
Struct Multidisc Optim (2006) 32: 347–368
DOI 10.1007/s00158-005-0599-9

RESEARCH PAPER

C. Graczykowski · T. Lewiński
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Abstract The present paper is the first part of the four-part
work on Michell cantilevers transmitting a given point load
to a given segment of a straight-line support, the feasible
domain being a part of the half-plane contained between two
fixed half-lines. The axial stress σ in the optimal cantilevers
is assumed to be bounded by −σC≤σ≤σT , where σC and
σT represent the allowable compressive and tensile stresses,
respectively. The work provides generalization of the results
of the article of Lewiński et al. (Int J Mech Sci 36:375–398,
1994a) to the case of σT 6=σC . The present, first part of the
work concerns the analytical formation of the Hencky nets
or the lines of fibres filling up the interior of the optimal
cantilevers corresponding to an arbitrary position of the point
of application of the given concentrated force.

Key words Michell structures · Hencky nets ·

minimum weight design · topology optimization · trusses

1 Introduction

The plane Michell structure is the lightest fully stressed struc-
ture contained within a certain feasible domain, transmit-
ting a given load to a given line segment of a fixed support.
The condition of the stresses being shifted to their extremes
can be weakened without changing the optimal shape by as-
suming only that the stresses lie within the imposed limits
−σC≤σ≤σT because in the optimal structures considered,
the stresses achieve their extreme values −σC at compres-
sion and σT at tension. We assume that the density of mass is
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Świętokrzyska 21, 00-049, Warsaw, Poland
e-mail: Cezary.Graczykowski@ippt.gov.pl

T. Lewiński
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constant. Then, the condition of minimal weight is equivalent
to the condition of minimal volume.

The original Michell (1904) structures have been thor-
oughly considered by Hemp (1973). In these structures the
feasible or design domain is a plane or a half-plane. All the
Michell results are correct if σT = σC . In a general case of
σT 6=σC the problems become much more difficult. A part of
Michell’s suggestions for that case is wrong, as pointed out
by Rozvany (1997a) (see also Selyugin 2004). Michell’s cri-
teria for unequal permissible stresses are valid only for cer-
tain support conditions (cf. Rozvany 1997a). Any solution
to a Michell problem consists of data of geometrical nature
(geometry of fibres and reinforcing ribs) and of statical na-
ture (distribution of stress resultants within the structure and
in the reinforcing ribs); they both contribute to the final for-
mula for the optimal weight. Moreover, the Michell problems
can be formulated in two manners: primal and dual. In the
primal formulation the statically admissible stress resultants
[or rather their rates, by analogy with the theory of locking
materials (see Lewiński and Telega 2001)] are the unknowns.
In the dual problem the role of the unknowns is played by
the virtual displacements. Both formulations have been dis-
cussed in the papers by Strang and Kohn (1983), Lewiński
and Telega (2000, 2001), Lewiński (2004) and Graczykowski
and Lewiński (2005). A problem can be viewed as solved if
the results of both the formulations coincide. Then we say
that the duality gap is zero. Although apparently important,
this verification is uncommon in the literature; it was done for
some elementary problems in Hemp (1973), for the twisted
shells (in which σT =σC ) in Lewiński (2004) and for the
original Michell cantilever supported around the circle (see
Graczykowski and Lewiński 2003, 2005). Let us emphasize
here that other known solutions have not been verified in this
respect till now.

An important problem of designing a cantilever supported
along a straight line was solved by H.S.Y. Chan for the spe-
cial case of σT =σC (see Hemp 1973) by using a specific
Hencky net discussed by Hill (1950) in the context of per-
fect plasticity. In the present paper we shall generalize this
solution to the case of σT 6=σC , and we shall discuss its sta-
tical aspect. We shall put forward the distribution of stress
resultants within the optimal cantilever and in the reinforc-
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ing bars. The first sketches of the optimal layout of fibres for
the case of σT 6=σC were already given by Prager (1959) and
Rozvany (1997a). However, no mathematical formulae were
derived there. A correct two-bar solution was first presented
by Rozvany (1997a). In the present paper (part IV), for the
first time, a proof of the duality gap being zero is provided.

Important suboptimal solutions refer to the cantilevers de-
signed within certain subdomains of the half-plane, e.g., those
included between the half-lines starting at the end points of
a given supporting line segment. In the case of σT =σC such
cantilevers were constructed by Chan (1967). Their exten-
sions, referring to the concentrated loads applied at points ly-
ing at bigger distances from the support, have been proposed
in the paper by Lewiński et al. (1994a), where the analysis
has been confined to the kinematic and geometric facets, the
distribution of stress resultants being not discussed.

The aim of the present four-part paper is at

i.) Completing the analysis of cantilevers given in the pa-
pers by Chan (1967) and Lewiński et al. (1994a) by
adding information on distribution of the internal force
fields;

ii.) Generalization of all the known constructions to the case
of σT 6=σC ;

iii.) Confirming the correctness of the final results by show-
ing that both the approaches, kinematic and static, lead
to identical results for the weights of the optimal struc-
tures;

iv.) Consideration of sequences of trusses (of finite number
of nodes) tending to the ideal discrete-continuous solu-
tions, showing that the sequences of weights tend to the
theoretical predictions of weights of the ideal solutions
(given by explicit analytical formulae).

The paper consists of four parts. The present, first part
presents construction of the relevant Hencky nets. The sec-
ond part deals with the virtual displacement fields relevant to
the net found. The static analysis is put forward in the third
part of the paper. The final formulae for the weights of opti-
mal cantilevers will be derived in the last part, where some
examples will also be given with all details. The analytical
results will be checked by the method of Prager (1978a,b)
by considering special trusses of finite number of joints. The
numerical results contained in part IV will be useful as a
benchmarks for numerical solutions of topological optimiza-
tion problems.

The present paper extends the results of the works of
Lewiński et al. (1994a,b). To make the references to this
work possibly brief, we shall write, e.g., (a.102) and Sec-
tion a.6 to refer to (102) and Section 6 of Lewiński et al.
(1994a), respectively, and write (b.161) and Section (b.7)
instead of writing (161) and Section 7 of Lewiński et al.
(1994b), respectively. On the other hand, the information
(A1) refers to (A.1) in the Appendix A of the present
paper.
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Fig. 1 Geometry of the feasible domain �0 and position P of the appli-
cation of the point load

2 Michell cantilever problem

Consider the domain �0 bounded by the straight segment
RN and the half-lines RR1, NN1 (see Fig. 1). This domain is
parameterized by an orthogonal Cartesian system (x, y). An
arbitrary point of this domain is also denoted by (x, y). Along
RN the structure to be constructed should be fixed with no
sliding, but not all the points of RN should necessarily be
used as supporting points.

The domain �0 will be called trapezoidal because it can
be made finite by cutting it by a straight line parallel to RN,
going through the point P of application of the concentrated
force P. The stress state is viewed as admissible if the axial
stress along all directions satisfy

− σC ≤ σ ≤ σT , (2.1)

where −σC , σT are limit values at compression and tension,
respectively. The problem is to form the lightest structure,
admissibly stressed according to (2.1), transmitting a given
point load P of magnitude P to the support RN. The force P is
get out of plumb by angle ϕ (see Fig. 1). The available liter-
ature of the subject teaches us that the lightest cantilever will
have a discrete-continuous structure: its interior �, � ⊂ �0,
is made of a net of orthogonal fibres transmitting compres-
sion or tension, while its edge is reinforced by two ribs also
compressed and tensioned; the ribs cannot undergo bending
and transverse shearing. The curvilinear reinforcing ribs RP
and NP encompass the finite domain � within the infinite
feasible domain �0. The ribs must join at the point P of ap-
plication of the force P. The force P is equilibrated by the
tensile force FT in one rib and the compressive force FC in
the second rib. The units of these forces are newtons (N). In
general, these forces vary along the ribs, which is denoted as
FT =FT (s) and FC=FC (s), where s is the natural parameter
of the boundary lines.

The ribs are subject to a distributed normal loading Nn and
tangent loading Nτ , acting from within the interior domain
� (Fig. 2). Within � the state of stress obeys the plane stress
assumptions. The state of stress in � is determined by the
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Fig. 2 The cantilever problem. a The cantilever reinforced by ribs; b decomposition of the structure into the interior, ribs and the node P

tensor field N =
(
N γ δ

)
, with γ , δ=1,2, of stress resultants.

