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The objective of this study is to propose a relatively simple and efficient method for reliability based
topology optimization for structures made of elasto-plastic material. The process of determining the opti-
mal topology of elasto-perfectly plastic structures is associated with the removal of material from the
structure. Such a process leads to weakening of structural strength and stiffness causing at the same time
increase the likelihood of structural failure. An important aspect of engineering design is to track this
probability during the optimization process and not allow the structure safety to exceed a certain level
specified by the designer. The purpose of this work is to combine the previously developed yield-
limited topology optimization method with reliability analysis using first order approach. Effectiveness
of the proposed methodology is demonstrated on benchmark problems proposed by Rozvany and
Maute, and the elasto-plastic topology design of L-shape structure which is frequently used in different
approaches for stress constrained topology optimization.
� 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Reliability analysis and reliability-based optimal design, espe-
cially first order methods (FORM), belong to the best known and
used techniques in structural analysis and design. They have num-
ber of decades history in research. However, topology optimization
and reliability analysis/design is relatively new, but rapidly devel-
oped research field. As it is known in the 150 years of history of
topology optimization [41], the elasto-plastic layout problems
were the fundamental issues only in the first 90 years. Later, when
the continuum based structural topology problems dominated the
field, linearly/non-linearly elastic or stress limited elastic problems
were investigated, plasticity is almost totally neglected. In recent
years the elasto-plastic continuum based topology problems with
the achievement of reliability analysis could come into focus of
the interest of researchers. This paper is an extended version of
our CIVIL-COMP-OPTI 2019 conference presentation from this
lately mentioned field. At first the probabilistic and reliability
based topology optimization papers are overviewed.

Until the end of last century almost one could not find any pub-
lication on topology optimization considering uncertainties.
Exceptions to this most often use multiple load or reliability con-
straints. Uncertainty is typically limited to the loading, although
some works have considered extensions to support conditions
and material properties. The probabilistic works can be classified
into three types of group.

The first type is where the structure is assumed built precisely
as designed (no uncertainty in geometry) and the load is uncertain.
The loading uncertainties can handle the magnitude, line of action
or the point of application of the loads.

The second type is where the load is deterministic and the nodal
locations that are used to define the geometry of the structure are
uncertain. The load uncertainty problem for a finite number of load
patterns with discrete probabilities has been analyzed previously
using a slightly expanded form of the optimization problem. The
nodal uncertainty problem is significantly more complex because
it involves randomness in the inverse of the stiffness matrix. To
make the results analytically tractable, it is assumed that the
uncertainties in the nodal locations are small relative to the length
scale of the structural elements. An important application of such
an uncertainty model is in representing fabrication errors.

The third type of group is rather a computational strategy what
is proposed for robust structural topology optimization in the pres-
ence of uncertainties with known second order statistics. The strat-
egy combines deterministic topology optimization techniques with
a perturbation method for the quantification of uncertainties asso-
ciated with structural stiffness, such as uncertain material proper-
ties and/or structure geometry. The use of perturbation transforms
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the problem of topology optimization under uncertainty to an aug-
mented deterministic topology optimization problem. This in turn
leads to significant computational savings when compared with
simulation-based (Monte Carlo-based) optimization algorithms.

As a consequence of the achievements of the great number of
deterministic topological investigations about two decades ago
something has started in the field of probability based topology
optimization. Researchers used the advantages that reliability
based design optimization (RBDO) and stochastic optimization
have significant results in all fields of engineering and mathemat-
ics during the last 60 years. Books, edited volumes, proceedings
were published during the last thirty years containing the general
reliability theorems, numerical procedures -e.g. Frangopol et al.
[19,20], Jendo and Dolinski [25], Calafiore and Dabbene [11],
Melchers [47]. The mathematical background of the probabilistic
optimization methods were presented among others by Kall [27],
Prekopa [56] and Marti [43]. Aoues and Chateauneuf [1] provide
benchmark study of selected numerical methods of RBDO (the sin-
gle loop approach, the two-level approach and the decoupled
approach). Very efficient procedures were developed in the two
main fields of RBDO: namely approximate reliability methods
(see eg. Kaymaz [31]) and advance simulation methods (see eg.
Papadrakakis and Lagaros [54], Schüller et al. [61], Vietor and
Van den Akker [72], Vietor and Marti [73], Beer and Liebscher
[5].) The overview and comparison of the reliability procedures
can be followed by the review article of Valdebenito and Schüeller
[71], Beck and de Santana Gomes [4]. Ben-Tal and Neminovski [6,7]
works provided a strong foundation of the probability based topol-
ogy optimization almost a decade earlier than the topic become
‘‘popular”.

A number of methods have been developed to achieve the opti-
mization goal among which heuristic (Blachowski and Gutkowski,
2008) [8] and gradient based (Blachowski and Gutkowski, 2010)
[9] methods could be good examples for solution techniques.
Although the clear concept, the solution of topology optimization
problems poses significant technical challenges. Problems are typ-
ically large-scale and discrete, and often exhibit some numerical
difficulty associated with underlying mechanics (such as instability
of members, checkerboard patterns in continua). For these reasons,
the majority of topology optimization research has focused on
deterministic design problems, neglecting uncertainty that arises
in most engineering applications.

As it was mentioned earlier until the end of last century almost
one could not find any publication on topology optimization con-
sidering uncertainties. Fortunately, this trend has changed and a
great number of works were published during the last twelve years.
Generally the publications are classified according the object of the
topology optimization (trusses, continuum type structures, grids,
plates. . .), the type of numerical procedures (e.g. homogenization
method, the solid isotropic material with penalization (SIMP)
approach, the evolutionary structural optimization (ESO) method,
the level set-based topology optimization method, meta-heuristic
methods. . .), the formation of the uncertainties (loading, geometry,
stiffness, production tolerance). A common thing among many of
these different approaches is to reformulate the uncertainties and
create an alternate deterministic formulation. The uncertain objec-
tive function or the uncertain constraints can be replaced by their
statistical averages. An alternative is to minimize the influence of
stochastic variability on the mean design by including higher order
statistics such as variance. These approaches are commonly
referred to as robust design optimization (RDO). The description
of the reliable and robust tool for structural shape optimization is
the object of the paper of Sienz and Hinton [63] in 1997. Reliability
based design optimization (RBDO) looks to constrain or minimize
(or maximize) a measure of the probability of failure such as relia-
bility index. Also other methods use the upper bound theorems of
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the stochastic optimization to provide an equivalent deterministic
expression which bounds the probabilistic ones.

