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Abstract

Characterization of decision-making in cells in response to received signals is of importance for understanding how cell fate
is determined. The problem becomes multi-faceted and complex when we consider cellular heterogeneity and dynamics of
biochemical processes. In this paper, we present a unified set of decision-theoretic, machine learning and statistical signal
processing methods and metrics to model the precision of signaling decisions, in the presence of uncertainty, using single
cell data. First, we introduce erroneous decisions that may result from signaling processes and identify false alarms and
miss events associated with such decisions. Then, we present an optimal decision strategy which minimizes the total
decision error probability. Additionally, we demonstrate how graphing receiver operating characteristic curves conveniently
reveals the trade-off between false alarm and miss probabilities associated with different cell responses. Furthermore, we
extend the introduced framework to incorporate the dynamics of biochemical processes and reactions in a cell, using
multi-time point measurements and multi-dimensional outcome analysis and decision-making algorithms. The introduced
multivariate signaling outcome modeling framework can be used to analyze several molecular species measured at the
same or different time instants. We also show how the developed binary outcome analysis and decision-making approach
can be extended to more than two possible outcomes. As an example and to show how the introduced methods can be used
in practice, we apply them to single cell data of PTEN, an important intracellular regulatory molecule in a p53 system, in
wild-type and abnormal cells. The unified signaling outcome modeling framework presented here can be applied to various
organisms ranging from viruses, bacteria, yeast and lower metazoans to more complex organisms such as mammalian cells.
Ultimately, this signaling outcome modeling approach can be utilized to better understand the transition from physiological
to pathological conditions such as inflammation, various cancers and autoimmune diseases.
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INSIGHT BOX

Cells are supposed to make correct decisions, i.e. respond properly to various signals and initiate certain cellular
functions, based on the signals they receive from the surrounding environment. Due to signal transduction noise,
signaling malfunctions or other factors, cells may respond differently to the same input signals, which may result
in incorrect cell decisions. Modeling and quantification of decision-making processes and signaling outcomes in cells
have emerged as important research areas in recent years. Here we present univariate and multivariate data-driven
statistical models and machine learning methods for analyzing dynamic decision-making processes and signaling
outcomes. Furthermore, we exemplify the methods using single cell data generated by a p53 system, in wild-type and
abnormal cells.

INTRODUCTION

Understanding how cells make decisions in response to input
signals is an important challenge in molecular and cell biology.
Depending on the signals they receive, cells can adopt differ-
ent fates. Emergence of single cell data and methods [1–3] has
made it possible to study and model the behavior of each cell
individually. An important factor that affects cell decisions is
biological noise in various organisms [4], which can cause cells to
exhibit different behaviors, when receiving the same input sig-
nal. For example, under the same stimuli, some cells may decide
to survive, whereas others may undergo apoptosis. Signaling
outcomes can be affected by genetic and epigenetic regulation
and misregulation, leading to errors in signaling outcomes and
ensuing cell decisions.

Given the probabilistic nature of cellular decisions [1, 3], it
is of interest to have a unified set of statistical metrics and
methods to systematically study and characterize the signaling
outcomes that may inform them and determine probabilities
associated with different outcomes. Using statistical signal pro-
cessing and decision theory concepts, recently a framework
was introduced by Habibi et al. [1], to compute optimal deci-
sion thresholds and probabilities for incorrect cell decisions
using single cell data. More specifically, in the transcription
factor nuclear factor κB (NF-κB) pathway regulated by the tumor
necrosis factor (TNF) [3], the optimal decision threshold which
minimized the decision probability to distinguish between two
different TNF levels was computed from data [1]. Probabilities of
incorrect cell decisions were computed from data as well.

One goal of this paper is to show how the statistical decision
theoretic framework [1] can be used to study other molecular
systems and signaling outcomes. The other goal is to extend
the decision modeling framework such that one can model and
analyze multi-dimensional signaling outcome processes using
multi-time point measurements. This allows to incorporate sig-
naling dynamics into decision-making analysis. Application of
receiver operating characteristic (ROC) curve as a graphical tool
to visualize decisions and outcomes under normal and abnormal
conditions is introduced here as well. In this paper, we use the
tumor suppressor p53 system, as an example, to present the
concepts, metrics and algorithms related to decision-making
and outcome analysis.

The tumor suppressor p53 is an important transcription fac-
tor that is responsible for DNA repair, cell cycle suppression,
cell growth control and initiation of apoptosis [5–8]. When a
healthy cell is exposed to ionizing radiation (IR), DNA damage
occurs [9]. Due to the DNA damage, p53 becomes activated [5,
10, 11], and the cell takes one of two possible actions: it can
either survive by repairing the DNA or trigger apoptosis [8, 12,

13]. Our focus here is to demonstrate how such outcomes can
be systematically modeled. We accomplish this by introducing
metrics and methods to evaluate success and failure rates of the
signaling outcomes and actions, in response to the DNA damage
caused by different IR doses and under various conditions. In
order to do this, we collected data using the simulator of Hat
et al. [9], to obtain single cell data of healthy cells, when different
IR doses are applied. Moreover, we collected single cell data of
abnormal cells exposed to different IR doses, to measure how
the decision-making is affected when there is an anomaly in the
system, in addition to the DNA damage.

The rest of the paper is organized as follows. First, we briefly
explain the p53 system and its response to DNA damage. Then
we present decision-making and outcome analysis as a hypothe-
sis testing problem on the IR level, define probabilities associated
with various decisions, introduce the optimal decision-maker
and describe the single cell data used to determine the decision
probabilities in the presence of noise and under normal and
abnormal conditions. Methods for computing optimal decision
thresholds and the associated decision error rates are presented
afterwards, using either single, double or multiple time point
measurements in individual cells. The latter is particularly use-
ful to understand the effect of temporal variations and dynam-
ical changes. Additionally, ROC curves are computed and pre-
sented as useful tools to visualize the trade-off between decision
error rates and how they are affected by decision thresholds
and other factors. A comparison between binary and ternary
decision-making and outcome analysis and their error rates is
provided as well. The paper concludes with a summary of the
highlights of the methods and their biological implications for
understanding signaling outcomes and decisions in the exem-
plary p53 system and extensions to other systems.

SIGNALING OUTCOMES AND DECISIONS
IN THE P53 SYSTEM WHEN DNA DAMAGE
OCCURS: A CASE STUDY
The transcription factor p53 has a significant role in DNA repair,
cell cycle suppression, regulation of cell growth and initiation
of apoptosis [5–8]. It becomes active in response to DNA dam-
age that may occur when the cell is exposed to IR, ultraviolet
radiation, heat shock, etc. [5, 10, 11]. In particular, exposure to IR
results in DNA double-strand breaks (DSBs), which are the most
serious DNA lesion. When DSB is not repaired, it can cause cell
death or DNA mutations which can propagate to new cell gen-
erations [12, 14, 15]. When DNA damage occurs, p53 can assume
two phosphorylation states: p53Arrester and p53Killer. Afterwards,
the p53 system can take two actions: it either suppresses cell
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cycle until DNA is repaired, if the damage is low and repair is
possible, or can trigger apoptosis if the damage is high and repair
is not possible [8, 12, 13]. Herein, we intend to compute decision
thresholds and incorrect decision rates when the DNA damages
caused by various IR doses occur in a cell. With this goal in mind,
we conduct stochastic simulations of cells exposed to different
IR doses [9], to obtain in silico single cell data.

Consider the p53 system model [9] shown in Fig. 1. The p53
system is activated due to a DNA damage induced by IR. Initially
the protein kinase ataxia-telangiectasia mutated (ATM) is acti-
vated by the DNA damage [16, 17]. The active ATM phosphory-
lates Mdm2, which is a p53 inhibitor [18]. The ATM also activates
p53 by phosphorylating it to one of its active phosphoforms,
p53Arrester, which further phosphorylates p53 to the p53Killer form
[19–21]. Moreover, the p53Arrester activates the Mdm2 [22] and
wild-type p53-induced phosphatase 1 (Wip1) [23, 24]. The active
Wip1 inhibits the ATM [25] and dephosphorylates the p53Killer

to the p53Arrester form [26]. The p53Killer regulates another phos-
phatase, phosphatase and tensin homolog (PTEN), which initi-
ates a slow positive feedback loop stabilizing the level of p53
[27]. If DNA damage is large and its repair takes a longer time,
PTEN accumulates to high levels and inhibits AKT, which may no
longer phosphorylate Mdm2. Unphosphorylated Mdm2 remains
in cytoplasm and may not target nuclear p53 for degradation.
Thus, accumulation of PTEN results in disconnection of nega-
tive feedback loop between p53 and Mdm2. The slow positive
feedback loop acts as a clock, giving cells time to repair DNA
and initiating apoptosis if DNA repair takes too long. The apop-
totic module, where transcription of pro-apoptotic proteins is
induced, is controlled by p53Killer and Akt that suppresses the
apoptosis. When Akt is inhibited by increased level of PTEN, it
will no longer suppress the apoptotic module. Thus, the p53Killer

will initiate activation of cysteine-aspartic proteases (caspases),
enzymes having an essential role in cell death (Fig. 1). Since we
are interested in the analysis of the signaling outcomes which
affect whether the cell survives or triggers apoptosis, we do not
consider the cell cycle arrest module (regulated by p53Arrester)
and focus on the apoptotic module. Simulation files can be found
in Hat et al. [9], and more detailed information about the p53
system and each component and interaction there can be found
in Hat et al. [9] and Bogdal et al. [29]. More specifically, interested
readers can refer to the Supporting Information S1 Text of [9],
which includes a summary of mathematical models of the p53
system, a detailed description of the model, a notation guide and
lists of parameters and reactions.