The principal stress resultants are denoted by NI, NII. The
units of the quantities Nαβ , NI, NII, are newtons per meter.
The tangent and normal stress resultants along 0T and 0C are
denoted by Nτ , Nn, respectively.

We say that the triple (N, FT , FC ) is statically admissible
and write (N, FT , FC) ∈ 6

(
�

)
if the following equations are

satisfied:

(a) Two algebraic equilibrium equations of the node P
(b) Differential equilibrium equations of the ribs:

d F

ds
− Nτ (s) = 0,

F(s)

R(s)
+ Nn(s) = 0 on 0 , (2.2)

where F=FT or FC ; R represents the radius of curvature of
the boundary line 0, 0=0T or 0=0C .

Note that the ribs do not sustain bending and transverse
shearing, and their equilibrium is only possible if they are
curved whenever Nn does not vanish.

c) div N = 0 in � (2.3)

or the differential equilibrium equations of the interior part
of the structure.The set 6

(
�

)
is affine and does not have

properties of a function space because equations (a) are in-
homogeneous.

To express the conditions (a–c) by one variational equi-
librium equation we introduce a trial displacement field u
into the domain �0. Let un , uτ denote the components of u
normal and tangent to 0C , 0T . Along the contours 0C , 0T we
define the operator

ε0(u) =
duτ

ds
+

un(s)

R(s)
, (2.4)

which determines elongation along the contour, associated
with the field u. Moreover, the quantity ε(u) represents the
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strain field associated with u, defined as the symmetric part
of the gradient. Let U

(
�

)
be the set of kinematically admis-

sible u given within �. We require here that u = 0 on 00
= NR, and that the field u is continuous in �; hence, the
set U (�) is a space. The vector field u|0 determines the dis-
placements of the reinforcing ribs. Thus, the reinforcing ribs
cannot slide along the boundary of the domain. The regularity
assumptions of the field u will not be discussed.

One can prove that the triple
(
Ñ, F̃T , F̃C

)
is statically

admissible or(
Ñ, F̃T , F̃C

)
∈ 6

(
�

)
if∫

�

Ñ : ε(u)dxdy +

∫
0T

F̃T ε0(u)ds +

∫
0C

F̃Cε0(u)ds = P ·u(P)

for each u ∈ U
(
�

)
. (2.5)

Here, the product : means the full contraction.
We assume that the tension fibres and the tension rib

RP are fully stressed and there σ=σT , while in the com-
pressed fibres and in the compression rib NP the stresses
are σ=−σC . The volume of the material used for construct-
ing such a discrete-continuous structure is expressed by the
formula

V� = I
(
N, FT , FC ; �

)
, (2.6)

where

I
(
N, FT , FC ; �

)
=

∫
�

(
1

σT
|NI | +

1

σC
|NII |

)
dxdy

+

∫
0T

1

σT
|FT |ds +

∫
0C

1

σC
|FC |ds. (2.7)

The form of the first component of (2.7) was justified in
Lewiński (2004; Section 4); the remaining components have
an obvious form. If γ=const is the weight density of the ma-
terial, then Q = γ V� is the weight of the structure. Then
the problems of minimizing the weight and the volume are
equivalent. The fields N, FT , FC are linked by the equilibrium
conditions (of the fibrous domain, of ribs and of the node P).
The formula (2.6) can be rewritten as follows:

V� = min
{

I
(
Ñ, F̃T , F̃C ; �

) ∣∣(Ñ, F̃T , F̃C
)

∈ 6
(
�

)}
(2.8)

because it occurs that the optimal cantilever is statically de-
terminate, or the set 6

(
�

)
for such a selected domain �

contains only one element, thus making the formulae (2.6)
and (2.8) equivalent. The feature of statical determinacy will
be cleared up in part III of the present paper and will be re-
flected in statical determinacy of the approximating trusses
(see part IV).

The minimum volume problem (2.8) can be transformed
into a dual form

V� =
1

σT
max{P · u(P) | u ∈ U

(
�

)
, ε(u)(x, y) ∈ Bκ ,

(x, y) ∈ �, −κ ≤ ε0(u) ≤ 1 on 0T , 0C } ,

(2.9)

where κ=σT /σC and

Bκ =
{
ε ∈ E2

s | |εI | ≤ 1, |εII | ≤ κ
}
. (2.10)

Here, E2
s represents the set of symmetric second-order

tensors.
A passage from the problem (2.8) to (2.9) goes accord-

ing to the lines of a similar passage shown in the paper by
Strang and Kohn (1983) for the cases when the two last com-
ponents of (2.7) are absent (cf. Lewiński 2004). Thus, the
derivation of (2.9) can be omitted here. In the problem con-
sidered here, minimum in (2.8) is achieved for the domain
�̃ = �, the boundary lines of which, 0T , 0C , lie along the
trajectories of the principal strains εI (u), εII (u). Then the
condition −κ ≤ ε0(u) ≤ 1 is satisfied along the boundary in
the following way: ε0(u) = 1 on 0T and ε0(u) = −κ on 0C .
The field ε(u) is defined on �, and thus, can be determined
along its boundary or along 0T , 0C . Thus, the conditions
ε0(u) = 1 on 0T and ε0(u) = −κ on 0C can be rewritten as
εI (u) = 1 on 0T and εII (u) = −κ on 0C . According to this
remark problem (2.9) can be put in the form

V� =
1

σT
max {P · u (P) | u ∈ U (�) , ε (u) (x, y)

∈ Bκ , (x, y) ∈ � } (2.11)

provided that the boundary lines RP, NP lie along trajectories
of principal strains.

Having now the formulation (2.11) one step of generaliza-
tion is possible. One can make the formulation free from the
choice of �! Indeed, let U(�0) represent the function space
of such displacements which vanish on 00=RN. Consider
the problem

V =
1

σT
max {P · u(P) | u ∈ U (�0), ε(u)(x, y)

∈ Bκ , (x, y) ∈ �0 } , (2.12)

which determines a volume V not referring to any particular
domain �. In the problems analysed in the present paper both
the formulations (2.11) and (2.12) are equivalent because � in
(2.11) is not arbitrary. It contains 00=RN, and its boundaries
RP, RN are in fact determined by the trajectories of the virtual
strain field. The formulation (2.12) is much simpler than (2.8)
because it involves maximization over one field u. In this
paper the volume will be computed by both the formulae (2.8)
and (2.12). The formula (2.8) will be used in the form (2.7)
upon finding the stress resultants within � and in the ribs.
Such a test verifies all the results and additionally provides
distribution of the fibres within �. Their density per unit area
is expressed by

h =
1

σT
|NI | +

1

σC
|NII |. (2.13)

This quantity is sometimes interpreted as an effective thick-
ness of the plate (see Hemp 1973). In the all-optimal solu-
tions considered in the present paper maximum in (2.12) is
achieved if

εI (u) = 1, εII (u) = −κ (2.14)
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in each point of �0. Along the ribs one has

ε0(u) = 1 on 0T and ε0(u) = −κ on 0C . (2.15)

The conditions (2.14) can hold only in specific curvilin-
ear systems called Hencky nets. These nets determine the
lines of fibres within the domain � bounded by the ribs 0T

and 0C .

3 Geometry of Hencky nets corresponding to the
conditions: εI (u) = 1 and εII (u) = −κ

The necessary geometric formulae can be found in Hemp
(1973) and Lewiński et al. (1994a). Thus, we shall quote
here only those of the formulae which are indispensable for
further analysis.

The conditions (2.14) can be satisfied only along the para-
metric lines of very specific curvilinear orthogonal systems.

Let (x, y) be the Cartesian parameterization; the lines
α=const and β=const form the unknown orthogonal sys-
tem of parametric lines (see Fig. 3) given by the equations
x=x (α, β), y=y (α, β).

In a standard manner we introduce the metric tensor of
components denoted by

(
gγ δ

)
. Due to orthogonality we in-

troduce the Lamé coefficients A (α, β), B (α, β) as follows:

g11 = A2(α, β), g12 = 0, g22 = B2(α, β) (3.1)

and adopt the convention of A and B being of length dimen-
sion. Let φ (α, β) be an angle between the tangent to the
line α at point (α, β) and the axis x (cf. Fig. 3). If the fields
A (α, β), B (α, β) are given, the parametric lines of the system

Fig. 3 The curvilinear system (α, β)

(α, β) are determined by the equations giving the Cartesian
coordinates (x, y) of an arbitrary point α=λ, β=µ

x(λ, µ) = x0
+

λ∫
0

cos φ(α, µ)A(α, µ)dα

−

µ∫
0

sin φ(λ, β)B(λ, β)dβ

y(λ, µ) = y0
+

λ∫
0

sin φ(α, µ)A(α, µ)dα

+

µ∫
0

cos φ(λ, β)B(λ, β)dβ, (3.2)

where (x0, y0) is a point of coordinates α=0, β=0. In this
paper we consider the nets characterized by the formula
(see Hemp 1973)

φ(α, β) = φ0 + b̂β − âα, (3.3)

where φ0, b̂, â are constants. The formula above makes it
possible to satisfy the optimality conditions (2.14) in all the
optimization problems considered in the present paper.