Truss optimization by Liu and Moses [36] and stochastic opti-
mization works of Marti and Stöckl [44,45] provide early informa-
tion about this topic. The paper of Duan et al. [16] is among the
very first publications in the field of uncertainty based topology
optimization. This work presents an entropy-based topological
optimization method for truss structures by the use of iteration
technique. Kharmanda et al. [32] present how to integrate reliabil-
ity analysis into topology optimization. Robust optimization for-
mulation without statistical information and its application to
micro-electro-mechanical systems (MEMS) devices is discussed
by Han and Kwak [22]. In the robust optimal design procedure, a
deterministic optimization for performance improvement is fol-
lowed by a sensitivity analysis with respect to uncertainties such
as MEMS fabrication errors and changes of material properties.
During the process of the deterministic optimization and sensitiv-
ity analysis, dominant performances and critical uncertain vari-
ables are identified to define the gradient index. Maute and
Frangopol [46], Kim et al. [33] also present a methodology for
the design of micro-electro-mechanical systems (MEMS) by topol-
ogy optimization accounting for stochastic loading and boundary
conditions as well as material properties. This methodology combi-
nes the advances in material-based topology optimization for com-
pliant mechanisms undergoing large displacements and design
optimization under uncertainties using first order reliability analy-
sis methods. Mogami et al. [50] discrete frame elements in their
topology optimization work. Their paper concerns a reliability-
based topology optimization method for frame structures that con-
siders uncertainties in applied loads and nonstructural mass at the
early conceptual design stage. The effects that multiple criteria,
namely, stiffness and eigenfrequency, have upon system reliability
are evaluated by regarding them as a series system, where mode
reliabilities can be evaluated using first-order reliability methods.

The methodology of the robust design with consideration of
highly nonlinear structural behaviour is discussed by Schumacher
and Olschinka [62].

By the use of Mindlin plate elements with the von Karman
strain–displacement relation a reliability-based topology opti-
mization method is presented by Jung and Cho [26]. The classical
topology optimization program is generalized as plate volume
minimization problem having probabilistic displacement con-
straints by the use of the performance measure approach.

Califore and Dabbene [11] apply two standard theorems for
finding optimal solutions for uncertain convex optimization prob-
lems to truss topology optimization under uncertainty on the load
pattern and/or on the material characteristics. In these approaches
the optimal design should minimize the expected value of the
objective function with respect to uncertainty (average approach),
while in the second one it should minimize the worst-case objec-
tive (worst-case or min–max approach). Both approaches are
shown to lead to exact and numerically efficient solution schemes
when the uncertainty enters the data in simple form.

Kang and Luo [30] present a non-probabilistic reliability-based
topology optimization method for the design of continuum struc-
tures undergoing large deformations. The variation of the struc-
tural system is treated with the multi-ellipsoid convex model,
which is a realistic description of the parameters being inherently
uncertain-but-bounded or lacking sufficient probabilistic data.

The level-set based topology optimization algorithm of Chen
and Chen [13] is suitable to consider geometric uncertainties, as
well. Their robust optimization method consists of two parts: First,
the geometric uncertainty is quantitatively modeled by combing
level set equation with a random normal boundary velocity field.
Second, a partial differential equation-based approach is employed
to overcome the deficiency of conventional level set model which
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cannot explicitly maintain the point correspondences between the
current and the perturbed boundaries. With the explicit point cor-
respondences, shape sensitivity defined on different perturbed
designs can be mapped back to the current design.

Dunning et al. [17,18] introduce an efficient and accurate
approach to robust structural topology optimization. The objective
is to minimize expected compliance with uncertainty in loading
magnitude and applied direction, where uncertainties are assumed
normally distributed and statistically independent. This approach
is analogous to a multiple load case problem where load cases
and weights are derived analytically to accurately and efficiently
compute expected compliance and sensitivities. Illustrative exam-
ples using a level-set-based topology optimization method are
then used to demonstrate the proposed approach.

Topology optimization with uncertainty in the magnitude and
locations of the applied loads and with small uncertainty in the
locations of the structural nodes is the object of the paper of Guest
and Igusa [21]. Their method is based on the assumption that the
loading uncertainties are taken into consideration as ”safety fac-
tors” of the deterministic load cases in the load combination. This
technique is extended for nonlinear effects of global instability [24]
and material property uncertainties [2], to put more control on the
variability of the final design via including variance of the compli-
ance [3].

Sigmund [64] considered manufacturing errors by modelling
structures as uniformly too thin or thick and optimizing for the
worst case performance under these conditions. This idea was also
applied to the robust design of photonic crystal waveguides by
Wang et al. [74].

A single-loop algorithm for system reliability-based topology
optimization is presented by Silva et al. [67], Nguyen et al. [53].
The proposed single-loop algorithm accounts for the statistical
dependence between the limit-states by using the matrix-based
system reliability method to compute the system failure probabil-
ity and its parameter sensitivities. The reliability-based topology
optimization method presented by Yoo et al. [78] is based on bidi-
rectional evolutionary structural optimization which uses response
surface methods.

The publications of Lógó et al. [40,39], Lógó [37,38], Pintér et al.
[55] provide an appropriate tool for continuum type topology opti-
mization procedure using a first order approximation for compli-
ance in the presence of uncertainty in applied loads. The
robustness also considered in Csébfalvi and Lógó [15], Rashki
et al. [58]. In this lastly mentioned paper a simulation-based
method is described for reliability based design optimization. The
method provides multi-level of solutions by performing only one
simulation run.

The last five years brings a real expansions of the achievements
in the field of reliability based topology optimization (RBTO). New
procedures, more accurate and robust solutions have elaborated.
Kanakasabai and Dhingra [28] introduce an approach for RBTO in
which the computational effort involved in solving the RBTO prob-
lem is equivalent to that of solving a deterministic topology opti-
mization problem. The methodology presented is built upon the
bidirectional evolutionary structural optimization (BESO) method
used for solving the deterministic optimization problem.

