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ON THE APPLICATION OF THE SENSITIVITY ANALYSIS
TO THE DESIGN OF SPATIAL BAR STRUCTURES

E. POSTEK, T. D. HIEN (Warszawa)

The paper deals with some aspects of structural sensitivily analysis and its application in the
engineering practice. The considerations are illustrated by numerical results concerning an
industrial steel room modelled as a 3-D structure.

1. INTRODUCTION

Many failures and malfunctions of typical steel shops and roofs which have been
designed over the years (for some examples see Nawror et al [1], [2], Losicki,
NIEDOSTATKIEWICZ, SZYMCZAK [3]) are of necessity the reason for taking a closer look at
the problem. To better understand the behaviour of such structures it seems useful to
perform certain nonstandard structural analyses of the systems. For instance, in the
paper by BRODKA, Garncarek and GRrRupka [4] a structure of a steel shop was
considered to be a 3-D system. Such analyses will be considered as nonstandard ones
that are not a part of the everyday practice of design offices and consulting firms.
Sensitivity analysis is also an example of such nonstandard procedures.

In the sensitivity analysis a variability of some functionals is investigated that
characterize the behaviour of structural systems and depend on a number of design
variables. All the magnitudes which affect the structural behaviour of a system under
consideration can serve as the design variables, for instance the cross-sectional areas
and lengths of particular elements, Young’s moduli of used materials etc. These
functionals can in general depend on the current states of displacements and stresses as
well as on their admissible values called the design constraints. One of the first papers
on the sensitivity analysis was written by CampBeLL and Zienkiewicz [5] followed over
recent years by an increasing number of papers devoted to this subject. Relatively
many papers have been published in the aeronautical periodicals (ArRora, CARDOSO [6],
Hartka and MRroz [7]). The sensitivity analysis has found its main applications in
optimization problems, though. Algor.ithms for the calculations of the sensitivity of
inelastic structures were programmed in the ADINA system (Arora, HaririAN, Ry,
Wu [8], ARORA, CARDOSO, HaririaN [9], Arora, Carposo [10]). However, some workers
in the field maintain that it is rather difficult to appropriately interpret and employ the
results of the sensitivity analyses in the design practice. The goal of this paper is to
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indicate suitability of such analyses in the state-of-the-art structural design and
inspection, in particular, of steel structural systems.

In this paper a linear sensitivity analysis of bar structures subjected to static loads is
presented under the constraints imposed on both the nodal displacements and the
elements stresses; comprehensive aspects of computer implementation is discussed.

Suitable algorithms have been prepared and programmed in the POLSAP system
(Hien, Keemer [11]) and all the computations have been made in this system. An
example will be presented how to analyse the sensitivity of a certain steel structure of
a roof. The approach is hoped to be useful for the structural designers of real systems.

2. FORMULATION OF THE PROBLEM

In the displacement model of the finite clement method (Zienkiewicz [12], KLeiser [13])
a structure is represented by means of its stiffness matrix, loading and nodal displacement
vectors as well as its boundary conditions. In the sensitivity analysis it is, in addition,
a function characterizing the structural behaviour that enters the picture together with
certain constraints imposed by the designer. These constraints can be expressed in terms of
displacements or stresses and thus are related to the limit states of scrviceability and
load-carrying capacity of structures as given in suitable design codes [14] as well as in
recommendations and guides (FiLipowicz, Lusisski, ZoLtowski [15]). Some constraints
may also follow from reasons other than structural ones, e.g. manufacturing requircments.
The structural response functions can be defined as

2.1) ® = @[r(b), b],

where b is an E-dimensional vector of the design variables, r is a N-dimensional vector
of generalized displacements which depends on these design variables in an implicit
way (Cror, Hauc, Komkov [16]). The sensitivity analysis is aimed at the investigation of
" variability of the function (2.1) caused by the variations in the design parameters.
Differentiation of Eq. (2.1) with respect to b yields the sensitivity gradient coefficients
of @ in the form

dd 0@ # oddr
db =~ b drdb

I1xE IxE IxNNxE

(2.2)

For structures made of elastic material and undergoing small displacements the
system of FEM equations has the general form