One can prove that under the assumption (3.3) the Lamé
coefficients are linked by (see Hemp 1973)

∂ A

∂β
= âB,

∂ B

∂α
= b̂A (3.4)

or

∂2 A

∂α∂β
− ĉA = 0,

∂2 B

∂α∂β
− ĉB = 0, (3.5)

where ĉ = b̂â. In the problem considered the orthogonality
of parametric lines holds. In general, the nonorthogonality
can take place (see Rozvany 1997b).

4 The case of a position of the point P being close
to the edge RN

We confine here our attention to the optimal cantilevers,
the shapes of which are independent of the lines RR1, NN1
bounding the domain �0. First, we find the positions of points
P which generate such solutions. The problem thus posed can
be reformulated to the form of the problem considered in Sec-
tion 2, where �0 is a half-plane at the right hand side of the
line RN. From now onwards the Cartesian frame determined
by the support RN will be denoted by x0, y0 (see Fig. 4). Now
the feasible domain is included in the half-plane x0≥0. Dis-
tance of point P to the supporting line RN is denoted by d or
d=x0 (P).
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Fig. 4 Two-bar solutions. a Point P is close to the support; b the optimal
two-bar truss of maximal dimensions

The shape of the optimal structure depends heavily on the
angle ϕ (see Fig. 1)

i.) If

− arctan κ1/2 < ϕ < arctan κ−1/2, (4.1)

then the optimal structure is a truss consisting of two bars,
as shown in Fig. 4a; the angles of inclination of bars are
determined by κ:

γ1 = arctan
(
κ1/2

)
, γ2 = arctan

(
κ−1/2

)
. (4.2)

The bars are orthogonal.
ii.) If ϕ does not satisfy (4.1), then the optimal solution con-

sists of one bar directed along the force.

The proof of (ii) will be omitted. We concentrate now
on proving (i). First we construct the field of virtual dis-
placements u =

(
ux0 , u y0

)
, satisfying the conditions (2.14)

for x0≥0. We predict the representations

ux0 = ãx0 + b̃y0 + c̃, u y0 = d̃x0 + ẽy0 + f̃ (4.3)

and impose the conditions of kinematic admissibility:
ux0(0, y0) = 0 u y0(0, y0) = 0 .

Hence, ux0 = ãx0, u y0 = d̃x0. The representation of ε(u)
in the coordinates (x0, y0) has the form

ε(u) =

[
ã d̃

/
2

d̃
/

2 0

]
. (4.4)

The characteristic equation λ2
− λ̃a − d̃ 2

/
4 = 0 should

have the roots equal to 1 or −κ; hence, ã = 1 − κ , d̃ =

± 2κ1/2. We compute the virtual work

P · u(P) = P
(
ux0 sin ϕ − u y0 cos ϕ

)
. (4.5)

x0

y0

IIε direction 

(compression bars)

Iε direction 

(tension bars)

1γ

2γ

Fig. 5 Trajectories of virtual principal strains

We choose d̃ = −2κ1/2 to maximize the above expression to
find

P · u(P) = Pd
(
(1 − κ) sin ϕ + 2κ1/2 cos ϕ

)
. (4.6)

The unknown displacement field is of the form

ux0 = (1 − κ)x0 u y0 = −2κ1/2x0. (4.7)

We compute now the angle of inclination of the principal
strain by using the known formula

tan 2γI =
2εxy

εx − εy
; (4.8)

hence, γI = − arctan
(
κ1/2

)
or γ I = −γ 1. Moreover, γII =

arctan
(
κ−1/2

)
or γ II = γ 2. The above results determine the

Hencky net (see Fig. 5).
The two-bar solution holds good if the point of application

of the force lies within the triangle RNA (Fig. 4). The lengths
of the sides r1 = |NA|, r2 = |RA| are

r1
/

a = cos
(
arctan κ1/2

)
, r2

/
a = sin

(
arctan κ1/2

)
, (4.9)

where a=RN. Thus, we note that

r2
/

r1 = κ1/2. (4.10)

5 One-fan designs

Let us note that if point P lies within the domains of circular
sections RBA, NAC (see Fig. 6), then the optimal structure
consists of one fan reinforced by a rib which then stretches
and runs straight to the supports at R and N. The notion fan
means a fibrous plate composed of infinite number of infi-
nitely thin bars going radially from one point. Both the fans
appearing here have a circular boundary reinforced by cables
of finite cross sections (or ribs in tension or compression,
incapable of sustaining both bending and transverse shear-
ing). Thus, the fans are discrete-continuous structures. The
triangular domain RAN is now empty (or no bars lie inside).
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Fig. 6 Geometry of the fan domains

In the present section only the geometrical aspects of the
nets will be dealt with. Position of point P in RBA is deter-
mined by α1=RP/r2 and by angle β (see Fig. 7).

The elementary lengths of the lines α1, β are given by

ds1 = d(r2α1) = r2dα1, ds2 = r2α1dβ, (5.1)

Fig. 7 Parameterization of the upper fan domain

or the Lamé coefficients are

A (α1, β) = r2,

B (α1, β) = r2α1 0 ≤ α1 ≤ 1, 0 ≤ β ≤ θ2, (5.2)

where θ2= 6 (ARR1) (see Fig. 6). Position of point P within
the circular section NAC is given by NP=r1β1, 0≤β1≤1
and by the angle α, 0≤α≤θ1, where θ1=6 (ANN1) (see
Fig. 6). The elementary lengths along the parametric lines
(Fig. 8) are

ds1 = r1β1dα, ds2 = r1dβ1, (5.3)

or the Lamé coefficients are given by

A(α, β1) = r1β1, B(α, β1) = r1. (5.4)

The Hencky nets in RBA and NAC are constructed by the
radial lines and by the circumferential lines (see Fig. 9).

In the domain RBA we have

φ(α1, β) = γ1 − β. (5.5)

In the domain NAC

φ(α, β1) = −γ1 − α. (5.6)

Thus, the angle φ is expressed by (3.3) with appropriate con-
stants φ0, â, b̂.

6 Prager–Hill designs

Consider the case of the position P of application of the force
P at the right hand side of the arcs BA, AC, but within the
domain ABDC; the shapes of the lines BD and CD will be
given in the sequel.

The net of lines within ABDC, in case of κ=1, was found
by Hill (1950) in the context of the plastic flow theory; the

Fig. 8 Parameterization of the lower fan domain
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Fig. 9 Parameterization of both fan domains

result of Hill was used by Chan (1967) and Hemp (1973)
for the construction of Michell nets. The case of κ 6=1 was
considered by Prager (1959), but in the mentioned paper, no
analytical formulae were given. The formulae given below
have never been published before. The construction of the
Hencky net based on two circles of different radii can be
found in Section 4 of the report: H.S.Y. Chan, Tabulation of
some layouts and virtual displacement fields in the theory of
Michell optimum structures. CoA Note Aero No 161. Febr.
1964, the College of Aeronautics. Dept. of Aircraft Design.

These results refer to the case of κ = 1, hence were not
motivated by the problem considered in this paper.

The Hencky net will be constructed in the Cartesian or-
thogonal system (x, y) as in Fig. 10. According to the results
of Hill (1950) and Chan (1967) the function φ (α, β) is rep-
resented as follows:

φ(α, β) = β − α (6.1)

or â = 1, b̂ = 1. The above representation determines the
fields A(α, β), B(α, β) within the domain ABDC because
these fields are linked by (3.4); hence,

∂ A

∂β
= B,

∂ B

∂α
= A, L A = 0, L B = 0, (6.2)

where

L =
∂2

∂α∂β
− 1 (6.3)

with the following conditions along the circular boundaries:

A(α, 0) = r1 (line AC), B(0, β) = r2 (line BA) .