The hybrid probabilistic and interval model is elaborated by Xia
et al. [76] To improve the computational efficiency, a hybrid per-
turbation random moment method (HPRMM) to estimate the
objective function and a hybrid perturbation inverse mapping
method (HPIMM) to evaluate the component reliability is pro-
posed. Based on HPRMM and HPIMM, the nested loop optimization
is converted into an efficient single-loop process.

A topology description function approach and a first order reli-
ability method are employed for topology optimization and relia-
bility calculation by J. Liu et al. [34]. K. Liu et al.[35] have
3

elaborated novel segmental multi-point linearization (SML)
method for a more accurate estimation of the gradient of failure
probability. This type of application increases the robustness of
the optimal solution. A hybrid sequential approximate program-
ming (HSAP) method is developed by Meng et al. [49] to calculate
the optimum efficiently by developing a distance-checking crite-
rion and a convex approximate method. Since the distance-
checking criterion identifies the feasibility of the probabilistic con-
straint effectively, the proposed method combines the efficiency of
the sequential approximate programming method and the accu-
racy of SORM. The convex approximate method is also constructed
using the sensitivity and function value of the probabilistic
constraint.

To avoid the oscillatory and non-convergent properties of the
iterative single loop solution procedure for RBDO in case of non-
linear performance function, a chaotic single loop approach is
proposed by almost the previously cited same team (Meng
et al. [48]) to achieve the convergence control of original iterative
algorithm. Additionally, an oscillation-checking method is con-
structed to detect the oscillation of iterative process of the design
variables.

A spatially varying geometric uncertainties due to manufactur-
ing errors are modeled with a random threshold model by Kang
and Liu [29]. The projection threshold is represented by a transfor-
mation of a Gaussian random field, which is then discretized by
means of the expansion optimal linear estimation. The structural
response and their sensitivities are evaluated with the polynomial
chaos expansion, and the accuracy of the proposed method is ver-
ified by Monte Carlo simulations.

Canelas, Carrasco and López [12] present a RBDO, which is
based on the approximation of the safe region in the random space
by a polytope-like region. This polytope is in its turn transformed
into quite a simple region by using generalized spherical coordi-
nates. The failure probability can be estimated by considering sim-
ple quadrature rule.

Chun et al. [14] propose a method to incorporate constraints on
the first-passage probability into reliability-based optimization of
structural design or topology. For efficient evaluations of first-
passage probability during the optimization, the failure event is
described as a series system event consisting of instantaneous fail-
ure events defined at discrete time points. The probability of the
series system event is then computed by use of a system reliability
analysis method termed as the sequential compounding method.
The adjoint sensitivity formulation is derived for calculating the
parameter sensitivity of the first-passage probability to facilitate
the use of efficient gradient-based optimization algorithms.

Moustapha, and Sudret [51] present a generalization of the
existing surrogate-assisted and simulation-based RBDO techniques
using a unified framework that includes three independent blocks,
namely adaptive surrogate modelling, reliability analysis, and
optimization.

Da Silva, Beck and Sigmund [65] elaborate a robust design
approach, based on eroded, intermediate and dilated projections,
to handle uniform manufacturing uncertainties in stress-
constrained topology optimization. In addition, a simple scheme
is proposed to increase accuracy of stress evaluation at jagged
edges, based on limiting sharpness of the projections to intention-
ally allow a thin layer of intermediate material between solid and
void phases.

A non-probabilistic reliability-based topology optimization
framework for compliant mechanisms with interval uncertainties
is introduced by Wang et al. [75]. As a result of the combination
of the SIMP (solid isotropic material with penalization) model
and the set-theoretical interval method, the uncertainty quantifi-
cation analysis is conducted to obtain mathematical approxima-
tions and boundary laws of considered mean compliance. By
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normalization treatment of the limit-state function, a quantified
measure of the non-probabilistic reliability is defined.

Luo et al. [42] present an effective procedure for solution of
stress constrained topology optimization problems under load
and material uncertainties. Their method is based on the perfor-
mance measure approach (PMA) and the method of moving
asymptotes (MMA) proposed by Svanberg [68]. To overcome the
stress singularity phenomenon caused by the combined stress
and reliability constraints, a reduction strategy on target reliabil-
ity index is proposed and utilized together with the e-relaxation
approach. The proposed algorithm is able to solve RBDO under
stress constraints in an iterative manner based on the double-
loop strategy. In this strategy outer loop was responsible for
updating design parameters, while the inner loop took care about
reliability assessment. The effectiveness of the proposed double-
loop approach has been demonstrated on design of an L-shape
structure frequently used as a benchmark problem in stress con-
strained topology optimization. Alternative formulation based on
sequential optimization has been proposed by dos Santos et al.
[60]. This formulation allowed for decoupling the problem into
2 steps related to deterministic optimization and reliability anal-
ysis, respectively. In particular, the deterministic optimization
was addressed with an efficient methodology based on the topo-
logical derivative concept combined with a level-set method. As
an illustrative examples they used T-bracket structure corre-
sponding to engineering design of transmission towers. Next
interesting paper on stress-constrained topology optimization
under uncertainties has been proposed by da Silva et al. [66].
Reliability-based topology optimization of elasto-plastic struc-
tures handle uniform manufacturing uncertainties in topology
optimization. The proposed methodology has been validated on
three practical examples, namely: L-shaped problem, optimal
design for an eye-bar belonging to an eye-bar-chain of a sus-
pended bridge and the portal frame problem. Recently, the prob-
lem of uncertainty-oriented topology optimization with local
stress constraints has been studied by Xia et al. [77]. The paper
described an effective procedure for interval parametric struc-
tures to achieve optimal material configurations under considera-
tion of local stiffness and strength failure. The numerical
examples concerned planar L-shaped structure, 3D block struc-
ture and aeronautical joint. The e-relaxed stress criterion and glo-
bal stress aggregation approach are involved to circumvent the
stress singularity and multi-constrained problems. Combined
the orthogonal polynomial expansion with the set allocation the-
orem, an interval dimension-by-dimension method is proposed to
determine feasible bounds of structural responses under
unknown-but-bounded load and material uncertainties.

