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Abstract. Let H be a Hubert space and /: H —» H a continuous map which

is expanding (i.e., ||/(x) — f(y)\\ > ||x - y|| for all x, y £ H) and such that

/(H) has nonempty interior. Are these conditions sufficient to ensure that f

is onto? This question was stated by Nirenberg in 1974. In this paper we give

a partial negative answer to this problem; namely, we present an example of a

map F: H —» H which is not onto, continuous, F(H) has nonempty interior,

and for every x, y e H there is «o € N (depending on x and y) such that

for every n > «o

||F"(x)-F',(y)|!>C'!-"'||x-y||

where F" is the «th iterate of the map F , c is a constant greater than 2, and

m is an integer depending on x and y. Our example satisfies ||F(x)|| = c||x||

for all x G H .

We show that no map with the above properties exists in the finite-dimen-

sional case.

1. Introduction

In 1974 Nirenberg [9] stated the following problem:
(Pi) Let H be a Hubert space and let /:H-»rI be a continuous map that

is expanding and whose range contains an open set. Does / map H onto H ?

This question could be generalized to the case (in this paper called (P2))

when the spaces considered are Banach spaces X, Y.

There are several partial positive answers to (Pi) and (P2) in the following

cases:

(a) X is finite dimensional [1, 2],

(b) f = I - C where C is compact or a contraction or more generally a

Ac-set-contraction [6, 10],

(c) / strongly monotone, i.e., there exists s > 0 such that [3, 7]

Re(/(x) - /(y), x - y) > s\\x - y||2     for all x, y G X.

In [4] Chang and Shujie proved the surjectivity of the map /: X —> Y (X,

Y Banach spaces) under the additional assumptions that Y is reflexive, / is
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Fréchet-differentiable, and

lim sup \\f(x) - f'(x0)\\ < 1     for all x0 G X.
X-»Xo

Seven years ago Morel and Steinlein [8] gave a beautiful counterexample to

(P2) in the case when / acts in the Banach space LX(N).

In this paper we suggest a negative answer to (Pi ) ; namely, we present an ex-

ample of a map F : H -, H which is not onto, continuous, F(H) has nonempty

interior, and for every x, y G H there is no £ N (depending on x and y) such

that for every n > no

\\Fn(x)-Fn(y)\\>cn-m\\x-y\\,

where Fn is the nth iterate of F, c is a constant greater than 2, and m

is an integer depending on x and y. This condition means that the distance

between any two trajectories of the discrete dynamical system F : H —» H tends

to infinity in an exponential way.

2. The example

We start by constructing a map f: L2(N) —► L2(N) with the following prop-

erties:

(a) / is continuous,

(b) B(0, l)cf(L2(N)) where B(0, 1) is the unit ball in L2(N),

(c) /(L2(N)) ¿ L2(N),
(d) / is an injection.

Then we define a map F by F(x) := cf(x). Taking into account the properties

of / we show that F satisfies the required assumptions.

To define / we first introduce a continuous function \p : R+ —► R+ such that

y/(t) := t for all t so that t < 1 and 2 < t,
at < y/(t) <t for 1 < t < 2 ,

Ci1 ,

where a is a fixed number which satisfies 0 < a < 1 .

Now for every x G L2(N) let nx denote the minimal natural number such

that
/*      \1/2 /n*+1     \'/2

i$>2)    <w(M)<V£xfj

(We allow nx = 0 and then the left side of the above inequality is 0.) We set

' x    for all x such that ||x|| < 1 or 2 < ||x||,

/(x) := < (xx, x2, ... , x„x, axx„,+ i , y 1 - a2xn%+x , xUx+2 , x„x+3, ... )

for 1 < ||x|| < 2,

where qx satisfies

/ «» \ x'2

(1) \T,xf + <4xl+i)     =¥(\\*\\)-

(Of course 0 < ax < 1 ; if x„x+l = 0 then ax := 0.)
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The continuity of / and properties (b) and (c) are easy to prove. So we must

only prove (d).

Before passing to the proof we make the obvious observation that

(2) ||/(x)|| = ||x||     for every x G L2(N).

Taking into account this observation we show (d).

Lemma. Let x, y G L2(N) and f(x) = f(y). Then x = y.

Proof. By definition of / and (2) it is sufficient to consider the case when 1 <

||x|| < 2 and 1 < ||y|| < 2. By (2) we see immediately that y/(\\x\\) = ^(||y||),

and from (1) and the fact that f(x) = /(y) it follows that nx = ny and,

consequently, x, = y, for both i — 1, 2, ... , nx and i = nx + 2, nx + 3, ... .

Since ||x|| = ||y|| we conclude that |x„x+i| = |y„x+i| and since

axx„x+x = ayynx+x , y 1 - axx„x+i = y 1 - a2.y„x+i

where ax > 0, we see that x„x+i = yn%+x , which finishes the proof.

Now we define F(x) := cf(x), c > 2 . We show the following

Theorem. The map F has the following properties:

(ax)  F is continuous,

(bx)  F(L2(N)) has nonempty interior,

(ci)  F is not onto,

(dx) for arbitrary x, y G H there is no £ N (depending on x and y) such

that for every n > no

(3) ||F"(x)-F"(y)||>c"-'lx-y||

where F" is the nth iterate of F, c is a constant greater than 2, and m is an

integer depending on x and y.

Proof. Properties (ai), (bi), (ci) are easy to prove. We show (di).

By definition of / and (2), for every x G L2(N)

(4) ||F»(x)|| = c«||x||,

and there is some integer p depending on x (we choose the smallest one) such

that

(5) F"(x) = cn-pFp(x)     forn>p.

Now consider the expression ||F"(x) - F"(y)||. By (5),

||F"(x) - F"(y)|| = \\cn-"Fp(x) - c*"*F*(y)||

= c"-'||V'(x)-c'-*F*(y)||

(Ac corresponds to y according to (5)), and since

cp~kFk(y) = F»(y)

(without loss of generality we can assume that p > k) we have

||F'(x) - cp~kFk(y)\\ = \\Fp(x) - Fp(y)\\ > 0     for x ¿ y,
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because /, and hence F , is an injection. Finally, since c > 2 there is a?o such

that for every n > no

\\F"(x)-F"(y)\\>cn-p\\x-y\\

and m := max{Ac, p} = p . Thus, the proof of (di ) is finished.

Proposition. There is no map F\ with properties (ai), (bi), (ci), (di), and

(ex)   \\Fx(x)\\ — c\\x\\ in the finite-dimensional case.

Proof. Assume that Ft : W —> W is such a map. Then, by (ci) and (ei) there

is 0 ^ xo £ Fi(R"). From (ei) it follows that F\ maps spheres (centered at

0) into spheres, in particular it maps the sphere 3* with radius ||xn||/c" into

the sphere with radius ||x0||. By (ai) and (di) Fi|o, is continuous injection

and because each sphere in a finite-dimensional space is compact, Fi \^, is a

homeomorphism onto a compact proper subset of the other sphere. But this

contradicts the well-known theorem stating that the necessary condition for a

compact set in R" to be homeomorphic to a sphere in W is that its complement

has exactly two connected components [5].
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