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Abstract An application of electromagnetic devices

of the motional type (i.e. eddy-current dampers) to

improve the dynamic stability of a cantilever pipe

discharging fluid is proposed. When the flow velocity

reaches a critical value, this system loses stability

through the flutter. A contactless damping device is

used. This actuator is made of a conducting plate

attached to the pipe that moves together with it within

the perpendicular magnetic field that is generated by

the controlled electromagnets. During the motion the

eddy currents in the plate and a resultant drag force of

a viscous character are generated. First, an optimal

control problem that aims to stabilise the system with

the optimal rate of decrease of the system’s energy is

posed and solved. Then a state-feedback parametriza-

tion of the obtained optimal control, which can be used

in a closed-loop scheme is proposed. The effectiveness

of the designed optimal controller is validated by

making a comparison with the corresponding passive

solutions on the specially designed and constructed

experimental test stand of a pipe conveying air.

Keywords Fluid–structure interaction �
Electromagnetic device � Eddy-current damper �
Optimal control � Stabilisation � Smart structure

1 Introduction

The dynamics of pipes with flow have been studied

intensively for over half a century [1]. The reasons for

these studies include the practical importance of the

problem—that is, they are widely used in various

installations, cooling systems, pipelines, ocean min-

ing—and also to collect knowledge that may be useful

in other areas of fluid–structure interactions [2].

Moreover, numerous studies are related to the dynam-

ics of fluid-conveying carbon nanotubes, whose

nanostructural size poses non-classical mechanical

problems which need to be solved to apply CNTs in,

for example, gas storage or drug delivery [3, 4].

When the flow velocity inside the cantilever pipe

exceeds the so-called critical value, self-excited flutter

vibrations arise. This behavior is specific to cantilever

pipes; that is, pipes which are supported at both ends

are prone to a buckling type of instability [5]. This

phenomenon can be observed in our daily life. For

example, when a strong stream of water flows inside a

garden hose, its free end makes a snake-like motion on

the grass. These kind of systems are prone to changes

of their physical parameters and to the introduction of

new effects. For example, an effect of a viscous

damping or a lumped mass attached to the pipe can

both stabilize or destabilize the system, depending on

the values of its parameters [6, 7]. Recently, the

applications of functionally graded materials are

investigated to enhance stability of fluid-conveying
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pipes [8, 9]. Moreover, the destabilizing effect of

damping has also attracted attention of the researchers,

due to its positive impact on devices used for energy

harvesting [10].

Imbrahim’s [1] article lists over 30 research papers

related to the control of fluid-conveying pipes. The

vast majority of them describe the concept of gener-

ating transverse forces or bending moments acting on

the system actively, depending on the state of the

system in a closed feedback loop. Various actuators

have been used to do this, some examples include

servomotors stuck to a pipe [11–13], gyroscopic

mechanisms [14], and piezoelements mounted on a

pipe surface [15, 16] or embedded in its material [17].

A few of these papers aim at more general results, and

the type of the actuator is not defined [18, 19].

A significant disadvantage of active methods is

their ability to destabilize the system when a failure

happens because the external action of forces or

moments can put additional energy into the system.

Thus, it is proposed to use a semi-active method that is

based on an eddy-current damper, a.k.a. the motional

(Lorentz) type of electromagnetic device. In numerous

applications of structural control, the employment of

the semi-active devices provided a good balance

between the performance and robustness [20–26],

reducing the amount of consumed energy compared to

the active actuators.

The considered eddy-current damper consists of a

conducting plate that moves within a perpendicular

and (approximately) constant magnetic field as, for

example, in an analogue electricity meter. As a

consequence of the Lenz law, this motion generates

eddy currents in the plate and a drag force that is

approximately linear function of the plate’s velocity.

Therefore, they are viscous-type dampers. The damp-

ing coefficient depends on the size of the plate and the

induction of the magnetic field [27]. These devices

were considered for use in vehicle suspension systems

[28] and also to reduce the lateral vibrations of a

rotating shaft [29]. They are contact-less, so they do

not disturb the dynamics of the pipe, apart from

introducing an additional mass. Moreover, they allow

incorporating a control strategy in a convenient way—

by changes of the voltage supplied to the actuators.

Such actuators are reported to be usually more

effective than the dampers of another popular cate-

gory, i.e. transformer devices [30, 31], which showed

mediocre effectiveness when applied for the passive

stabilization of a pipe with flow [32]. Their numerous

advantages make us believe that the obtained results

may find other applications involving vibration sup-

pression, which are not necessarily related to the pipes

with flow.