Recent representative examples of topology optimization could
be papers by Tauzowski et al. [70,69] where a new direction of
topology optimization procedure-functor oriented [69] - is created
and the element size effect is considered [70]. In addition to it the
Authors of this paper successfully extended this newly introduced
formulation into plastic topology design [10]. Despite chosen opti-
mization type a critical aspect of the obtained optimal solution is
its dependence on a character of applied loading. Often determin-
istic loading are applied in the structural optimization, which can
bring to the optimal solution sensitive to small variation in the
applied load. It can even result in failure of the structure subjected
to loading slightly different than those assumed during determin-
istic optimization. For that reason recently more attention is paid
to the design optimization under uncertainty and in particular
the so-called reliability-based topology optimization (RBTO). One
can see from the wide range of overview of the publications of reli-
ability based topology optimization in the last three decades the
fully plastic application is missing or marginally covered (eq. stress
limited, but elastic design).
4

The objective of this study is to propose a relatively simple and
efficient method for reliability based topology optimization for
structures made of elasto-plastic material. To the best Authors’
knowledge the only paper which treated similar topic was paper
by Kaymaz and Marti [31]. However, contrary to the proposed
method their approach was devoted to layout optimization. The
remaining part of the paper is organized as follows: in the second
section background information about reliability analysis and
reliability-based design optimization are recalled. Also some fun-
damental equation for elasto-plasticity theory are recalled along
with return mapping algorithm. Then, proposed method for
reliability-based topology optimization of elasto-plastic structures
is introduced. Finally, two numerical examples are presented.

2. Problem statement

We are looking for minimum-weight structure made of elasto-
plastic continuum. The structure is subjected to random loading
and its reliability is assumed to be greater than prescribed value.
Schematically such a problem has been shown in Fig. 1. To the best
Author’s knowledge such a problem has not been solve before. In
our study, a reliability-based optimization problem can be formu-
lated as follows: The above nested optimization problem can be
formulated as follows:

find q

minimize V qð Þ ¼
XNe

e¼1

qeVe;

subject to ri q;qð Þ ¼ 0; i ¼ 1;2; . . . ;Ndof

Pr qj q; hð Þ 6 0
� �

P Rt
j ; j ¼ 1;2; . . . ;Nc

qL
e 6 qe 6 qU

e ; e ¼ 1;2; . . . ;Ne

ð1Þ

where the objective function is the mass of the system, the design

vector q ¼ q1;q2; . . . ;qNe

� �T represents density of individual finite

element, the random parameter vector h ¼ h1; h2; . . . ; hNrð ÞT it can
be loads or material parameter, Ne and Nr denote the number of
design variables and random parameters, respectively, ri is the i-
th component of residual vector represents equilibrium constraint.
This constraint is meet by the iterative Newton–Raphson algorithm
– solution of elasto-plastic problem. gj is the performance function
of the j-th design constraint, for j ¼ 1; . . . ;Nc;Nc is the number of
constraints, Rt

j is the target reliability level for j-th probabilistic con-

straint and qL
e and qU

e are, respectively, the lower and upper bounds
on qe, for e ¼ 1; . . . ;Ne.

Pr qj q; hð Þ 6 0
� � ¼

Z
qj q;hð Þ60

f h hð Þdh ð2Þ

where f h hð Þ is probability density function of h.

3. Methodology

The problem, which is the topic of the present paper consists of
two main issues: topological analysis of elasto-plastic structures
and reliability analysis. In this chapter, we will briefly describe a
methodology applied in solving these issues, starting with remain-
der of the fundamental information for reliability analysis and
elasto-plasticity.

3.1. Reliability analysis

Some parameters of the designed structure are in fact random.
These include, for example, wind loads. In the case of mass produc-
tion, they can be material parameters or shape parameters. Consid-
ering the random nature of these parameters in our project, these



Fig. 1. Reliability-based topology optimization of elastoplastic structure.
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parameters are represented by random variables and stored into
vector h. The vector of random variables belongs to the probabilis-
tic space X (Fig. 2). The random nature of the design parameters
means that the parameters are scattered. It may cause that some
values of these parameters lead to dangerous or even destructive
states. That is why the design space is divided into two half-
spaces: a safe area Xs and a failure area Xf . This division is made
by introducing a function called the performance function g hð Þ,
which in the failure zone takes negative values and in the safe area
positive ones (Fig. 2). The boundary surface, which is determined
by the equation g hð Þ ¼ 0 is called limit state surface and separates
the safe area from the failure area. Failure probability is the inte-
gral over the failure area from the joint probability density func-
tion. This is expressed by the following formula:

Pf h 2 Xf

� � ¼ Pf g xð Þ < 0½ � ¼
Z
g hð Þ<0

f h xð Þdh; ð3Þ

where fH hð Þ is probability density function of H.

3.2. Numerical techniques for reliability assessment

Analytical determination of the probability of failure directly
from the formula (2) is usually not possible due to the fact that
the definition of the limit state function is based on numerical
solutions such as the finite element method. This implicit form of
the limit state function forced the emergence of a number of meth-
ods that allow numerical estimation of the probability of failure.
One of the best known and easiest methods often used as a refer-
ence method is the Monte Carlo method. It consists in a random
selection a certain number N of implementations of random vari-
ables h1; . . . ; hNf g based on their probability distributions. Then
Fig. 2. Division of the probabilistic space into safe and failure area.
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the value of the limit function g xð Þ is calculated for each h 2 H.
The probability of failure is the percentage of those points for
which the value of the limit state function g xð Þ < 0. Designers want
the structure to be safe. The probability of failure should then be
very low. In civil engineering, it is assumed that the probability
of failure of a building structure should be in the order of 0:0001.
To determine such a probability of failure, we need to randomly
generate at least N ¼ 100000 implementations of random variable.
The duration of calculations for such a number of limit state func-
tion values based on finite element analysis may not be acceptable.