3 = R g
@3) leu (b)nr;x(b) an(b)
where K stands for the structural stiffness and R denotes the loading vector; both K and
R depending on the design variable vector b. The system (Eq. 2.3)is assumed to satisfy
the kinematical boundary conditions. Assuming that the overall configuration of
structure is fixed let us now calculate the derivatives of the generalized displacements
r with respect to the design variables b. Differentiating the Eq. (2.3), we get
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dr _0R 0K

NxNdb _ 3b  ObNxt’
NxE NxE NxE

(2.4)

Resulting from Eq. (2.4) displacement derivatives with respect to design variables and
substituting the resulting equations into Eq. (2.2) the expression for the sensitivity
coefficients is obtained as

dd o0 80 _I(E)R oK )
r .
Nxl1

2.3) db - db + Or NxN ab  ab

IxE IxE IxN NxE NxNxE

The above manner to compute the sensitivity of a structure is called the direct
differentiation method.

Another approach, connected with the so-called adjoint variables and consequent-
ly adjoint structure, will also be shown and used in considerations to follow. The
reason for this is an intuitively easy interpretation of this approach for the structural
designer. Namely, he shall deal with an identical structure subjected to an adjoint load
determined from the design constraints. Let the term in front of parentheses in Eq. (2.5)
be denoted by A,

P

oA S -1

(2'6) lxlN BT NIX(N 5
IxN

As the stiffness matrix K is symmetric and positive definite, the above relationship
can be transformed to become

0 Dd\T
(2'7) NISNxhl"xl = (ﬁ) :

N x1

where A is a vector of the so-called adjoint displacements. This implies that

do _2® . (0R 9K
(2:8) db @b " axe\@b  _ab Na)
I xE IxE NxE NxNxE

Consider a linear function describing the structural behaviour

e
2.9 (D—F—ISO,

wherer®> 01is a prescribed admissible displacement. So, adjoint load can be expressed as
(]
(2.10) %r; = sign (r)[O, Orlo 0].

Consider a stress-dependent function to describe the behaviour of a structure, i.e.
a function related to its ultimate limit state,
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ag
2.11) P=—-1<50,
@.1) S -1<
where o is a stress component on which a constraint is imposed and ¢° denotes a certain
limit stress. For truss systems the limit stress is different for tension and compression
and can be selected according to the current codes of practice.

Let us calculate a magnitude of adjoint load for an element of a truss in the presence
of the function Eq. (2.11). The well-known relationship between the stresses and the
nodal displacement r has the form
(2.12) ¢ = DB r

1x1 Ix11x22x1°

where D is the stiffness matrix and B is such a linear operator that Br denotes
a corresponding strain. The relevant derivative with respect to displacements
takes the form

2.13) %% _ pB.
ar Ix11x2
1x2

The adjoint load vector being the derivative of the stress-dependent function ® with
respect to displacements, becomes, using Eq. (2.13)

0P s 1
(2.19) 57 = sign (o) = 1131 I]EZ.

1x2

Remembering the relationship Eq. (2.2) and calculating the adjoint variables, the
sensitivity gradients of the structure considered can thus be evaluated.

3. COMPUTER IMPLEMENTATION

The two methods of evaluating the design sensitivity gradient lead to different
procedures of their computer implementation (Hien, KvreiBer [17]). The sensitivity
analysis is usually made for a certain number L of loading patterns and for a certain
number C of design constraints. In the direct differentiation method Eq. (2.3) must be
solved for L loading cases and next each of the obtained loading vectors is used to
calculate S right-hand sides of Eq. (2.4). After the derivatives dr [ db are found, the
gradients d® / db can be calculated for each of Cdesign constraints. It appears that the
number of algebraic equations to be solved amounts to L S where S'is the dimension of
vector b.