(6.4)

Thus, the net (α, β) is constructed by starting from finding
the fields A, B. We use the formula of Riemann (see (a.17))
to find

A(λ, µ) = A(0, 0) ·G0(λ, µ)+

λ∫
0

G0(λ−α, µ)
∂ A(α, 0)

∂α
dα

+

µ∫
0

G0(λ, µ − β)
∂ A(0, β)

∂β
dβ, (6.5)

Fig. 10 Prager-Hill problem. The Cartesian frame (x,y) is now inclined to the supporting line RN. Here, 6 BRA=θ2, 6 ANC=θ1.
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where G0 (α, β)=I0 [2(αβ)1/2], I0 (x) being the modified
Bessel function (see (a.3)). We shall make use also of func-
tions Gn (α,β), n=0,±1,±2,... defined in Section a.2, and
we shall use their properties given therein; they will not be
repeated here.

Upon taking into account (6.2) and (6.3) we arrive at

A(λ, µ) = r1G0(λ, µ) + r2

µ∫
0

G0(λ, µ − β)dβ. (6.6)

By using (a.4) and (a.14) we find

A(λ, µ) = r1G0(λ, µ) + r2G1(µ, λ). (6.7)

According to (6.2) B = ∂ A(λ, µ)
/
∂µ. Using the differential

rules (a.4) we find

B(λ, µ) = r2G0(λ, µ) + r1G1(λ, µ). (6.8)

One can check that the field B found in this manner satisfies
(6.4) on BA [see the properties (a.14)]. Thus, we find both the
fields A(α,β), B(α,β), which makes the construction of the
lines (α,β) possible. To this end we use the integral formulae
(3.2) along the line β=const. Taking into account (6.1) we
write

x(λ, µ) = x(0, µ) +

λ∫
0

cos (µ − α)A(α, µ)dα

y(λ, µ) = y(0, µ) +

λ∫
0

sin (µ − α)A(α, µ)dα.

(6.9)

To make the integration possibly easy we introduce new un-
knowns called Mikhlin unknowns (see Hill 1950, Section 5,
chap. VI) and (a.54):

x(λ, µ) = x(λ, µ) cos (µ − λ) + y(λ, µ) sin (µ − λ)

y(λ, µ) = −x(λ, µ) sin (µ − λ) + y(λ, µ) cos (µ − λ)

(6.10)

and rewrite (6.9) in the form

x(λ, µ) = x̃(λ, µ) +

λ∫
0

cos (λ − α)A(α, µ)dα

y(λ, µ) = ỹ(λ, µ) +

λ∫
0

sin (λ − α)A(α, µ)dα,

(6.11)

where

x̃(λ, µ) = cos (λ − µ)x(0, µ) + sin (µ − λ)y(0, µ)

ỹ(λ, µ) = − sin (µ − λ)x(0, µ) + cos (µ − λ)y(0, µ).

(6.12)

The coordinates of the point (0,µ) on AB can be read off from
Fig. 10

x(0, µ) = −r2 + r2 cos µ, y(0, µ) = r2 sin µ ; (6.13)

hence,

x̃(λ, µ) = −r2 cos (λ − µ) + r2 cos λ

ỹ(λ, µ) = r2 sin (µ − λ) + r2 sin λ. (6.14)

Substitution of (6.7) into (6.11) leads to integral expressions
of convolution type, which can be rearranged to the formulae
involving Lommel-like functions Fn(α,β) (see (a.16)), using
the results (A1) and (A2) from the Appendix of the present
paper. We find

x(λ, µ) = r1 F1(λ, µ) + r2 F2(µ, λ)
y(λ, µ) = r1 F2(λ, µ) + r2 F1(µ, λ)

. (6.15)

The functions above satisfy the differential equations (a.55
and a.56) and are linked with A, B by (a.57). Having found
x, y we insert them into (6.10) and invert the latter relations
to find

x(λ, µ) = x(λ, µ) cos (µ − λ) − y(λ, µ) · sin (µ − λ)

y(λ, µ) = x(λ, µ) sin (µ − λ) + y(λ, µ) · cos (µ − λ).

(6.16)

One checks that the functions above satisfy the conditions
(6.13) and similar conditions on AC:

x(λ, 0) = r1 sin λ, y(λ, 0) = −r1 + r1 cos λ (6.17)

(see Fig. 10), where the point (λ,0) on the arc AC is shown.
The formula (6.16) makes it possible to write a computer

programme generating the Hencky nets for various values
of the parameters κ, αp and βp, where (αp, βp) are coordi-
nates of point P of application of the force P. The coordinates
(λ, µ) vary within the limits

0 ≤ λ ≤ αp, 0 ≤ µ ≤ βp (6.18)

and max αp=θ1, max βp=θ2 (see Fig. 6). Thus, the line BD
is a line µ=θ2, and the line CD is λ=θ1, where point D has
coordinates (θ1, θ2). The formulae derived here hold within
the domain BDCA, the geometry of which is known.

A programme written in MAPLE forming the parametric
lines α(β=const) and β(α=const), along with boundary lines
BD, CD have made it possible to investigate the shapes of the
cantilevers for various values of data κ, αp, βp or κ, θ1, θ2
(cf. Fig. 11a–d). These figures make it clear that the boundary
R1RNN1 can be a straight line, and then the whole half-plane
is the feasible domain [see Fig. 11c where αp=βp=(3/4)π].
The feasible domain can encompass three quarters of the
plane [see Fig. 11d for αp=(7/4)π, βp=π/5].

Remark. In case of κ=1 we have r1=r2 and then

A(α, β) = B(β, α), x(α, β) = y(β, α) . (6.19)

7 Chan-like designs of first rank

We consider position of point P outside the domain BDCA
in the regions CDG and BDH adjacent to the bounding lines
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Fig. 11 a Michell cantilever, κ = 1, αp =
π
4 , βp =

π
4 . b Michell cantilever, κ = 3, αp =

4π
15 , βp =

13π
30 . c Michell cantilever, κ = 1, αp =

3π
4 , βp =

3π
4 . d Michell cantilever, κ = 1, αp =

7π
4 , βp =

π
5

Fig. 12 Chan-like problem
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NN1, RR1 (see Fig. 12). Determination of Cartesian coor-
dinates x(α,β), y(α,β) of points of parametric lines and the
fields A(α,β), B(α,β) within the domains BDH and CDG is
much more complicated than in the previous subdomains.
Now we cannot make use directly of Riemann’s formula
(a.17) with reference neither to the functions A(α,β), B(α,β)
nor to the functions x(α, β), y(α, β) [although all these func-
tions satisfy the hyperbolic equation Lf=0, see (6.3)] because
the lines CG and BH are not characteristic lines.

An effective method of finding the fields A(α,β), B(α,β),
x(α, β), y(α, β) was ingeniously put forward by Chan
(1967) for the case of κ=1 by reducing the problem to one
Volterra-type integral equation of convolution form and then
by solving this integral equation by the Laplace transform
technique. We show below that the method of Chan can be
applied also in the case of κ 6=1 to find the fields A(α,β),
B(α,β), x(α, β), y(α, β) and also x(α,β), y(α,β) in the do-
mains CDG, BDH. This generalization is the subject of this
section. The curvilinear coordinates of points G and H are
(θ1+θ2, θ2) and (θ1, θ1+θ2), respectively.

7.1 Domain CDG

The function x(α, β) will be the main unknown. Having this
field one can find y(α, β) = ∂x(α, β)

/
∂β and then A and

B by (a.57). The function x(α, β) is continuous; hence, its
values along CD, where α = θ1, are given by (6.15)1

x(θ1, β) = r1 F1(θ1, β) + r2 F2(β, θ1). (7.1)

On the other hand, we know the equation of the boundary
line CG

x · cos θ1 − y · sin θ1 = r1 sin θ1, (7.2)

which can be rewritten in the form

[x(α, β) cos (β − α) + y(α, β) sin (β − α)]|β−α=−θ1

= r1 · sin θ1. (7.3)

Note that β−α=−θ1 along CG. By (6.10) the equation (7.3)
can be expressed in terms of x(α, β)

x(α, β)|β−α=−θ1
= r1 · sin θ1 (7.4)

and becomes the boundary condition of the problem. Note
that x =const along CG. Following Chan (1967) we use the
Riemann method and apply it to the domain EQF. Thus, we
find the representation of the unknown function

x(ξ, η) = r1 sin θ1 cos (η + θ1 − ξ)

−
1

2

η+θ1∫
ξ

D0(α − ξ, η + θ1 − α)ϕ(α)dα, (7.5)

where

ϕ(α) =

(
∂x

∂α
−

∂x

∂β

)
β=α−θ1

(7.6)

and

D0(α, β) = J0

(
2(αβ)1/2

)
, (7.7)

where J0 is Bessel function of first kind of order zero. The
details of the derivation of (7.5) can be found in Appendix B.
Function ϕ(a) has nothing to do with angle ϕ in Fig. 1.