In the present work, the idea of using eddy-current

dampers for the semi-active control of a fluid-

conveying pipe is evaluated. The idea has been

initially studied by the present authors in [33], where

they developed the model of the system and by means

of numerical simulations demonstrated a general

stabilizing performance of an open-loop switched

control. In this work, a robust state-feedback control

that aims at improving the stability of the system with

the optimal state’s convergence measure is designed

and validated experimentally. For that purpose the

structure of the control acting as a solution to a

convergence-related finite-horizon optimal control

problem is investigated. Based on this structure, a

parameterized state-dependent control function is

constructed. The selection of the control function’s

parameters is made based on the solution to the

suboptimal control problem concerned with the

assumed convergence measure. The efficiency and

robustness of the designed controller are verified

experimentally in a vast range of flow velocities. The

experiments are conducted on a specially designed and

manufactured test stand.

Fig. 1 Schematic of the

examined system: a standing

cantilever pipe conveying

fluid together with electro-

magnetic devices of

motional type
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2 Mathematical model

The dynamic behavior of a vertical pipe conveying

fluid, which has its lower end mounted in a clamped

configuration, see Fig. 1, is going to be studied. The

electromagnetic devices of the motional type are

attached at a selected position along the pipe. A

general description of the dynamics of fluid-conveying

pipes involves complex non-linear modeling, see, for

example, [34, 35]. In this work, it is assumed that the

pipe is slender and is subjected to small lateral

oscillations in the plane of symmetry n� w. There-

fore, the linear Bernoulli–Euler model is valid. The

selection of the linear model is also motivated by the

needs of our control design. As will be demonstrated,

the assumed model allows characterizing the bang–

bang structure of the optimal open-loop stabilizing

controls (see Sect. 4.1). This in turn enables choosing

an appropriate state-dependent function for the sub-

optimal closed-loop controller (Sect. 4.2). The

assumed linear structure’s model also allows building

the computationally efficient optimization procedure

(Sect. 4.3).

Let w ¼ wðn; tÞ stand for the pipe’s horizontal

deflection. A viscous-type internal damping is con-

sidered. The gravity force acting downwards is taken

into consideration. The mass of the actuators is

included in a lumped form, however their rotatory

inertia is disregarded in this study. The so called plug

flow model is employed. This means that the flow

velocity is constant across every cross-section that is

perpendicular to the longitudinal axis of the pipe.

The resultant equation of the dynamics of the pipe

is as follows

EI
o4w

on4
þ E�I

o5w

on4ot

þ mf v
2 þ mþ mf

� �
L� nð Þgþ 1½0;na�Mag

� � o2w

on2

þ 2mf v
o2w

onot
� mþ mf þMada
� �

g
ow

on

þ C B2
1 þ B2

2

� �
da

ow

ot
þ mþ mf þMada
� � o2w

ot2
¼ 0;

ð1Þ

where L is the pipe’s length, EI and E�I—the bending

stiffness and bending damping of the pipe, m and mf —

the masses (per unit length) of the pipe and the fluid,

Ma—the mass of the actuators attached at the distance

na from the pipe’s support, v—the flow velocity, C—

the constant of the viscous damping force generated by

the actuators, B1 and B2—the magnetic inductions in

the electromagnets’ circuits, g—the gravitational

acceleration, da—the Dirac delta function concen-

trated at na, and 1½0;na�—the indicator function over the

interval ½0; na�.
The clamped support leads to the following

boundary conditions

w
���
n¼0

¼ ow

on

����
n¼0

¼
�
EI

o2w

on2
þ E�I

o3w

on2ot

�

n¼L

¼
�
EI

o3w

on3
þ E�I

o4w

on3ot

�

n¼L

¼ 0:

ð2Þ

Equation (1), the same as the equation used by the

authors in the numerical study [33], is similar to the

equation that was validated in [36]. What sets them

apart is an incorporation of internal damping in the

pipe and, obviously, the effect of the actuators—their

mass and the drag force. Note that the flutter is a result

of two opposite effects generated by the flow: the

inertial force of the moving fluid mf v
2o2w=on2, which

destabilizes the system, and the Coriolis force

2mf vo
2w=onot, which exerts a damping effect.

To reduce the frequency of vibrations, the inertia of

the system is increased by adding mass M at distance

nM from the support. Moreover, the pipe is restrained

by a thread at location nt, so that the vibrations are

planar, similar to [6, 37]. The additional mass is

modeled analogously as the actuators, whereas the

thread is treated as a linear spring of stiffness kt. The

appropriate terms were incorporated into Eq. (1), yet

they are not presented here to make the equation

clearer.

The constant determining the viscous drag amounts

to C ¼ rhS a1 þ a2ð Þ, where r is the electric conduc-

tivity of the plate, h—the plate’s thickness, S—the

cross-sectional area of the magnetic flux that crosses

perpendicularly the plate (by assumption, the flux

remains constant over the area of the plate during the

vibrations), and a1; a2—the constants that depend on

the size of the plate and the cross-section of the

magnetic flux, see [27].

