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ABSTRACT

An incremental formulation based on the Taylor's expansion for nonlinear

design sensitivity problems is developed. Computational aspects are discussed. A

few numerical benchmark problems illustrate the paper.

1. INTRODUCTION

Design sensitivity analysis of linear structures has been by now well

established in the literature. One of the first papers considering this type of

analysis was that of Zienkiewicz, [1]. The next important contribution was due to

Haug and Arora [2] where the adjoint variable and direct differentiation methods

were presented. The variational approach to design sensitivity was contained in

the papers by Dems and Mroz [3,4] and Haug, Choi, Komkov [5]. The latter paper

discussed examples which have became valuable benchmarks for sensitivity

computation of complex structures using the finite element method.

Nonlinear sensitivity was considered by Haftka and Mroz [61 and Mroz, Kasiat,

Plant 17]. A comprehensive discussion of computer implementation aspects was

presented by Arora, Cardoso [8] who introduced algorithms for the design

sensitivity analysis employed within the ADINA system. However, the approach is

not in fact incremental and thus not general enough to deal with any nonlinear

behaviour.

Many results considering computational aspects of static. dynanic and

stochastic design sensitivity contain papers by Hien and Kleiber [9,10,11). In the

present work the incremental approach based on the first order, expansion is

given. This is the most general and consistent method which involves tangent

stiffness matrix and thus It is suitable for both geometric and material nonlinear

problems.

2. PROBLEM STATEMENT.

Consider the structural response functional at time t+At for a spatially
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discretized system with N degrees of freedom given by

( t *41 ) (t + 4t > { t + 4t )

* = G [q (b). bl.

The equilibrium equation at time t+At is expressed in the incremental form as

(1)

(t)
Iq (b). b] Aq$(b) = AQa<b), (2)

(t)
where b « <b^>. e « 1 E; q » <«!„>• *"& A(I " <A<?B>.

 a " l N denote the

vectors of design variables, nodal displacements and displacement increments,

respectively. The objective is to evaluate the sensitivity gradient coefficients

of the response functional with respect to design variables at t+At assuming

at/Sb at time t to be given. We introduce the following notation for partial

derivatives

- a(.)/8b , .a.8(.)/3qa. (3)

Differentiation of Eq. (1) with respect to b using the chain rule leads to

<t«»t) (t+At) (l»*t>

1>. " G. + G. q .*• • o M« • (4)

To express the foregoing equation explicitly in terms of the design variable

variation let us first make the first order expansion of the function $ about 'q'

to obtain

(t)
<G.

(t)
q,,. )AqM M

(t) (t)
(G'a + G-ctfAV AV«

(5}

Since the configuration, displacement field and sensitivity gradient coefficients

are all known at t, the only term which is necessary to determine is the

derivative of the displacement increment with respect to design variables, i.e.

Aq̂ .̂ . This is done by differentiating eq. (2) with respect to b to get
e

(t)
(6)

Substituting the above equation into Eq. (5) yields the expression for sensitivity

at t+At. This is known as the direct differentiation technique.

Let us now introduce the adjoint technique. Consider the last term in Eq. (5).

Introducing Eq. (6) into this term we define an adjoint vector \ = <Ag} which is

independent of b as follows
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(t> (t) (t)
(7)

If the system stiffness matrix is symmetric the equllbriun equation of the adjoint

system can be written as

(t) (t) (t)
(8)

Consequently, the expression for design sensitivity at time instant t + it takes

the form

(1*411 (t) (t) (t) (t)

(9)

In contrast to the incremental equations of the primary system, the adjoint

equation Eq.(8) is linear.

3. COMPUTER IMPLEMENTATION.

The adjoint variable technique is choosen here for computing the design

derivatives. There are two sets of equations to be solved for primary for adjoint

structures, respectively. The adjoint set is linear with respect to the adjoint

variable at time t; it is thus possible to solve the equations for both systems In

parallel.

The incremental set of Eqs. (2) may be solved for displacements by any

nonlinear algorithm, such as Newton - Raphson [12, 13] schemes, for instance, and

then the adjoint vector may be calculated exploiting the triangularized tangent

stiffness matrix of the primary system at time t. The next step is to evaluate the

design sensitivity gradient coefficients according to Eq. (9). For simple response

functions frequently used in engineering practice such as

o. (10)

in which the quantity q may be understood as an allowable displacement, Eq. (9)

is reduced to

(t*4t) (t) (t+*t) (t) (t) (t)

An important considerations to choose an effective method of determining the

derivatives of the stiffness matrix with respect to displacements and to adjoint

variables. The derivatives with respect to design variables can be calculated

explicitly by direct differentiation, or implicitly by using a finite difference



technique [14] or by the least square fit method. In the finite element context

the derivatives with respect to displacemnts can be preferably evaluated by ar

Implicit technique since the stiffness matrix Is generally an Implicit function of

displacements. Both methods have been employed In our study. The derivatives are

calculated explicitly for truss, beam and quadrilateral flat plate-shell elements

and implicitly for Isoparametric Ahmad-type shell element.