DECISION-MAKING AND OUTCOME
ANALYSIS: HYPOTHESIS TESTING ON INPUT
SIGNALS AND OPTIMAL DECISIONS WITH
MINIMUM ERRORS
When cells are exposed to radiation, each cell may respond
differently due to noise or some other factors. One may decide to
survive, whereas another may trigger apoptosis, both under the
same IR dose. Given the probabilistic nature of such decisions
[1], we can formulate p53-based decision-making as a binary
hypothesis testing problem, where the decision-making system
is going to test which of the following two hypotheses is true
regarding the applied IR dose, to trigger an action accordingly:

H0 : IR dose is low,
H1 : IR dose is high.

(1)

Binary hypothesis testing is observed in other systems, e.g.
the TNF/NF-κB system [1].

Figure 1. A p53 system model [9]. Arrow-headed dashed lines represent positive

transcriptional regulations, arrow-headed solid lines stand for protein trans-

formations, circle-headed solid lines are activatory regulations, and hammer-

headed solid lines represent inhibitory regulations. All the molecules and the

interactions between them are described in the main body of the paper.

In response to an IR dose, two types of incorrect decisions
can be made. One is deciding that the input IR level is high,
whereas in fact it is low (deciding H1 when H0 is true), which
may falsely trigger apoptosis. The other one is deciding that
the input IR level is low, whereas in fact it is high (deciding H0

when H1 is true), which may result in missing apoptosis. These
two erroneous decisions can be called as ‘false alarm’ and ‘miss
event’, respectively, and their probabilities can be defined as:

PFA = P
(
deciding H1|H0

)
,

PM = P
(
deciding H0|H1

)
.

(2)

The overall error probability PE of making decisions is a
combination of PFA and PM:

PE = P (H0) PFA + P (H1) PM, (3)

where P
(
H0

)
and P

(
H1

)
are prior probabilities of H0 and H1,

respectively. Note that as mentioned in the Introduction section,
IR causes DNA damage. Therefore, one can instead formulate the
p53-based decision-making process as a binary hypothesis test-
ing on DNA damage being low or high and define the associated
false alarm and miss event probabilities accordingly.

The optimal decision-making system which minimizes the
above PE is the one that compares probabilities of observed
data under the hypotheses H0 and H1 [30]. More precisely, sup-
pose that x is the observation and p

(
x|H0

)
and p

(
x|H1

)
are the

conditional probability density functions (PDFs) of x under H0

and H1, respectively. Also consider equi-probable hypotheses,
i.e. P

(
H0

) = P
(
H1

) = 0.5, which is a reasonable assumption in
the absence of prior information on the possibilities of H0 and
H1. Then, the optimal system decides H1 if p

(
x|H1

)
> p

(
x|H0

)
;

otherwise, it decides the H0. This means that the hypothesis
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Figure 2. Cell death percentage versus IR dose in both normal and abnormal p53

systems. The dark green curve at the top represents a normal p53 system with no

perturbation, whereas the other two curves correspond to p53 systems behaving

abnormally due to Wip1 or PTEN perturbations.

with the highest likelihood is decided. This decision is called the
maximum likelihood decision [30].

SINGLE CELL DATA OF THE P53 SYSTEM
EXPOSED TO IR

To calculate the error probabilities in Equation (2) , we use PTEN
level as the decision variable because when unrepairable DNA
damage occurs, the activated p53 triggers pro-apoptotic phos-
phatase PTEN [27], and PTEN initiates apoptosis [28]. It has also
been shown by Hat et al. [9] that PTEN is a decent predictor of cell
fate. After specifying the decision variable, we use the stochastic
simulator of Hat et al. [9] to generate 5000 cells for each IR dose.
The stochastic simulation has three phases. The first phase
is the ‘equilibrium phase’ where we simulate 2 weeks of cell
behavior when no IR dose is applied. The second phase is called
‘irradiation phase’ in which 10 minutes of IR dose is applied.
The last phase is called ‘relaxation phase’ in which we simulate
72 hours of cell behavior after it is exposed to 10 minutes of IR.
When IR dose increases, apoptotic cell percentage increases as
well [9] (Fig. 2). For more details on the simulation phases, see
supporting files of Hat et al. [9]. In order to decide whether a cell is
apoptotic or not, we check active caspase level 72 hours after the
irradiation phase and compare it with the threshold of 0.5 × 105

suggested in Hat et al. [9]. Cells with the level of active caspase
higher (or lower) than the threshold of 0.5 × 105 are considered
to be apoptotic (or surviving).

The data of normal cells includes eight sets of PTEN levels in
5000 cells, which correspond to eight doses of IR = 1, 2, 3, 4, 5, 6, 7
and 8 Gy. Here Gy stands for Gray, the unit of radiation dose, and
1 Gy is 1 Joule of energy absorbed by 1 kg of tissue. We focus our
analysis on low IR versus high IR hypothesis testing, to see how
accurately it can be decided whether the applied radiation level
is low or high. We consider IR = 1 Gy as the low dose, whereas
the higher dose can be IR = 2, 3, 4, 5, 6, 7 or 8 Gy. More specifically,
scenarios in which signaling outcomes are analyzed are 1 vs.
2 Gy, 1 vs. 3 Gy, 1 vs. 4 Gy, 1 vs. 5 Gy, 1 vs. 6 Gy, 1 vs. 7 Gy and 1 vs.
8 Gy. We quantitatively study in which of these scenarios more
erroneous decisions are made. We also determine to what extent
decision between responses to low and high IR levels depends on
the input IR separation. We conduct these studies by computing

the optimal decision threshold in each scenario using the PTEN
data, following the maximum likelihood principle that provides
the best decisions, i.e. smallest decision error probabilities. We
also compute numerical values of the decision error probabilities
using the PTEN data.

In addition to the analysis of erroneous decision-making and
incorrect signaling outcomes in normal cells mentioned above,
we analyze them in abnormal cells as well, where there is a
dysfunctional molecule in the p53 system. Wip1 is one of the
key regulatory pro-survival phosphatases [23] in the p53 system
(Fig. 1). If the DNA damage can be repaired, then Wip1 expression
returns the cell to the pre-stress state from cell-cycle arrest
[23, 32]. It has been observed that elevated Wip1 level exists in
multiple human cancer types such as breast, lung, pancreas,
bladder and liver cancer [33–38]. Therefore, to obtain abnormal
cells, we generate cells with increased Wip1 synthesis rate. In
normal cells, Wip1 synthesis rate is about 0.1 [9], and here we
increase it to 0.15, a 50% increase, to reproduce abnormality. This
increase in the Wip1 synthesis rate causes a significant decrease
in the cell death percentage (Fig. 2), which can be considered as
an abnormal cell state. In addition to Wip1, we analyze abnormal
cellular state caused by PTEN abnormalities. It has been observed
that attenuated PTEN levels exist in MCF-7, a noninvasive form
of human breast cancer cells [39]. Therefore, it is of interest to
see how the abnormal PTEN level affects signaling outcomes
in the p53 system. To study this, we generate abnormal cells
by decreasing PTEN synthesis rate. In healthy cells, the PTEN
synthesis rate is about 0.03 [9]. Here we decrease it to 0.015, a 50%
decrease, to reproduce abnormality. We observe a considerable
decrease in the cell death percentage (Fig. 2), representing an
abnormal cellular state.

UNIVARIATE ANALYSIS: METHODS FOR
COMPUTING DECISION THRESHOLDS AND
DECISION ERROR RATES USING ‘SINGLE’ TIME
POINT MEASUREMENTS IN INDIVIDUAL CELLS
In this section, we analyze PTEN levels of 5000 cells measured
in 72 hours after the irradiation phase. It has been observed
that PTEN levels of both apoptotic and surviving cells become
very distinct in 72 hours after 10 minutes of IR application
[9] (decision analysis based on PTEN levels at other time
instants and multiple time instants are presented in other
sections).