The methods of adjoint variable requires the system of Eqs. (2.3) to be solved for
r for L right-hand sides and, in addition, the Eq. (2.7) to be solved for i for C design
g?rgt:ll:aatss)..Fmally, the magnitudes of revelant functions must be found with the help
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It is worth noting that in the case of the response functions (Egs. (2.9), (2.11)) both
the primary and adjoint equations may be solved simultaneously. The global stiffness
matrix must be triangularized only once. Determination of the adjoint loads for the
function (2.9) reduces to the calculation of a reciprocal of the design constraint
magnitudes and thus setting the right-hand side. Each design constraint leads to one
vector of the right-hand side. Thus, the number of algebraic equations to be solved is
clearly L+ C. Adjoint loadscan beintroduced in the same way as the concentrated loads.

When the relevant function is related to the stress constraint Eq. (2.11), the vectors
of adjoint loads should be found in a different manner. The right-hand side vector is
generated at the element level. The product DB is calculated at the element level and
then divided by ¢°. This magnitude is obtained in the local coordinates and then
transformed into the global system also at the element level. Composition of the
right-hand side vectors is not necessary. It suffices to locate the adjoint load
components in the right-hand side vectors by using the element allocation vectors in
which the occurrence of the design constraint was shown.

4. SHORT DESCRIPTION OF POLSAP SYSTEM

System POLSAP constitutes a considerable extension of the known program SAP-IV
(BATHE, PETERSON, WiLson [18]) that enables five types of analyses to bemade. In POLSAP
as many as fourteen types of analyses are incorporated to choose from. The system enables
arbitrarily large spatial complex structures to be analysed. Both static and dynamic
situations can be dealt with as well as the problem of initial stability solved. As far as the
static case of sensitivity analysis is concerned, the following design variables can be used:
areas of cross-sections, lengths of bars and beams, thicknesses of plates and shells, Young’s
moduli and densities of materials. Displacement and stress functions can serve as
functionals to describe the behaviour of structures under consideration. Stochastic analysis
of both static and dynamic systems is also possible by taking into account the geometric
and material imperfections. Sensitivity of such systems can also be tackled.

The IBM-PC compatible microcomputer version of the system can deal with
arbitrarily large problems, the only limitation being the storage capacity of disks.

S. VERIFICATION AND INTERPRETATION OF THE RESULTS

The obtained results are compared with those of Cnoi, Haug, Komxkov [16]). In this
paper a ten-bar truss is analysed (Fig. 1). The truss constitutes a certain benchmark
problem used in the verification of the results in the field of structural optimization
(AroRa, Haua [19]). Both displacement and stress design constraints are allowed for,
cross-sectional area being the design variable. Young’s modulus of all the bars is the
same and amounts to E=1.0x 107. Vertical deflection of the node 2 must not exceed
2 =2.0. Comparison of the results obtained with the use of POLSAP and those given in
[16] are shown in Table 1. Stress constraint for the bar 5 was equal to 2.5 x 105,
Corresponding results are given in Table 2.
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FiG. 1. Ten-bar truss.
Rys. 1. Kratownica 10-prgltowa
Table 1
Displacement constraint at node 2, displacement sensitivity to variation in
cross-sectional area.
Ograniczenie przemieszczen w wezle 2, wrazliwo$¢ przemieszczen na zmiang
pola przekroju poprzecznego

element Cross-
number -sectional area Haua [16] POLSAP
1 28.6 —0.0093 —9.2836024816D-03
2 0.2 0.0109 1.0897607678D-02
3 23.6 —0.0062 —6.2027963163D-03
4 154 —0.0076 —17.6322280077D-03
5 0.2 0.1402 1.4023301743D-01
6 0.2 0.0109 1.0897607678D-02
7 3.0 —0.0177 —1.7742779371D-02
8 21.0 —0.0128 —1.2775176317D-02
9 21.8 —0.0108 —1.0772705417D-02
10 0.2 0.0308 3.0823089150D-02
Table 2

Stress constraint in bar 5, stress sensitivity to variation in cross-seclional area
Ograniczenie naprezen w precie 5, wrazliwo$¢ naprezen normalnych na zmiang
pola powierzchni przekroju poprzecznego

element Cross-
number -sectional area Haua [16] TOLSAE
e F 28.6 —0.0082 8.2201212946D-03
2 0.2 —0.0696  —6.9587790882D-02
3 23.6 —0.0104 —1.0398823591D-02
4 15.4 —0.0006 —6.3777552420D-04
5 0.2 —2.3520 —2.3520587932D + 00
6 0.2 —0.0696  —6.9587790882D-02
7 3.0 —0.8369 —8.368574147D-01
8 21.0 0.0231 2.3056270775D-02
9 218 —0.0009  _9.0020474201D-04
i 0.2 —0.1968  —1.9682399528D-01