The control is going to be designed using a

discretized system represented by a set of ordinary

differential equations. Assume an approximate
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solution to the partial equation (1) in the form of a

linear combination of cantilever’s eigenfunctions

wðn; tÞ ¼
Xn

j¼1

WjðnÞYjðtÞ; ð3Þ

WjðnÞ ¼ Cj

h
cosh

kj
L
n� cos

kj
L
n

þ sin kj � sinh kj
cos kj þ cosh kj

	
sinh

kj
L
n� sin

kj
L
n

i

;

ð4Þ

where kj are the consecutive roots of the characteristic

equation cos k cosh k ¼ �1, and Cj—the constants

that normalize the modal shapes with respect to the

norm generated by the scalar product
R L

0
WiWj.

Applying the Galerkin procedure, a set of n second-

order ODE’s for the vector of unknown generalized

coordinates Y ¼ Yið Þn�1 is obtained

M €Yþ Dþ vDCor þ uDactð Þ _Yþ Sþ v2Sin
� �

Y ¼ 0;

ð5Þ

where M ¼
�
ðmþ mf Þdij þMaWiðnaÞWjðnaÞ

�
n�n

is

the mass matrix; D ¼
�
ðE�Iðkj=LÞ4dij

�
n�n

—the struc-

tural damping matrix; DCor ¼
�
2mf dij

�
n�n

—the

matrix that characterizes the effect of the Coriolis

force; Dact ¼
�
CWiðnaÞWjðnaÞ

�
n�n

—the matrix

describing the influence of the actuators; S ¼
�
EIðkj=LÞ4dij þ mþ mf

� �
gbij þMagcij � mþ mf

� �

gdij �MagWiðnaÞW 0
j ðnaÞ

�
n�n

—the structural stiffness

matrix; Sin ¼
�
mf aij

�
—the matrix characterizing the

inertia of the moving fluid, aij ¼
R L

0
WiW

00
j ,

bij ¼
R L

0
ðL� nÞWiW

00
j , cij ¼

R L
0
1½0;na�WiW

00
j , dij ¼

R L
0
WiW

0
j ; and dij is Kronecker’s delta. The control

variable u amounts to the sum of the squares of the

inductions,

u ¼ B2
1 þ B2

2; u 2 ½0; umax� for all t: ð6Þ

Reduce now the order of the problem by the substi-

tution xi ¼ Yi; xnþi ¼ _Yi; i ¼ 1; 2; . . .; n and gather

the variables into the vector x ¼ xið Þ2n�1. The

dynamics of the control system are governed by the

first-order bilinear differential equation

_xðtÞ ¼ AxðtÞ þ uðtÞBxðtÞ ; xð0Þ ¼ x0 6¼ 0; ð7Þ

where the following matrices allow us to separate the

effects of the moving fluid and of the electromagnetic

forces:

A ¼
0 I

�M�1 S� v2 Sinð Þ �M�1 D� vDCorð Þ

� �
;

ð8Þ

B ¼
0 0

0 �M�1Dact

� �
: ð9Þ

It has been found that n ¼ 10 base functions are

sufficient to describe the dynamics of the pipe, while

keeping the number of equations reasonably low for

efficient optimization.

3 Dynamic properties

3.1 The transition to flutter

Begin with the analysis of the situation when eddy-

current dampers are absent. In time zero the pipe is

deflected in the first cantilever mode. Figure 2 shows

the phenomena that occur when the flow velocity is

increased. When v ¼ 0 the system oscillates like a

vertically standing cantilever beam (a). For v[ 0 two

opposite phenomena occur. The Coriolis acceleration

of the moving fluid generates force which impedes

lateral motion of the pipe, and the inertia of the fluid

leads to the centrifugal force which destabilizes the

pipe. The former is a linear function of the flow

velocity, whereas the latter depends on the square of it.

Thus, the Coriolis effect dominates at low flows (b).

For higher values of the flow velocity the inertial force

dominates. This brings about a greater frequency of

the vibrations and their weaker suppression. For

v equal to the critical value (here 347:12 m/s) the

system oscillates at a constant amplitude (c). When the

flow is increased beyond vcr, the straight equilibrium

looses stability, and a small disturbance results in

exponentially growing vibrations (d). Note that in

reality the amplitude of these vibrations is restricted by

geometrical and material non-linearities. However,

this behavior is not captured by the linear model that is

used, in which once the flow reaches the overcritical

region, the amplitude starts growing boundlessly. Still,
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this simplified model is sufficient for developing the

control strategy.

Note that the effect of Coriolis acceleration was

studied by Sugiyama et al. [38], who actively

controlled the flow velocity in the pipe to suppress

its lateral vibrations.

In the subsequent sections, the performance of the

proposed control method is going to be studied in three

cases: (A) no flow; (B) moderate flow, when the

Coriolis damping dominates; and, (C) the flow just

beneath the critical value, when inertia of the moving

fluid significantly affects the dynamics of the pipe.

Now the dynamics of the pipe with the eddy-current

dampers attached to it is going to be discussed.