4. FINITE ELEMENT PACKAGE CODE POLSAP AND NUMERICAL EXAMPLES.

The finite element system POLSAP is a considerable extended version of the well

known program SAP - IV [151. The current linear version of POLSAP provides 14

types of analysis Including static and dynamic sensitivity of deterministic and

stochastic response [11J. Any arbitrarily complex beam-plate-shell structures can

be analyzed. The structural response and constraints can be assumed as functions

of displacements and stresses. Design variables may be taken as cross-sectional

areas, Young modula, lengths (for beams and bars), thickness (for plates and

shells) and material densities of structural members.

The program is operative on IBM-PC and compatible computers under DOS or UNIX

systems. The work to extend POLSAP Into nonlinear sensitivity range based on the

approach presented here is underway.

The numerical results shown below have been computed for linear structures. The

nonlinear counterparts will be discussed during the conference presentation. The

response functions ar»j expressed by Eq. (10). The design derivatives are

calculated with respec", to cross-sectional areas for bars and with respect to

thickness for plate. All of the design constraints considered are imposed on nodal

displacements along z-axes and have the same value of 0.01 m.

Example 1.

The classical example is the von Mises two-bar truss shown in Fig. 1.

i O 88861801
k to ki-i/m

£̂

PMOkN
h = 0.22,7)
J. 001 *

Fig. 1. Two-bar truss.

The nonlinear static results are presented In the work of Kotula and Klelber [16].
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The constraint Is Imposed at node 2. The sensitivity gradient coefficient for both

bars dali/db Is equal to -7.374043.

Example 2.

The second example Is that of a space bar structure(Flg. 2). for which

nonlinear static results where given In 117].

£•2.1 £11 N/2

Fig. 2. Space truss.

The results of the sensitivity analysis are assembled in Tab. 1 which reflects the

change of design sensitivity for ideal and slightly imperfect structure. An error

of 0.2 m along x-axis In position of the apex node is assumed. The des:gr

constraint is imposed at node 1.

Table 1.

Design sensitivity gradients coefficients for space truss

element
number

1

2

3

4

5

6

Perfect structure

-2. 60823031 17E-03

-2.6082236449E-03

-2.6082236449E-03

-2. 60823031 17E-03

-2.6082236449E-03

-2.6082236449E-03

Imperfect structure

-2. 6292336493E-03

-2.6185512616E-03

-2. 5972868848E-03

-2.5867117128E-03

-2.5972868848E-03

-2.6185512616E-03
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Example no 3.

A quater of rectangular clamped plate Is considered next (Fig. 3).

0.5m

E =•

025

q -

Fig. 3. Clamped plate.

The solution was obtained using two types of elements. Flat plate-shell

quadrilateral and Isoparametric S-node Ahmad type shell elements. The derivatives

with respect to thickness were calculated explicitly for quadrilaterals and

Implicitly by finite difference technique for isoparametric elements. 100 elements

for both cases. The constraint is Imposed at node A. Comparison of results for

linear case is shown in Fig 4.

a flat qucdriicnerGt
* 9 node Atimca - type sns'.l

0.125 0.225 0.32S
distance from center of the pure

0.475

Fig. 4. Design sensitivity gradients coefficients for clamped plate calculated

explicitly and implicitly.
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S. FINAL REMARKS.

The application of the first order expansion only for all the functions

involved seems to be consistent with the first order sensitivity analysis. The

incremental formulation proposed has significant advantages and no drawbacks when

compared against other formulations which as a rule require also finding of the

internal forces. The adjoint equation is linear. Computational algorithms based on

the formulation employ only the tangent stiffness matrix, which is consistent with

the general "rate - philosophy" in the nonlinear structural analysis.
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STRESECZENIE

V artykule przedstawiono podejscie przyrostowe do analizy wrazlivosci

konstrukcji. Metoda oparta Jest na rozuinleciu funkcji w szereg Taylora. Rozwazane

sa jej aspekty obllczenlowe. W artykule zauarte sa przyklady numeryczne.