Histograms of natural logarithm, ln, of PTEN levels for IR = 1
and 2 Gy data sets and IR = 1 and 8 Gy data sets are shown in
Fig. 3A and C, respectively. As presented in Fig. 3B and D, Gaus-
sian PDFs whose means and variances are estimated from the
data reasonably represent the histograms. This indicates that
the PTEN data can be reasonably approximated by lognormal
PDF. Due to the mathematical convenience of working with
Gaussian PDFs and variables, especially for multivariate analysis
of multiple time point data discussed later, we continue working
with the logarithm of the PTEN data. Let x = ln

(
PTEN

)
be

the Gaussian variable of interest with mean μ and variance σ 2,
i.e., x ∼ N(μ, σ 2) where N stands for the following normal or
Gaussian PDF:

p(x) =
(
2πσ 2

)−1/2
exp

[
−(x − μ)2/

(
2σ 2

)]
.

The Gaussian PDFs shown in Fig. 3 are indeed the condi-
tional PDFs p

(
x|H0

)
and p

(
x|H1

)
under the hypotheses H0 and H1

D
ow

nloaded from
 https://academ

ic.oup.com
/ib/article/12/5/122/5839897 by Instytut Podstaw

ow
ych Problem

ow
 Techniki user on 23 O

ctober 2020



126 Integrative Biology, 2020, Vol. 12, No. 5

Figure 3. Univariate decision-making and signaling outcome analysis in the normal p53 system based on PTEN response distributions. (A) Histograms of PTEN levels

of cells under IR = 1 and 2 Gy doses. (B) Gaussian PDFs for PTEN levels of cells under IR = 1 and 2 Gy doses, together with the optimal maximum likelihood decision

threshold which minimizes the total decision error probability. (C) Histograms of PTEN levels of cells under IR = 1 and 8 Gy doses. (D) Gaussian PDFs for PTEN levels of

cells under IR = 1 and 8 Gy doses, together with the optimal maximum likelihood decision threshold which minimizes the total decision error probability.

defined earlier in Equation (1). For example, in Fig. 3B, H0 and H1

correspond to IR = 1 and 2 Gy doses, respectively, and the red
and black curves in there are the conditional PDFs p

(
x|H0

)
and

p
(
x|H1

)
, respectively.

The optimal maximum likelihood
decision-making system

Recall our two hypotheses previously defined in (1). The optimal
decision-maker, which minimizes the overall error probabil-
ity PE in (3), compares the conditional likelihood ratio L(x) =
p
(
x|H1

)
/p

(
x|H0

)
with the ratio γ = P

(
H0

)
/P

(
H1

)
[1]. The system

decides H1 if L(x) > γ . If the hypotheses are equi-probable, i.e.
P
(
H0

) = P
(
H1

) = 0.5, then the optimal system decides H1 if
p
(
x|H1

)
> p

(
x|H0

)
.

The optimal decision threshold

To find the optimal decision threshold, we need to solve the
equation L(x) = γ , i.e. P

(
H1

)
p
(
x|H1

) = P
(
H0

)
p
(
x|H0

)
, for x. When

H0 and H1 are equi-probable, the threshold equation to be solved
simplifies to L(x) = 1, i.e. p

(
x|H1

) = p
(
x|H0

)
.

The decision error probabilities

Once the optimal decision threshold is determined, it can be
used to compute false alarm and miss decision error proba-
bilities, by integrating the conditional PDFs of data over error
regions. More specifically, using the conditional PDFs p

(
x|H0

)
and

p
(
x|H1

)
representing the response probabilities of the ln of PTEN

levels under the two hypotheses, Equation (2) can be written
as [1]:

PFA =
∫

x∈false alarm region

p (x|H0) dx, (4)

PM =
∫

x∈miss region

p (x|H1) dx. (5)

The false alarm region in (4) is defined by
{
x : p

(
x|H1

)
>

p
(
x|H0

)}
when H0 is true, whereas the miss region in (5) is defined

by
{
x : p

(
x|H0

)
> p

(
x|H1

)}
when H1 is true. By substituting PFA

and PM in Equation (3), the overall error probability PE can be
obtained.
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The Gaussian data model to compute the optimal
decision threshold

Here we focus on Fig. 3B as an example, where two Gaussian
PDFs are shown for x = ln

(
PTEN

)
, the natural logarithm of

PTEN levels in the two data sets of IR = 1 and 2 Gy, with each
data set consisting of 5000 cells. Let N(μ0, σ 2

0 ) and N(μ1, σ 2
1 )

represent the Gaussian PDFs that correspond to the IR = 1
and 2 Gy data sets, respectively, where

(
μ0, σ 2

0

)
and

(
μ1, σ 2

1

)
are

mean/variance pairs estimated from their associated data sets.
The optimal maximum likelihood decision threshold in Fig. 3B
is at the intersection of the two PDFs and can be computed by
solving the equation p

(
x|H0

) = p
(
x|H1

)
written below:

(
2πσ 2

0

)−1/2
exp

[
−(x − μ0)2/

(
2σ 2

0

)]
=

(
2πσ 2

1

)−1/2

exp
[
−(x − μ1)2/

(
2σ 2

1

)]
. (6)

By multiplying both sides by
(
2πσ 2

0

)1/2
exp [

(
x − μ1

)2
/
(
2σ 2

1

)
] and

then taking natural logarithm of both sides, (6) can be written in
the following quadratic equation form [1]:

(
σ 2

0 − σ 2
1

)
x2 + 2

(
σ 2

1 μ0 − σ 2
0 μ1

)
x + σ 2

0 μ2
1 − σ 2

1 μ2
0 − 2σ 2

0 σ 2
1

ln (σ0/σ1) = 0. (7)

Equation (7) is derived assuming our hypotheses are equi-
probable, i.e. P

(
H0

) = P
(
H1

) = 0.5, as mentioned before. The
solution of Equation (7) gives the optimal decision threshold
PTENth, located at the intersection of the two PDFs for IR = 1
and 2 Gy doses in Fig. 3B (the italic style is adopted to clarify
that the threshold is related to the logarithm of PTEN data).
Interestingly, for equal variances, the solution of Equation (7)
for the optimal decision threshold simplifies to the average of
the means, i.e.

(
μ0 + μ1

)
/2, which intuitively makes sense. For

other prior probabilities and PDF models, the optimal threshold
can be obtained similarly, by solving the equation P

(
H0

)
p
(
x|H0

) =
P
(
H1

)
p
(
x|H1

)
for x.

The Gaussian data model to compute the decision
error probabilities

Using the PTENth obtained by solving Equation (7) and using the
Gaussian PDFs, Equations (4) and (5) for the false alarm and miss
error probabilities can be written as:

PFA =
∞∫

PTENth

p (x|H0) dx = Q
(

PTENth − μ0

σ0

)
, (8)

PM =
PTENth∫

−∞
p (x|H1) dx = Q

(
μ1 − PTENth

σ1

)
, (9)

where Q
(
η
)

is tail probability of the standard Gaussian PDF :

Q (η) = (2π)−1/2

∞∫
η

exp
(
−u2/2

)
du.

Equation (8) represents area of the pink region in Fig. 3B under
the tail of the IR = 1 Gy PDF, beyond the PTENth threshold. In
this region of x > PTENth, we have p

(
x|H1

)
> p

(
x|H0

)
, while

H0 is true. This is the ‘false alarm’ region for which we have

computed PFA = 0.57 in Fig. 3B. On the other hand, Equation
(9) represents the area of the gray region in Fig. 3B under the
tail of the IR = 2 Gy PDF, below the PTENth threshold. In this
region of x < PTENth, we have p

(
x|H0

)
> p

(
x|H1

)
, while H1

is true. This is the ‘miss’ region for which we have computed
PM = 0.28 in Fig. 3B. After computing PFA and PM, we can now
compute the overall error probability PE using Equation (3), which
results in PE = (

PFA + PM
)
/2 = 0.43. Similarly, by computing

Equations (8) and (9) for the 1 vs. 8 Gy scenario, we obtain
PE = 0.001 (Fig. 3D). Based on the results of 1 vs. 2 Gy and 1 vs. 8 Gy
decision scenarios, it can be concluded that when the difference
between the two applied IR doses increases, the overall decision
error probability PE decreases. This is mainly because the two
response PDFs become more distinct with less overlap, as the
difference between the two applied IR doses increases.

For some cases such as 1 vs. 3, 4, 5 and 6 Gy IR doses, some
data sets need to be modeled by a mixture of Gaussian PDFs
due to the bistable behavior of p53 system and hence cells’
bimodal histograms. Still the same underlying theory and pro-
posed framework hold. Nevertheless, in what follows we explain
how to determine the optimal decision thresholds and how to
compute the decision error probabilities when using a mixture
model, for the 1 vs. 4 Gy scenario.