122)
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The notion ,,increase of the sensitivity” corresponds to an increasing absolute value
of the derivative of the function that describes the behaviour of a structure. The
physical interpretation of the fact is the following: to make any member of the structure
less sensitive, for instance, in the case of cross-sectional area of an clement serving as
the design variable, its area should be increased in order to make the structure in this
clement less sensitive. In other words, in the case of a negative sign of sensitivity the
decrease in displacements (or stresses) at the place where the design constraint is
imposed must be accompanied by an increase in the cross-sectional area of that
clement for which the absolute value of the function characterizing its behaviour is at
its greatest. From Table 1 it follows that, in order to diminish the vertical deflection of
node 2, the cross-sectional areas of bars 1, 2, 3, 4, 7, 8, 9 should be made larger. The
greatest absolute value of the displacement function derivative, hence a large
sensitivity the truss, takes placein bar 7. Its cross-sectional area was increased by 50 per
cent what resulted in the drop of the corresponding deflection by 3.5 per cent.

Table 2, corresponding to the stress sensitivity, shows that the truss is the most
sensitive in the bar 5, whose cross-section should be increased in order to decrease
its stresses. At the same time, it can be noticed that the decrease in its stresses can
also be obtained by diminishing the cross-sectional area of the bar 8. Its section was
decreased by 50 per cent and therefore the stress in the bar 5 was decreased by 18
per cent.

To sum up, the value of the gradient of the response functional is proportional to
the effect caused by a unit change of the design variable in the place in which the design
constraint is imposed.

The change in cross-sectional areas of an element may appear as a consequence
of small damages during transportation, assembling and process of corrosion as
well. The manufactured structural members delivered from factories have their
tolerances in dimensions. The investigation of design sensitivity may answer the
question whether amember which may be locally damaged is of crucial importance.

6. EXAMPLE OF ANALYSIS OF A 3-D STRUCTURE

6.1. DESCRIPTION OF STRUCTURE

The analysed roof consists of four main truss girders spanning 24 m and spaced at
6 m. The structural system is stiffened with two longitudinal bracings, diagonals in
the plane of roofing and some additional strengthening bars as shown in Fig. 2.
Geometry and loading pattern of the main girder is shown in Fig. 3. Concentrated
Joads result from steel purlins on which reinforced concrete slabs rest to transmit
the selfweight and snow load. Some forces are also present at the lower chord
nodes. The girders are simply supported. All rolled sections are shown in Table 3.
Conventional stress and displacement analysis of the roof was made by Nawror
et. al [20]-
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6.2. COMPUTATIONAL MODEL

Design sensitivity analysis of the above described spatial structure was made under
both displacement and stress constraints. To emphasize a number of aspects of the
sensitivity analysis the structure was modelled as a frame for the
constraint and as a truss for the stress constraint. Hinged connectio
bracings and main girders are assumed. Full compatibility of the t
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Table 3
Catalogue of steel rolled sections.
Zestawienie profili walcowanych
1 Cross-

g bt oo D A,

cle area m? m m m
upper chord 2[] 180E 1.44E-2 R.67E-8 1.23E-5 2.18E-5
lower chord as above
vertical bar _ 1s0x90x8 1.40E-3 1.53E-8 4.36E-7 1.69E-6

diagonal

;jf: e 2)l100x75x8  270E-3  2.99E-8  270E-6  2.93E-5
diagonal bars 20160 x 60 x 6 1.38E-3 1.73E-3 4.66E-7 7.83E-6
in-plane ;
Lnr;)da;ng L60 x 60 x 6 6.91E-6 3.00E-9 1.50E-9 1.50E-9
upper and lower
chord [120E 1.34E-3 2.34E-8 3.12E-7 3.04E-6
ol bracings
diagonal bars ;
of bracings L60 x 60 x 6 691E-6 1.53E-8 4.36E-7 1.68E-6
purlins " 2[]I80E  144B2  867E-8  123ES  2I8ES
;‘;’:glhemg 16 4.14E-5 i £ b

-omponents along x, y, z-axes of the node connecting the segments of purlins and the
sne of the girder where the purlin rests is also assumed.