Figure 3 illustrates the effects of their location on the

pipe na=L and the control u ¼ B2
1 þ B2

2 on the critical

flow. The horizontal dashed line shows the critical

flow velocity of the system without the actuators

(vcr ¼ 347:12 m/s). The solid line for u ¼ 0 demon-

strates the influence of the additional mass of the

plates, which may both stabilize the system and

decrease the critical flow, which is in accordance with

[7]. The voltage supplied to the motional devices

generates viscous damping that emphasizes this effect,

Fig. 2 Arising of the flutter for the system without the actuators: a v ¼ 0, b v ¼ 200 m/s, c v ¼ vcr ¼ 347:12 m/s, d v ¼ 347:5 m/s

Fig. 3 Critical flow velocity vcr as a function of the actuators’

position xa=L for selected values of the control input
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see the lines for u[ 0. Even low values of the

magnetic field are able to improve the stability of the

system. For example, assuming B1 ¼ B2 ¼ 0:2 T,

vcr
0:08 ¼ 433:27 m/s is obtained, which is approxi-

mately 25% greater than the reference level and 10%

greater than vcr
0 .

The control method will be evaluated for systems

with actuators attached at na ¼ 0:6L, where their

efficiency is the highest, and for locations na ¼ 0:4L

and na ¼ 0:8L to compare.

Note that the influence of the external damping

greatly depends on the medium which flows through-

out the pipe. It was shown many years ago that if the

mass ratio of the fluid to the pipe is high, then

increasing the external damping may actually desta-

bilize the system [36]. Indeed, if water was used

instead of air as a moving fluid, then high values of

induction could lead to a decrease of the critical flow

for the actuators attached relatively far from the

support, see Fig. 4. This justifies the use of control-

lable devices for the stabilization purpose (instead of,

for example, permanent magnets) because this system

is adaptable to changes of working conditions. How-

ever, our experiments have been performed only with

air because the use of water would require significant

modifications of the test stand.

3.2 The energy of the pipe

Write WðnÞ ¼
�
W1ðnÞ; . . .;WnðnÞ

�T
, xI ¼ x1; . . .;½

xn�T and xII ¼ xnþ1; . . .; x2n½ �T. The following formula

defines the elastic (strain) energy of the pipe:

vpipe
e ðtÞ ¼

Z L

0

1

2
EI

�
o2w

on2
ðn; tÞ

�2

dn

¼ 1

2
EIxI

TðtÞ
Z L

0

W00ðnÞW00ðnÞT
dnxIðtÞ

¼ 1

2
xTðtÞQxðtÞ:

ð10Þ

Here, the energy matrix

Q ¼ EI
R L

0
W00W00T 0

0 0

" #

ð11Þ

is symmetric and positive semidefinite. A thorough

description of the mechanical energy of the pipe with

flow is complex, because it requires terms related to

that flow (the analyzed system is not just the pipe, but a

part of the space limited by it), see for example [5].

However, is has been found that the pipe’s potential

energy allows finding a control method that works

Fig. 4 Critical flow velocity vcr as a function of the control variable u ¼ B2
1 þ B2

2 for selected positions of the actuators; a air and

b water as a moving fluid
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well. The stability of the system and the performance

of the optimal control can be fairly justified using the

potential energy.

4 Controller design

A typical approach to designing an optimal stabilizing

controller for a vibrating structure described by the

bilinear system as (7) is based on solving a finite

horizon optimal control problem (see [21, 39]). The

resulting control function is given in an open-loop

form and it has a switched structure. The time instants

of the control switches have been shown to be highly

sensitive to a change of the model’s parameters (see

for example [40]). Therefore, the use of the open-loop

control is rather limited to perfectly identified systems

with predictable excitation. Given that the information

of the flow parameters may not be accessible, a closed-

loop controller that provides a fair stabilizing perfor-

mance for a wide range of flow velocity and based on

an easy for implementation state-feedback loop is

designed. In particular, a state-feedback control func-

tion u ¼ u�ðxÞ that stabilizes the system (7) at the

equilibrium x ¼ 0 with an optimal convergence mea-

sure is going to be found. First, the structure of the

open-loop optimal control u ¼ u�ðtÞ that minimize the

convergence-related objective functional is recalled.

Next, a parameterized state-feedback function uðxÞ
that mimics the structure of the optimal open-loop

solution u�ðtÞ is defined. For the optimal state-

feedback control u�ðxÞ, the solution to a suboptimal

problem that establishes the selection of the parame-

ters in the function uðxÞ is used.

