
Computational Particle Mechanics (2019) 6:383–392
https://doi.org/10.1007/s40571-018-00219-8

Numerical and experimental investigation of an elastoplastic contact
model for spherical discrete elements

Jerzy Rojek1 · Dmytro Lumelskyj1 · Szymon Nosewicz1 · Barbara Romelczyk-Baishya2

Received: 19 July 2018 / Revised: 19 November 2018 / Accepted: 10 December 2018 / Published online: 18 December 2018
© The Author(s) 2018

Abstract
Acontactmodel for the normal interaction between elastoplastic spherical discrete elements has been investigated in the present
paper. The Walton–Braun model with linear loading and unloading has been revisited. The main objectives of the research
have been to validate the applicability of the linear loading and unloading models and estimate the loading and unloading
stiffness parameters. The investigation has combined experimental tests and finite element simulations. Both experimental
and numerical results have proved that the interaction between the spheres subjected to a contact pressure inducing a plastic
deformation can be approximated by a linear relationship in quite a large range of elastoplastic deformation. Similarly, the
linear model has been shown to be suitable for the unloading. It has been demonstrated that the Storåkers model provides
a good evaluation of the loading stiffness for the elastoplastic contact and the unloading stiffness can be assumed as varying
linearly with the deformation of the contacting spheres. The unloading stiffness can be expressed in a convenient way as a
function of the Young’s modulus and certain scaling factor dependent on the dimensionless parameter defining the level of
the sphere deformation.
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1 Introduction

Nowadays, the discrete element method (DEM) is used for
modelling various particulate and nonparticulate materials
such as soils, rocks, ceramics. Thematerial in theDEMis rep-
resented by a large assembly of particles interacting among
one another with contact forces. The particles can be of arbi-
trary shape, but spherical particles are often chosen because
of the simplicity and computational efficiency of the numer-
ical algorithm. The spherical particles will be considered in
the present study.
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The normal contact between particles in the DEM is very
often modelled assuming an elastic-type force–displacement
relationship. A simple contact model consisting of a linear
spring in parallel with a viscous damping element proposed
in the pioneering work by Cundall and Strack [4] is still very
popular in DEM simulations [3,7,16]. A nonlinear elastic
interaction is included in the contact models based on the
Hertz theory [5,11,25].

In many applications, however, particle deformation due
to contact cannot be treated as purely elastic. Because of
the contact force concentration, yielding at the contact zone
between two spheres made from ductile materials, e.g. met-
als, may occur at a relatively low loading [17]. In such
cases, a partial irreversibility of interparticle penetration
should be included in the contact model in the DEM. Various
elastoplastic models have been proposed for the DEM, e.g.
[10,15,20–24].

The model proposed by Thornton [22] considers both the
elastic and plastic ranges of the contact interactions. Ini-
tially, the contact is considered assuming the Hertzian elastic
model. The loading is switched to the plastic regime when
the yield criterion is satisfied. The yield criterion used by
Thornton [22] is based on the assumption that the contact
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stress distribution after yielding can be obtained by ”cutting
off” the Hertzian stress distribution. The Thornton’s model is
used in different applications which require consideration of
plastic effects in the interparticle interaction, e.g. [2]. It has
been, however, found out that the Thornton’s model underes-
timates significantly the contact force in the range of plastic
loading, cf. [15,23]. Improved elastoplastic contact models
analogous to that of Thornton have been proposed by Rath-
bone et al. [15] and by Vu-Quoc et al. [23]. In both cases, the
improvements were based on the results of the finite element
analyses of the contacting spheres.

The range of elastic loading is often very small in com-
parison with subsequent plastic loading, cf. [17]. Then, it can
be neglected and the contact deformation can be treated as
plastic from the contact initiation. This is consistent with the
rigid-plastic or rigid-viscoplastic material model. A model
assuming rigid-plastic behaviour according to the Hollomon
stress–strain-hardening curve has been developed by Storåk-
ers et al. [20,21]. The Storåkers contact model has been
successfully used for discrete element modelling of powder
compaction [12].

