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Summary. The propagation of ultrasonic plane waves in a solid bulk sample is considered for the case

when the sample material is of the form of a polycrystalline aggregate (e.g., steel) made of crystallites of the

highest cubic symmetry. The crystallite orientation disitribution is assumed to be such that it implies the

orthorhombic symmetry of the macroscopic (effective) acoustoelastic properties of the polycrystalline

aggregate. Moreover, the sample is assumed to be subjected to an increasing stress, the principal directions

of the stress being coincident with the axes of the orthorhombic symmetry of the bulk sample. It is

assumed that the ultrasonic waves also propagate and are linearly polarized in the directions coincident

with the axes of the orthorhombic symmetry. The Voigt’s averaging procedure and Jaynes’ principle of

maximum Shannon entropy are accepted as a reliable basis for the evaluation of the influence of the

changes in stress on both the effective acoustoelastic properties of the polycrystalline aggregate and the

probability density function of the crystallite orientation in the sample. In this way, an algorithm is

prepared which enables us to evaluate numerically these effects under the assumption that the single-

crystallite elastic moduli are constant. Some results obtained by using this algorithm are presented for the

case of a plane increasing stress.

1 Introduction

Acoustoelasticity is often utilized as a tool for the nondestructive evaluation of active and

residual stress within structural materials. Most of these materials are actually polycrystalline

aggregates (e.g., steel). Some forming processes of a polycrystalline aggregate (e.g., rolling,

drawing, forging) are accompanied by plastic deformation which always leaves the crystallites

(grains) in certain preferred orientations called the texture. Hence, the anisotropic overall

response of the textured polycrystalline aggregate called the effective response to an external

load. The acoustoelastic technique of evaluating the texture and stress is based on the obser-

vation and theoretical predictions that the speeds at which elastic waves propagate through a

textured and prestressed body depend on the propagation and polarization directions, texture

as well as on the state of applied or residual stress to which the body is subjected. In this paper,

such stress is called the background stress. The explanation of the dependence of the propa-

gation properties of a polycrystalline aggregate on the background stress is based on the

assumption that the strain energy is a cubic function of the strain. From this assumption the

constitutive relation between stress and strain is obtained. Consequently, the acoustoelastic
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response of the material is characterized by the coefficients of the quadratic and cubic terms in

the strain energy, the coefficients being called the second- and third-order elastic constants

(stiffness tensors), respectively, This response is obtained by considering the motion of the

elastic plane wave with infinitesimal stress and displacement amplitude superposed on a state of

finite homogeneous background deformation of the material. The usual result of such analysis

is a set of equations for the propagation velocities of plane waves as functions of the strain, the

coefficients in the equations being particular combinations of the second- and third-order

elastic constants. Therefore, the procedure of estimating the acoustoelastic response of a

material to an external load may start from evaluating the second- and third-order elastic

constants involved in the problem under consideration. The works of G. C. Johnson [1]–[3] are

examples of utilizing this concept. In [1]–[3] Johnson provides methods for the estimation of the

effective elastic and acoustoelastic constants for the textured materials that exhibit transversely

isotropic and orthorhombic symmetry, respectively, the methods being based on the knowledge

of the elastic constants of the constituent crystals and the orientation distribution of the grains

within the aggregate.

In the present work, a statistical ensemble is considered of bulk samples of the examined

prestressed polycrystalline aggregate with the acoustoelastic properties exhibiting the ortho-

rhombic symmetry. The attention is focused on a subdomain of a bulk sample, the subdomain

being acted on by an ultrasonic transducer of such radiation properties that ensure the effective

acoustoelastic response to be a plane and linearly polarized ultrasonic wave propagating

through the sample, the directions of the propagation and polarization being coincident with

the axes of the orthorhombic symmetry of the effective acoustoelastic properties of the sample.

The principal directions of the background stress are also assumed to be coincident with three

perpendicular to each other axes of the orthorhombic symmetry of the sample.

