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In [1, figure  1] the workflow used to calculate the 
structure and properties of the materials in C2DB 
the authors stated that the dynamical stability 
condition for a structure is not satisfied when elastic 
constants are negative. Unfortunately, it is an incorrect 
condition. Moreover, in [1, equation (3)] the authors, 
for reasons difficult to understand, disregarded shear 
deformations and calculated only the planar elastic 
stiffness coefficients C11, C22, and C12, what makes the 
aforementioned analysis incomplete and insufficient. 
In addition, even these calculated coefficients in C2DB 
are erroneous, i.e. the stiffness tensor does not have a 
proper symmetry resulting from the symmetry of the 
crystal.

In order to explain what the problem is, some 
facts from the theory of 2D linear elasticity and elastic 
stability analysis should be recalled.

The generalised Hooke’s law is the linear strain-
stress tensor relation:

σij = Cijklεkl → σ = Cε,� (1)

where σ is the second-rank Cauchy stress tensor, C is 
the fourth-rank anisotropic elastic stiffness tensor and 
ε is the second-rank small strain tensor (i, j, k = 1, 2, 3 
for 3D and i, j, k = 1, 2 for 2D problems), from 
Einstein summation convention repeated indices are 
implicitly summed over.

From the symmetry of σ and ε it follows that

Cijkl = Cjikl = Cijlk,� (2)

and from the thermodynamic requirement of existing 
of a strain energy density function U(ε) (hyperelastic 
material) [2] such that

U =
1

2

∂2U

∂εij∂εkl

∣∣∣∣
ε=0

εijεkl =
1

2
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additionally

Cijkl = Cklij,� (4)

and hence number of independent components of 
four-rank Cijkl reduces to 21 in 3D [3] and to 6 in 2D 
[4, 5]. In relations (1) and (3) the fourth-rank tensor 
notation, employing fourth-rank Cartesian tensor 
in three or two dimensions, is used. Also different 
notations for the generalized Hooke’s law, relation (1), 
are in use. The most popular is a non-tensorial Voigt 
notation that employs in 2D 3x3 matrix:
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The less popular is a second-rank tensor, called also 
orthonormal or Mandel, notation:
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Abstract
Recently Haastrup et al 2018 (2D Mater. 5 042002) introduced the Computational 2D Materials 
Database (C2DB), which organises a variety of structural, thermodynamic, elastic, electronic, 
magnetic, and optical properties of around 1500 two-dimensional materials distributed over more 
than 30 different crystal structures. Unfortunately, the work contains serious and fundamental flaws 
in the field of elasticity and mechanical stability tests that make it unreliable.
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The difference between Voigt and second-rank ten-
sor notation is not only by factors of 2 and its square 
root but is more fundamental. In the Voigt notation, 
the elements of matrix ̂c  in equation (6) are not the ele-
ments of a second-rank tensor, whereas in the second-
rank tensor notation the elements of c  in equation (8) 
are the elements of a second-rank tensor in six dimen-
sions for 3D and three dimensions for 2D problems. 
The fourth-rank tensor notation (1) and second-rank 
tensor notation (8) are tensorially equivalent [4, 6].

In two-dimensional space, there are five different 
cell lattice types:

	 I. � Oblique (parallelogram) (a�=b, � �= 90◦) ,
	 II. � Rectangular (a �=b, � = 90◦) ,
	III. � Centered rectangular or diamond (a �=b, 

� = 90◦) ,
	 IV. � Square (a  =  b, � = 90◦) ,
	 V. � Rhombic or hexagonal (a  =  b, � = 120◦) .

It is clear that symmetry aspects are important in the 
study of physical phenomena. From symmetry principle: 
if a crystal is invariant with respect to certain symmetry 
elements, any of its physical properties must also be 
invariant with respect to the same symmetry elements and 
Curie laws, it results that the symmetries of the physical 
properties of the material may not be lower than the 
symmetry of the crystal, but may be higher [7, 8].

The symmetry classification of linear elastic mat
erials is not related to crystallography. This is due to the 
properties of fourth-rank Euclidean symmetric ten-
sors (from the linearity of phenomenological Hooke’s 
law and the properties of two, three-dimensional 
Euclidean space) [9]. For 3D linear hyperelastic mat
erials, there are eight classes of symmetry and four 
classes of symmetry for 2D [4, 9].

Necessary and sufficient elastic stability conditions, 
also called Born stability conditions, in various 3D 
crystal systems are gathered in [10], but from my best 
knowledge, there is no such work for 2D crystal systems.

In general, the unstressed crystalline structure 
is stable with no external loads and in the harmonic 
approximation, if and only if two independent condi-
tions are fulfilled:

	1.	�All its phonon modes have positive frequencies 
ω for all wave vectors q (dynamical stability):

ω2(q) > 0.� (9)

	2.	�The strain energy density function, given by the 
quadratic form (3), is always positive (elastic 
stability):

U(ε) > 0, ∀ε �= 0.� (10)

It is worth pointing out that some authors incorrectly 
identify elastic stability (10) with dynamic stability (9) 
for the long wave limit (i.e. for vanishing wavevectors 
q →0) [11, 12]. In the mathematical elasticity this 
phonon condition is called strong ellipticity and does 
not imply positive definiteness of the strain energy 
density function (3), but the opposite implication 
occurs [3].