Histograms of natural logarithm of PTEN levels for IR = 1 and
4 Gy data sets are shown in Fig. 4A. We notice that while 1 Gy data
histogram is unimodal, histogram of 4 Gy data is bimodal. There-
fore, for the 1 Gy data, we use a single Gaussian PDF as before,
whereas for the 4 Gy data, we utilize a mixture of two Gaussian
PDFs. More specifically, we considerN(μ0, σ 2

0) for H0 to represent
the single Gaussian PDF that corresponds to the IR = 1 Gy data,
whereas we use ξ N(μ11, σ 2

11) + (1 − ξ)N(μ12, σ 2
12) for H1, with

0 ≤ ξ ≤ 1 being the mixing parameter, to represent the mixture
of two Gaussian PDFs which correspond to the IR = 4 Gy data
set. The mean and variance

(
μ0, σ 2

0

)
are estimated from the

1 Gy data, and the associated single Gaussian PDF is shown
in Fig. 4B. Furthermore, the means and variances

(
μ11, σ 2

11

)
and(

μ12, σ 2
12

)
and the mixing parameter ξ are estimated from the 4 Gy

data using the MATLAB command ‘fitgmdist’ which implements
the iterative expectation–maximization algorithm. The resulting
mixture of two Gaussian PDFs is shown in Fig. 4B.

Similar to the previous scenarios, the optimal maximum
likelihood decision thresholds shown in Fig. 4B for equi-probable
hypotheses are at the intersections of the conditional PDFs
p
(
x|H0

)
and p

(
x|H1

)
, the latter being a Gaussian mixture for the

4 Gy data. Note that here solving the equation p
(
x|H0

) = p
(
x|H1

)
results in four solutions for x; that is why there are four decision
thresholds, PTENthi, i = 1, 2, 3, 4 in Fig. 4B (note that each decision
threshold PTENthi is listed as ‘Decision Threshold i’ in Fig. 4).

To compute the decision error probabilities, the false alarm
and miss probabilities PFA and PM need to be calculated using
Equations (4) and (5), respectively. Since there are four decision
thresholds in this case, integration has to be performed over
multiple regions, which results in lengthy expressions. However,
note that as can be seen in Fig. 4B and its zoomed-in view in
Fig. 4C, PDFs for low dose (red) and the lower Gaussian mode for
the high dose (black) assume very small values as they reach the
third threshold. Therefore, their contributions to possible error
events around the third and fourth thresholds are negligible
(later this is shown numerically). Similarly, given the very small
variance of the higher Gaussian mode of the PDF for the high
dose, this PDF is substantially different from zero only between
the third and fourth thresholds. Consequently, the contribution
of the PDF of this mode to possible errors around the third and
fourth thresholds is negligible as well. Overall, as just explained,
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Figure 4. Univariate decision making and signaling outcome analysis in the normal p53 system when a PTEN response distribution is bimodal. (A) Histograms of PTEN

levels of cells under IR = 1 and 4 Gy doses. (B) A Gaussian PDF for PTEN levels of cells under IR = 1 Gy and a mixture of two Gaussian PDFs for PTEN levels of cells under

IR = 4 Gy doses, together with the optimal maximum likelihood decision thresholds which minimize the total decision error probability. (C) Zoomed-in view of panel B.

optimal decision when PTENth3 < x < PTENth4 is H1 with no deci-
sion error, whereas for x < PTENth1, PTENth1 < x < PTENth2 and
PTENth2 < x < PTENth3, optimal decisions are H0, H1 and H0,
respectively, with the following decision error probabilities:

PFA = Q
(

PTENth1−μ0
σ0

)
− Q

(
PTENth2−μ0

σ0

)
,

PM = ξ
[
Q

(
μ11−PTENth1

σ11

)
+ Q

(
PTENth2−μ11

σ11

)]
.

The PFA expression corresponds to the pink region in Fig. 4C,
whereas the two Q functions in the PM expression correspond
to the two gray regions in Fig. 4C, respectively. Using the data,
computed numerical values are ξ = 0.51, PFA = 0.28−0.06 ≈ 0.22,
PM = 0.51 [0.41 + 0.07] ≈ 0.25 and PE ≈ 0.24, the last one being
calculated using Equation (3).

As an example of a negligible decision error probability
around the third and fourth thresholds mentioned earlier,
consider the area under the red Gaussian PDF p

(
x|H0

)
in Fig. 4C

for PTENth3 < x < PTENth4. While not visible due to being very
small, it can be understood that the aforementioned area is a
false alarm probability of deciding H1, although H0 is true. The
numerical value of this false alarm probability is: Q

((
PTENth3 −

μ0
)
/σ0

)−Q
((

PTENth4 −μ0
)
/σ0

) = 1.2×10−5 −2.8×10−6 ≈ 0, which

is negligible compared to PFA ≈ 0.22 calculated in the previous
paragraph.

Abnormal p53 systems

To see how an abnormality in the p53 system affects the
decision-making and signaling outcomes, we calculate PE

values when Wip1 synthesis rate is elevated by 50% from
0.1 to 0.15 (Fig. 5), as mentioned previously. As suggested by
Habibi et al. [1], decision thresholds are modeled to be those
of the normal cells. This implies that abnormal cells are not
aware of the abnormality and therefore erroneously use the
previous threshold. As we see later, this increases decision error
probabilities, a behavior that can be anticipated from abnormal
cells. Using Equations (3), (8) and (9), PFA, PM and PE are computed:
PE = 0.44 is obtained for 1 vs. 2 Gy scenario (Fig. 5A), and
PE = 0.16 is obtained for 1 vs. 8 Gy scenario (Fig. 5B). Compared
to the normal system results, the overall error probability is
significantly higher for the abnormal system under the 1 vs. 8 Gy
scenario (we observe that PE = 0.001 of normal cells markedly
increases to PE = 0.16 in abnormal cells). The reason is that
when the Wip1 synthesis rate is increased, the two response
PDF curves significantly overlap (notice the overlap between the
left-side component of the IR = 8 Gy PDF with the IR = 1 Gy
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Figure 5. Univariate decision-making and signaling outcome analysis in an

abnormal p53 system, with increased Wip1 synthesis rate, based on PTEN

response distributions. (A) Gaussian PDFs for PTEN levels of abnormal cells under

IR = 1 and 2 Gy doses, together with the decision threshold of normal cells. This

implies that in abnormal cells the previous decision threshold is erroneously

used [1]. As discussed later, this increases decision error probabilities, a behavior

that can be anticipated from abnormal cells. (B) A Gaussian PDF for PTEN levels

of abnormal cells under IR = 1 Gy dose and a mixture of two Gaussian PDFs for

PTEN levels of abnormal cells under IR = 8 Gy dose, together with the decision

threshold of normal cells.

PDF in Fig. 5B). This is while in normal cells they had almost no
overlap (Fig. 3D).

Similarly, we compute error probabilities for the other abnor-
mal p53 system we mentioned previously, generated by the PTEN
synthesis rate reduced from 0.03 to 0.015 (50% reduction). Error
probabilities for this abnormality for all different radiation expo-
sure scenarios of 1 vs. 2 Gy up to 1 vs. 8 Gy are shown in Fig. 6. For
comparison, error probabilities for the Wip1-perturbed abnormal
p53 system and also the normal p53 system are provided in
Fig. 6 as well. We observe that as the difference between the two
applied IR doses increases, decision error probability in normal
cells drops significantly. This is while, in abnormal cells, decision
error probabilities remain high. These signaling outcomes might
be correlated with the observation that cell death percentages

Figure 6. Decision error probabilities for several low IR versus high IR sce-

narios. The ‘Abnormal System—PTEN’ legend refers to a p53 system whose

PTEN synthesis rate is decreased by 50%, compared to its nominal value. The

‘Abnormal System—Wip1’ legend refers to a p53 system whose Wip1 synthesis

rate is increased by 50%, compared to its nominal value. Smaller decision error

probabilities in the normal system are noteworthy.

in abnormal systems are considerably lower than the normal
system, even when the radiation dose increases (Fig. 2). This
could indicate that abnormal cells do not respond to IR levels
properly and, hence, decisions and signaling outcomes affecting
apoptosis and survival become more erroneous. Care should
be taken that these specific observations are based on the low
versus high IR, e.g. d0 vs. d1 IR hypothesis testing formulation,
where the low IR dose is fixed to 1 Gy (d0 = 1 Gy) and the high
IR dose is ranging from 2 up to 8 Gy (d1 = 2, 3, . . . , 8 Gy) in
the p53 system, that is considered in this paper as an example.
These observations may not be generalized to other selections
of the low d0 and high d1 IR doses or other hypothesis testing
formulations, case studies or signaling networks. However, the
proposed framework and its analytical tools, whose introduction
has been the main goal of this paper, can be similarly used.