To analyze the acoustoelastic response, the effective modulus concept [4] is applied to a

subdomain of the bulk sample. The subdomain is assumed to be enough large to enable us to

measure in the subdomain the phase velocity of the ultrasonic waves and to assume that the

subdomain contains a statistical ensemble of crystallites. This analysis yields relationships

which allow us to compare the values of the phase velocities predicted by utilizing the effec-

tive modulus concept with that obtained from ultrasonic measurements. Similarly as in papers

[5]–[7] and for the reason explained in [5, p. 238], and quoted in the paper in the fourth section,

the Voigt [8] averaging procedure and Jaynes’ [9] principle of maximum Shannon entropy are

employed in this paper as a reliable basis for estimating the texture and the tensor of the

effective elastic stiffness (or compliance) moduli of the subdomain of the polycrystalline

aggregate from known (e.g., measured) values of phase velocities of ultrasonic waves propa-

gating through the subdomain. Therefore, in the presented analysis, the texture is estimated in

the maximum-entropy approximation, contrasting with Johnson’s analysis [1]–[3] where the

texture is treated as a known quantity. The possibility of such estimations follows from the facts

that, on one hand, every component of the tensor of the effective elastic stiffness (or compli-

ance) moduli can be expressed in terms of the effective density and phase velocities of ultrasonic

waves propagating through the subdomain. On the other hand, every component of the tensor

of the effective elastic moduli of a polycrystalline aggregate can be estimated by using the Voigt

averaging procedure which consists in assembly averaging the elastic moduli (stiffness or

compliance) of a single crystallite in the subdomain of the polycrystalline aggregate, i.e., in

weighting each of the elastic moduli of the single crystallite by the probability density function

of the single-crystallite orientation. This function defines the texture of the subdomain of the

polycrystalline aggregate under consideration.
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In the paper, as far as the probability density function of the crystallite orientation goes, it is

assumed that this function is in the form implied by the Jaynes’ [9] principle of maximum

Shannon entropy and, therefore, fulfils both the normalization condition and all the conditions

(relationships) involved in applying the Jaynes’ principle. These relationships express effective

material parameters (the density and elastic stiffness moduli) in terms of observables (velocities

of ultrasonics). In the paper, the effective acoustoelastic properties are represented by the

respective effective stiffness moduli of the polycrystalline aggregate or by the phase velocities of

ultrasonic waves.

In this way, the most important concepts and methods have been mentioned briefly which

enable us to gain the purpose of the paper. The purpose consists in evaluating the changes in

both the acoustoelastic properties and texture of the material (steel), the changes being caused

by varying (increasing) background plane stress. If the values of the applied or residual stress

are sufficiently small, no plastic deformation occurs and the single-crystallite elastic moduli are

constant. In the paper, the numerical evaluations are performed for the plane stress increasing

from 1 MPa to 750 MPa in 750 equal steps, the material being assumed to be characterized by

the same values of the density and elastic stiffness moduli as bcc Fe. The scope of the paper is

confined to obtaining an algorithm for reaching the purpose of the paper, examining the

properties of the algorithm by performing numerical experiments and appreciating in this way

the suitability of the algorithm for giving the computer support in acoustelastic experiments,

especially in the range of ultrasonic non-destructing testing. The method is applicable for the

determination of the changes in acoustoelastic properties and texture caused by both applied

and residual stresses in materials of general loading histories, including plastic deformation in

accordance with the discussion of Man and Lu [10]. The preliminaries of constructing the

algorithm are presented in the next (second) section of the work. The alghoritm for the most

complex case is outlined in the third section. For this case, the influence of background stress

on the changes in the acoustoelastic properties and texture of the polycrystalline material is

investigated. Examples of numerical results, discussion and final remarks are presented in the

fourth section for the case of a plane increasing stress. Some conclusions following from the

results are given in the fifth section of the paper.

2 Formulation of the problem

The propagation of plane ultrasonic waves is considered in a prestressed bulk sample made of

textured policrystalline aggregates with the effective (macroscopic) acoustoelastic properties

exhibiting orthorhombic symmetry, the medium being composed of cubic crystallites with the

highest symmetry. In the subsequent considerations, the bulk sample is treated as belonging to

a statistical ensemble of identical orthorhombic bulk samples made of the polycrystalline

aggregate under consideration. Suppose an Euler orthogonal reference system 0x1x2x3 with the

axes 0x1, 0x2 and 0x3 is suitably chosen for the sample; for example, in the case of a rolled

plate, 0x1 could coincide with the rolling direction, the axes 0x2 and 0x3 being transverse to the

rolling direction and normal to the rolling plane, respectively. Then the planes x1x2, x2x3 and

x3x1 are the planes of mirror symmetry connected with the orthorhombic symmetry of the

effective acoustoelastic properties of the polycrystalline bulk sample. The unit vectors along the

directions of the axes 0x1, 0x2 and 0x3 are denoted by e1, e2 and e3, respectively. Throughout

the remainder of the paper, all equations, relations and formulae are written with locating the

vector and tensor quantities as well as the orientations and coordinates to the 0x1x2x3 reference

Acoustoelastic properties and texture of an orthorhombic polycrystalline aggregate 105



system. Then the position vector x can be written as x = (x1x2x3) where xi ¼ x � ei, i ¼ 1; 2; 3.

