α
+ v•• = A••. (8.13)

8.2 Domain HJH2

In this domain the function B(α, β) is expressed by

B(α, β) = B∗(α, β) + B•(α, β) + B•(α, β) + B••(α, β),

(8.14)

where

B••(α, β) = G1(β − 2θ, α + 2θ) + G2(β − 2θ, α + 2θ).

(8.15)

The function U • given by (6.20) now has the form

U •(ξ, η; β) = sin (β − η) − (1 + 2(ξ + β)) cos (β − η).

(8.16)

By using (2.10) one finds

u(ξ, η) = u∗∗(ξ, η) +

η∫
2θ

U •(ξ, η; β)B••(ξ, β)dβ. (8.17)
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We note now the analogy between the integral above and the
integral in (8.10); hence, we find

η∫
2θ

U •(ξ, η; β)B••(ξ, β)dβ = −v••(ξ − 2θ, η + 2θ),

(8.18)

where v•• is given by (8.11). Thus, in the domain HJH2,
we have

u(ξ, η) = u∗∗(ξ, η) − v••(η − 2θ, ξ + 2θ). (8.19)

Similarly, one can compute the field v within HJH2. The
function V • given by (6.28) reduces to the form

V •(ξ, η; β)=− cos (β − η)+(1 + 2(ξ + β)) sin (β − η).

(8.20)

According to (2.10) we have

v(ξ, η) = v∗∗(ξ, η) +

η∫
2θ

V •(ξ, η; β)B••(ξ, β)dβ. (8.21)

We note that
η∫

2θ

V •(ξ, η; β)B••(ξ, β)dβ = −u••(η − 2θ, ξ + 2θ),

(8.22)

where u is given by (8.6) or

v(ξ, η) = v∗∗(ξ, η) − v••(η − 2θ, ξ + 2θ). (8.23)

9 Domain JH2J2G2

We shall concentrate on the special case of κ=1. Let us
note that

u(ξ, η)JH2J2G2 = u∗∗(ξ, η) + u••(ξ − 2θ, η + 2θ)

−v••(η − 2θ, ξ + 2θ) (9.1)

v(ξ, η)JH2J2G2 = v∗∗(ξ, η) + v••(ξ − 2θ, η + 2θ)

−u••(η − 2θ, ξ + 2θ). (9.2)

Thus, we see the relationship

v(ξ, η)JH2J2G2 = −u(η, ξ)JH2J2G2 . (9.3)

For the sake of completeness we report the formula (9.1)
explicitly:

uJH2J2G2(ξ, η)
/

r = u∗∗(ξ, η)
/

r + 2(ξ − 2θ)G1(ξ − 2θ, η + 2θ)

+(1 + 2ξ − 4θ)G2(ξ − 2θ, η + 2θ)

−4F2(ξ − 2θ, η + 2θ) − 4F3(ξ − 2θ, η + 2θ)

+2G1(η − 2θ, ξ + 2θ) + 2(η − 2θ)[G0(η − 2θ, ξ + 2θ) + G1(η − 2θ, ξ + 2θ)]

+G2(η − 2θ, ξ + 2θ) − 4F1(η − 2θ, ξ + 2θ) − 4F2(η − 2θ, ξ + 2θ), (9.4)

where u**(ξ, η) is given by (7.5).

10 Final remarks

The results found in this part of the present work make it pos-
sible to compute the weights of the optimal Michell trusses
considered directly by the formula (I.2.12). These formulae
for the weights will be reported in the last part of the paper.
However, to make the work complete, the third part of the
work will concern the stress field analysis within the can-
tilevers and the analysis of the forces in the reinforcing ribs.
In contrast to the present part of the work, which is indepen-
dent of the loading applied, the results of the next part will
be highly dependent on the point of application and on the
direction of the concentrated force P.
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