To prevent the truss model from any rigid body motion some elastic supports are
ntroduced at the nodes of the girders. Their compliances are assessed by assuming the
sresence of some equivalent beams spanning the nodes and subjected to unit
-oncentrated forces. For example, the compliance of the‘equivalent support for the
sode 8 is found by calculating a deflection, caused by a unit force, of the simply
;upported beam spanning nodes 6 and 10.

Effect of geometrical imperfections in the edge girder is also analysed. Changes in
.ensitivity for a number of static patterns are evaluated. One loading patternis assumed.

Next, some aspects of sensitivity analysis of the system are presented under the
tress costraints. The typical main girders can be assembled in various 3-D systems of
sracings. Eight of them are distinguished and majority of them arc analysed.

To systemize the consecutive static patterns, an idea used by Kapera [21] is here
.mployed. The first pattern, called the basic one, consists of main girders and
ongitudinal bracings. The remaining patterns may be understood as sums of the basic
;attern and various types of additional bracings.

The expressed symbolically static patterns are as follows:

1. Basic pattern { =} main girders {+} longitudinal bracings,

2. Pattern 1 { =} basic pattern { +} longitudinal bracings,
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3. Pattern 2 { =} pattern 1 {+} strengthening bars,

4. Pattern 3 { =} basic pattern { +} strengthening bars,

5. Pattern 4 { =} basic pattern { +} purlins,

6. Pattern 5 { =} pattern 4 {+} strengthening bars,

7. Pattern 6 { =} pattern 5 {+} roofing bracings,

8. Pattern 7 { =} pattern 1 {+} purlins.

The symbols { =} and { +} stand for formal opcrators of equality and additivity.

6.3. ASSUMED DESIGN CONSTRAINTS

The displacement constraints are imposed on the vertical deflections of lower chord
central nodes of main girders. Specifically, 0.01 m is assumed as the maximum

deflection. The stress constraints are imposed according to the Porisu Cobpt or

Pracrice [14]. They differ for members under tension and compression.

6.4. ANALYSIS OF RESULTS — DEFLECTION CONSTRAINT

Sensitivity of a single plane truss girder was analysed. The results are shown in Fig. 4
while the values of derivatives of the response function for diagonal and vertical bars
are listed in Table 4. Numbers of elements according to Fig. 3 arc shown along the
horizontal axis; diagonal and vertical bars are numbered from 1 to 15, upper chord
bars from 16to 23, lower chord bars from 24 to 29. Derivatives of the response function
for particular elements with respect to the cross-sectional area are shown along the
vertical axis. Lines that join particular point are only to help visualize the variability;
no continuous change of sensitivity from element to element is meant in the picture.
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element numbers

Fic. 4. Displacement sensitivity of main girder to variations in the cross-sectional area
Rys. 4. Wrazliwos¢ przemieszczen na zmiang pola przekroju w elementach dzwigara glownego
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Table 4

Displacement sensitivily lo cross-sectional area in vertical members and diagonal bars of plane girder.
Vrazliwo$é przemieszczeri z uwagi na zmian¢ pola powierzchni w elementach stupkéw i krzyzulcow

dzwigara plaskiego
Simply Simply
Element supported supported Clamped
number truss frame truss
1 —1.4281E+01 —1.8605E+01 —1.4262E +01
2 —5.7010E+00 —T7.4274E+00 —5.7303E+00
3 —2.4723E+01 —3.3262E+01 —2.3%46E+01
4 —2.3954E+00 —3.4995E + 00 —2.4836E+00
5 —4.7937E+00 —8.6202E + 00 —4.9710E+00
6 —1.0038E+00 —1.8052E + 00 —9.9423E—-01
7 8.1485E—-01 —1.2301E+00 6.6978E —01
8 —4.0592E 400 —1.9904E + 00 —3.9501E+00
9 8.1485E—-01 —1.2301E+00 6.6978E—01
10 —1.0038E 400 —1.8052E+00 —9.9423E-01
11 —4.7937E+00 —8.6202E+00 —4.9710E+00
12 —2.3954E+00 —3.4995E+400 —2.4836E4-00
13 —2.4723E+01 —3.3262E+01 —2.3946E +-01
14 —5.7010E+00 —T7.4274E+00 —5.7303E+00
15 —1.4281E+01 —1.8605E +-01 —1.4262E+01