An issue of great importance in the elastoplastic contact
models is the choice of a suitable unloading model. The
Hertzian elastic unloading with a modified contact curva-
ture proposed by Thornton [22] is usually assumed in the
elastoplastic contact models, e.g. [15,23].

As it has been shown by Pasha et al. [14], a rigorous treat-
ment of the elastoplastic contact deformation is often not
necessary to represent behaviour of the granular material,
therefore simple linear elastoplastic models such as that pro-
posed by Walton and Braun [24] are still important for many
practical applications. The elastoplastic loading and elastic
unloading in the Walton–Braun model are governed by lin-
ear force-displacement relationships with different slopes,
which ensures a residual overlap of the particles when the
contact force drops to zero. No tensile forces are allowed
in the Walton–Braun model. The elastoplastic model devel-
oped by Luding [10] can be considered as an extension of
the Walton–Braun model to the adhesive contact.

Despite extensive research and apparent simplicity of the
problem, the question of applicability ranges and accuracy
of linear elastoplastic contact models in the DEM is not
fully answered. The present work is aimed at numerical and
experimental investigation of validity of the linear Walton–
Braun-type elastoplastic model and suitability of analytical
formulae for evaluation of model parameters defining the
loading and unloading stiffness.

Discrete element modelling of powder metallurgy pro-
cesses, including compaction, sintering and cooling is a
practical motivation of the present work, therefore the for-
mula proposed by Storåkers for powder compaction [8,13]
will be verified for evaluation of the loading stiffness. A spe-
cial interest will be paid to the unloading behaviour. The

linear approximation of the unloading relationship will be
checked against numerical and experimental data. The linear
contact model in the DEM is consistent with linear macro-
scopic relationships, e.g. [9]. A linear unloading model is
searched as a suitable microscopic counterpart of the linear
thermoelastic macroscopic description of the unloading of
the sintered material during cooling.

The outline of the present paper is as follows. In Sect. 2,
a brief formulation of the contact problem in the discrete
element method is given, and the formulation of the con-
sidered elastoplastic model: the Walton–Braun model with
the linear loading and unloading is presented. The Storåk-
ers model proposed for modelling the loading and the linear
model for the elastic unloading are introduced. Section 3
presents laboratory tests performed to provide experimental
data for validation of the analytical contact models and for
determination of material properties. Compression of steel
balls between two parallel flat plates has been carried out to
obtain the force–displacement relationships for a large range
of elastoplastic deformations. Uniaxial compression tests for
special nonstandard samples have been performed to obtain
stress–strain curve for finite element method simulations.
Section 4 describes finite element method simulations of the
problemanalysed experimentally.Validationof the analytical
contactmodel for the elastoplastic loading is shown in Sect. 5
using the experimental and numerical results. Modelling of
the elastic unloading is considered in detail in Sect. 6.

2 Formulation of the elastoplastic contact
model

2.1 Problem formulation

The normal contact interaction between two spherical parti-
cles i and j with radii Ri and R j (Fig. 1) is considered. The
particles’ positions are defined with the position vectors of
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Fig. 1 Definition of the two spheres contact
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their centroids, xi and x j . The contact force exerted on the
i-th particle by the j-th is denoted by Fi j , and by the New-
ton’s third law the contact force exerted on the j-th particle
F j i satisfies the relation:

Fi j = −F j i . (1)

Further on, we take F = Fi j = −F j i as the force represent-
ing the contact interaction between the particles. The contact
force vector F can be projected on the unit normal vector n:

F = Fn , (2)

where the unit normal vector n is assumed to be directed
radially inwards to the centre of the particle i :

n = xi − x j
∥
∥xi − x j

∥
∥

(3)

We employ the so-called soft-contact DEM formulation,
in which particles are treated as pseudo-rigid elements and
the deformation is assumed to be localized at the contact
zone.The effect of the local deformation is obtainedby allow-
ing a small overlap of the particles h (Fig. 1):

h = Ri + R j − ∥
∥x j − xi

∥
∥ (4)

The amount of the overlap h is used for the determination
of the contact force. Please note that the convention adopted
for the vector n and the overlap h is such that the contact
compressive force F is positive and so is the overlap h when
the particles are in contact.