In order to be able to determine very low probabilities of failure,
a number of other methods for their determination were devel-
oped shortly. Among them stands out the First Order Reliability
Method (FORM). This method is based on a linear approximation
of the limit state surface (Fig. 3). The idea of this method is based
on the observation that the neighborhood of the Most Probable
Point (MPP) point have the largest contribution in the probability
of failure integral (3). It has been depicted on the Fig. 3 in green
color. In such a small area, a linear approximation of the limit state
surface usually gives a sufficient accuracy of the probability of fail-
ure estimation for low probabilities encountered in engineering.
The original random variables are transformed from original prob-
abilistic space X xð Þinto a standard normal space D uð Þ;u ¼ T xð Þ. For
correlated random variables, Rosenblatt transformation or approx-
imate Nataf [52] transformation should be used. There are two first
order approaches for evaluation reliability constraints, namely
Reliability Index Approach (RIA):

minimize jjujj;
subject to g uð Þ ¼ 0;

ð4Þ
Fig. 3. Graphical representation of First Order Reliability Method.
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and Performance Measure Approach (PMA):

maximize g uð Þ;
subject to jjujj ¼ bt ;

ð5Þ

where bt is target reliability index the structure should never
exceed. Detailed comparison of both methodologies the reader
can find in the paper by Youn et al. [79]. Both above mentioned
problems are cases of nonlinear programming. General purpose
numerical procedures such as sequential quadratic programming
(SQP) can therefore be applied. However, in both cases it is much
better to derive iterative formulas dedicated to these issues, char-
acterized by greater simplicity and efficiency than general proce-
dures. One of the simplest iterative formula for RIA was derived
by Hasofer and Lind [23] and upgraded by Rackwitz and Fiesler
[57]. This formula at the k-th iteration can be presented in the fol-
lowing way:

u kþ1ð Þ ¼ 1

jjrg u kð Þð Þjj2
rg u kð Þ� �T

u kð Þ � g u kð Þ� �� �
rg u kð Þ� � ð6Þ

where rg u kð Þ� �
denotes derivative of the performance function

with respect to random variables. Similar iterative formulas can
be derived for the PMA approach, which was done by Youn et al.
[79]. They also compared both methods in terms of efficiency. Most
examples support the use of PMA, however RIA has also shown cer-
tain advantage in some cases. Much depends on the nature of the
limit state function, on the convexity, so in our case of topology
optimization of elastic–plastic problems we will test both
approaches. Solving problems (4) or (5) most probable point
(MPP) u� is determined (see Fig. 3). Hasofer-Lind’s [23] reliability
index bFORM and Probability of failure PFORM have the forms
respectively:

bFORM ¼sgn g 0ð Þð Þjju�jj; ð7Þ
PFORM ¼U �bFORMð Þ; ð8Þ
where U denotes cumulative distribution function for standard nor-
mal distribution. However, using the Rackwitz - Fiesler procedure is
not always the best solution. At the initial stage of topology opti-
mization, the probability of failure is very small, the procedure in
the figure above processes very small numbers, which may be the
reason for numerical instability. We have experienced this in our
own calculations as well as it is confirmed in the above mentioned
paper [79]. As a remedy for these inconveniences, an approach
called Performance Measure Approach (PMA) is also implemented
in our system, and in particular its variant called Hybrid Measure
Approach (HMA), which also allows to solve nonconvex problems.
The iterative procedure is described by the following formulas:

n u kþ1ð Þ� � ¼ rg u kð Þ� �
jjrg u kð Þð Þjj ; ð9Þ

u kþ1ð Þ ¼
btn u kð Þ� �

k 6 2
n u kð Þð Þþn u k�1ð Þð Þþn u k�2ð Þð Þ

jjn u kð Þð Þþn u k�1ð Þð Þþn u k�2ð Þð Þjj k > 2

8<
: ð10Þ

In the RIA approach, the reliability index is determined, while in the
HMA algorithm we look for the minimum value of the performance
function at an safety distance bt . If this minimum value
gmin ¼ g u3ð Þ > 0 is positive, it means that constraint is not active.
Otherwise, if a fragment of the failure area was located closer than
safe distance gmin ¼ g u3ð Þ < 0, it means that reliability constraint is
active. To summarize, the HMA algorithm allows you to check the
reliability constraint without determining the probability of failure.
In addition, as it can be seen in the figure 3, the algorithmworks in a
region that is approximately distant by bt from the system origin,
which means that it does not process very small values of probabil-
6

ity of failure helps to improve the algorithm stability. It is worth
noting that both of the above algorithms are gradient based. The
finite difference method was used to determine the gradients. Since
we operate in standard, normal space on dimensionless random
variables, there is no difficulties in determining the perturbation
value and a constant value of 0:0001 is sufficient.

3.3. Reliability-based topology optimization

The optimal design is the one for which we find the minimum
value of a certain function of the design parameters (in topological
optimization, most often density) while fulfilling certain con-
straints. A reliable design is one for which we control the probabil-
ity of failure. Combining these two approaches we obtain reliability
based optimization. This means adding a new design constraint.
Therefore, a reliable design will be less optimal because it must
meet additional constraints related to safety f xopt

DET

� �
< f xopt

RBDO

� �
(Fig. 4). In an optimal design there is a risk of exceeding the limits
caused by fluctuations in certain design parameters. To prevent
this difficulty, we formulate the reliability based optimization
problem as follows:

min
q

V qð Þ
s:t: r q;qð Þ ¼ 0

Pf q; xð Þ < Pt

ð11Þ

where q denotes design variables (density of individual finite ele-
ments), vector r represents residua of the equilibrium equations
and Pf is a probability of failure. The above general formulation of
reliability optimization problem shows that two issues are com-
bined: minimizing the objective function and determining the prob-
ability of failure. Because in the first-order approach (FORM)
determining the probability of failure is in fact also an optimization
problem, the task of reliability optimization is a combination of two
optimization problems. Several methods have been developed to
solve such a nested formulation:

� Double loop, Optimization loop minimizing the objective func-
tion is the first loop. Inside optimization loop reliability analysis
loop is called to check the reliability constraint - second loop. It
is nested approach because reliability loop is nested inside opti-



Fig. 6. Design variable of topology optimization as density.
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mization loop. Double loop approach is the most commonly
used and hence the best tested approach, the advantage of this
method is its stability. Reliability estimation for each set of
design variables allows for precisely meeting of reliability con-
straints. Among the advantages, it can be also mention the mod-
ularity. Reliability may be estimated by external software called
in optimization loop. However this modularity can be limited
by the need to determine reliability index gradients if it is not
delivered by an external reliability software. Among the disad-
vantages of this approach are the numerical complexity caused
by the need to estimate the reliability indicator for each value of
decision variables.