4.1 Open-loop optimal control problem

Recall that Q is the matrix that by the formula

xTðtÞQxðtÞ characterizes the energy of the system (7)

at time t. By selecting the time horizon T [ 0, the

problem of stabilization of (7) with the optimal

convergence rates can be formulated as follows:

Find uðtÞ� ¼ argmin J ¼ 1

2

Z T

0

xTQx d t

Subject to _xðtÞ ¼ AxðtÞ þ uðtÞBxðtÞ ; xð0Þ ¼ x0 ;

uðtÞ 2 ½0; umax�:
ð12Þ

The problem (12) is classified as a finite horizon

bilinear optimal control problem. If the objective

functional J does not explicitly dependent on the

controls and the set of admissible controls is compact,

then the solution to a bilinear optimal control problem

is given by controls of the switching type (see [41]).

This result follows immediately from the Pontryagin

Maximum Principle [42]. Next, the key steps are going

to be demonstrated.

Introduce now the adjoint state H and the Hamil-

tonian p which are, respectively, defined by

Hðx; p; uÞ ¼ pT Axþ uBxð Þ � 1

2
xT Qx ð13Þ

and

_pðtÞ ¼ � oH

ox
; pðTÞ ¼ 0: ð14Þ

Then, the Pontryagin Maximum Principle states that

the solution to the problem (12) satisfies

u� ¼ argmax u2½0;umax�Hðx; p; uÞ: ð15Þ

From (15) the switching law for the optimal controls is

obtained

u�ðtÞ ¼
umax; pTðtÞBxðtÞ[ 0

0; pTðtÞBxðtÞ\0

undetermined, pTðtÞBxðtÞ ¼ 0

8
><

>:
:

ð16Þ

To determine the trajectory of u�ðtÞ, one has to solve

the Two-Point Boundary Value Problem consisting of

(7), (14) and (16). Shooting [43] and relaxation [44]

methods can be applied for this purpose.

4.2 State-feedback suboptimal control problem

Because our aim is to design the closed-loop control

u�ðxÞ that mimics the solution to the open-loop

problem (12), a state-feedback approximation of the

switching law as given by (16) is going to be

introduced. First, the following constants are

introduced:

c1 ¼ umax=2 ; c2 ¼ umax=p ð17Þ

and n� n matrix K 2 K, where the set K is defined by
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K ¼ ½kab� : �kmax � kab � kmax ; kmax [ 0f g: ð18Þ

For the control function, the following state-feedback

structure is assumed:

uðxÞ ¼ c1 þ c2 arctan xTKx
� �

: ð19Þ

The reader can verify that the selection of the

constants c1 and c2 ensures the admissibility condition

(6). Moreover, for a sufficiently large value of the

quadratic term xTKx (positive or negative), the control

uðxÞ operates near the extreme admissible values (umax
or 0) and, therefore, approximates the desired switch-

ing structure (16).

By relying on the control structure (19), our goal is

to find matrix K such that the closed-loop system

_x ¼ Axþ c1 þ c2 arctan xTKx
� �� �

Bx ;

xð0Þ ¼ x0
ð20Þ

is stabilized with an optimal convergence rate. As in

the case of the problem (12), the energy xTðtÞQxðtÞ as

the measure of the state convergence is chosen. The

following suboptimal control problem is considered:

Find K� ¼ argmin J ¼ 1

2

Z T

0

xTQx d t

Subject to _x ¼ Axþ c1 þ c2 arctan xTKx
� �� �

Bx ;

xð0Þ ¼ x0 ; K 2 K:

ð21Þ

The desired control u�ðxÞ is then given by (19), where

K ¼ K�. The existence of the solution to (21) follows

from Filippov theorem, compactness of the set K and

continuity of the objective functional J (for details see

[45]).

4.3 Solution to the problem (21)

To solve the problem (21), an iterative algorithm that

is based on the method of steepest descent is devel-

oped. First, the relevant derivatives corresponding to

the directions of the descent for the decision param-

eter; that is for matrix K, are estimated.

By introducing the Hamiltonian

Hðx;p;KÞ ¼ pT Axþ c1 þ c2 arctan xT Kx
� �� �

Bx
� �

� 1

2
xT Qx

ð22Þ

and the adjoint state p¼ pðtÞ given by

_p ¼ � oH

ox
¼ �ATp� c1 þ c2 arctan xTKx

� �� �
BTp

� c2 p
TBx

KþKT
� �

x

xT Kxð Þ2þ1
þQx ; pðTÞ ¼ 0:

ð23Þ

the objective functional in (21) can be represented by

J ¼
Z T

0

pT _x� Hðx; p;KÞ
� �

d t: ð24Þ

An infinitesimal change d K causes variations of the

functions dx, d _x, dp, which implies the following

differential of the objective functional

d J ¼
Z T

0

� oH

oK
d K� oH

ox

� �T

dx

 !

d t

þ
Z T

0

pTd _xþ _x� oH

op

� �T

dp

 !

d t:

ð25Þ

The last term in (25) vanishes because

_x ¼ oH

op
: ð26Þ

Under the assumption

d _x ¼ d

dt
dxð Þ ð27Þ

an integration by parts yields

d J ¼ �
Z T

0

oH

oK
d K d t

�
Z T

0

_pþ oH

ox

� �T

dx d t þ pTdx
� �T

0
:

ð28Þ

From (23), it can be observed that

_pþ oH

ox
¼ 0 ; pðTÞ ¼ 0: ð29Þ

Moreover, the initial condition in (7) implies

dxð0Þ ¼ 0. Therefore, the two last terms in (28) vanish

and, eventually, one obtains
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d J ¼ �
Z T

0

oH

oK
d K d t: ð30Þ

Finally, the derivative of the objective functional with

respect to K is given by

d J

dK
¼�

Z T

0

oH

oK
d t¼�c2

Z T

0

pTBx
xxT

xTKxð Þ2þ1
dt:

ð31Þ

To guarantee that the matrix K belongs to the

admissible set 18, the following projection is

introduced

Proj ðKÞ ¼ ½kab� :
kab if � kmax � kab � kmax ;

�kmax if kab\� kmax ;

kmax if kab [ kmax:

8
><

>:

ð32Þ

Assuming the maximal number of iterations lmax, the

matrix K will be updated by using the following

sequence:

Klþ1 ¼ Proj Kl � c
d J

d K

� �� �
;

c[ 0 ; l ¼ 0; 1; . . .; lmax:

ð33Þ

The optimization algorithm is composed of the

following steps:

1. Set l ¼ 0 and the initial matrix Kl ¼ 0.

Assume that c and � are small positive numbers.

Assume the maximal number of iterations lmax.

Select j 2 ð0; 1Þ.
2. Solve the state equation (7) by substituting:

K ¼ Kl, u ¼ c1 þ c2 arctan xTKxð Þ.
3. By backward integration, solve the adjoint state

equation (23) by substituting the solution to the

state equation (Step 2) and K ¼ Kl.

4. Evaluate the derivatives (31) by substituting the

solution to the state equation (Step 2), the solution

to the adjoint state equation (Step 3) and K ¼ Kl.

Compute the value of the objective function

JðKlÞ.
5. Update the matrix Klþ1 using (33).

6. Compute the value of the objective function

JðKlþ1Þ.
If JðKlþ1Þ\JðKlÞ, then set l ¼ lþ 1 and go to

Step 7.

Otherwise, modify the step-size c by c ¼ j � c, and

go to Step 4.

7. Check if any of the terminal conditions are

fulfilled: jJðKlþ1Þ � JðKlÞj=JðKlÞ\� or l ¼ lmax

If not, then go to Step 2. Otherwise, set K� ¼ Kl

and STOP.

5 Experimental results

In this section, the control method that was previously

presented will be tested experimentally. The perfor-

mance of the method for various flows in the tested

pipe is going to be assessed. To do this, two different

damping cases are evaluated. Then the motion of the

pipe conveying air controlled in the optimal way is

compared with the one when the actuators operate

under the constant control. The same energy con-

sumption is assumed in both cases.

5.1 The test stand

Designing and manufacturing of the test stand was a

demanding engineering task due to numerous limita-

tions, related to the free space available in the lab, the

budged assumed for the experimental works, avail-

ability of commercially manufactured tubes, heat

generated by the actuators, and others. Furthermore,

the flow velocity, masses of the fluid, the pipe and the

actuators, and the length of the pipe should be such

that the system exhibits periodic planar oscillations

that could be captured by linear model (1), and the

external damping actually stabilizes the system

(please refer to Fig. 4b and [6]).

Note that if one wanted to expand applicability of

the proposed control strategy for flows beyond the

critical value, the choice of parameters should be such

that the system exhibits periodic and in-plane oscil-

lations which characterize the behavior of majority of

the flutter-induced structures:

• The flow velocity should not exceed the critical

value by too much, because in a presence of a mass

attached to the pipe a sufficiently high flow yields

quasi-periodic or chaotic vibrations [46].

• The ratio of the masses of the fluid and the pipe

b ¼ mf =ðmf þ mÞ should be appropriate. In certain

ranges of this parameter the post-critical vibrations
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are non-planar or non-periodic, even if there is no

lumped mass attached to the pipe [47].

• The ratio of the masses of the actuators and the pipe

C ¼ Ma=ððmf þ mÞLÞ should be such that for flows

slightly exceeding the critical value the resultant

bifurcation is planar and periodic [48, 49].

To design the test rig, many numerical simulations

were first performed using the already presented

model simulating the dynamics of the pipe during

the air flow, see Sect. 2. A few pipes of various

geometry were tested under a range of the flow

velocities. After these preliminary investigations, the

laboratory test stand with a single pipe was

manufactured.