he structure is seen to be very sensitive in diagonal bars 3 and 13 but in diagonal bars
7 and 9 which are close to the centre of the girder remain practically insensitive. The
;ystem is also relatively insensitive in the upper chord bars 16 and 23 near the supports.
WNhen the boundary conditions are changed from free to clamped the sensitivity of the
structure in diagonal bars near supports increases while in the upper chord near
supports the structure becomes practically insensitive. Comparison of the two support
-.onditions may lead to the conclusion that the diagonals 3 and 13 should have larger
.ross-sections or the geometrical setup of the girder should be enhanced. As indicated
>y KaPELA, NawROT, POSTEK in [22], errors in the construction of supports, causing the
-hanges in boundary conditions, are frequently encountered in this type of structures.
Next, a frame pattern was analysed and the conclusion was drawn that the results of
sensitivity analysis for both patterns are very close to each other.

Further, effects of geometrical imperfections on the sensitivity distribution in
sarticular elements were investigated for girders in 3-D situations. Imperfections were
Emposed in the edge girder treated as a framed system. A number of variants were
sonsidered to show that some often applied simplifications (such as mental decom-
sosition into plane systems, neglect of certain elements in calculations by treating them
15 second-order ones) can lead to unreliable or even wrong results.

All the sensitivity analysis results for 3-D systems are reffered to the behaviour of
he plane main girder. These results are given in Table 5. In the first column the
qumbers of elements are shown, column 0 contains the derivatives of the responsc

wunction for plane girder, column 01 for the basic pattern while the remaining columns
| — 6 show the respective values for the rest of patterns.
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Table 5

Displacement sensitivily Lo cross-sectional area of plane girder compared with corresponding values in
imperfect space systems.
Porownanie wrazliwosci przemieszczen dzwigara plaskiego z odpowiednimi wielkosciami dla przesirzen-
nych ukiadoéw z imperfekcjami

El. Statical pattern
no 0 01 1 2 3 4 5 6
1 —14.262 —13.563 —17.219 —13.878 —12.599 —14.645 —13.359 —13.621
2 —5.730 —11.881 —23.747 —7.302 —6.903 —15.483 —8.875 —7.118
3 23946 —24452 —26.857 —22.857 —22.068 —24.074 —22326 —22.730
4 —2.483 —5.619 —4.537 —2.457 —3.288 —3.443 --2.386 —2451
5 —4.971 —7.879 —6.180 —4.537 —6.245 —5.374 —4.859 —1.767
6 —0.994 —3.011 —3435 —1.761 —2434 —-2.211 —1.992 —-1.779
7 0.669 —0.143 0.139 0.397 —0.021 0.217 0.257 0433
8 —395 —26.411 —5.137 —5.033 —24.087 —8.879 —17.239 —4.491
9 0.669 0.213 0.335 0.428 0.191 0.489 0.472 0.394
10 —0.994 —1.384 —3475 —2.197 —1.365 —2.164 —-2.135 —2459
11 —4.971 —4.100 —6.765 —5.148 —4.107 —5.639 —5.482 —5.431
12 —2.483 —2.367 —3.590 —2.380 —2.303 —2.795 —2.549 —2.354
13 —23946 —21.143 —23.030 —22.689 —21.329 —21.666 —21.753 —22.500
14 —5.730 —5.805 —6.235 —5.697 —5.674 —5.511 —5.225 —5.600
15 —14.262 —12.727 —13492 —13.566 —12.782 —12.709 —12.722 —13.247
16 —4.409 —6.332 —4.269 —4.258 —6.010 —-4.102 —4.163 —4.164
17 -11.725 -20.238 —11.293 —11.525 —18.311 —12.335 —12.141 —11.228
18 —16.784 —22.689 —16.239 —16.659 —23.672 —15.602 —15.822 —16.229