2.2 Walton–Braunmodel

The model proposed by Walton and Braun [24] assumes a
linear force–overlap relationship, but the unloading slope
(stiffness) is higher than the loading slope (stiffness), which
leads to a certain residual irreversible overlap when the force
drops to zero. This allows us to treat this model as an elasto-
plastic one. The force as a function of the particle overlap is
plotted in Fig. 2. The contact force is given by:

F =
⎧

⎨

⎩

kLh for loading,
kU (h − h0) for unloading,
0 for further unloading, if h < h0 .

(5)

where h0 is the residual irreversible overlap, and kL and kU
are the loading and unloading stiffness, respectively, which
should satisfy the condition:

kL ≤ kU . (6)

h

kL

F

kU

0

Fmax

h hmax

Fig. 2 Force versus particle overlap in the Walton–Braun model

The residual overlap h0 representing the plastic deformation
of the contacting particles can be easily obtained as

h0 = hmax

(

1 − kL
kU

)

(7)

The reloding path follows the unloading path until the maxi-
mum overlap is achieved and the loading path is reactivated.

The unloading stiffness kU can be taken as constant or
variable described by a linear function of the maximum
force, Fmax, or the maximum overlap, hmax, achieved before
unloading, so that:

kU = kL + SFmax (8)

or

kU = kL + Bhmax , (9)

where S and B are certain constants.

2.3 Elastoplastic loadingmodel

The elastoplastic loading in the presented above Walton–
Braun model will be described by a special (linear) case of
the Storåkers model [20,21], which has been proposed for a
general viscoplasticity combining strain-hardening plasticity
and creep.A simplified formulationwithout strain rate effects
assumes rigid-plastic properties of the i-th and j-th particle
materials which are defined by the Hollomon stress–strain
relationships

σ (a) = σ
(a)
0 εm (10)

where σ
(a)
0 , a = i, j , are material constants and m is the

hardening exponent. The normal interaction force F is given
by the following equation:

F = 21−m/231−mπc2σ ∗
0 (R∗)1−m/2h1+m/2 , (11)
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where R∗ is the effective radius defined in terms of the par-
ticle radii, Ri and R j

1

R∗ = 1

Ri
+ 1

R j
, (12)

h is the particle overlap given by Eq. (4), the parameter c2 is
given by [6]:

c2 = 1.43 exp(−0.97m) (13)

and the equivalent Hollomon constant σ ∗
0 is defined as fol-

lows

(

σ ∗
0

)−1/m =
(

σ
(i)
0

)−1/m +
(

σ
( j)
0

)−1/m
(14)

For the ideal plasticity (without hardening) and spheresmade
of the same material, when σ (a) = σY and m = 0, Eq. (11)
is reduced to, cf. [13]:

F = 6πc2σY R
∗h , (15)

where c = 1.43. Comparing Eqs. (5) and (15), the loading
stiffness kL can be written as:

kL = 6πc2σY R
∗ . (16)

2.4 Elastic unloadingmodel

The Storåkers model has been derived neglecting elastic
deformation, cf. [8]. In such amodel, the unloading would be
governed by the rigid behaviour (no change of deformation
during the unloading). Assuming that the loading curve is
valid for an elastoplastic material, the Storåkers model has
been combined with the elastic unloading according to the
Hertz model [12]. Here, wewill assume the elastic unloading
according to the linear relationship

�F = kU�h . (17)

The stiffness kU will be evaluated assuming that the spring
modelling contact elasticity at unloading is equivalent to an
elastic bar of a nonuniform cross-sectional area (Fig. 3), con-
sisting of two segments, with the lengths

Li = Ri , L j = R j (18)

and the cross-sectional areas

Ai = αiπ(Ri )
2 , A j = α jπ(R j )

2 (19)

where 0 ≤ αi , α j ≤ 1 is the coefficient defining the area of
the segment as a fraction of the particle cross-sectional area.