The integration domain is shown in Fig. 13. It is visible
that both the arguments of D0 in (7.5) are nonnegative. By
(6.15) we have (7.1), and by using the identity (a.11) we write

x(θ1, β) = r1 F1(β, θ1) + r2 F2(β, θ1) − r1 sin (β − θ1).

(7.9)

Thus, the property of continuity of x along the line α=θ1 or
the line CD gives the following integral equation for ϕ(a)

η+θ1∫
θ1

D0 (α − θ1, η + θ1 − α) ϕ (α) dα

= −2 [r1 F1 (η, θ1) + r2 F2 (η, θ1) − r1

· sin (η − θ1) − r1 cos η sin θ1] . (7.10)

This integral equation can be solved by the method of Chan
(1967). We introduce a new function ϕ(α) such that ϕ(α) =

ϕ(α − θ1) and rearrange the l.h.s. of (7.10) to the convolution
form

η∫
0

D0(x, η − x)ϕ(x)dx

= −2[r1 F1(η, θ1) + r2 F2(η, θ1) − r1 cos θ1 sin η].

(7.11)

F 

β 

α

η

1θξ −

ξ

Q 

E 

1θη +

Fig. 13 Triangle of integration
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Now this integral equation can be solved by applying
the Laplace transform Lη to both sides of (7.11). We use
notation (a.25) and the results (a.174) and (a.29) to find

1

p
ϕ ∗

(
p +

1

p

)

= −2

{
r1

exp
(
θ1

/
p
)

p2 + 1
+ r2

exp
(
θ1

/
p
)

p
(

p2 + 1
) − r1

cos θ1

p2 + 1

}
.

(7.12)

We change the variable p into s:

p +
1

p
= s; p =

1

2
(s + R) ; R =

√
s2 − 4;

1

p
=

2

s + R
,

1

p
=

1

2
(s − R),

p

p2 + 1
=

1

s
(7.13)

and rearrange (7.12) to the form

ϕ ∗(s) = −2

[
exp

[
1
2θ1{s − R}

]
R

{
r2 ·

2

s
− r1

4

s(s + R)
+ r1 − r2 ·

2

s + R

}
− r1 ·

cos θ1

s

]
. (7.14)

By taking advantage of the Laplace transforms (a.164) and
(a.165) we find

ϕ(x) = −2[2r2 F1(x, x + θ1) − 2r1 F2(x, x + θ1)

+r1G0(x, x + θ1) − r2G1(x, x + θ1) − r1 cos θ1]

and come back to the unknown ϕ

ϕ(α) = −2 [2r2 F1(α − θ1, α) − 2r1 F2(α − θ1, α)

+ r1G0(α−θ1, α)−r2G1(α−θ1, α)−r1 cos θ1].

(7.15)

Thus, (7.10) has been solved. The formula (7.15) should now
be put into (7.5). The integrals which appear can be calculated
and expressed in terms of Lommel-like functions Fn (α, β).
Indeed, we find the following expression for x

x(ξ, η) = r1 sin θ1 cos (η + θ1 − ξ) − r1 cos θ1

η+θ1∫
ξ

D0(α − ξ, η + θ1 − α)dα

+r2

η+θ1∫
ξ

D0(α − ξ, η + θ1 − α)[2F1(α − θ1, α) − G1(α − θ1, α)]dα

+r1

η+θ1∫
ξ

D0(α − ξ, η + θ1 − α)[2F0(α − θ1, α) − G0(α − θ1, α)]dα, (7.16a)

where the identity 2F2−G0=−(2F0−G0) has been used
(see (a.7)). Now we rearrange (7.16a). By using (A3) we
compute

η+θ1∫
ξ

D0(α − ξ, η + θ1 − α)dα

=

η+θ1−ξ∫
0

D0(α1, η + θ1 − α1)dα1 = sin (η + θ1 − ξ)

(7.16b)

and write (7.16a) in the form

x(ξ, η) = r1 sin (ξ − η) + r2
[
J L

1 − J P
1

]
+ r1

[
J L

0 − J P
0

]
(7.16c)

with

J L
n =

η+θ1∫
θ1

D0(α − ξ, η + θ1 − α)

[2Fn(α − θ1, α) − Gn(α − θ1, α)] dα

J P
n =

ξ∫
θ1

D0(α − ξ, η + θ1 − α)

[2Fn(α − θ1, α) − Gn(α − θ1, α)] dα. (7.16d)

We express the above integrals by using the notation in
(b.166)–(b.168) and (b.176):

J L
n = wn(−θ1 + ξ, −θ1; η), J P

n = wn(η, −θ1; −θ1 + ξ)

,(7.16e)
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Fig. 14 a Michell cantilever, κ = 1, θ1 =
13π
40 , αp =

13π
20 , βp =

13π
40 . b Michell cantilever, κ = 1, θ1 =

π
5 , αp =

2π
5 , βp =

π
5 . c Michell can-

tilever, κ = 3, θ1 =
π
6 , αp =

π
2 , βp =

π
3 . d Michell cantilever, κ = 3, θ1 =

4π
15 , αp =

7π
10 , βp =

13π
30

and using the results (b.172) we find

J L
n = Fn+1(η, ξ), J P

n = Fn+1(ξ − θ1, η + θ1) . (7.16f)

Substitution of (7.16f) into (7.16c) gives

x(ξ, η) = r1[F1(η, ξ) − F1(ξ − θ1, η + θ1)]

+r2[F2(η, ξ) − F2(ξ − θ1, η + θ1)]

−r1 sin (η − ξ). (7.17)

By using (a.11) we rearrange the above formula as follows:

x(ξ, η) = r1[F1(ξ, η) − F1(ξ − θ1, η + θ1)]

+r2[F2(η, ξ) − F2(ξ − θ1, η + θ1)]. (7.18)

The equation ∂x(α,β)

∂β
= y(α, β) along with the differentiation

rules (a.4) give

y(ξ, η) = r1[F2(ξ, η) − F2(ξ − θ1, η + θ1)]

+r2[F1(η, ξ) − F3(ξ − θ1, η + θ1)]. (7.19)

The coordinates x,y should be then expressed by (6.16). The
functions x, y, x, y are continuous in the domain CABDGC;
they do not suffer jumps along CD.

Having found x, y one can compute A,B by (a.57) with
using (a.4), which gives

A(α, β) = r1[G0(α, β) − G0(α − θ1, β + θ1)]

+r2[G1(β, α) − G1(α − θ1, β + θ1)]

B(α, β) = r1[G1(α, β) − G1(α − θ1, β + θ1)]

+r2[G0(β, α) − G2(α − θ1, β + θ1)]. (7.20)

We note that B is continuous along CD, while A suffers a
jump:

[[A]]CD = A|CDG (θ1, β) − A|ABDC (θ1, β)

equal to

[[A]]CD = −r1(θ1 + β). (7.21)
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Let us compute now A along CG, where β=α−θ1. According
to (7.20) we find
A(α, α − θ1) = 0, (7.22)

which means that β lines are tangent to CG.

Remark 7.1. The formulae (7.18) and (7.19) can be predicted
by the following mnemonic method. We write x along CG
by using (6.15):

x(α, α − θ1) = r1 F1(α, α − θ1) + r2 F2(α − θ1, α)

+1x(α, α − θ1). (7.23)

By recalling (7.4) we find

1x(α, α − θ1) = r1 sin θ1 − r1 F1(α, α − θ1)

−r2 F2(α − θ1, α),

and by using (a.11), we write

1x(α, α − θ1) = −r1 F1(α − θ1, α) − r2 F2(α − θ1, α).

(7.24)

We postulate the following extrapolation of 1x into the do-
main CDG:

1xCDG(α, β) = −r1 F1(α − θ1, β + θ1)

−r2 F2(α − θ1, β + θ1), (7.25)

where the second argument α−θ1 has been replaced by β.
Thus, we write

x(α, β) = r1 F1(α, β) + r2 F2(β, α)︸ ︷︷ ︸
ABDC

+ 1xCDG(α, β) (7.26)

and arrive at (7.18).

Now we can construct some exemplary nets for selected
values of κ, θ1, θ2, αp, βp (see Fig. 14a–d). Angle θ2 satisfies
the condition θ2≥βp.