The other orthogonal reference system 0X1X2X3 is supposed to be chosen for a single cubic

crystallite, the axes being chosen in the crystallographic directions [100], [010] and [001],

respectively. The unit vectors along the directions of the axes 0X1, 0X2 and 0X3 are denoted by

E1, E2 and E3, respectively. In the subsequent considerations, the orientation of a single

crystallite within the polycrystalline sample is defined by giving the values of three Eulerian

angles, h, u and /, of the axes 0X1, 0X2 and 0X3 relative to the sample axes, 0x1, 0x2 and 0x3.

The notations h ðh ¼ cos�1ðE3 � e3Þ _¼ cos�1 nÞ, u and / stand for the angle of nutation, pre-

cession and proper rotation, respectively, where 0 � h � p, 0 � u � 2p, 0 � / � 2p.
The subsequent considerations are concerned with a statistical ensemble of identical bulk

samples made of the examined prestressed polycrystalline aggregate. The samples are made of

cubic crystallites with different orientations. Each of the samples is subjected to the background

stress, r0ðxÞij ði; j ¼ 1; 2; 3Þ. It is assumed that the principal directions of the background

stress, r0ðxÞij, coincide with the symmetry axes 0x1, 0x2 and 0x3. Consider the case when the

prestressed polycrystalline aggregate is acted upon by an ultrasonic transducer and denote the

displacement response and equivalent stress response of the polycrystalline aggregate to this

dynamic loading by uðx; tÞ and rijðx; tÞ, respectively. Suppose that the transducer oscillates

with the ultrasonic angular frequency x in such a way that the average displacement response

and equivalent average stress response, huðx; tÞi and hrijðx; tÞi, are of the form of a displace-

ment ultrasonic wave and equivalent stress ultrasonic wave, respectively, propagating through

the polycrystalline medium. The bracket angles, h. . .i, denote averaging over the statistical

ensemble of macroscopically identical samples of the polycrystalline aggregate. In the

remainder of the paper, every average value of a random variable will be taken to be an

assembly average unless specified otherwise. In this paper, the scalar field of the density qðxÞ,
the vector field of the displacement u(x, t), the tensor fields of both the stress rijðx; tÞ
accompanying the displacement uðx; tÞ and background stress r0ðxÞij as well as the tensor field
of the elastic stiffness moduli CðxÞijkl are regarded as stochastic variables of the position

vector x.

If the displacement uðx; tÞ is small enough to enable the acceleration d2uðx; tÞ=dt2 to be

replaced by @2uðx; tÞ=@t2, then the displacement equations governing the motion of the linear

elastic polycrystalline medium with spatially variable orientation of the crystallites may be

written in the form:

CðxÞijkl þ r0ðxÞijdik

h i
uðx; tÞk;l

n o
; �j ¼ qðxÞ @

2uðx; tÞi
@t2

; i; j; k; l ¼ 1; 2; 3; ð1Þ

where dik is the Kronecker tensor. Throughout this paper the standard tensor indicial notation

is used where repeated indices imply summation unless stated otherwise. It may be said that

Eq. (1) differ from some equations of such papers as [11]–[13] in having a stochastic form, the

randomness being taken into account under the assumption that both the elastic stiffness

moduli CðxÞijkl and the background stress r0ðxijÞ vary only slightly over the distances of the

wavelengths. Then the quantities LðxÞ ¼ CðxÞijkl; r
0ðxÞij;uðx; tÞ; qðxÞ can be split into their

means hLðxÞi and the corresponding fluctuations dLðxÞ:

CðxÞijkl ¼ hCðxÞijkli þ dCðxÞijkl;uðx; tÞ ¼ huðx; tÞi þ duðx; tÞ;

r0ðxÞij ¼ hr0ðxÞiji þ dr0ðxÞij; qðxÞ ¼ hqðxÞi þ dqðxÞ: ð2Þ

On substituting Eq. (2) into Eq. (1) and averaging we arrive at the following equations for

huðx; tÞi, after employing hdLðxÞi ¼ 0 and assuming that the fluctuations dLðxÞ are so small
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that ½hdCðxÞijkl duðx; tÞk;li�;j; hdr0ðxÞijduðx; tÞk;ji
h i

; j
; hdqðxÞ @2duðx; tÞi=@t2

� �
i can be omitted

in the analysis:

hCðxÞijklihuðx; tÞk;li
h i

;j
þhr0ðxÞijihuðx; tÞk;jlidik

� �
�hqðxÞi@

2huðx; tÞii
@t2

¼ 0; i; j;k; l¼ 1; 2; 3:

ð3Þ

Now the effective modulus concept [4] seems to be very useful for employing Eq. (3) to our

purpose. This hypothesis implies that for the considered polycrystalline aggregate it is possible

to find such a fictitious homogeneous equivalent material (monocrystal) that the behavior of

the equivalent monocrystal in different circumstances is the same as the assembly averaged

behavior of the polycrystalline aggregate under the same conditions. Then the material

parameters, which characterize the equivalent monocrystal, for example, the density qðxÞ eff ,

and the tensor of the elastic stiffness moduli, CðxÞ eff

ijkl, are called the effective density and the

tensor of the effective elastic stiffness moduli, respectively, of the polycrystalline aggregate

under consideration, the tensor of the effective elastic stiffness moduli, CðxÞ eff

ijkl, exhibiting the

orthorhombic symmetry. In the case considered in this paper, the overall (assembly averaged)

response, huðx; tÞi to the load of the ultrasonic transducer is assumed to be of the form of plane

ultrasonic waves. Therefore, the orthorhombic symmetry of the tensor of effective elastic

stiffness, CðxÞ eff

ijkl, of the considered polycrystalline aggregate is revealed by the overall response

of the prestressed polycrystalline aggregate to the load of the ultrasonic transducer, i.e., by the

symmetry of the macroscopic propagation parameters of the effective ultrasonic waves,

huðx; tÞi the propagation of the effective ultrasonic waves in the prestressed material being

governed by equations of motion (3).

Moreover, Eq. (3) imply the following equations for the effective material parameters of the

prestressed polycrystalline aggregate:

qðxÞ eff ¼ hqðxÞi; CðxÞ eff

ijkl ¼ hCðxÞijkli; i; j; k; l ¼ 1; 2; 3: ð4Þ

qðxÞ eff denotes the effective density which is assumed in this paper to be equal to the density of

the polycrystalline aggregate averaged over the volume of a single bulk sample of the material,

It means that hqðxÞi in Eq. (3) denotes the density averaged over the sample volume and may be

regarded as a material parameter, q eff ¼ hqðxÞi, of the polycrystalline aggregate, q eff being

constant and indepent of the position vector x in the polycrystalline aggregate. Let qcr denote

the density of a single cubic crystallite in the polycrystalline aggregate. In numerous poly-

crystalline aggregates such as steel, which are used as very important materials in industry, civil

engineering and so on, there are present imperfections (structure defects) such as pores, voids

made by imperfect adhesion of neighbouring grains (crystallites), and impurities. Such

imperfections may result in q eff 6¼ qcr. In the paper, it is assumed that the contributions of the

distributions of the structure defects to the acoustoelastic anisotropy are negligibly small as

compared with that of texture and stress. The problem is also formulated under the assumption

that the single-crystallite elastic moduli c11, c12 and c44 retain their constant values. The

effective material parameters are involved in both the equations of motion governing the

propagation of the considered waves through the subdomain of the polycrystalline aggregate

and in the relationships between the phase velocities of these waves and the effective material

parameters of the medium,

In general, due to the different orientations of the grains, which vary from crystallite to

crystallite, the local physical tensor properties even of a one-component material solid, if they

are referred to the Euler reference system 0x1x2x3, also vary from crystallite to crystallite and

for this reason should be considered as functions of the position vector x ¼ ðx1;x2;x3Þ. The
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different orientations of the grains also cause scattering of acoustic waves propagating through

the medium and in this way result in appearing attenuation in the phenomenological

description of the waves propagation even if the crystallites are perfectly elastic. Consequently,

the effective elastic moduli, CðxÞ eff

ijkl, which are involved in the equations governing the prop-

agation of acoustic waves in such a polycrystalline medium, are in general complex if the

crystallites are both perfectly and non-perfectly elastic, e.g. linearly viscoelastic. However, the

values of the imaginary parts, CðxÞ eff

ijkl

n oðbÞ
, of all effective elastic moduli CðxÞ eff

ijkl tend to zero

with increasing length of the acoustic waves. In this paper, we are interested only in the limiting

case when the absolute value of the imaginary part of each effective elastic modulus,