R

R

i

j

L
i

L
j

Fig. 3 Schematic connection of two particles

The system of the two bar segments can be treated as two
springs connected in series with the stiffnesses given by

ki = Ei Ai

Li
= αiπEi Ri (20)

k j = E j A j

L j
= α jπE j R j (21)

where Ei and E j are the Young’s moduli of the materials of
the segments (or of the particles) i and j .

The equivalent stiffness kU of the system of two springs
is given by, cf. [16]:

kU = ki k j
ki + k j

. (22)

Introducing the relationships (20) and (21) into the formula
(22) and assuming Ei = E j = E and αi = α j = α, we
obtain the expression for the equivalent stiffness kU in the
following form:

kU = απER∗ (23)

where R∗ is the effective radius defined byEq. (12). For equal
size particles (Ri = R j = R), Eq. (23):

kU = 1

2
απER (24)

The purpose of further studies will be to determine the coef-
ficient α suitable for evaluation of the unloading stiffness
kU .

3 Experimental results

Experimental studies have been performed in order to vali-
date themodels predicting interaction forces between spheres
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subjected to a contact pressure inducing a plastic deforma-
tion of the spheres. Two kinds of tests have been carried
out. Firstly, compression of steel balls between two parallel
flat plates has been performed in order to obtain experimen-
tal data on the contact forces during loading, unloading and
reloading. Then, uniaxial compression tests have been car-
ried out for the samples cut out from the balls in order to
determine the stress–strain curve for finite element simula-
tions.

3.1 Compression of steel balls

Forged balls made of steel grade DC04 with diameters of 30
mm, 40 mm, and 50 mm shown in Fig. 4 have been com-
pressed between two flat plates. The experimental set-up is
shown in Fig. 5. It can be easily noticed that this problem is
equivalent to that of twoequal balls subjected to contact under
compressive loading (see Fig. 6) provided that the plates are
ideally rigid. In both cases, the respective geometric quanti-
ties are related by the same equation:

d = 2R − h (25)

which allows us to derive force–displacement relationships
valid for both cases.

The balls after the tests with visible flattened contact areas
are shown in Fig. 7. The force–displacement curves for the
loading and unloading for the balls of different diameters are
plotted in Fig. 8. It can be seen that in the investigated range of
loadingwith a good accuracy, the curves canbe approximated
with straight line segments. It has been shown by Rojek et

Fig. 4 Balls used for the tests: with diameters of 30mm, 40mm, and
50mm

Fig. 5 Compression of a ball
between two
plates—experimental set-up
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Fig. 6 Equivalence of the two problems: a contact between two balls
under compressive loading, b compression of a ball between two plates

Fig. 7 Deformed balls (after the tests)with diameters of 30mm, 40mm,
and 50mm
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Fig. 8 Force–displacement curves for the loading and unloading for
the balls of different diameters

al. [17] that the size-dependent force–displacement relation-
ships for the contact between two equal balls can be easily
transformed to the size-independent relationships between
the pressure-type and strain-type parameters, F/4R2 and
h/2R, respectively. The force–displacement curves scaled
in this way are plotted in Fig. 9. It can be observed that the
scaled curves for the balls of different sizes merge pretty
well. This shows that the scaled relationships can be used for
different particle sizes provided that the material properties
are the same.

Some of the tests have been performed carrying out sev-
eral loading–unloading–reloading (l-u-r) cycles. The scaled
force–displacement curve for a ball of 30 mm diameter sub-
jected to four l-u-r cycles is plotted in Fig. 10. It can be
observed that the reloading curves coincide ideally with the

123



388 Computational Particle Mechanics (2019) 6:383–392

 0

 20

 40

 60

 80

 100

 120

 140

 0  0.02  0.04  0.06  0.08  0.1  0.12

F/
4R

2  [M
Pa

]

h/2R

1 - φ30 mm
2 - φ30 mm
3 - φ30 mm
4 - φ30 mm
5 - φ40 mm
6 - φ40 mm
7 - φ50 mm
8 - φ50 mm
9 - φ50 mm

Fig. 9 Scaled force–displacement curves for the loading and unloading
for the balls of different diameters
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Fig. 10 Scaled force–displacement curve for the ball of 30mmdiameter
subjected to four loading–unloading–reloading cycles

unloading ones and the slope of unloading/reloading curves
gets higher when the loading level is higher.