DECISION AND SIGNALING OUTCOME
ANALYSIS USING ROC CURVES

In this subsection, we show how to analyze performance of a
decision-maker using ROC curves. The ROC curve is developed
to visualize the performance of decision-making systems [30, 40]
and is a graph of probability of detection, PD = 1−PM, versus the
probability of false alarm, PFA. In Fig. 7 we present ROC curves
for both the normal p53 system (Fig. 7A) and the abnormal p53
system (Fig. 7B) whose Wip1 synthesis rate is elevated, for these
two low versus high IR decision-making scenarios: 1 vs. 2 Gy and
1 vs. 8 Gy. The theoretical ROC curves in Fig. 7 are graphed using
the false alarm and miss decision error probability formulas in
Equations (8) and (9), respectively, with μs, σs and the thresholds
estimated from the data. The empirical ROC curves in Fig. 7 are
graphed by using the data sets directly, using the MATLAB com-
mand ‘perfcurve’. We observe that the theoretical and empirical
ROCs are nearly the same. Therefore, in what follows, we focus
on the theoretical ROC curves, to explain concepts and results.

A ROC curve is above a 45◦ diagonal line [30], the gray dashed
line in Fig. 7. In our study it represents the worst possible
decision-maker, i.e. a decision-making system that does not

D
ow

nloaded from
 https://academ

ic.oup.com
/ib/article/12/5/122/5839897 by Instytut Podstaw

ow
ych Problem

ow
 Techniki user on 23 O

ctober 2020



130 Integrative Biology, 2020, Vol. 12, No. 5

Figure 7. Empirical and theoretical ROC curves for both normal and abnormal p53 systems. The theoretical ROC curves labeled by � are obtained from the Gaussian and

mixture of Gaussian data models and formulas whose parameters are estimated from the data, whereas the empirical ROC curves labeled by ♦ are obtained directly

from the data. We observe that the theoretical and empirical ROCs are nearly the same. Note that Threshold = ln(PTEN Level) in the figures. (A) ROC curves of 1 vs. 2 Gy

and 1 vs. 8 Gy radiation scenarios for the normal system. (B) ROC curves of 1 vs. 2 Gy and 1 vs. 8 Gy radiation scenarios for the Wip1-perturbed abnormal system.

use the data and instead randomly decides if the applied IR
dose is low or high, by just flipping a coin. The 45◦ line is
indeed a reference to judge the performance of a decision-
making system. A ROC curve far away from the 45◦ reference
line indicates a good decision-maker. Each point on a ROC
curve represents a

(
PFA, PD

)
pair that corresponds to a certain

decision threshold. Other properties of ROC curves can be
found in Van Trees et al. [40]. The ‘×’ marks in Fig. 7A show the
optimal

(
PFA, PD

)
points that correspond to the optimal decision

thresholds shown in Fig. 3B and D, previously computed using
Equation (7) for the 1 vs. 2 Gy and 1 vs. 8 Gy scenarios,
respectively.

Based on the normal p53 system ROC curves in Fig. 7A, we
observe that decisions are made better under the 1 vs. 8 Gy
scenario, because of its ROC curve being very far from the 45◦
reference line, compared to the 1 vs. 2 Gy case whose ROC curve
is much closer to the 45◦ reference line. This finding supports
our results presented in Fig. 6, showing the smaller decision error
probability of 0.001 for 1 vs. 8 Gy, compared to the larger decision
error probability of 0.43 for 1 vs. 2 Gy. ROC curves also show
that abnormalities in the p53 system can cause decision preci-
sion loss. Comparing the normal (Fig. 7A) and abnormal system
ROC curves (Fig. 7B), we observe that the abnormal system ROC
curves are closer to the 45◦ reference line, meaning that more
erroneous decisions are made, when there is an abnormality in
the system.

BIVARIATE ANALYSIS: METHODS FOR
COMPUTING DECISION THRESHOLDS AND
DECISION ERROR RATES USING ‘TWO’ TIME
POINT MEASUREMENTS IN INDIVIDUAL CELLS
In this section, we analyze PTEN levels of 5000 cells measured
in 1 hour and 30 hours after the irradiation phase. Using two
variables instead of one allows to study the effect of temporal
dynamical changes on decision-making and signaling outcomes
and paves the way for analyzing decisions based on multiple
time point data. Suppose x and y represent the ln(PTEN) levels in
1 hour and 30 hours, respectively, after radiation. Joint Gaussian

PDF for x and y can be written as [41]:

p
(
x, y

) = 1

2πσ xσy

√
1 − ρ2

exp

(
− 1

2
(
1 − ρ2

) (10)

[
(x − μx)

2

σ 2
x

− 2ρ (x − μx)
(
y − μy

)
σxσy

+
(
y − μy

)2

σ 2
y

])
,

where
(
μx, σ 2

x
)

and
(
μy, σ 2

y
)

are means and variances of x
and y and ρ is the correlation coefficient between x and y.
Bivariate conditional likelihood ratio is given by L

(
x, y

) =
p
(
x, y|H1

)
/p

(
x, y|H0

)
, and the optimal decision-maker which

minimizes the overall error probability PE compares L
(
x, y

)
with

the ratio γ = P
(
H0

)
/P

(
H1

)
. The system decides the H1 if L

(
x, y

)
>

γ . If the hypotheses are equi-probable, i.e. P
(
H0

) = P
(
H1

) = 0.5,
then the optimal system decides the H1 if p

(
x, y|H1

)
> p

(
x, y|H0

)
.

To find the optimal decision threshold curve, we need to solve
the equation L

(
x, y

) = γ , i.e. P
(
H1

)
p
(
x, y|H1

) = P
(
H0

)
p
(
x, y|H0

)
,

for x and y. When H0 and H1 are equi-probable, the threshold
equation to be solved simplifies to L

(
x, y

) = 1, i.e. p
(
x, y|H1

) =
p
(
x, y|H0

)
. To find false alarm and miss probabilities, Equations

(4) and (5) can be extended to two variables as follows:

PFA =
�

(x,y)∈false alarm region

p
(
x, y|H0

)
dxdy, (11)

PM =
�

(x,y)∈miss region

p
(
x, y|H1

)
dxdy, (12)

where
{
x, y : p

(
x, y|H1

)
> p

(
x, y|H0

)}
defines the false alarm

region when H0 is true and
{
x, y : p

(
x, y|H0

)
> p

(
x, y|H1

)}
specifies

the miss region when H1 is true. After computing PFA and PM,
the overall decision error probability PE can be calculated using
Equation (3).

As an example, here we focus on Fig. 8A, where two bivariate
Gaussian PDFs are shown for x = ln

(
PTEN at the 1st hour

)
and

y = ln
(
PTEN at the 30th hour

)
, logarithms of PTEN levels in the

two data sets of IR = 1 and 2 Gy, with each data set consisting of
5000 cells. The mean and variance parameters of each bivariate
response PDF are estimated from the associated data set. The
overlap between the two bivariate PDFs in response to IR = 1 and
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2 Gy can be better seen in the top view shown in Fig. 8B. This
figure also demonstrates that the decision threshold between
the two PDFs is going to be a curve in the x–y plane, where the two
PDFs intersect. The equation for this optimal threshold curve
which minimizes the total decision error probability is given
by L

(
x, y

) = 1, where L is the bivariate conditional likelihood
ratio defined previously. This decision threshold curve curveth

is shown together with contour plots of the two bivariate PDFs
in Fig. 8C. To compute the decision error probabilities using the
decision threshold curveth, Equations (11) and (12) for the false
alarm and miss error probabilities can be written as:

PFA =
∞∫

x=−∞

∞∫
y=curveth

p
(
x, y|H0

)
dydx, (13)

PM =
∞∫

x=−∞

curveth∫
y=−∞

p
(
x, y|H1

)
dydx. (14)

After computing the integrals in Equations (13) and (14)
numerically, we obtain PFA = 0.24 and PM = 0.26. Upon their
substitution in Equation (3) and with equi-probable hypotheses,
we obtain PE = 0.25.

To compare the above two time point decision with individual
one time point decisions, we compute decision error proba-
bilities based on the first hour data and the 30th hour data,
individually, for the IR = 1 vs. 2 Gy scenario. We obtain PE =
0.5 and PE = 0.27 for individual univariate decisions in 1 hour
and 30 hours after the radiation, respectively. We observe that
the bivariate decision offers significant improvement over the 1
hour decision and slight improvement over the 30 hour decision.
Univariate decision error probabilities at different time points
are discussed in the next section, as well as how multivariate
decision error probability changes, as the data of more time
points are added to the decision process in a sequential manner.