CðxÞ eff

ijkl

n oðbÞ����
����, is negligibly small as compared with the corresponding real one, CðxÞ eff

ijkl

n oðaÞ����
����,

i.e. we are interested in the limiting case CðxÞ eff

ijkl

n oðbÞ����
����
�

CðxÞ eff

ijkl

n oðaÞ����
����� 1.

As was mentioned above, both the local elastic stiffness moduli, CðxÞijkl, of the material and

the orientations of the grains (crystallites) in a sample of the polycrystalline aggregate are

referred to the Euler reference system 0x1x2x3, the statistics of the grain orientations being

described by the probability density function of the single-crystallite orientation called the

texture. Therefore, in the general case the local stiffness moduli, CðxÞijkl, even of a one-com-

ponent material, vary from crystallite to crystallite and for this reason are considered as ran-

dom functions of the position vector x = (x1, x2, x3). On the other hand, in Eq. (4), the texture

is involved in the assembly averaging (i.e., in weighting by the probability density function of

the single-crystallite orientation) of elastic stiffness moduli CðxÞijkl. This averaging enables us to

evaluate CðxÞ eff

ijkl. Therefore, the effective stiffness moduli do not depend on the position vector

x (i.e, CðxÞ eff

ijkl ¼ C
eff

ijkl) if the probability density function of the single-crystallite orientation is

also independent of x.

Fortunately, ultrasonic experiments reveal that in calculating CðxÞ eff

ijkl for numerous acoustic

applications and purposes, which are of great practical significance, we are dealing with such

subdomains in which it is both possible to determine in a good approximation and allowed to

employ weight functions (textures) independent of x, Therefore, the concept of the texture

independence of x consists in describing the texture in a finite subdomain of the sample by

making use of the probability density function of the crystallite orientation, pðh;u;/Þ, the
function pðh;u;/Þ being independent of the position vector x. Then pðh;u;/Þdh du d/ ex-

presses the probability that a crystallite in the subdomain of the sample has an orientation

described by the Euler angles h, u and /, lying in the intervals < h; hþ dhÞ >;< u;uþ du >

and < /;/þ d/ >, respectively.

The assumption that the texture pðh;u;/Þ is independent of the position vector x concerns

the use of three measuring scales, the smallest of which refers to a microelement (single

crystal) of the bulk sample of the polycrystalline aggregate. Next an intermediary scale is

introduced referred to as mesodomain that contains a statistical ensemble of microelements.

This mesodomain is interpreted to be much smaller than the macroscopic domain (the largest

scale) of the entire material body (bulk sample), but is much larger than the domain of a

microelement. At this moment we also touch upon the technique and the size of the

equipments employed in ultrasosonic measuring in the polycrystalline aggregates. Briefly

speaking, it is reasonable to ask about the smallest size of a mesodomain at which performing

the ultrasosonic measurements with employing the selected technique and equipments is still

possible. In this context, such terms as the local texture and local properties of the sample

material revealed by or deduced from ultrasosonic measurements do not mean the texture
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and properties in a point x in the sample under study but mean the texture and properties at

every point of the sample material filling a mesodomain centered at the point x and having at

least the smallest size at which performing the ultrasosonic measurements is still possible. In

this sense we treat the texture pðh;u;/Þ and effective elastic stiffness moduli C
eff

ijkl as quantities

independent of x within the mesodomain of the smallest size, corresponding to the inter-

mediary scale and being defined by the conditions of performing the ultrasonic measure-

ments. It should perhaps be emphasized that in numerous practically important cases the

sizes of the subdomains of polycrystalline materials, in which pðh;u;/Þ and C
eff

ijkl may be

regarded (at least in a good approximation) as independent of x, are relatively large or even

very large as compared with the subdomain of the smallest size. In such cases, supposing

pðh;u;/Þ and elastic stiffness moduli Cijkl to be independent of x does not require employing

the concept of the mesodomain of the smallest size.