� Single loop, A single loop, in this version of the algorithm, one
iterative procedure updates both the search for the minimum
objective function as well as the search for the design point u�

(Fig. 3) on which the failure probability FORM estimation is
based. This approach allows to avoid a nested reliability task
by replacing reliability constraints with deterministic ones.
Hence the basic advantage of this method (and unfortunately
the only one) is the chance for high numerical efficiency result-
ing from the lack of the need to determine the reliability index
for each value of decision variables. Unfortunately, this method
has a number of disadvantages. The main disadvantage is the
possibility of decrease in numerical efficiency as well as accu-
racy depending on various factors such as the selection of the
starting point. This approach is not modular. It is difficult to
outsource any part of the algorithm to external programs. The
entire procedure must be originally programmed.

� Decoupled, Optimization and reliability analysis are performed
separately. Both are repeated sequentially until some conver-
gence criterion is meet. Decoupled approach is implemented
in two independent procedures that perform optimization and
reliability tasks. The coupling consists in the fact that the data
for the optimization procedure are based on the results of reli-
ability analysis. The process is repeated iteratively. Among the
greatest advantages of this approach are modularity. Proce-
dures are connected only by data. So you can use completely
independent procedures, or even two different, programs to
perform reliability calculations and optimization. This makes
the implementation of this method the easiest of these three
approaches. However, disadvantages include numerical effi-
ciency, especially in the context of topological optimization.
To solve the problem by the ”decoupled” method it will be nec-
essary to call the optimization procedure several times. It can
significantly increase the calculation time especially for large
tasks.
Fig. 5. Predictor and corrector stage of the elastoplastic analysis.

7

3.4. Elasto-plastic analysis

In this section, fundamental relationships governing the elasto-
plastic problem will be briefly reminded such as the elastic law,
associative flow rule, yield surface. It is worth noting that issues
related to plasticity, stress will never exceed the yield point. Hence,
in the optimization formulation there is no need to impose con-
straint on stresses because they are met by definition. However,
an important limitation that we must meet is the load capacity
of the structure.

3.4.1. Fundamental relations
The formulation of the elasto-plastic problem is based on the

classical Prandtl-Reuss assumption about the additivity of elastic
eel and plastic epl strains:

e ¼ epl þ eel: ð12Þ
Cauchy stress tensor can be expressed as follows:

r ¼ Del : eel: ð13Þ
The von Mises yield condition was chosen, having the following
form:

W ¼
ffiffiffiffiffiffiffi
3J2

p
� r0; ð14Þ

where W is yield surface, r0 is the yield stress, J2 is second stress
invariant and s rð Þis stress tensor deviatoric part. Standard associa-
tive flow rule was assumed in the form:

_epl ¼ _cn ¼ _c
@W
@r

; ð15Þ

where _c is the plastic flow multiplier and n is Prandtl-Reuss flow
vector which can be expressed as follow:

n ¼ @W
@r

¼
ffiffiffi
3
2

r
s

jjsjj ; ð16Þ

where s is deviatoric part of the stress.

3.4.2. Predictor–corrector solution strategy
Predictor–corrector solution strategy is most frequently used

solution methodology for nonlinear equations system. Predictor
and corrector are two stages of computation performed on each
iteration until the convergence condition is met. In elasto-plastic
analysis predictor stage n-th displacement increment Dq is evalu-
ated according to formula:

Dq ¼ � K nð Þ
T

� ��1
r nð Þ; ð17Þ

where K nð Þ
T is tangent matrix and r nð Þ is residual vector. Finite

element Eq. (17) can be solved by Newton–Raphson iteration



Fig. 7. Flowchart of the proposed optimization algorithm.
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procedure. Global tangent matrix is computed and assembled in
according to classical formula:

K nð Þ
T ¼

[Ne
e¼1

Z
Ve
BTDel�plB dv ; ð18Þ

r nþ1ð Þ ¼ f �
[Ne
e¼1

Z
Ve
BTr nþ1ð Þ dv; ð19Þ

where f is load vector, B is strain derivatives matrix. It is worth not-
ing here that the derivatives of displacements with respect to global
coordinates require the determination of the Jacobian matrix at
each Gaussian point. In topological optimization, regular meshes
containing identical finite elements, in term of shape, are most
often used. Therefore, it is worth organizing the algorithm so that
B matrices are calculated once. Similarly, the element tangent

matrix K eð Þ
T for non-plasticized areas, in which an elastic stiffness

matrix is identical for each element in regular finite element mesh.
This approach significantly speeds up computations. Having Dq,
prediction of the stress and strain are evaluated according to equa-
tions below:

De ¼ BDq; ð20Þ
e nþ1ð Þ
trail ¼ e nð Þ þ De; ð21Þ
r nþ1ð Þ

trail ¼ Dele nþ1ð Þ
trail ; ð22Þ

The purpose of the next stage called the corrector is to modify the
values of mechanical quantities including stresses so that the con-
dition that stresses cannot exceed the surface of plastic flow is
met. In addition, the associated flow law implies that the stress vec-
tor in the plastic state is perpendicular to the plastic flow surface.
The algorithm for this correction in plasticity is called return map-
ping and requires the use of the Newton–Raphson procedure at
each Gauss point to evaluate plastic flow multiplier Dc. In the
8

particular case of three-axis stress state and perfect plasticity, the
stress correction procedure does not require iteration and Dc can
be evaluated from single formula. Geometrical interpretation of
return mapping algorithm is depicted in Fig. 5. Stresses and strains
at the n-th iteration can be computed from the following formulas:

e nþ1ð Þ ¼e nþ1ð Þ
trail � Dcn nþ1ð Þ; ð23Þ

r nþ1ð Þ ¼r nþ1ð Þ
trail � DcDeln nþ1ð Þ: ð24Þ
4. Computational procedure

In the present section all information presented so far will be
gathered into one procedure which allow to determine minimum
volume structure which is able to carry given probabilistic loads
with prescribed level of reliability. For this purpose we combine
the yield limited topology optimization method described in detail
in the previous Authors’ paper (Blachowski et al. [10]) and reliabil-
ity assessment using first order method described in Section 3.