It would be quite difficult to check the positive 
definiteness of the quadratic form (10) directly and 
it can, therefore, be replaced by equivalent easier 
conditions [10]:

	1.	�All eigenvalues of tensor c  in second-rank tensor 
notation (8) are positive,

		 or
	2.	�All the leading principal minors of tensor c  

in (8) (determinants of its upper-left k by k 
submatrix) are positive (Sylvester’s criterion).

After this theoretical introduction we can give the 
form of elastic stiffness tensor c  in the second-rank 
tensor notation (8) and the necessary and sufficient 
elastic stability conditions (10) for all four classes of 
symmetry for 2D hyperelastic materials.

	1.	�Full symmetry (isotropy) → Hexagonal  
lattice (V)

		 (2 elastic constants)

CIJ →




C11 C12 0

C12 C11 0

0 0 C11 − C12


 ,� (11)

		 C11  >  0 & C11 > |C12| or λI = (C11 + C12) > 0 
& λII = (C11 − C12) > 0.

	2.	�Symmetry of a square, (tetragonal) → Square 
lattice (IV)

		 (3 elastic constants)

CIJ →




C11 C12 0

C12 C11 0

0 0 C33


 ,� (12)

		 C11  >  0 & C33  >  0 & C11 > |C12| or  λI =  
(C11 + C12) > 0  & λII = (C11 − C12) > 0 & 
λIII = C33 > 0.

	3.	�Symmetry of a rectangle, (orthotropy)→ 
Rectangular (II) & Centered rectangular lattice 
(III)

		 (4 elastic constants)

CIJ →




C11 C12 0

C12 C22 0

0 0 C33


 ,� (13)

		 C11  >  0 & C33  >  0 & C11C22 > C2
12 or 

λI =
1
2

(
C11 + C22 +

√
4C2

12 − (C11 − C22)2
)
> 0 & 
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λII =
1
2

(
C11 + C22 −

√
4C2

12 − (C11 − C22)2
)
> 0 

& λIII = C33 > 0.
	4.	�No symmetry (anisotropy) → Oblique lattice 

(I)

		 (6 elastic constants)

CIJ →




C11 C12 C13

C12 C22 C23

C13 C23 C33


 ,� (14)

		 C11  >  0 & C11C22 > C2
12 & det(CIJ)  >  0 or 

λI > 0 & λII > 0 & λIII > 0 (e.g. from the 
Cardano formula [13]).

The problem can arise if we find C13 and/or C23 other 
than zero: it is hard to say, in this case, if there is no 
symmetry at all or, possibly, we have chosen a wrong 
axis [4]. To avoid this it is recommended to check for 
all crystals the most general stability condition for 
anisotropy (14).

The above considerations are not only of a general 
nature, selected examples of erroneous stiffness 
tensors and incorrectly verified elastic stability can be 
found in the Computational 2D Materials Database 
(C2DB).

As it was written earlier, crystal symmetry implies 
symmetries of its physical properties, and hence 
the symmetries of tensors, e.g. the stiffness tensor. 
The conditions for elastic stability were given in 
equations (11)–(14).

For example, we can find in the C2DB database:

	 •	�Au2O2: https://cmrdb.fysik.dtu.dk/c2db/row/
Au2O2-GaS-NM

		  Space group:P-6m2, C11  =  86.93 N m−1, 
C22  =  87.90 N m−1 and C12  =  103.62 N m−1.

		  Because it is a Hexagonal lattice (V) the stiffness 
tensor c  must be isotropic (1) and C11 must 
be equal to C22. Although all calculated elastic 
constants are positive, the crystal is not elastically 
stable because not all required stability conditions 
(equation (11)) are fulfilled.

	 •	�Ta2Se2: https://cmrdb.fysik.dtu.dk/c2db/row/
Ta2Se2-GaS-FM

		  Space group:P-6m2, C11  =  75.15 N m−1, 
C22  =  75.81 N m−1 and C12  =  −45.67 N m−1.

		  Because it is a Hexagonal lattice (V) the stiffness 
tensor c  must be isotropic (1) and C11 must be 
equal to C22. Although calculated elastic constant 
C12 is negative, the crystal is elastically stable 

because all mandatory stability conditions 
(equation (11)) are satisfied.

	 •	�Re2O2: https://cmrdb.fysik.dtu.dk/c2db/row/
Re2O2-FeSe-NM

		  Space group:P4/nmm, C11  =  17.70 N m−1, 
C22  =  16.18 N m−1 and C12  =  239.42 N m−1.

		  Because it is a Square lattice (IV) the stiffness tensor 
c  must have symmetry of a square (2) and C11 must 
be equal to C22 (the difference here is more than 9%). 
Although all calculated elastic constants are positive, 
the crystal is not elastically stable because not all 
stability requirements (equation (12)) are met.
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