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9:00 - 9:20 A Thermodynamic Approach to Constitutive Modelling of Concrete
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9:20 - 9:40 Two-component contact for embedded planes in a 3D plastic-damage-
contact constitutive model.
S. C. Hee and A.D. Jefferson
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M.R. Ghasemi and F. Azhdari

10:00 — 10:20 Constitutive Behaviour of a Pressure and Lode-Sensitive Material:
Multiaxial Stiffness Change and Instabilities.
Roger Crouch and Mihail Petkovski
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Q.Z. Xiao and B.L. Karihaloo.
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0:20 - 9:40 Formulation of Lower Bound Limit Analysis as a Second Order
Cone Programming (SOCP) Problem
A. Makrodimopoulos and C.M. Martin.

0:40 — 10:00 Finite element model of mould filling during squeeze forming
processes.
E.W. Postek, R.W. Lewis, D.T. Gethin, R.S. Ransing.

10:00 - 10:20 Turbulence Modelling for Thermal Management of Electronic Systems
K. Dhinsa, C. Bailey, and K. Pericleous

10:20 — 10:40 Simulation of deformation of ductile pharmaceutical particles with finite
element method.
L.L. Dong, R.W. Lewis, D.T. Gethin, and E.W. Postek.

10:40 — 11:10 Coffee Break, Room South 4.10(A)




Simulation of deformation of ductile pharmaceutical particles
with finite element method

L.L. Dong*, RW. Lewis, D.T. Gethin, E.W. Postek
Department of Mechanical Engineering
University of Wales Swansea
Swansea SA2 8PP
* corresponding author (L.L. Dong)

1. INTRODUCTION

In order to guarantee the strength and thus the quality of the tablets produced during the
tabletting process, it is essential o understand the deforming characteristics of
excipient binders. The present numerical work is motivated to provide an insight into
the mechanical behaviour of the particle deformation of the excipient binder. In the
present study pregelatinised starch is selected, which is known to behave in a ductile

manner during compaction.
An elasto-viscoplastic material model has been selected in the present study to simulate

the deformation behaviour of the pregelatinised starch. Elasto-viscoplastic model 1is
chosen because all the plastic deformation exhibits rate-dependency to some extent,
and it is a well-developed model for simulating non-linear deformation which has been
studied for four decades (Perzyna (1966), Zabaras and Arif (1992)).

2 NUMERICAL MODEL AND PROCEDURE

2.1. Governing Equations and Finite Element Formulation

In the present study, the deformation of the starch particles during the tabletting process
is described by the dynamic equilibrium equation. By using the Principle of Virtual

Work. the following weak form of the dynamic equilibrium equation, at time 7,, can be
obtained:

[ (8,1 0,0~ 80,1 [b, — p,ii, — i1, 12~ [, [Gu,]' T,dl’ =0 (1)
where the subscript n indicates the quantities of all the relevant variables at time
instant ¢, (This is also valid in all of the following equations, where this subscript 1s

omitted for brevity), ¢ is the vector of stresses, u is the vector of displacement, du is
the vector of virtual displacements, deis the vector of associated virtual strains, b 1s
the vector of applied body forces, T is the vector of surface tractions, u 1s the vector

of velocities, ii is the vector of accelerations, p is the mass density, ¢ is the damping
coefficient, Q is the calculation domain, I is the boundary of the domain, and [, is
the part of the boundary on which boundary tractions are prescribed.

By introducing the shape functions, the governing equation (1) can be rewritten in
matrix form as follows:

Md, +Cd,+p, =1, 2)
where M and C are the global mass and damping matrices respectively, d is the
global vector of nodal accelerations, d is the global vector of nodal velocities, p is the

global vector of internal resisting nodal forces and f is the vector containing the
applied consistent nodal forces and surfaces traction forces.




2.2. Elasto-Viscoplastic Theory
Two basic assumptions are made in elasto-viscoplasticity theory (Prager (1961)). i.e.,
g, =[&.1, +[8, ),

3)

The onset of viscoplastic behaviour is governed by the scalar yield condition,
F(o,.[6,,1,) =Y =0
(4)

where Y is the uniaxial yield stress which may itself be a function of a hardening
parameter. It is assumed that viscoplastic flow occurs when F(o,.[e,],)>Y.
By assuming that the plastic flow is associative plasticity, we have

. : oF
(£,,], = J’(‘I’(F»E
(3)
The following complete constitutive relationship can be obtained:

t, = (DI [6], +7(®,(F)) = 6)

The Von Mises yield criterion is employed to determine the stress level at which plastic

deformation starts.
2.3. Adaptive Remeshing Algorithm
The Zienkiewicz-Zhu error estimator is used and the adaptive remeshing is performed

when the following global error n is larger than a prescribed permissible value 77,,,,
i.e.,
wiT - s
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(7)

where ¢ and urepresent the exact values of the stresses and displacements, while ©
and @ are the finite element approximations, respectively.

The mesh refinement is carried out when 7>17,,,,, -

3. APPLICATIONS AND RESULTS

3.1. Problem Description
The ductile excipient material selected in the present study is pregelatinised starch. The

major material properties are summarized in Table 1.

Table 1. Summary of the pregelatinised Starch Properties

Young’s Modulus, E (N;f m*) 5.315x10"
Poission’s Ratio, v 0.3

The yielding stress, G'gf (Mmz) 4.48x10®
Density, p (Kg/m?) 660.0
Particle diameter, d (m) 2 0x107°




3.2. Numerical Results and Discussions

3.2.1 Deformation with prescribed edge loading

The geometry of this case is shown in Fig. 1. The adaptive analysis begins with a
coarse mesh of 254 elements producing a discretization error of 2.52. After three
iteration of mesh refinement, the final mesh is reached with the discretization error
reduced to 0.026. The final mesh contains 1593 elements. The final deformation based
on the final mesh is shown in Fig. 2. It is observed that the refinement is mainly
performed around the loading edge, where the concentrated stresses occur. The
solutions obtained from the final mesh are shown in Fig. 4. The plastic deformation

occurs in the area around the loading edge with the effective stress no less than crgg :

3.2.2 Deformation with prescribed displacement

The second case was selected to investigate the effectiveness of the present numerical
algorithm for modelling deforming particles with prescribed displacements. In this
~ case, the circular particle, which is supported on a rigid surface, with the bottom node
fixed shown in the previous two cases is being pressed by a rigid flat plate from the top
vertex of the particle. This configuration is shown in Fig. 5. After three adaptive
iterations are performed, the global error of the final mesh was reduced to 2.2%
containing 2483 elements. It could be observed from Fig. 6 that the refinement of the
mesh is performed in the area around the squeezing plate, indicating higher gradients of
stresses. [t can be found from Fig. 8 that the maximum effective stresses occur at the
locations close to the squeezing plate. In other sections of the particle away from the

squeezing plate, the effective stress decreases gradually.
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Fig. 1. Geometry of the particle
subjected to loading on the edge
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Fig. 3. Section being zoomed 1n
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Fig. 2. Final mesh and final deformation
(Number of elements = 1593;n = 2.6%)
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Fig. 4. Contour of the effective stress
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Fig. 5. Geometry of the particle Fig. 6. Final mesh and final deformation
subjected to plate squeezing (Number of elements = 2483; n = 2.2%)

Section being zoomed n

Fig. 7. Section being zoomed in Fig. 8. Contour of the effective stress