The studied pipe is made of ABS styrene of density

q ¼ 1:17 g/cm3 and it has nominal length

L ¼ 958 mm, external diameter D ¼ 9:05 mm and

internal diameter d ¼ 7:85 mm. The Young’s

modulus E ¼ 2:22 GPa and the damping coefficient

E� ¼ 4:46 MPa s of the material were determined

during free vibration tests. The pipe was stuck by the

grip handle to a composite wooden plate that was

mounted on the aluminum truss frame. Conical shanks

were used to connect the truss frame components,

which ensured high stiffness of the structure by

eliminating unnecessary clearances between the truss

elements. This prevented any unfavorable additional

vibrations. The grip handle was connected to the air

compressor, which allowed us to supply compressed

air from the tank to the interior of the pipe. Here, a fast

pneumatic valve and a flow meter between the air

compressor and the grip handle were used. The fast

pneumatic valve and an electromagnet were used to

impose a fixed initial deflection on the pipe. They were

controlled by a real time unit and activated simulta-

neously to initiate the experimental trial. A view of the

test stand and its 3D CAD model are shown in Fig. 5

Fig. 5 Laboratory test rig of the standing cantilever pipe conveying air together with electromagnetic devices of motional type (on the

left) and the 3D CAD model of the considered system (on the right)
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The scheme of the real-time measurement and

control system installation is presented in Fig. 6. It is

based on a PC equipped with an I/O data acquisition

card (NI PCI-6251), four laser displacement sensors

(OADM 12I6430/S35A made by Baumer) of maxi-

mum measurement resolution equal to 0.01 mm, a

two-way current amplifier and electromagnetic

devices of the motional type (i.e. EM actuators). Laser

sensors were mounted at heights of n1 ¼ 1=4,

n2 ¼ 2=4, n3 ¼ 3=4 and n4 ¼ 4=4 of the pipe’s length

to measure the deflection of the structure. The optimal

control signals were computed by the real time unit

and magnified by the amplifier, which is able to

provide an operating current of 0.1–5 A. These signals

were sent to the electromagnetic devices, which

generated the damping force that acted on a rectan-

gular aluminum plate attached to the pipe. The plate

has dimensions of 140 mm � 30 mm � 1.6 mm, mass

Ma ¼ 18:5 g and is located at a selected distance from

the support. Experiments are conducted for three

positions of the actuators: na ¼ 0:4L; 0:6Land0:8L.

The C-shaped EM actuator was formed from iron to

create a closed loop with an air gap. It has dimensions

of 80 mm � 65 mm, the air gap cross-sectional area is

10 mm � 10 mm, and the gap width amounts to 8 mm.

The coil was wound from an insulated copper wire of

diameter 0.6 mm, which was wrapped 600 times

around the core. The total length of the wire carrying

current was approximately 33 m. To prevent impacts

between the plate and the core, the shape of the plate

was curved. The plate curvature amounts to 1/450 [1/

Fig. 6 Scheme of the

measurement and the

control system used in the

test rig

Table 1 Parameters of the examined system

Parameter Unit Value

Pipe length, L m 0.958

Bending stiffness, EI N m2 0.3194

Bending damping coefficient, E�I N m2 s 0.000641

Pipe mass density, m kg/m 0.0187

Fluid mass density, mf kg/m 0.000056

Mass of both actuators, Ma kg 0.0185

Magnetic damping coefficient, C N s/m/T2 2.6767

Maximum admissible control, umax T2 0.08
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mm]. The magnetic flux value in the gap was

measured by the GM08 Gaussmeter made by Hirst

Magnetic. This instrument has a measurement range of

0.0–3.0 T and a frequency range DC of 15 Hz–10 kHz.

The maximum induction of the magnetic field used in

the experiments was approximately 0.2 T.

The parameters of the system that appear in the

Eq. (1) are listed in Table 1.

5.2 Empirical verification of the control strategy

Experiments were conducted with no air flow (Case

A), moderate (B) and subcritical flow velocity (C). In

Case B the air flow was such that the Coriolis damping

was predominant in the system, whereas in C the air

flow was just beneath the critical one. The actual

values of the static inlet air pressure varied depending

on the position of the actuators, and they are presented

in Table 2.

A constant initial deflection of 3 cm was imposed at

the tip of the pipe using an electromagnet. The system

was then released, and—at the same time—the inlet

valve was opened, which initiated the air flow. The

vibrations were recorded for 6 s.

First, the system with the optimal control of the

actuators was investigated. In each case, the dynamics

generated by the suboptimal solution u�ðxÞ was

compared with that generated by the passive control

upass, which was defined as a constant control

consuming the same amount of electric energy as the

optimal solution. From u ¼ B2
1 þ B2

2, it can be con-

cluded that the value of the passive control can be

computed as

upass ¼
1

T

Z T

0

u�ðxÞ d t: ð34Þ

The entire procedure was conducted multiple times to

ensure that the results are repeatable.

The potential energy of the pipe averaged over the

6-s time horizon was computed for the suboptimal and

passive cases to assess the performance of the control

method. Table 3 contains the average ratio of these

two values for the considered cases. The optimal

control outperforms the corresponding passive strat-

egy by 6–23% depending on the position of the

actuators and the air flow velocity.