19 19514 —-31.737 —19.172 —19453 —-31.557 —20.292 —19.585 —18.985
20 —19.514  —31.227 —19.083 —19.354 —29.73¢  —20.592 —19.692 —18.938
21 —16.784  —16.339 —15908 —16.195 —17.616 —14.949 —15350 —15.868

2 —11.725 —10.892 —10.928 —11.117 —11.402 —10.374 —10.528 —10.899
23 —4.409 —3.976 —4.099 —4.166 —4.067 —3.908 —3.962 —4.078
24 —4.434 —9.093 —17.265 —6.460 —8.452 —17.963 — 7301 —6.294
25 —11.616 —13.9499 —13.32 —16.588 —13974 —13.400 —13.835 —16.438
26 —16.510 —52.634 —52221 —50.485 —48.080 —56.022 —50.656 —50.311
27 —16.510 —54.750 —52.876 —48.179 —49.597 —57.131 —51.418 —47.909
28 —11.616 —11.390 —12.855 —13.862 —12.238 —11.311 —12304 —13.648
29 —4.434 —4.338 —4.624 —4.442 —4.488 —4.169 —4.244 —4.347

In the performed calculations the basic system was analysed which means that the
influence of roofing and roof braces was neglected. The basic system was treated ag
both ideal one and that with imperfections. A considerable increasc in sensitivity of the
structure in the vertical central bar 8 and the near-support bar 2 was observed. Similar
increase was also noticed for the upper chord midspan bars 19, 20 as well as for the
lower chord midspan bars 26, 27 (column 1).

Next, the pattern 1 was analysed in which the effects of roof bracings were
accounted for and were found out to change the picture. Sensitivities of the structure
in the upper chord are close to those for ideal system, bracings have no influence on
the sensitivities in the lower 'chord bars vs:hereas_the sensitivity in the vertical bar
2 near support increases considerably and in the diagona] bar 3 (column 2) increases
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lightly. Efficacy of the strengthening bars, suggested by a consulting engineer as
.means tomake the structure more reliable, (pattern 2) wasinvestigated. It appeared
hat the sensitivities in all the bars become closeto those for ideal system, except in the
ower chord bars 26, 27 (column 3). The strengthening of the structure is, however,
ffective only il sufficient interaction of roofing braces is ascertained. This was shown
yy analyzing the pattern 3. The strengthening system reinstated the nearly ideal
yehaviour of the vertical bar 2 and the diagonal bar 3 but resulted in no changesin the
nidspan bars 26, 27 of the lower chord (column 4). Analysis of the pattern 4 was
imed at verifying whether the purlins alone can replace the roofing braces. Such an
ssumption is often made in practice when a relatively in-plane rigid reinforced
oncrete slabs are used to span the system of purlins. The presence of purlins
lecreased the sensitivity in central vertical bar 8 while increased that in the vertical
yar 2. Sensitivities in the upper chord bars 19, 20 were decreased while the behaviour
,{ the lower chord bars 26, 27 remained unchanged (column 5). The question was next
isked whether the joint system of strengthening bars and purlins is able to replace the
ystem of roofing braces (pattern 5). The answer is no since the sensitivity in both
ertical bars 2 and 8 is larger than for the ideal system in the same elements (column
;). Lastly, asystem was analysed consisting of roofing braces, strengthening bars and
yurlins (pattern 6). If turned out that sensitivities in all bars except in the lower chord
yars 26, 27 are close to those for the ideal system (column 7). Thus a different system
»f strengthening bars should be used to reinstate the ideal situation.

The above results have shown that the sensitivity analysis is a very efficient tool to
nvestigate variations in the behaviour of complex spatial structural systems.

Changes in the displacements at the places where the constraints were imposed did
ot exceed several milimeters and nevertheless, the sensitivity analysis enabled the
edistribution of effects to be followed and the right conclusions to be drawn as to
fficacy of the proposed structural remedies or the methods of calculations.