MULTIVARIATE ANALYSIS: METHODS FOR
COMPUTING DECISION THRESHOLDS AND
DECISION ERROR RATES USING ‘MULTIPLE’
TIME POINT MEASUREMENTS IN
INDIVIDUAL CELLS
In this section, we further study the effect of system dynam-
ics on decision-making and signaling outcomes, by considering
multiple time point data. More specifically, we consider PTEN
levels of 5000 cells measured in 1, 10, 20, 30, 40, 50, 60 and
70 hours after the irradiation phase. Let ω be an N × 1 column
vector that represents the ln(PTEN) levels at a subset or all of
the aforementioned time instants. Joint Gaussian PDF for all the
decision variables in ω can be written as [31, 40]:

p (ω) = 1

(2π)N/2|�|1/2
exp

[
− 1

2
(ω − μ)T�−1 (ω − μ)

]
, (15)

where μ is the N × 1 mean vector, � is the N × N covariance
matrix,

∣∣�∣∣ and �−1 denote the determinant and inverse of �,
respectively, and T represents matrix transpose. This multivari-
ate Gaussian or normal PDF for the decision vector ω can be
symbolically shown by ω ∼ N(μ, 	). For N = 2, Equation (15)

simplifies to the bivariate PDF in Equation (10), such that

ω =
[

x
y

]
, μ =

[
μx

μy

]
, � =

[
σ 2

x ρσ xσy

ρσ xσy σ 2
y

]
.

Computation of the decision error probabilities using multi-
ple decision variables can be accomplished using discriminant
functions [31, 40]:

gi (ω) = ln p (ω|Hi) + ln P (Hi) , i = 0, 1, (16)

where p (ω|Hi) ∼ N(μi, 	i) and i is index of the discriminant
function associated with the hypothesis Hi. In our case we
have i = 0, 1, referring to our two hypotheses in Equation (1).
For any hypothesis Hi, substitution of (15) in (16) simplifies its
discriminant function to

gi (ω) = − 1
2

(ω − μi)
T�−1

i (ω − μi) − N
2

ln (2π) − 1
2

ln |�i| + ln P (Hi) , i = 0, 1. (17)

Using the discriminant functions in (17) and for a given ω, the
optimal decision-making system decides the H0 if g0

(
ω

)
> g1

(
ω

)
,

and decides the H1 if g1
(
ω

)
> g0

(
ω

)
. The false alarm probability

PFA is the probability of deciding H1, i.e. g1
(
ω

)
> g0

(
ω

)
, whereas

in fact H0 is true. On the other hand, the miss probability PM is
the probability of deciding the H0, i.e. g0

(
ω

)
> g1

(
ω

)
, although

indeed H1 is true. Computing PFA and PM using multivariate PDFs
directly entail multivariate integrations over regions defined by
decision surfaces. Given the complexities of such computations,
as a simpler alternative, we calculate PFA and PM using the data
directly, by counting the number of times that false alarm and
miss event occur, respectively, after comparing the discriminant
function values g1

(
ω

)
and g0

(
ω

)
for each ω, and then divide them

by the total number of data points. The overall decision error
probability PE can be calculated using Equation (3). Another
method for computing PFA and PM relies on characteristic func-
tions [42].

Single-variable decision-making and signaling outcome
analysis as time evolves

To understand how decision-making and signaling outcomes
may change over time, first we look at the decision error proba-
bility PE using PTEN levels measured at individual consecutive
time instants (Fig. 9A), for the 1 vs. 2 Gy scenario. A notewor-
thy observation is that the decision error exhibits a minimum
value. The minimum occurs in 20 hours after the radiation.
This can be visually explained by the amount of overlap of
PTEN histograms at each individual time point. For instance,
we provide histograms of PTEN levels at the 20th and the 70th
hours in Fig. 10, for IR = 1 and 2 Gy doses. We observe that
the 20th hour histograms have less overlap than the 70th hour
histograms, shown in Fig. 10A and B, respectively, which results
in the smaller PE at the 20th hour in Fig. 9A.

Multivariable decision-making and signaling outcome
analysis as time evolves

Now we focus on studying how decision-making works, if data of
N time instants are utilized, such that N = 1, 2, . . . , 8 (Fig. 9B). In
the figure, N = 1 means the PTEN data of the first hour, N = 2
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Figure 8. Bivariate decision-making and signaling outcome analysis in the normal p53 system based on PTEN response distributions. (A) Bivariate Gaussian PDFs for

PTEN levels of cells at the first hour and the 30th hour, under IR = 1 and 2 Gy doses. (B) Top view of the two bivariate Gaussian PDFs. (C) Top contour view of the two

bivariate Gaussian PDFs, together with the optimal maximum likelihood decision threshold curve which minimizes the total decision error probability.

refers to the PTEN data of the first and the 10th hours, and
N = 3 indicates the PTEN data of the first, the 10th, the 20th
hours, etc. This assumes at any given time, decision is made
based on the data of that given time, plus the data of the pre-
vious time instants, which means progressively accumulating
the data to make decisions. It is observed in Fig. 9B that PE first
decreases, and after a certain point, it remains nearly constant.
To understand this behavior, we note that if the data collected at
various time instants are independent, then error probability of
a decision-making system that performs sequential hypothesis
testing decreases, as the number of observations N increases
[42]. This property of a multivariate sequential decision-maker
is intuitively appealing. However, if the data collected at various
time instants are correlated, the performance of the multivariate
sequential decision-maker can significantly degrade, and its
error probability does not necessarily decrease, as N increases
[42].

To examine possible temporal correlations among the data
that the suggested sequential decision strategy employs, we
compute condition numbers of �0 and �1, the N × N covariance
matrices of the data for the two hypotheses H0 and H1, for IR = 1
and 2 Gy, respectively, as N increases from 2 to 8 (Fig. 9C). The
condition number of a matrix is the ratio of its largest singular
value to its smallest. A large condition number indicates that
the matrix is nearly singular. On the other hand, a near singu-
lar covariance matrix of several random variables means that
some of the random variables are highly correlated. Therefore,
a large condition number for a covariance matrix implies large
correlations among some of its random variables. We observe
in Fig. 9C that as N increases, condition numbers of both of the
covariance matrices �0 and �1 increase. This means as time
evolves after a certain point, the suggested sequential decision-
maker incorporates a new observation that is correlated with
the previously used observations. The correlation does not allow
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Figure 9. Decision error probabilities versus time in the normal p53 system: a single versus multiple time point study. (A) PE as a function of time for the 1 vs. 2 Gy

radiation scenario, computed using only the PTEN data of a single, N = 1, individual time instant. This assumes at any given time, decision is made based on the data

of that time only. Having a minimum error probability at the 20th hour is noteworthy. (B) PE as a function of time for the 1 vs. 2 Gy radiation scenario, computed using

the PTEN data of N time instants, N = 1, 2, . . . , 8 (N = 1 means the PTEN data of the first hour, N = 2 refers to the PTEN data of the first and the 10th hours, N = 3

indicates the PTEN data of the first, 10th, 20th hours, etc.). This assumes, at any given time, decision is made based on the data of that time, plus the data of the previous

time instants, which means accumulating the data to make a decision. It is observed that PE first decreases, and after a certain point, it remains nearly constant. (C)
Condition numbers of �0 and �1, the N × N covariance matrices of the data for the two hypotheses H0 and H1, for IR = 1 and 2 Gy, respectively, as N increases from 2 to

8. When N increases, condition numbers of both of the covariance matrices �0 and �1 increase. On the other hand, a large condition number for a covariance matrix

implies large correlations among some of its random variables. Therefore, as time evolves after a certain point, the suggested sequential decision-maker incorporates a

new observation that is correlated with the previously used observations. The correlation does not allow the decision error probability PE to decrease beyond a certain

point, although N constantly increases.

the decision error probability to decrease beyond a certain point,
although N constantly increases (Fig. 9B).