7.2 Domain BDH

Now the function y(α, β) is our main unknown. According
to (6.15), due to continuity, this function along the BD line
has the form

y(α, θ2) = r2 F1(θ2, α) + r1 F2(α, θ2),

or, by (a.11), we have

y(α, θ2) = r2 F1(α, θ2) + r1 F2(α, θ2) − r2 sin (α − θ2).

(7.27)

The equation

− x · sin θ2 + y · cos θ2 = r2 sin θ2 (7.28)

of the line BH (see Fig. 12) can be put in terms of y [see
(6.10)] by

y|β−α=θ2
= r2 sin θ2. (7.29)

Let us note analogies between the formulae (7.27), (7.29) and
(7.9), (7.4). Substitution

β 7→ α, θ1 7→ θ2, r1 7→ r2, x 7→ y

changes the latter equations into the former. We should repeat
the derivation for the curvilinear triangle BDH with using

Fig. 15 a Michell cantilever, κ = 1, θ2 =
13π
40 , αp =

13π
40 , βp =

13π
20 . b Michell cantilever, κ = 3, θ2 =

2π
3 , αp =

4π
15 , βp =

14π
15
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analogies above. Thus, we arrive at the counterparts of the
formulae (7.18) and (7.19):

y(α, β) = r2 F1(β, α) + r1 F2(α, β) − r2 F1(β − θ2, α + θ2)

−r1 F2(β − θ2, α + θ2)

x(α, β) = r2 F2(β, α) + r1 F1(α, β) − r2 F2(β − θ2, α + θ2)

−r1 F3(β − θ2, α + θ2) (7.30)

and find the Lamé fields

A(α, β) = r2G1(β, α) + r1G0(α, β) − r2G1(β − θ2, α + θ2)

−r1G2(β − θ2, α + θ2)

B(α, β) = r2G0(β, α) + r1G1(α, β) − r2G0(β − θ2, α + θ2)

−r1G1(β − θ2, α + θ2). (7.31)

The function A is continuous along BD, while B suffers there
a jump

[[B]]BD = B|BDH (α, θ2) − B|ABDC (α, θ2) (7.32)

[[B]]BD = r2(θ2 + α). (7.33)

Along the line BH, where β−α=θ2, we have B(α,α + θ2)=0.
Thus, the α lines are tangent to BH.

In case of κ=1 r1=r2, θ1=θ2, the domains CDG and BDH
are mutually symmetric with respect to the AD line. The
formulae for x, y, A, B found here coincide with appropriate
formulae of Section a.6.

Some extensions to the BDH domain are shown in Fig. 15.
Angle θ1 satisfies the condition θ1≥αp.

8 Hencky net in DHJG domain

For the case of κ=1 this net has been constructed in Lewiński
et al. (1994a) by using the Riemann method, taking advantage
of continuity of x and y along the lines DH and DG. This
method can also be used for the case of κ 6=1. To save space we
shall not derive the net but guess it by applying the reasoning
similar to that explained in Remark 7.1.

The field x within CDG can be decomposed as in Remark
7.1 see (7.26)

x |CDG = x ABDC
+ 1xCDG, (8.1)

and similarly for BDH

x |BDH = x ABDC
+ 1x BDH . (8.2)

The notation x ABDC means extension of the function (6.15)
into the whole feasible domain. We note that 1xCDG vanishes
on the line CD and on its extension DH. Similarly, 1x BDH

vanishes on BD and on its extension DG. Let us construct

x = x ABDC
+ 1xCDG

+ 1x BDH . (8.3)

The field x constructed as above satisfies the boundary con-
ditions along DG and DH. Moreover, x defined by (8.3) sat-
isfies the governing equation Lx = 0 because all its compo-
nents satisfy this equation. Let us write down this formula
explicitly:

x(α, β)=

ABDC︷ ︸︸ ︷
r1 F1(α, β) + r2 F2(β, α) −

CDG︷ ︸︸ ︷
r1 F1(α − θ1, β + θ1) − r2 F2(α − θ1, β + θ1)

−r2 F2(β − θ2, α + θ2) − r1 F3(β − θ2, α + θ2)︸ ︷︷ ︸
BDH

, (8.4)

with subsequent components corresponding to the decompo-
sition (8.3). By arguments invoked above the expression (8.4)

satisfies all necessary conditions; hence, x given by (8.4) is
really the solution to our problem. Appropriate differentiation
gives the field y

y(α, β)=

ABDC︷ ︸︸ ︷
r1 F2(α, β) + r2 F1(β, α) −

CDG︷ ︸︸ ︷
r1 F2(α − θ1, β + θ1) − r2 F3(α − θ1, β + θ1)

−r2 F1(β − θ2, α + θ2) − r1 F2(β − θ2, α + θ2)︸ ︷︷ ︸
BDH

. (8.5)

Now we can find the Lamé coefficients by (a.57):

A(α, β) = r1G0(α, β)+r2G1(β, α)−r1G0(α − θ1, β + θ1)

−r2G1(α − θ1, β + θ1) − r2G1(β − θ2, α + θ2)

−r1G2(β − θ2, α + θ2)

B(α, β) = r1G1(α, β)+r2G0(α, β)−r1G1(α − θ1, β + θ1)

−r2G2(α − θ1, β + θ1) − r2G0(β − θ2, α + θ2)

−r1G1(β − θ2, α + θ2). (8.6)



362 C. Graczykowski, T. Lewiński

Fig. 16 a Michell cantilever, κ = 1, θ1 =
π
4 , θ2 =

π
4 , αp =

π
2 , βp =

π
2 . b Michell cantilever, κ = 1, θ1 =

3π
10 , θ2 =

3π
10 , αp =

3π
5 , βp =

3π
5 .

c Michell cantilever, κ = 1, θ1 =
7π
20 , θ2 =

7π
20 , αp =

7π
10 , βp =

7π
10 . d Michell cantilever, κ = 1, θ1 =

π
5 , θ2 =

π
5 , αp =

2π
5 , βp =

2π
5 . e

Michell cantilever, κ = 3, θ1 =
π
6 , θ2 =

2π
6 , αp =

π
2 , βp =

π
2 . f Michell cantilever, κ = 3, θ1 =

7π
30 , θ2 =

2π
5 , αp =

19π
30 , βp =

19π
30 .

For the case of κ=1, r1=r2 and θ1= θ2, the formulae
(8.4)–(8.6) coincide with appropriate formulae of Section a.7.

Let us observe that the function A is constructed from x
by replacing F with G and decreasing the indices by 1. In a
similar manner one can construct B from y. This mnemonic
rule should not be used in the opposite direction because
G0(α,0)=G0(0,α); F0(α,0)6=F0(0,α).

In the case of κ = 1, θ1 = θ2 = π
/

4, the feasible domain
is a strip; BH and CG lines are parallel (see Fig. 16a).

For θ1=θ2=3π/10 (see Fig. 16b) and θ1=θ2=7π/20
(Fig. 16c), the domain DHJG becomes larger and larger.

The results found above hold good even if the lines RB
and NC intersect in the feasible domain � (see Fig. 16d) for
κ=1. The case of RB parallel to NC and κ=3 is shown in
Fig. 16e. One notes that the domains BDH and CDG cease
to be equal if κ 6=1.

The lines BA, AC, BDG, CDH will be called lines of geo-
metric division. They are discontinuity lines of A or B fields,

as can be seen in Fig. 17a,b, for κ = 1, θ1 = θ2 = 13π
/

40
and in Fig. 18a,b for κ = 3, θ1 = π

/
6, θ2 = π

/
3.

9 Chan-like designs of second rank

If the loading is applied at a point within �0 but outside the
region RHJGCNR the Hencky net constructions of the pre-
vious sections are not sufficient. The net should be extended
through the lines HJ and JG to construct the Chan-like do-
mains GJG2 and HJH2 and then to find the Hencky net within
JH2J2G2 (see Fig. 19).