6.5. ANALYSIS OF RESULTS — STRESS CONSTRAINT

similar sensitivity analysis can be performed for the stress constraints. In what follows
he normal stress constraint will be imposed in the element 7 of the roof bracing system,
Zig. 5. The stresses, called here the admissible ones, are calculated according to the
>oLisH CopE of Pracrice [14]. Their values are: 2.15 x 10°kN/m? for tension and
2.40 x 103kN/m? for compression. Both ideal systems and those with imperfections
vere analysed. Sensitivity of bracing bars 1—15 was analysed. Systems 1, 7, 6, 2 were
jealt with and the results are shown diagrammatically in Fig. 6. In system 1 no
nteraction of purlins with the structure was taken into account and sensitivity in
sracing bars was found to be negligibly small. In system 7 an interaction of purlins was
,ccounted for — thus the roofing was considered in an indirect manner. The purlins
-ause a rem arkable increase in the sensitivity in the elements 7 and 9. After an addition
»f the strengthening bars (system 6) the structure becomes insensitive in the elements
1galn.
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axes of longitudinal bracings

stress constraint in element 7

FiG. 5. Roof bracing system.
Rys. 5. Schemat ukladu stezen
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Fic. 6. Stress sensitivily to variations in the cross-sectional area of roof bracing ideal systems.
Rys. 6. Wrazliwo$¢ naprezen normalnych na zmiang pola przekroju poprzecznego w elementach
stezen ukladow idealnych

Imperfections are found to change the picture. All the analysed systems are very
sensitive in the element 7. An addition of the strengthening bar system (system 7)

results in slight decrease of sensitivity at this place but constitutes no decisive factor in
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716. 7. Stress sensilivily to variations in the cross-sectional area of roof bracing systems with imperfections.
tys. 7. Wrazliwo§¢ naprezen normalnych na zmiang pola przekroju poprzecznego w elementach stgzen.
Uktady z imperfekcjami

he whole behaviour. Since bar 7 is a compressed one, to decrease sensitivity in this
Jement one should increase admissible stresses, i.e. decrease the buckling lengths of
yracing bars.

7. CONCLUSIONS

static sensitivity analysis of 3-D bar systems is presented in the paper under both the
lisplacement and the stress constraints. Some aspects of the computer implementation
ire also discussed.

Two types of analyses of a 3-D system are shown that enabled to investigate the
hanges occuring in complex structures. The conclusions drawn are directed to the
yracticing structural designer and consulting expert. Thus the classical methods can be
upplemented with the sensitivity analysis which has otherwise been treated asa tool in
he problems of structural optimization.

Possibility to study sensitivity with respect to variations in Young’s moduli and bar
engths makes the POLSAP system suitable for investigating changes in the structures
luring fire and due to the dimensional tolerances, respectively. Further studies are
JJanned to allow for various types of stress functions and for a nonlinear behaviour.
Jsefulness of classical geometrically nonlinear analysis of systems similar to that
nalysed in this paper was shown for example, in KareLa, Postek [23].

Displacement and stress state analyses have been deeply rooted in the designer’s
aind. Less firmly established are the sensitivity analysis methods and some difficulties
an be encountered in the proper interpretation of results obtained in the form of rows
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of numbers. Thus some ,.friendly” ways to interpret the nonstandard analyses should
be found. One of the avenues in this direction can be the use of the fuzzy sct theory
(Kacerzyk [24]) which allows to define such notions as small, large, pretty large etc.
The fuzzy set theory was applied to the classical problems formulated in displacements
and stresses by BLockLEY [25] and, for the nonlinear problems, by KLEBER [26].
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OCENA PRZYDATNOSCI ANALIZY WRAZLIWOSCI KONSTRUKCIJI
NA PRZYKLADZIE ZLOZONYCH UKLADOW PRETOWYCH

Streszczenie

’rzedstawiono niektore aspekty analizy wrazliwosci konstrukcji prgtowych zwracajac uwagg na mozliwosci
vykorzystania jej wynikow przez projektantow oraz ekspertow zajmujacych sig oceng stanu konstrukcji.
lozwazania przeprowadzono na przykladzie pewnej konstrukcji hali stalowej obliczanej jako uklad
yrzesirzenny.
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