Multivariable analysis of two or more molecules:
methods for computing decision thresholds and
decision error rates using their concentration
measurements in individual cells

So far we have focused on multivariable decision-making and
signaling outcome analysis for one molecule at different time
instants. However, the introduced methods and algorithms are
not limited to the outcome analyses for just one molecule, and
they can be applied to various other scenarios and studies. In
fact, they can be used to analyze and compute decision error
rates based on concentration levels of two or more molecules,

measured simultaneously or even at different time instants.
For example, if decision and outcome analysis are going to be
conducted based on simultaneous concentration level measure-
ments of two molecules labeled by x and y, then Equations
(10–14) can be used to find the maximum likelihood bivariate
decision strategy and its minimum error probability. As a more
elaborate example, suppose concentration levels of molecule A
measured at time instants t1 and t2 are labeled as variables x
and y, respectively, concentration levels of molecule B measured
at t1 and t2 are labeled as variables v and w, respectively, and
finally concentration levels of molecule C measured at t1 and t2

are labeled as variables ψ and ζ , respectively. The 6 × 1 decision
vector ω including all these six decision variables can be defined
as ω = [x y v w ψ ζ ]T, where T stands for transpose. Now
Equations (15–17) can be used to find the maximum likelihood
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Figure 10. Comparison of the histograms of cell PTEN levels at the 20th and 70th

hours under IR = 1 and 2 Gy doses in the normal p53 system. (A) Histograms of

the 20th hour PTEN data under IR = 1 and 2 Gy doses, which show less overlap.

(B) Histograms of the 70th hour PTEN data under IR = 1 and 2 Gy doses, which

show more overlap.

six-variate decision strategy and its minimum decision error
probability.

Effect of heterogeneity of initial values and reaction
rates on cell response histograms

In addition to stochasticity in dynamic processes, it is natural
to consider that the initial level of each protein is not the
same in a cell population (heterogeneity of cells). Additionally,
there are pseudo-first-order dephosphorylation reactions for
which reaction rate coefficients depend on the levels of implicit
phosphatases. Thus, it is also natural to assume that reaction
rate coefficients corresponding to pseudo-first-order dephos-
phorylations may vary from cell to cell. To see the effect of
heterogeneous initial values and parameters on cell response
distributions, we generated new PTEN data for IR = 2 Gy in 5000
cells, assuming that the initial values and parameters of the p53
system are coming from lognormal distributions with means
equal to their default values, and ran simulations for different

Figure 11. Effect of heterogeneity of initial values and pseudo-first-order dephos-

phorylation reaction rates on PTEN histograms. Histograms of PTEN levels of cells

under IR = 2 Gy dose, with σ = 0, 0.2, 0.5 and 1.

standard deviations, i.e. σ = 0.2, 0.5 and 1 [43]. Cell response
histograms of the new data for different σ values are shown
in Fig. 11 and compared against the 2 Gy data of homogenous
cells (σ = 0). In this system and example, we observe that PTEN
histograms undergo some change as σ increases, i.e. more cell
heterogeneity, which may result in some changes in decision
error probabilities. Nevertheless, one can still use the exact same
methods and algorithms introduced in the paper, to conduct
signaling outcome analyses of interest for inhomogeneous cells.

BEYOND BINARY DECISIONS: TERNARY
DECISIONS AND SIGNALING OUTCOMES AND
TERNARY ERROR PROBABILITIES
While the focus of this paper is on binary hypothesis testing,
it is possible to develop a multiple hypothesis testing model
for outcome analysis, where there exist more than two pos-
sible outcomes. This entails more erroneous decisions than
false alarm and miss events. Optimal decision thresholds and
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Figure 12. Response PDFs of a hypothetical molecule called MOL whose level entails a ternary decision-making process with three signaling outcomes. Shaded tail

areas with the same color represent decision error regions associated with each specific hypothesis. Assuming equi-probable hypotheses, optimal maximum likelihood

decision thresholds which minimize the total decision error probability are shown by vertical blue lines at the points of intersection of the probability density functions.

error probabilities for all the incorrect decisions can be simi-
larly computed. For example, assume there are three different
signaling outcomes depending on concentration level of a hypo-
thetical molecule called MOL, whose level can fall within one
of three regions, which results in the following three possible
hypotheses:

H0 : MOL level is low,
H1 : MOL level is medium,
H2 : MOL level is high.

(18)

Let us assume under each condition, PDF of the MOL level
represented by x is normal or Gaussian, i.e. x ∼ N(μi, σ 2) such
that μ0 < μ1 < μ2, where variances are assumed to be equal,
to simplify the notation. These PDFs are shown in Fig. 12, with
μ0 = 5, μ1 = 10, μ2 = 15, and σ 2 = 2.25. By extending the binary
decision errors presented earlier in Equations (8) and (9), ternary
decision errors for the three hypotheses can be written as

PE,H0 =
∞∫
a

p (x|H0) dx = Q
(

a − μ0

σ

)
, (19)

PE,H1 =
a∫

−∞
p (x|H1) dx +

∞∫
b

p (x|H1) dx = Q
(

μ1 − a
σ

)
+ Q

(
b − μ1

σ

)
,

(20)

PE,H2 =
b∫

−∞
p (x|H2) dx = Q

(
μ2 − b

σ

)
. (21)

In the above equations, a and b are thresholds to decide
between H0 and H1 and between H1 and H2, respectively. This
means the decision regions for the three hypotheses can be
written as:

H0 : x < a,
H1 : a < x < b,
H2 : b < x.

(22)

For equi-probable hypotheses and similar to the derivation
that leads to Equation (7), optimal decision thresholds which
minimize the total decision error probability can be shown to
be

a = μ0 + μ1

2
, b = μ1 + μ2

2
. (23)

Upon substituting (23) in (19–21), the total error probability in
making ternary decisions can be written as:

PE = (1/3) PE,H0 + (1/3) PE,H1 + (1/3) PE,H2

= (1/3) Q
(

μ1−μ0
2σ

)
+ (1/3)

[
Q

(
μ1−μ0

2σ

)
+ Q

( μ2−μ1
2σ

)]
+ (1/3) Q

( μ2−μ1
2σ

)
= (2/3) Q

(
μ1−μ0

2σ

)
+ (2/3) Q

( μ2−μ1
2σ

)
.

(24)

As a reference, for the binary decision-making problems
and outcome analysis studied earlier in the paper and using
Equations (8) and (9), the total error probability in making binary
decisions with equal variances simplifies to

PE = (1/2) Q
(

μ1 − μ0

2σ

)
+ (1/2) Q

(
μ1 − μ0

2σ

)
= Q

(
μ1 − μ0

2σ

)
. (25)
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To compare ternary and binary error probabilities, let us
assume μ2 − μ1 = μ1 − μ0 = γ , which reduces Equations (24) and
(25) to

(
4/3

)
Q

(
γ /

(
2σ

))
and Q

(
γ /

(
2σ

))
, respectively. This indicates

that the ternary decision error rate can be higher than the binary
decision error rate, under the assumed conditions.

ON THE COSTS OF CORRECT AND
INCORRECT DECISIONS

In decision theory, there can be some costs associated with cor-
rect or incorrect decisions. Let Cij be the cost of deciding Hi when
Hj is true. To minimize the expected cost, C00P

(
H0

) + C01P
(
H1

)
PM

+C10P
(
H0

)
PFA+C11P

(
H1

)
, the decision-making system decides H1

if [30]

L(x) = p (x|H1)

p (x|H0)
>

(C10 − C00) P (H0)

(C01 − C11) P (H1)
= γ , (26)

where C10 > C00 and C01 > C11. Usually the costs associated
with correct decisions are zero, i.e. C00 = C11 = 0. Additionally,
if there is no preference in assigning different costs to different
incorrect decisions, one can choose C10 = C01. This is what we
would consider as well, since we do not have a knowledge of
the costs of incorrect decisions in the studied cellular system.
Upon substituting C00 = C11 = 0 and C10 = C01 in the above
equation, it simplifies to the following equation, which is the
optimal maximum likelihood decision rule presented earlier in
the paper:

L(x) = p (x|H1)

p (x|H0)
>

P (H0)

P (H1)
= γ . (27)

CONCLUSION

This study presents a set of decision-theoretic, statistical sig-
nal processing and machine learning methods and metrics for
modeling and measurement of decision-making processes and
signaling outcomes under normal and abnormal conditions and
in the presence of noise and other uncertainties. Due to the
noise, signaling malfunctions or other factors, cells may respond
differently to the same input signal. Some of these responses
can be erroneous and unexpected. Here we present univari-
ate and multivariate models and methods for decision-making
processes and signaling outcome analyses and, as an example,
apply them to an important system that is involved in cell
survival and death, i.e. the p53 system shown in Fig. 1 (another
decision analysis example can be found in the paper by Habibi
et al. [1]). The p53 system becomes active due to DNA damage
caused by IR, and as a result, a cell can take two different
actions: it can either survive by repairing the DNA or trigger
apoptosis. In this context, we model decisions and signaling out-
comes triggered by the p53 system as a binary hypothesis testing
problem, where two hypotheses are introduced in Equation (1).
Regarding these two hypotheses, our approach identifies that
there can be two types of incorrect decisions: ‘false alarm’ and
‘miss’. To compute the likelihood of these decisions, we employ
the simulator of Hat et al. [9], to obtain single cell data of the
p53 system, by exposing the cells to different radiation doses.
We consider PTEN levels in cells as the decision variable, since
it is a good predictor of cell fate [9]. Our analysis focuses on
low radiation dose versus high radiation dose scenarios, where
we fix the low IR dose at 1 Gy, whereas we set the high IR
dose at 2–8 Gy. We also analyze decision-making events and
signaling outcomes when an abnormality is present in the p53
system.