If the principal directions of the plane background stress, r0ðxÞij, coincide with the axes 0x1,

0x2 and 0x3 of the orthorhombic symmetry, then the stress r0ðxÞij, does not induce any change

in the symmetry of the effective acoustoelastic properties of the bulk sample under consider-

ation but induces changes in the values of the respective indices of the acoustoelastic anisotropy

which corresponds to the orthorhombic symmetry of the sample. Therefore, the effective dy-

namic properties of the prestressed polycrystalline aggregate under study, which exhibit

orthorhombic symmetry, and its single cubic crystallite (monocrystalline grain) are defined by

the effective elastic stiffness moduli fCeff

11 , C
eff

22 , C
eff

33 , C
eff

44 , C
eff

55 , C
eff

66 , C
eff

12 , C
eff

13 , C
eff

23 g and the

single-crystal elastic moduli fc11, c12, c44g, respectively.
In the paper, for the sake of brevity and convenience, the following normalized tensor

quantities are used:

~cij ¼ cij=q
eff ; ~Cij ¼ C

eff

ij =q
eff ; ~r0

ij ¼ r0
ij=q

eff i; j ¼ 1; 2; 3: ð5Þ

Now we assume that it is justified to regard the texture, pðn;u; hÞ, and, consequently, the
effective elastic stiffness moduli, C

eff

ijkl, as quantities independent of x in the sense explained

above, i.e., in a subdomain Xs centered at xs. Then we arrive at the following equations for

CðxÞ eff

ijkl ¼ C
eff

ijkl where x �Xs, after employing the Voigt [8] averaging procedure as a suitable one

for evaluating C
eff

ijkl ¼ hCðxÞijkli ¼ hCðxsÞijkli:

C
eff

ijkl ¼ hCðxsÞijklÞi; hCðxsÞijkli ¼
Z1

�1

dn
Z2p

0

du
Z2p

0

d/ CðxsÞijkl pðn;u;/Þ; ð6Þ

CðxsÞijkl ¼ tðn;u;/Þmi tðn;u;/Þnj tðn;u;/Þpk tðn;u;/Þqlcmnpq; i; j; k; l; m; n; p; q ¼ 1; 2; 3:

cmnpq, m;n;p; q;¼ 1; 2; 3, denote the elastic stiffness moduli of a single crystallite (for example,

c11, c12 and c44 in the case of cubic crystallite), and tðn;u;/Þim stands for the components of the

transformation matrix tðn;u;/Þ relating xi to Xi in the following way:

Xi ¼ tðn;u;/Þijxj where n _¼ cos h: ð7Þ

Therefore, the displacement equations of motion governing the wave propagation through a

subdomain Xs of a bulk sample, in which pðn;u;/Þ and C
eff

ijkl ¼ hCðxsÞijkli may be regarded as

being independent of x, can be deduced immediately from Eq. (3) as having the following form:

ð ~Cijkl þ ~r0
jldikÞ

@2huðx; tÞki
@xj@xl

¼ @
2huðx; tÞii
@t2

; i; j; k; l ¼ 1; 2; 3: ð8Þ

Let us remind that in numerical analysis of the the present work we consider the case when the

prestressed polycrystalline aggregate is acted on by the ultrasonic transducer which oscillates
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with the ultrasonic angular frequency x in such a way that the effective response of the

polycrystalline aggregate to this dynamic loading is of the form of a displacement ultrasonic

wave, huðx; tÞi, which propagates through the polycrystalline medium, the motion of the

medium being governed by Eq. (8). Moreover, we seek simple particular solutions, huðx; tÞi, to
Eq. (8) in the form of plane and linearly polarized ultrasonic waves, each of the directions of the

propagation n ðjnj ¼ 1Þ and polarization p ðjpj ¼ 1Þ being coincident with one of the axes 0x1,

0x2 and 0x3 of the reference system 0x1x2x3. It means that the directions of the propagation

and polarization are also coincident with the axes of the orthorhombic symmetry and with the

principal axes of the background stress. Then the particular solutions to Eq. (8) (ultrasonic

plane and linearly polarized waves) being of interest for us may be written as follows:

huðx; tÞi ¼ p u0 exp½iknpðn � x� VnptÞ� ¼ p u0 expð½iknpðn � x� xtÞ�: ð9Þ

Vnp denotes the phase velocity of a wave propagating in the direction of the unit vector

n ¼ ðn1;n2;n3Þ and being polarized in the direction of the unit vector p ¼ ðp1, p2, p3Þ, where
ni ¼ n � ei and pi ¼ p � ei, i ¼ 1; 2; 3;u0 stands for the amplitude of the displacement wave,

and knp stands for the wave number, knp ¼ x=Vnp.