3.2 Determination of stress–strain curves

Nonstandard small cylindrical samples (of 5 mm diameter
and 8 mm height) have been cut out from one of balls. Fig-
ure 11a shows the ball, the cylinder cut out from the ball,
and one of the samples before and after compression test.
The set-up of the compression test is shown in Fig. 11b. The
stress–strain curve obtained from the compression tests is
plotted in Fig. 12.

Fig. 11 Compression test: a deformed and undeformed cylindrical
specimen, b test set-up
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Fig. 12 Experimental stress–strain curve obtained from the compres-
sion test

4 Finite element method simulation

The contact of an elastoplastic sphere against a rigid plane
surface has been simulated using the finite element method.
The analysed problem can be considered as quasistatic and
it can be solved using either static or dynamic formulation.
The explicit dynamicFE frameworkwhich is commonly used
for metal forming processes [18,19] has been chosen here.
The isotropy of material properties has been assumed. The
geometry, loading and boundary conditions are symmetric
about an axis of rotation; therefore, the problem can be solved
using two-dimensional finite elements keeping the features
of the three-dimensional description.

A 2D axisymmetric model has been prepared for the
ABAQUS/Explicit FE program [1]. A hemisphere with a
radius of 15 mm has been discretized nonuniformly with
3175 four-node bilinear axisymmetric quadrilateral CAX4R
finite elements with the reduced integration and hourglass
control. The finite element model is shown in Fig. 13. A
magnified detail in Fig. 13b illustrates a mesh refinement in
the contact area where high stress and strain gradients are
expected. Frictionless contact conditions have been assumed
between the hemisphere and the plane. Compressive loading
has been introduced by applying the vertical displacement
to the top plane surface of the hemisphere without restrain-

Fig. 13 Finite element model of the hemisphere–plane contact prob-
lem: a the whole model, b a magnified detail of the contact zone
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ing the horizontal motion. Similarly, the unloading has been
controlled kinematically. In order to ensure quasistatic con-
ditions, the loading and unloading have been applied using
sinusoidal velocity profile with a sufficiently low-velocity
amplitude. Maximum velocity 0.1 m/s has been taken for the
loading and 0.02 m/s for the unloading.

Standard values of the Young’s modulus and Poisson’s for
a steel have been taken, E = 2 · 105 MPa and ν = 0.3,
respectively. The isotropic strain-hardening plasticity has
been assumed with the stress–strain curve given by the Swift
equation:

σ = C
(

ε0 + εp
)n (26)

where εp is the effective plastic strain, and C , ε0 and n are
material parameters. The Swift curve parameters have been
obtained by fitting the numerical stress–strain curve to the
experimental one given in Fig. 12. Comparison of the ana-
lytical curve defined by the Swift parameters:C = 809 MPa,
ε0 = 0.0013 and n = 0.232 with the experimental stress–
strain curve is shown in Fig. 14.

The numerical and experimental scaled contact force–
displacement curves are plotted in Fig. 15. It should be noted
that the numerical curve in Fig. 15 has been constructed tak-
ing h equal twice the applied displacement to the plane of the
hemisphere in order to use consistent parameters with those
defined in Fig. 6b. Both curves plotted in Fig. 15 are very
close to each other which confirms correctness of the numer-
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Fig. 14 Analytical approximation of the experimental true stress versus
true strain curve—Swift equation σ = 809
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Fig. 15 Experimental and numerical scaled force–displacement curves

ical model. It can be noted, however, that while the slopes of
the experimental and numerical loading curves are nearly the
same, the difference in the slopes of the unloading curves is
significant. This will be discussed in more detail further on
when parameters of the unloading model will be evaluated.