The curvilinear coordinates of points G2, H2, J2 are
(2θ1+θ2,θ1+θ2), (θ1+θ2, θ1+2θ2), (2θ1+θ2, θ1+2θ2). Finding
geometric characteristics of the domain GJG2 is fairly com-
plicated because similarly as in the case of Chan domains of
the first kind, we cannot apply directly the Riemann formula
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G

C

N
A

RBH

J

A
R

N C
G

J

H

B

b

a

Fig. 17 a Lamé field A(α,β), κ = 1, θ1 = θ2 =
13π
40 . b Lamé field

B(α,β), κ = 1, θ1 = θ2 =
13π
40

for any of the unknown functions. Indeed, the lines GG2 and
HH2 are not characteristic lines. Moreover, the function x
in domain DHJG has a more complicated form than in the
region ABDC. It occurs, however, that we can omit the dif-
ficulties because the result can be similarly guessed, as has
been shown in Remark 7.1. To find the solution we write the
values of function x on the straight boundary GG2

x(α, α − θ1) = x ABDC(α, α − θ1) + 1xCDG(α, α − θ1)

+1x BDH (α, α − θ1) + 1xGJG2(α, α − θ1)

= r1 sin θ1. (9.1)

R

A

N
C

G

J

H

B

G

D

J

H

B

R

A

N

a

b
Fig. 18 a Lamé field A(α,β), κ = 3, θ1 =

π
6 , θ2 =

π
3 . b Lamé field

B(α,β), κ = 3, θ1 =
π
6 , θ2 =

π
3

Along the straight edge CG the following equality holds:

xCDG(α, α − θ1) = x ABDC(α, α − θ1) + 1xCDG(α, α − θ1)

= r1 sin θ1, (9.2)

and consequently, the following equation is true:

1x BDH (α, α − θ1) + 1xGJG2(α, α − θ1) = 0. (9.3)
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Fig. 19 Chan-like structures of second rank

In this manner we find the values of function 1xGJG2 along
the line GG2

1xGJG2(α, α − θ1) = r2 F2(α − (θ1 + θ2), α + θ2)

−r1 F3(α − (θ1 + θ2), α + θ2). (9.4)

Now we postulate the following extrapolation of function 1x
into the domain GJG2:

1xGJG2(α, β) = r2 F2(α − (θ1 + θ2), β + (θ1 + θ2))

+r1 F3(α − (θ1 + θ2), β + (θ1 + θ2)),

(9.5)

where the second argument of 1xGJG2 or α−θ1 has been
replaced by β. Eventually, the coordinates x(α, β), y(α, β)
in the domain GJG2 are expressed by Lommel functions as
follows:

x(ξ, η) = r1 F1(ξ, η) + r2 F2(η, ξ) − r1 F1(ξ − θ1, η + θ1)

−r2 F2(ξ − θ1, η + θ1) − r2 F2(η − θ2, ξ + θ2)

−r1 F3(η − θ2, ξ + θ2)

+r2 F2(ξ − θ1 − θ2, η + θ1 + θ2)

+r1 F3(ξ − θ1 − θ2, η + θ1 + θ2) (9.6a)

y(ξ, η) = r1 F2(ξ, η) + r2 F1(η, ξ)

−r1 F2(ξ − θ1, η + θ1) − r2 F3(ξ − θ1, η + θ1)

−r2 F1(η − θ2, ξ + θ2) − r1 F2(η − θ2, ξ + θ2)

+r2 F3(ξ − θ1 − θ2, η + θ1 + θ2)

+r1 F4(ξ − θ1 − θ2, η + θ1 + θ2). (9.6b)

We note that these functions are continuous in the whole
domain of the cantilever. The Lamé functions A, B are given
by

A(ξ, η) = r1G0(ξ, η) + r2G1(η, ξ) − r1G0(ξ − θ1, η + θ1)

−r2G1(ξ − θ1, η + θ1)

−r2G1(η − θ2, ξ + θ2) − r1G2(η − θ2, ξ + θ2)

+r2G1(ξ − θ1 − θ2, η + θ1 + θ2)

+r1G2(ξ − θ1 − θ2, η + θ1 + θ2) (9.7a)

B(ξ, η) = r1G1(ξ, η) + r2G0(η, ξ) − r1G1(ξ − θ1, η + θ1)

−r2G2(ξ − θ1, η + θ1) − r2G0(η − θ2, ξ + θ2)

−r1G1(η − θ2, ξ + θ2)

+r2G2(ξ − θ1 − θ2, η + θ1 + θ2)

+r1G3(ξ − θ1 − θ2, η + θ1 + θ2). (9.7b)

Both the Lame coefficients are continuous on the line GJ.
Moreover, the following formula holds:

A(α, α − θ1) = 0, (9.8)

which means that the β lines are still tangent to the line GG2.
To construct the functions 1x , 1y and 1A, 1B within

the domain HJH2 we should make the change of variables β
7→ α, θ1 7→ θ2, r1 7→ r2, x 7→ y in the expressions referring
to the domain GJG2 to find

1x HJH2(ξ, η) = r1 F3(η − θ1 − θ2, ξ + θ1 + θ2)

+r2 F4(η − θ1 − θ2, ξ + θ1 + θ2)

1yHJH2(ξ, η) = r1 F2(η − θ1 − θ2, ξ + θ1 + θ2)

+r2 F3(η − θ1 − θ2, ξ + θ1 + θ2)

1AHJH2(ξ, η) = r1G2(η − θ1 − θ2, ξ + θ1 + θ2)

+r2G3(η − θ1 − θ2, ξ + θ1 + θ2)

1B HJH2(ξ, η) = r1G1(η − θ1 − θ2, ξ + θ1 + θ2)

+r2G2(η − θ1 − θ2, ξ + θ1 + θ2). (9.9)

The Cartesian coordinates and the Lamé coefficients within
HJH2 are given by

x HJH2(ξ, η) = x DHJG(ξ, η) + 1x HJH2(ξ, η)

yHJH2(ξ, η) = yDHJG(ξ, η) + 1yHJH2 (ξ, η)

AHJH2(ξ, η) = ADHJG(ξ, η) + 1AHJH2(ξ, η)

B HJH2(ξ, η) = B DHJG(ξ, η) + 1B HJH2(ξ, η). (9.10)

On the line HH2 (or β=α+θ2) one finds

B(α, α + θ2) = 0. (9.11)
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The α lines are tangent to the line HH2. All the functions
found are continuous on the line HJ.

10 Hencky net in the JH2J2G2 domain

To construct the net one can make use of the Riemann formula
by using the values of the unknown functions and their deriv-
atives on the boundary lines. However, to make the derivation
possibly brief we shall make use of some analogies, thus ac-
tually guessing the results. We sum up the functions defined

in DHJG with functions of Chan’s domains GJG2 and HJH2
of second rank (thus assuming their extrapolations):

x(ξ, η) = x DHJG(ξ, η) + 1xGJG2(ξ, η) + 1x HJH2(ξ, η)

y(ξ, η) = yDHJG(ξ, η) + 1yGJG2(ξ, η) + 1yHJH2(ξ, η)

A(ξ, η) = ADHJG(ξ, η) + 1AGJG2(ξ, η) + 1AHJH2(ξ, η)

B(ξ, η) = B DHJG(ξ, η) + 1BGJG2(ξ, η) + 1B HJH2(ξ, η).

(10.1)

The final results read as follows:

x (ξ, η) = r1 F1 (ξ, η) + r2 F2 (η, ξ) − r1 F1 (ξ − θ1, η + θ1) − r2 F2 (ξ − θ1, η + θ1)

−r2 F2 (η − θ2, ξ + θ2) − r1 F3 (η − θ2, ξ + θ2)

+r2 F2 (ξ − θ1 − θ2, η + θ1 + θ2) + r1 F3 (ξ − θ1 − θ2, η + θ1 + θ2)

+r1 F3 (η − θ1 − θ2, ξ + θ1 + θ2) + r2 F4 (η − θ1 − θ2, ξ + θ1 + θ2)

y (ξ, η) = r1 F2 (ξ, η) + r2 F1 (η, ξ) − r1 F2 (ξ − θ1, η + θ1) − r2 F3 (ξ − θ1, η + θ1)

−r2 F1 (η − θ2, ξ + θ2) − r1 F2 (η − θ2, ξ + θ2)

+r2 F3 (ξ − θ1 − θ2, η + θ1 + θ2) + r1 F4 (ξ − θ1 − θ2, η + θ1 + θ2)

+r1 F2 (η − θ1 − θ2, ξ + θ1 + θ2) + r2 F3 (η − θ1 − θ2, ξ + θ1 + θ2)

A (ξ, η) = r1Go (ξ, η) + r2G1 (η, ξ) − r1G0 (ξ − θ1, η + θ1) − r2G1 (ξ − θ1, η + θ1)

−r2G1 (η − θ2, ξ + θ2) − r1G2 (η − θ2, ξ + θ2)

+r2G1 (ξ − θ1 − θ2, η + θ1 + θ2) + r1G2 (ξ − θ1 − θ2, η + θ1 + θ2)

+r1G2 (η − θ1 − θ2, ξ + θ1 + θ2) + r2G3 (η − θ1 − θ2, ξ + θ1 + θ2)

B (ξ, η) = r1G1 (ξ, η) + r2G0 (η, ξ) − r1G1 (ξ − θ1, η + θ1) − r2G2 (ξ − θ1, η + θ1)

−r2G0 (η − θ2, ξ + θ2) − r1G1 (η − θ2, ξ + θ2)

+r2G2 (ξ − θ1 − θ2, η + θ1 + θ2) + r1G3 (ξ − θ1 − θ2, η + θ1 + θ2)

+r1G1 (η − θ1 − θ2, ξ + θ1 + θ2) + r2G2 (η − θ1 − θ2, ξ + θ1 + θ2) . (10.2)

Exemplary cantilever comprising the JH2J2G2 domain is de-
picted in Fig. 20.