The performance of the control method for the

system with no flow and with subcritical flow velocity

is greater than for the case with moderate flow. This is

because the effect of the Coriolis acceleration of the

moving fluid is the predominant mechanism of energy

dissipation in Case B, see Sect. 3.1, which overshad-

ows both the passive and the active action of the

actuators and narrows the advantage of the latter.

Moreover, when the actuators are attached at na ¼
0:6L the performance of the suboptimal control is

greater than the passive strategy much more than for

two other positions of the actuators. This is in

accordance with the results presented in Fig. 3,

Sect. 3.1, which showed that this location of the

actuators provides the highest possible critical flow

velocity, so it increases the difference between passive

and active approach as well.

Figures 7, 8 and 9 compare the suboptimal control

of the system with the corresponding passive strate-

gies, i.e. the solutions with constant control that

consumes the same amount of energy as the active

solution, for three analyzed positions of the actuators.

Time series of the tip deflection (figures on the left)

indicate that the improvement brought about by the

suboptimal control over the passive action of the

actuators is always present, and in some cases—

significant.

Table 2 The values of static inlet air pressure (bar) for various

positions of actuators and simulation scenarios

Case A Case B Case C

na ¼ 0:4L 0 1.2 2

na ¼ 0:6L 0 2 4

na ¼ 0:8L 0 1.2 2.2

Table 3 Comparison of the performance of the optimal con-

trol for the considered air flow velocities

Case A Case B Case C

na ¼ 0:4L 0.88 0.94 0.89

na ¼ 0:6L 0.77 0.88 0.84

na ¼ 0:8L 0.81 0.92 0.78

For each case, the value represents the pipe’s total energy [as

defined in (21)] normalized to the corresponding passive

strategy; that is, Jðu�ðxÞÞ=JðupassÞ
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The values of the control variable normalized with

respect to the maximum are depicted in figures on the

right side. Actually, these are the values established by

the control algorithm; however, it has been confirmed

that the latency of the induction flux in magnetic

circuits can be neglected. Note that, in general, the

Fig. 7 Tip deflection (left) and the normalized control variable (right) of the system with suboptimal and constant passive control, for

no flow (a), moderate (b) and subcritical (c) flow velocity; na ¼ 0:4L
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control reduces the induction at the time moments of

the extreme deflection. This is understandable because

it allows saving energy when very little motion of the

pipe takes place, thus damping—which is proportional

to the velocity—is small. Another consequence of the

switching pattern of the control is the fact that the

performance of the active method for near-critical

flow velocities is, in general, lower than in scenarios A

Fig. 8 Tip deflection (left) and the normalized control (right) of the system with suboptimal and constant passive control, for no flow

(a), moderate (b) and subcritical (c) flow velocity; na ¼ 0:6L
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and B. This is because in Case C high frequency

vibrations occur, so the control is turned off for very

little time, and the passive control is nearly the

maximum one.

6 Summary and conclusions

This paper has investigated the application of eddy-

current dampers to improve the stability of the

Fig. 9 Tip deflection (left) and the normalized control (right) of the system with suboptimal and constant passive control, for no flow

(a), moderate (b) and subcritical (c) flow velocity; na ¼ 0:8L
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cantilever pipe discharging fluid. A linear model of the

system was applied. It was first used to find the

position of the actuators which provides the highest

increase of the flow velocity leading to the flutter. The

attachment of the actuators at around 60% of the pipe’s

length can increase the critical flow velocity by 25%

using moderate and easy to achieve intensities of the

magnetic flux in the electromagnets’ cores.

The model was then used to develop an optimal

closed-loop control to improve the stability of the

system. Then, the state-feedback parametrization of

the optimal control scheme was performed, which

enabled designing a practical and robust closed-loop

control system. This controller was experimentally

verified on the test stand, which was especially

designed and built for this purpose. The controlled

strategy can stabilize the system more efficiently than

the passive method. The improvement amounted to

6–23% depending on the flow velocity and position of

the actuators. The optimal performance was achieved

for either zero or subcritical flow velocity and the

location of actuators at 60% of the pipe’s length. In

each of the considered cases, it was assumed that the

designed controller consumed the same amount of

electrical energy as in the case of the passive method.

Therefore, basing on the analyzed results, it can be

stated that comparing to the passive method, the

designed control guarantees equivalent stabilizing

performance with less amount of the wasted energy.

The proposed method of stabilization is based on

contactless devices, thus its application may be

especially advisable for slender structures whose

stability could be affected by the use of force actuators

directly attached to the structure. Moreover, it can be

easily adapted to changes of the working conditions.

This is a significant advantage of the method because it

is already known that in certain situations (e.g. when

the mass ratio of the fluid and the pipe is high) an

increase of the damping can actually destabilize the

system.
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