The incorrect decision probabilities provided in Equation (2)
and the overall decision error probability in Equation (3) are
computed after determining an optimal decision threshold. We
obtain this decision threshold using the maximum likelihood
principle which states that the best decision can be made by
selecting the hypothesis that has the maximum probability of
occurrence. We compute decision threshold and error probabil-
ities using single time point data of PTEN levels in both normal
and abnormal p53 systems. For 1 vs. 2 Gy and 1 vs. 8 Gy case
studies, we present histograms, response distributions, decision
thresholds and false alarm and miss decision regions in normal
and abnormal p53 systems in Figs. 3 and 5, respectively. Our
decision analysis reveals and quantifies that more erroneous
decisions are made when deciding between two nearly the same
radiation doses in the normal p53 system (Fig. 6). On the other
hand, the difference between responses is easily identifiable for
very low versus very high IR doses. This feature seems not to
be present in the abnormal p53 systems (Fig. 6), according to our
decision modeling approach. Our decision and outcome analyses
and observations are further visualized and confirmed by using
the ROC curves (Fig. 7), which are useful graphical tools to study
the performance of decision-making systems. We would like to
note that these observations are specifically made based on the
low versus high IR case studies, e.g. d0 vs. d1 IRs introduced in the
paper for the p53 system, as an example of a signaling network,
in which the low IR dose is fixed to 1 Gy (d0 = 1 Gy) and the
high IR dose is ranging from 2 up to 8 Gy (d1 = 2, 3, . . . , 8 Gy).
Such conclusions may not be generalized to other biological
hypotheses and systems, while the proposed framework and its
analytical tools, whose introduction has been the main goal of
this paper, can be similarly used.

In addition to the above univariate single time point
analysis, we extend our signaling outcome modeling framework
to dynamical multi-time point measurements and multi-
dimensional decision making algorithms, to see how the
number of decision variables affects the decisions and signaling
outcomes over time. To introduce the concepts, first we conduct
a bivariate analysis, for which bivariate response distributions
of cell PTEN levels measured at two different time instants are
shown in Fig. 8, as well as the optimal maximum likelihood
decision boundary. Then we introduce a multivariate dynamic
decision modeling framework, for the general scenario where
there are more than two decision variables over time. This allows
to model and understand how decision error probability changes
over time, if at any time the decision is made based on the
current observation, together with the previous observations.
We observe in Fig. 9B that as the decision-making strategy
incorporates more and more PTEN data of various time
instants into its decisions, for the p53 system exposed to two
radiation doses of 1 and 2 Gy, the decision error probability
reaches its smallest value at a certain time instant. However,
adding more data afterwards does not necessarily improve
the decision precision, i.e. the decision error probability does
not necessarily decrease as N increases with time (Fig. 9B).
We show that this behavior can be related to the correlations
that exist among the PTEN levels measured at different times
(Fig. 9C).

Although we focus on multivariable decision-making and
signaling outcome analysis for one molecule at different time
instants, the introduced methods and algorithms are not limited
to the outcome analyses for just one molecule. They can be
applied to various other scenarios and studies. For instance,
they can be used to analyze decision strategies and compute
decision error rates based on concentration levels of two or more

D
ow

nloaded from
 https://academ

ic.oup.com
/ib/article/12/5/122/5839897 by Instytut Podstaw

ow
ych Problem

ow
 Techniki user on 23 O

ctober 2020

https://academic.oup.com/ib/article-lookup/doi/10.1093/ib/zyaa009#supplementary-data


Cell decision-making and machine learning 137

molecules, measured simultaneously or even at different time
instants.

We finally show how the introduced binary decision-making
and signaling outcome analysis models can be extended to more
than two decisions, i.e. more than two hypotheses. A ternary sce-
nario with three signaling outcomes is analyzed as an example,
and it is shown that under certain conditions, ternary decision
error probability can be higher than the binary one.

The methods and models presented here can be expanded
to describe the performance and precision of more complex sys-
tems and networks such as the ones whose inputs are multiple
ligands or secondary messengers and whose outputs are sev-
eral transcription factors involved in certain cellular functions.
Analyzing concentration levels of these transcription factors
over time using the proposed approaches can model various
decisions and signaling outcomes, and their probabilities, in the
presence of noise or some cellular abnormalities and in response
to the input signals.

The methods and formalism developed in this study are
applicable to a wide variety of signaling outcome analyses,
decision-makings and signal transduction processes where
there are two or more possible outcomes. For example, in the
context of Escherichia coli chemotaxis, binary decisions (influenc-
ing all chemotaxis processes) are either to continue motion in
the same direction or to change the flagellum operation mode
from run, counterclockwise, to tumble, clockwise, resulting in
random direction changes [44]. Based on the network or system
of interest and the available data, the hypotheses in Equation
(1) can be revised, and subsequently the same mathematical
framework and algorithms and methods can be applied, using
the underlying probability distributions of data.

Overall, these decision-theoretic models and signaling out-
come analysis methods can be beneficial for better understand-
ing of transition from physiological to pathological conditions
such as inflammatory diseases, various cancers and autoim-
mune diseases.
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43. Grabowski F, Czyż P, Kochańczyk M et al Limits to the rate
of information transmission through the MAPK pathway. J R
Soc Interface 2019;16:20180792.

44. Watari N, Larson RG. The hydrodynamics of a run-and-
tumble bacterium propelled by polymorphic helical flagella.
Biophys J 2010;98:12–7.

D
ow

nloaded from
 https://academ

ic.oup.com
/ib/article/12/5/122/5839897 by Instytut Podstaw

ow
ych Problem

ow
 Techniki user on 23 O

ctober 2020

https://doi.org/10.1126/science.281.5383.1677
https://doi.org/10.1084/jem.20061563
https://doi.org/10.1093/emboj/19.23.6517
https://doi.org/10.1186/1752-0509-7-67
https://doi.org/10.1016/j.ccr.2007.08.033
https://doi.org/10.1038/ng888
https://doi.org/10.1038/ng894
https://doi.org/10.1007/s11060-007-9470-8
https://doi.org/10.1007/s10549-005-9017-7

	Modeling and measurement of signaling outcomes affecting decision making in noisy intracellular networks using machine learning methods
	INSIGHT BOX
	INTRODUCTION
	SIGNALING OUTCOMES AND DECISIONS IN THE P53 SYSTEM WHEN DNA DAMAGE OCCURS: A CASE STUDY
	DECISION-MAKING AND OUTCOME ANALYSIS: HYPOTHESIS TESTING ON INPUT SIGNALS AND OPTIMAL DECISIONS WITH MINIMUM ERRORS
	SINGLE CELL DATA OF THE P53 SYSTEM EXPOSED TO IR
	UNIVARIATE ANALYSIS: METHODS FOR COMPUTING DECISION THRESHOLDS AND DECISION ERROR RATES USING 'SINGLE' TIME POINT MEASUREMENTS IN INDIVIDUAL CELLS
	The optimal maximum likelihood decision-making system
	The optimal decision threshold
	The decision error probabilities
	The Gaussian data model to compute the optimal decision threshold
	The Gaussian data model to compute the decision error probabilities
	Abnormal p53 systems

	DECISION AND SIGNALING OUTCOME ANALYSIS USING ROC CURVES
	BIVARIATE ANALYSIS: METHODS FOR COMPUTING DECISION THRESHOLDS AND DECISION ERROR RATES USING 'TWO' TIME POINT MEASUREMENTS IN INDIVIDUAL CELLS
	MULTIVARIATE ANALYSIS: METHODS FOR COMPUTING DECISION THRESHOLDS AND DECISION ERROR RATES USING 'MULTIPLE' TIME POINT MEASUREMENTS IN INDIVIDUAL CELLS
	Single-variable decision-making and signaling outcome analysis as time evolves
	Multivariable decision-making and signaling outcome analysis as time evolves
	Multivariable analysis of two or more molecules: methods for computing decision thresholds and decision error rates using their concentration measurements in individual cells
	Effect of heterogeneity of initial values and reaction rates on cell response histograms

	BEYOND BINARY DECISIONS: TERNARY DECISIONS AND SIGNALING OUTCOMES AND TERNARY ERROR PROBABILITIES
	ON THE COSTS OF CORRECT AND INCORRECT DECISIONS
	CONCLUSION
	Funding
	Conflict of interest statement
	Author contributions


