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1. Introduction 

Elastic wave propagation is a fundamental phenomenon which is encountered frequently in different natural processes, for 

instance, earthquakes, and engineering problems such as structures subjected to impact loading. An elastic wave in a solid body 

can propagate in two modes, in the form of the longitudinal and shear waves. In the longitudinal wave, the motion of the 

material points is in the direction of propagation whereas in the shear wave, the motion of the material points is in a plane 

perpendicular to the direction of propagation. Wave propagation velocity is one of the main parameters characterizing waves. 

Wave velocity in elastic solids depends on elastic constants. The velocities of longitudinal and shear waves in elastic solids, 𝑐𝑙 

and 𝑐𝑠, respectively, are given as [1, 2]: 

 

𝑐𝑙 = √
𝐸(1−𝜈)

(1+𝜈)(1−2𝜈)𝜌
,          𝑐𝑠 = √

𝐸

2(1+𝜈)𝜌
   (1) 

 

where: 𝜌 – bulk density, 𝐸 – Young’s modulus and 𝜈 – Poisson’s ratio. The numerical methods such as the discrete element 

method (DEM), are commonly used for analysis of different problems of geomechanics or civil engineering involving wave 

propagation. Therefore, numerical models should reproduce accurately this phenomenon. The present work is aimed to 

investigate capability of the DEM to model properly wave propagation in solid materials, with special focus on possible 

enhancement of this capability yielded by the new formulation of the DEM, called Deformable Discrete Element Method or 

DDEM [3]. A numerical example has been presented in order to illustrate the wave propagation phenomenon in an elastic solid 

discretized with discs (2D discrete elements). 

2. Deformable discrete element method formulation 

The discrete element method assumes a material can be represented as a large assembly of particles, discs in 2D or spheres 

in 3D, interacting among one another by contact forces. The contact force between two elements, 𝑭𝑐 in Eq. (2) is decomposed 

into normal and tangential components, 𝑭𝑛 and  𝑭𝑡 respectively and given as: 
 

𝑭𝑐 = 𝑭𝑛 + 𝑭𝑡 = 𝐹𝑛𝐧 + 𝑭𝑡,  (2) 
 

where: 𝐧 – the normal unit vector at the contact point. Contact models for the normal and tangential interaction can take into 

account different physical effects such as elasticity, plasticity, adhesion/cohesion, viscosity or friction. In the present work, the 

cohesive linear elastic model has been be used. The normal and tangential force components in this model are given by the linear 

relationships 
 

𝐹𝑛 =  𝑘𝑛ℎ,         𝑭𝑡 =  𝑘𝑡𝐮𝑡  (3) 
 

where: 𝑘𝑛 – normal contact stiffness, 𝑘𝑡 – tangential contact stiffness, ℎ – is the overlap or gap at the contact point and 𝐮𝑡 – the 

relative displacement at the contact point in the tangential direction. In the standard DEM, the particle overlap is assumed to 

represent local particle deformation at the contact point, whereas the particles (discrete elements) are considered as rigid body. 

The Deformable Discrete Element Method (DDEM) developed by the authors enhances the standard DEM formulation [3]. In 

addition to the  kinematics of standard DEM [3], the formulation of DDEM assumes uniform particle deformation under the 

internal particle stress induced by the contact forces.  

Contact interaction models in the DEM and DDEM play a role of microscopic material models. Macroscopic material 

properties result from collective particle response governed by the contact model and its parameters. The micro-macro 

constitutive relationships are key issue in the use of the DEM. The dimensional analysis provides an appropriate framework to 

establish the micro-macro relationships. These relationships for the elastic constants in the standard DEM can be assumed in the 

following form:  
 

𝐸 = 𝑘𝑛𝛷𝐸 (
𝑘𝑡

𝑘𝑛
, 𝑛) ,        𝜈 = 𝛷𝜈 (

𝑘𝑡

𝑘𝑛
, 𝑛)  (4) 

where: E – Young’s modulus, 𝜈 – Poisson’s ratio, 𝑛 – porosity. The corresponding relationships for the DDEM take the form:  

 

𝐸 = 𝑘𝑛𝛷𝐸 (
𝑘𝑡

𝑘𝑛
,

𝑘𝑛

𝐸𝑝
, 𝜈𝑝, 𝑛) ,        𝜈 = 𝛷𝜈 (

𝑘𝑡

𝑘𝑛
,

𝑘𝑛

𝐸𝑝
, 𝜈𝑝, 𝑛)  (5) 

 

where: 𝐸𝑝 – particle Young’s modulus, 𝜈𝑝 – particle Poisson’s ratio.  
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3. Numerical example 

Wave propagation phenomenon has been simulated using a rectangular sample of length ~ 16.5 mm, width ~ 2 mm, 

discretized with 682 bonded disc elements with non-uniform size varying between maximum radius rmax. = 1.449⋅10-4  m and 

minimum radius rmin. = 1.003⋅10-4 m, particle density, 𝜌𝑃 = 2000 kg/m3  and normal contact stiffness, 𝑘𝑛 = 10 GPa. Taking into 

account the porosity of the DEM sample, an average bulk density 𝜌 = 1797.36 kg/m3 is obtained. Simulations are performed for 

the ratio 𝑘𝑡 𝑘𝑛⁄  ranging between 0.0 to 1.0 in steps of 0.1. For signal input, initial displacements of the particles have been 

defined using following function: 

𝑢𝑦
0 = 𝐴 (cos

2𝜋𝑥

𝐿
+ 1)  (6) 

with 0 ≤ 𝑥 ≤ 𝐿 2⁄ , where amplitude 𝐴 = 0.01  mm and wavelength 𝐿 = 10  mm is assumed, 𝑥 –  coordinate of the particles in x-

direction within length 𝐿 2⁄  in reference to the left edge of the sample. Periodic boundary conditions are applied on the bottom 

and top layers of particles while particles forming the right edge of the sample are fixed. Figure 1 shows the propagation of shear 

wave pulse in the discrete sample using the standard DEM model for the ratio 𝑘𝑡 𝑘𝑛⁄  = 0 in terms of y-displacement vectors of 

the elements at different  time steps. Dependence of shear wave velocity on the ratio of tangential to normal contact stiffness, 

𝑘𝑡 𝑘𝑛⁄  is presented in Figure 2. Analytical wave velocities are determined as a function of the ratio 𝑘𝑡 𝑘𝑛⁄  using constitutive 

relationships corresponding to Eq. (4) for standard DEM [3] in Eq. (1). Wave velocity is determined numerically as an average 

of wave velocities between four different pairs of nodes with varying horizontal distance between a pair. Nodal pairs were 

chosen arbitrarily at different vertical positions within the sample. Peak-to-peak method is used to evaluate time taken by wave 

to reach from one node to another within a pair with a known distance between them. It can been seen that a good agreement 

between numerical and analytical results has been obtained. 

 
Figure 1. Shear wave propagation: y-displacement vectors at, a) t = 0 s, b) t = 6.04⋅10-6  s, c) t = 1.175⋅10-5  s, d) t = 1.47⋅10-5  s  

 
Figure 2. Shear wave velocity w.r.t. ratio 𝑘𝑡 𝑘𝑛⁄  – comparison between numerical and analytical results. 

4. Conclusion 

The discrete element method proves to be a robust numerical tool to properly reproduce the wave propagation phenomenon 

in solid materials. Furthermore, results for the longitudinal wave propagation using standard DEM will be presented. It will be 

shown that numerical results obtained with the DDEM induces flexibility over standard DEM to correctly reproduce elastic 

waves. 
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