As a result the proposed topology optimization with reliability
assessment leads to nested optimization problem. In the first level
optimization is conduced towards minimization of the structural
volume (Fig. 6). Then, at each iteration reliability index is deter-
mined and compared with its prescribed desired value. To perform
this comparison optimization of the second level is performed. In
this way reliability index is determined using FORM. If the struc-
ture at the given iteration step still satisfies reliability condition
the redundant volume is removed based on stress intensity crite-
rion, i.e. least stressed element is removed. The procedure is
repeated until either current design violated reliability condition
or external loading causes yield flow of the optimized structure
(Fig. 7).

As illustrations of the algorithm described in p.4 three topolo-
gies for selected iterations of outer loop illustrating the operation
of our algorithm are presented (Fig. 8). The first row depicts the
topology at iteration 11. It illustrates the beginning of the topology
optimization process. In this figure, the material being removed
from the vertices, i.e. the least-stressed areas of the project design.
The next iteration, namely 175 is shown in the second row of the
table it illustrate the formation of empty spaces within the struc-
ture. The final iteration is 350, and it is shown in last row of the
table illustrating the final result. An internal loop is made at each
iteration to check that the reliability constraints are met. Outer
loop operates on design variables changing density of finite ele-
ment while inner loop, related to reliability constraints checking
working on random variables (in our examples horizontal force
Frandom). Constraints can be checked using PMA or RIA algorithms,
depending on the user’s choice.
5. Numerical examples

5.1. Two-bar benchmark problem

To verify correctness of the proposed algorithm a benchmark
example was chosen. The example was taken from the seminal
paper by Rozvany and Maute [59], where analytical solution for
the considered problem has been found. Graphical representation
of the task is presented in Fig. 9. Analytical relation between force
direction angle h and inclination a is expressed by the formula

a ¼ arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tan4 hþ 8 tan2 h
p

� tan2 h
� �

=4
r

; ð25Þ

which is depicted in Fig. 10. Several examples for different angles of
acting force were performed for linear analysis. Bar angles in
obtained topologies shows close consistency with analytical



Fig. 8. Convergence of the iterative process for reliability-based topology optimization.

Fig. 9. Benchmark problem of Rozvany and Maute [59] for reliability-based
optimization. Fig. 10. Relation between force direction and bars direction.
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solution [59]. Optimal topologies for these solutions are presented
in Figs. 11 and 12.
5.2. L-shape structure in plane stress

The second numerical example concerns an L-shape structure
widely used as a benchmark in the literature devoted to stress-
9

constrained topology optimization. In this benchmark some diffi-
culties arise and are related to stress concentration in re-entrant
corner. The schematic L-shape bracket is presented in Fig. 13.
The L-shape bracket will be solve for two different loading con-
ditions. The first case will correspond to low stress intensity i.e.
elastic case, while the second one will correspond to high-stress
intensity. This second case will require elastoplastic analysis in



Fig. 11. Optimal topology for force angle h ¼ 5� . Obtained bar angle a ¼ 16:2� ,
while theoretical value (Eq. 25) ar ¼ 13:8� .
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order to find the optimal topology. There is some preliminary
explanation regarding the load of the structure. The elastoplastic
structure has some limited load capacity. It is therefore neces-
sary to ensure that load is lower than maximal. Thus, the actual
load applied to the structure is expressed by the following for-
mula: freal ¼ /cf. In this formula c is the minimal load capacity
factor calculated for the load vectors
f i ¼ fd � 3rif

p
i

� �
; i ¼ 1; . . . ;Nr , where fd- deterministic part of

load, fpi - probabilistic load related with ith random variable, Nr

is the number of independent random variables, / is the reduc-
tion factor determining the load level in relation to the maxi-
mum load the user wants to apply (/ < 1). In following
numerical examples two load levels are applied: low stress
intensity load, where / ¼ 0:1 and high stress intensity load
/ ¼ 0:8, which means such a load value that causes plastic zones
in the structure. (see Figs. 14–17).

Algorithm 1. Topology optimization of elastoplastic structures
with reliability constraints
Step 1
 Initialize design variables to a vector of ones

q 0ð Þ
e ¼ 1;1; . . . ;1f gand erased element list to an

empty list L ¼ fg. Initialize random variables
vector h ¼ h1; . . . ; hNrf g.
Step 2
 (inner loop) Asses reliability constraints using:

Performance Measure
Approach (PMA)
or Reliability Index
Approach (RIA)
min g uð Þ
 min jjujj

subject to: jjujj ¼ bt
 subject to: g uð Þ ¼ 0

At every k-th iteration of inner loop solve nonlinear
equations of the elasto-plastic problem� �
r q kð Þ
e ;u kð Þ ¼ 0.
Step 3
 Determine the stress intensity calculated as the
average of equivalent von Mises stresses evaluated
at each Gauss point, then normalize the obtained
values dividing them by the yield limit
Fig. 12. Optimal topology for force angle h ¼ 20� . Obtained bar angle a ¼ 26:1� ,

ri ¼ 1

Ngr0

PNg

g¼1r
g
i;g ; i ¼ 1;2; . . . ;N:
while theoretical value (Eq. 25) ar ¼ 25:4� .
Step 4
 Apply a design filter to avoid the checkerboard
phenomenon and reduce mesh dependence of the
results.
Step 5
 If load capacity or reliability PFORM > Plimit exceed
permissible limit then go to Step 8.
Step 6
 Select n finite elements with the smallest stress
intensities re < remin þ rt (usually rt ¼ 0:005) and
add the list of the newly selected elements l to the
list of previously erased elements,

L kð Þ ¼ L k�1ð Þ; l
n o

.