Figures 16 and 17 present equivalent plastic strain and
stress distributions in the contact zone at two stages of load-
ing. It can be seen that the yielding is initiated very early,
which explains why the elastic Hertzian solution has a lim-
ited validity to very low levels of loading.

5 Validation of the analytical contact model
for loading

The analytical Storåkers contact model presented in Sec. 2
will be validated against the experimental and simulation
data. Figure 18 shows the scaled force–displacement rela-
tionship according to the linear Storåkers contact model
compared to the experimental and simulation curves.

The linear Storåkers model is given by Eq. (15). For equal
size balls made of the same perfectly plastic material, it takes
the form:

F = 3πc2σY Rh . (27)

The initial yield stress σY = 214MPa, determined in the lab-
oratory compression test, has been taken in evaluation of the
contact force according to Eq. (27). It can be seen in Fig. 18
that the plastic Storåkers model predicts the contact force
which agrees quite well with the experimental and numeri-
cal results in a range of moderate deformations (in the test
considered up to 5% reduction of the ball dimension along
the loading direction).

The loading stiffness kL for the force–displacement rela-
tionship given by Eq. (27) is expressed as follows:

kL = 3πc2σY R (28)

and it amounts to 43.26 MN/m for the given data. The rela-
tionship (27) can be transformed into the equivalent scaled
form:

F

4R2 = κL
h

2R
, (29)

where

κL = 3

2
πc2σY = 1442.1 MPa . (30)

The decrease in stiffness manifesting itself by the devi-
ation of the experimental and numerical curves from the
Storåkers model at higher values of h/R is due to large defor-
mations of the compressed balls.
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Fig. 16 Results of the FEM
simulation for
h/2R = 1.5202 · 10−04: a
equivalent plastic strain
distribution, b Von Mises stress
distribution in the contact zone

(a) (b)

Fig. 17 Results of the FEM
simulation for
h/2R = 5.1668 · 10−03: a
equivalent plastic strain
distribution, b Von Mises stress
distribution in the contact zone

(a) (b)
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Fig. 18 Comparison of the scaled analytical force–displacement rela-
tionship with experimental and numerical results

6 Analysis of the unloadingmodel

In order to have more data on the unloading, the FEM sim-
ulation has performed for a number of loading–unloading–
reloading. The scaled force–displacement curve obtained in
this simulation is plotted in Fig. 19. It can be seen that the
linear model is quite a good approximation for unloading
even for relatively small deformations. The reloading curves
coincide with the unloading ones. The numerical results are
consistent with the experimental results shown in Fig. 10.
Similarly, the unloading slope in the numerical results gets
steeper when the loading level is higher.

The unloading stiffness and its variation will be deter-
mined using the experimental and numerical results given
in Figs. 10 and 19, respectively. Let us assume that the
stress-type and strain-type variables, �F/4R2 and h/2R,
respectively, during unloading are related linearly:

�F

4R2 = κU
�h

2R
(31)
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Fig. 19 Numerical scaled force–displacement curve for a number of
loading–unloading–reloading cycles

where κU is a certain modulus dependent on the achieved
maximum force or deformation. Rewriting Eq. (31) in the
form:

�F = 2RκU �h (32)

and comparing it with Eq. (5) we can easily notice that the
unloading stiffness kU is given by:

kU = 2RκU . (33)

Having calculated the unloading stiffness kU , the parameter
α used in Eq. (24) can be obtained as:

α = 1

2kU
πER , (34)

The results of the calculations performed for the numerical
and experimental studies are presented graphically in Figs.
20 and 21. Taking advantage of the proportionality (33) the
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Fig. 20 Variation of the unloading stiffness as function of themaximum
deformation at the contact

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.05 0.1 0.15 0.2 0.25

α according to Storakers

α

hmax/2R

experimental results
FEM simulation

Fig. 21 Variation of the unloading stiffness coefficient as function of
the relative maximum deformation at the contact

unloading moduli kU and κU have been presented in one plot
in Fig. 20. as functions of hmax and hmax/2R, respectively.
Variation of the stiffness in terms of the coefficient α is given
in Fig. 21.