11 Geometry of further subdomains of longer
cantilevers

The construction of Hencky nets shown in the previous sec-
tions can be continued without any limitations (cf. Fig. 21a,b).
Thus, one can find the nets of fibres of cantilevers of
any length. This extension is shown below for the case of
r1=r2=r. The additional terms for Chan-like domains of rank
n in the lower zone can be put in the form

1xn
d

r
= (−1)n Fn(α − nθ, β + nθ)

+ (−1)n Fn+1 (α − nθ, β + nθ) . (11.1)

The increment of y can be found by differentiating the formula
above with using (a.4):

1yn
d

r
= (−1)n Fn+1(α − nθ, β + nθ)

+(−1)n Fn+2(α − nθ, β + nθ). (11.2)

Similarly, the additional terms for the upper Chan-like do-
mains are given by the following change of variables:

1yn
g(ξ, η) = 1xn

d(η, ξ), 1xn
g (ξ, η) = 1y−n

d (η, ξ).

(11.3)

Thus, we have

1xn
g

r
= (−1)n Fn+1(β − nθ, α + nθ)

+(−1)n Fn+2(β − nθ, α + nθ)

1yn
g

r
= (−1)n Fn(β − nθ, α + nθ)

+(−1)n Fn+1(β − nθ, α + nθ). (11.4)

The geometry of nets in the middle domain of rank n of the
cantilever is given by the following recurrence formulae:

xn
= xn−1

+ 1xn−1
d + 1xn−1

g ,

yn
= yn−1

+ 1yn−1
d + 1yn−1

g n ≥ 2. (11.5)

The Lamé functions A(α,β) and B(α,β) can be found by
the mnemonic method described in Section 8. For the lower
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Fig. 20 Michell cantilever, κ = 3, θ1 =
π
3 , θ2 =

π
6 , αp =

5π
6 , βp =

2π
3

straight boundary line we must assure that A(α, α−θ)=0,
while on the upper line, we shall have B(α, α+θ)=0.

12 Final remarks

The paper proves that in the problem considered the para-
metric lines of the Hencky net and Lamé coefficients are
expressed in terms of closed formulae involving Lommel-
like functions. In other problems this property might not be
necessarily the case; therefore, we should use other available
methods, like those developed, e.g., in Dewhurst and Collins
(1973) and Dewhurst (2001).

Appendix A

The following new integration results are used in the paper (n≥0):

λ∫
0

cos (λ − α)G1(µ, α)dα = cos (µ − λ) − cos λ + F2(µ, λ), (A.1)

λ∫
0

sin (λ − α)G1(µ, α)dα = sin λ + sin (µ − λ) − F1(µ, λ), (A.2)

ξ∫
θ

α cos (ξ − α)Gn(α − θ, η + θ)dα

= (n + 1)Fn+2(ξ − θ, η + θ) + (η + θ)Fn+3(ξ − θ, η + θ)

+θ Fn+1(ξ − θ, η + θ), (A.3)

ξ∫
θ

α sin (ξ − α)Gn(α − θ, η + θ)dα

= (n + 1)Fn+3(ξ − θ, η + θ) + (η + θ)Fn+4(ξ − θ, η + θ)

+θ Fn+2(ξ − θ, η + θ), (A.4)

a

b
Fig. 21 a Michell cantilever, κ = 1, θ1 =

π
5 , θ2 =

π
5 , αp =

4π
5 , βp =

4π
5 . b Michell cantilever, κ = 1, θ1 =

3π
10 , θ2 =

3π
10 , αp =

6π
5 , βp =

6π
5

t∫
0

D0(x, t − x)dx = sin t, (A.5)

λ∫
θ1

G0 (λ − α, µ) Gn−1(α − θ1, θ2)dα

= Gn(λ − θ1, µ + θ2) − δn0G0(λ − θ1, µ), (A.6)

where δ00=1 and δn0=0 if n=1,2,... .
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The result (A3) is sometimes used in the form

η∫
θ

β cos (η − β)Gn(β − θ, ξ + θ)dβ

= (n + 1) Fn+2(η − θ, ξ + θ) + (ξ + θ)Fn+3(η − θ, ξ + θ)

+θ Fn+1(η − θ, ξ + θ). (A.3’)

To prove (A5) it is sufficient to apply the Laplace transform Lt and make
use of (a.174).

Appendix B: derivation of the formula (7.5)

Let a function w satisfy the equation Lw=f within the domain QFE,
parameterized by (α,β ) (see Fig. 13); here, L is the operator given by
(6.3), and f is a given function of two variables given in the same do-
main. Let us define the function D0 by (7.7). For given (ξ,η) we define

G(α, β) = D0(α − ξ, η − β) (B.1)

and note that LG=0.Within the domain QFE, α − ξ ≥ 0, η − β ≥ 0
(see Fig. 13). Making use of (a.20)–(a.22) we find the identity

2
∫
�

f Gdαdβ =

∫
∂�

(
−G

∂w

∂α
+w

∂G

∂α

)
dα+

∫
∂�

(
G

∂w

∂β
−w

∂G

∂β

)
dβ,

(B.2)

where �=QFE. The above identity holds for w(α, β) = x(α, β) and
f=0, see (a.56). By using the properties

G(α, η) = 1, G(ξ, β) = 1 , (B.3)

we perform the integration∫
QF

(
−G

∂x

∂α
+ x

∂G

∂α

)
dα = x Q − x F (B.4a)

∫
E Q

(
G

∂x

∂β
− x

∂G

∂β

)
dβ = x Q − x E (B.4b)

and rearrange the integral over FE

∫
F E

(
−G

∂x

∂α
+ x

∂G

∂α

)
dα +

∫
F E

(
G

∂x

∂β
− x

∂G

∂β

)
dα =

η+θ1∫
ξ

[
x(α, α − θ1)

(
∂G

∂β
−

∂G

∂α

)
|β=α−θ1

+ G(α, α − θ1)

(
∂x

∂α
−

∂x

∂β

)
|β=α−θ1

]
dα.

(B.4c)

Thus, (B.2) gives the value x at point Q of coordinates (ξ,η)

x(ξ, η) =
1

2
(x F + x E ) −

1

2

η+θ1∫
ξ

x(α, α − θ1)

(
∂G

∂β
−

∂G

∂α

)
|β=α−θ1

dα −
1

2

η+θ1∫
ξ

G(α, α − θ1)ϕ(α)dα, (B.5)

where ϕ(α) is given by (7.6). Now we make use of x being constant on
CG see (7.4)

x E = x F = x(α, α − θ1) = r1 sin θ1 (B.6)

and simplify (B.5) to the form

x(ξ, η) = r1 sin θ1

[
1 −

1

2
g(ξ, η)

]
−

1

2

η+θ1∫
ξ

G(α, α − θ1)ϕ(α)dα,

(B.7)

where

g(ξ, η) =

η+θ1∫
ξ

(
∂G

∂β
−

∂G

∂α

)
|β=α−θ1

dα. (B.8)

By using the known rule dJ0(z)/dz=−J1(z) one can rearrange (B.8) to
the form

g(ξ, η) =

η+θ1∫
ξ

η + θ1 − ξ

(α − ξ)1/2(η + θ1 − ξ)1/2

× J1

(
2(α − ξ)1/2(η + θ1 − ξ)1/2

)
dα. (B.9)

We recall the known integration result (see Chan 1967, (13))

t∫
0

t

2x1/2(t − x)1/2
J1

(
2x1/2(t − x)1/2

)
dx = 1 − cos t (B.10)

and find

g(ξ, η) = 2[1 − cos (η + θ1 − ξ)]. (B.11)

Substitution of (B.11) into (B.7) gives (7.5).
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