Step 7
 Using the current list of erased elements L update
corresponding design variables applying the
following iterative formula and go to Step 2.:� �
q kð Þ ¼ maxlRL qmin rlf gfilter
� �p

q k�1ð Þ
l .
Step 8
 Retrieve the topology from the previous iteration,
save it as the final one and stop.
Fig. 13. L-shape structure with deterministic and probabilistic loads.
5.2.1. Low stress intensity - elastic case

In the case of low stress intensity the following material con-
stants are assumed: E ¼ 1 and m ¼ 0:3. Vertical load is determinis-
tic f v ¼ 1, while horizontal load is probabilistic with standard
normal distribution f h ¼ N 0;0:4ð Þ. Performance function is com-
puted according to the following formula:
10
g xð Þ ¼ jqhj < 3qinit; ð26Þ
where qh describes current horizontal displacement at the force and
qinit is horizontal displacement computed for initial design space (at
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Fig. 14. Dependence of the probability of failure on volume fraction.
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Fig. 15. Deterministic optimal topology in the case of low stress intensity (purely
elastic range).
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Fig. 16. Reliability-based optimal topology in the case of low stress intensity.
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the beginning of topology optimization process). The target value of
the probability of failure is Pt ¼ 0:015. For deterministic load only
the probability of failure Pf ¼ 0:36, while the corresponding
Vrel ¼ 35%. For comparison purpose these values has been obtain
using the reliability based optimization and both deterministic
and probabilistic loads, the obtained in this case probability of fail-
ure and volume are Pf ¼ 0:014 and Vrel ¼ 52%, respectively.
11
5.2.2. High stress intensity - elasto-plastic case.
To demonstrate ability of the proposed methodology in the case

of elasto-plastic range the same example as in the previous subsec-
tion was computed with yield stress r0 ¼ 1. Horizontal probabilis-
tic force with standard normal distribution taken the following
values f h ¼ N 0;0:2ð Þ. Target probability of failure was increase to
value Pt ¼ 0:03.

5.3. Cantilever structure in plane stress

Another example demonstrating the effectiveness of the pre-
sented algorithm is the topological optimization of the elastically
plastic bracket. The task diagram is presented at Fig. 18. The beam
is loaded with two vertical deterministic forces f v ¼ 1 in the mid-
dle of the span and at the free end of cantilever. and finally a hor-
izontal force of random nature was imposed. Force has a Gaussian
distribution N(0, 1.2). The horizontal displacement of the point of
application of random force is the basis for the definition of the
performance function (as in previous examples). The performance
function is given by the formula (27):

g xð Þ ¼ jqhj < 2qinit; ð27Þ
where qinit is vertical displacement of initial design domain, at the
beginning of optimization process, qh is current horizontal displace-
ment at the point of random force application. The safety level was
assumed assuming an acceptable reliability index bT ¼ 3. The same
performance function and safety level was applied for low as well as
high stress intensity case. The deterministic solution is more opti-
mal, but less reliable. Taking into account the reliability constraints
will provide a solution with the desired safety level at the expense
of more weight. This relation is illustrated in Fig. 19.

5.3.1. Low stress intensity - elastic case
In the case of low stress intensity the following material con-

stants are assumed: E ¼ 1 and m ¼ 0:3. Vertical load is determinis-
tic f v ¼ 1, while horizontal load is probabilistic with standard
normal distribution f h ¼ N 0;1:2ð Þ. The resulting topologies are pre-
sented in Fig. 20. For a deterministic elastic solution (fig. 20 a)), the
failure probability was determined as b ¼ 2:52. Therefore, optimal
structure has a greater probability of failure than the assumed
safety level bt ¼ 3. This is the motivation to improve the safety of
the structure and perform optimization with reliability constraints.

5.3.2. High stress intensity - elasto-plastic case
The samematerial data are applied as in the low stress intensity

example. A few words of commentary require a lack of failure
probability value for deterministic topology at high stress intensity
(Fig. 20 c)). It should be remembered that elasto-plastic structures
have some limited load capacity. The equilibrium problem for
loads exceeding the load capacity cannot be solved. This is a natu-
ral limitation that must be taken into account when using plastic
models. If topological optimization for such structures ends with
active constraint of load capacity, it means that perturbation
increasing the load value is not possible because then the load
capacity of the structure is exceeded. Therefore, it is impossible
to determine the probability of failure regardless of the perfor-
mance function because the random variability of the load will
surely exceed the load capacity of the structure. Without the fail-
ure probability determined, the structure may be considered insuf-
ficiently reliable due to any random values. Of course, it is possible
to calibrate numerical examples by slightly offsetting the load from
the capacity value so that the probability of failure can be
computed for all cases. We considered that, it is important to pay
attention to the need to take into account the load capacity of
elastic–plastic structures.



Fig. 17. High stress intensity results.

Fig. 18. Cantilever structure with deterministic f v and probabilistic f h loads.

Fig. 19. Deterministic vs reliability based solution.
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6. Conclusions

In the present paper a novel methodology for reliability-based
topology optimization of elasto-plastic structures has been pro-
posed. The methodology consists of two nested optimization prob-
lems called outer and inner loop. Outer loop is based on a heuristic
12



Fig. 20. Comparison between deterministic and reliability-based solution for cantilever structure.
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algorithm derived on the basis of the fully stress design concept.
This loop allows for reducing volume of the optimized structure.
The inner loop utilizes the well-known FORM method which is
responsible for calculation of the reliability index. To demonstrate
the effectiveness of the proposed methodology three numerical
examples have been used. The first one is a two-bar benchmark
problem for which analytical solution is known, the second one
is an L-shape bracket frequently used for validation of different
methods of stress-constrained topology optimization and finally
the third one is cantilever structure subjected to two forces, one
of which is deterministic and the other probabilistic one. Based
on the calculated examples one can conclude that the results
obtained by proposed methodology are in good agreement with
analytical solution in the case of two bar structure and in the case
of L-shape bracket provide optimal topologies comparable with
those obtain by other methods.
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