The plots in Figs. 20 and 21 reflect the difference between
the unloading slopes in the experimental studies and numeri-
cal simulationswhich can be observed in Fig. 15. Experimen-
tal studies have been performed taking care to compensate
properly the machine stiffness in order to eliminate its influ-
ence on the results. It was impossible, however, to avoid an
error due to an indentation of the compressed balls into the
plates. These problems do not occur in the FEM simulations;
therefore, as far as the unloading stiffness is concerned, the
numerical results are more credible than the experimental
ones obtained in the tests performed in this work.

It can be further observed in Figs. 20 and 21 that the points
representing the unloading moduli lie approximately along
straight lines. This shows that the linear relationships pos-
tulated in Eqs. (5) and (9) are justified. The straight lines
approximating the unloading moduli, however, intersect the
vertical axis above the point representing the loading stiffness

Table 1 Parameters of the unloading models approximating numerical
and experimental data

Parameter FEM Experimental

kL (MN/m) 43.263 43.263

k0U (MN/m) 266.72 364.06

B (MPa) 439745.6 121328.2

κL (MN/m) 1442.1 1442.1

κ0
U (MPa) 8890.7 12135.4

b (MPa) 439752.0 120692.2

αL 8.879E-03 8.879E-03

α0 0.0565 0.0729

β 2.693 0.7501

according to the Storåkers model calculated in the previous
section. In viewof this, the relationship (9) should be replaced
with:

kU = k0U + Bhmax, where k0U ≥ kL . (35)

Analogous relationships can be written for the unloading in
terms of the modulus κunl

κU = κ0
U + b

hmax

2R
, where κ0

U ≥ κL , (36)

and in terms of the scaling coefficient α

α = α0 + β
hmax

2R
, where α0 ≥ αL . (37)

Equations (35)–(37) define the respective lines plotted in
Figs. 20 and 21, and their parameters k0U , κ

0
U andα0 represent

the initial unloading modulus, B, b and β define the variation
of the unloading modulus with an increasing deformation,
and kL , κL and αL define the loading stiffness. These param-
eters determined from experimental and numerical data are
given in Table 1.

7 Conclusions

The analysis of the experimental and numerical results has
confirmed some known observations as well as it has given
a new insight into the inelastic contact between spheres
which can be useful to model the interparticle contact in the
discrete element method. Both experiments and numerical
results have shown that the elastic model has a very limited
validity if plastic effects should be taken into account. The
plastic deformation is initiated at a low load and the contact
force cannot be predicted using the elastic contact models,
for instance the Hertz one. Both numerical and experimental
results have shown that the force–displacement curve can
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be approximated by a linear relationship in quite a large
range of elastoplastic deformation of the contacting spheres.
It has been shown that the linear Storåkers model predicts
the force–displacement relationship which agrees very well
with the experimental and numerical results.

Much of the attention in the present work has been paid
to the modelling of the unloading in the contact between
inelastic spheres. It has been demonstrated that the unload-
ing can be approximated accurately by the linear model with
the modulus varying linearly with the maximum deforma-
tion achieved in the contact. Based on the analysis of the
experimental and numerical data, it has been proposed that
the initial unloading stiffness can be larger than the load-
ing stiffness. The parameters for the unloading model has
been evaluated. Use of the size-independent parameters to
describe the model allows us to assume that the results can
also be used for other materials and particle size in the dis-
crete element method.

The presented results and their analysis have shown that
theWalton–Braun-typemodelwith the loading stiffness eval-
uated according to the linear Storåkers model and the linear
elastic unloading with linearly varying unloading stiffness
should be an efficient and accurate model for the inelastic
contact in the discrete element method using spherical par-
ticles. Obviously, one should be aware of the limitations of
this model.
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