In every heterogeneous elastic body, the ultrasonic velocities Vnp depend on the effective

density q eff and the tensor of the so-called effective dynamic moduli C
eff

ijkl of the elastic stiffness

as well as on the frequency x. In the limit, as the ultrasonic wavelength increases to infinity (or

the frequency diminishes to zero), the dynamic effective moduli in these relations may be

replaced by the static effective moduli. Such an approximation, which was used in numerous

papers, will also be employed from now on in this paper (Eq. (6)) where the effective moduli

C
eff

ijkl will be taken to be the static effective ones.

On substituting the plane wave solution (9) into Eq. (8), one obtains the so-called Kelvin

equations for the displacement amplitude U ¼ uop,

~Cijklnjnl þ ð~r0
jlnjnl � V2

npÞdik

h i
pk ¼ 0; i; j; k; l ¼ 1; 2; 3: ð10Þ

Equations (8) and (10) correspond to some results of Refs. [12] and [13].

Now let us insert successively into Eq. (8) nine forms of the supposed partial solution (9)

corresponding to nine wave modes propagating in the direction of the unit vector

n ¼ ðn1;n2;n3Þ and being polarized in the direction of the unit vector p ¼ ðp1;p2;p3Þ, the
vectors n and p being independently of each other of the forms

n;p ¼ ð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þ: ð11Þ

In this way we can deduce that the satisfaction of Eq. (8) by each of the nine modes (11)

successively requires the following relationships to be fulfilled:

~C11 ¼ V2
11 � ~r0

11;
~C22 ¼ V2

22 � ~r0
22;

~C33 ¼ V2
33 � ~r0

33;
~C44 ¼ V2

23 � ~r0
22 ¼ V2

32 � ~r0
33;

~C55 ¼ V2
13 � ~r0

11 ¼ V2
31 � ~r0

33;
~C66 ¼ V2

12 � ~r0
11 ¼ V2

21 � ~r0
22: ð12Þ

In accordance with the abbreviation defined below Eqs. (9), Vij ði; j;¼ 1; 2; 3Þ, denotes the phase
velocity of a plane wave (9) propagating through the sample in the direction of the axis 0xi of

the reference system 0x1x2x3, the wave being polarized in the direction of the axis 0xj. It should

perhaps be stressed that in the relationships (12) there are involved the components in the

principal directions, ~r0
11, ~r0

11 and ~r0
33, of the background stress ~r0

ij. For this reason, in the

remainder of the paper ~r0
11, ~r0

22 and ~r0
33 are the only components of the background ~r0

ij

interesting for us.
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Moreover, the satisfaction of Eq. (8) requires that

~C61 ¼ ~C51 ¼ ~C26 ¼ ~C46 ¼ ~C45 ¼ ~C35 ¼ ~C16 ¼ ~C56 ¼ ~C62 ¼ ~C42

¼ ~C54 ¼ ~C34 ¼ ~C15 ¼ ~C65 ¼ ~C64 ¼ ~C24 ¼ ~C53 ¼ ~C43 ¼ 0: ð13Þ

Equations (13) are the orthorhombic symmetry requirements for the tensor components ~Cijkl

appearing in these equations (conditions).

It can easily be seen that Eq. (12) give the facilities for doing some useful evaluations for

prestressed polycrystalline aggregates with orthorhombic macroscopic symmetry. The utility of

Eq. (12) can be illustrated by the two following examples:

(i) If the values of the nine quantities V11, V22, V33, V12, V21, V13, V23, V31 and V32 are known

(from measurements or theoretical predictions) then the background stress components in

three principal directions, r0
11, r0

22, r0
33, as well as the effective material parameters ~C11,

~C22, ~C33, ~C44, ~C55 and ~C66, can be evaluated immediately from Eq. (12).

(ii) In another situation, in addition to ~r0
11, ~r0

22, r0
33,

~C11, ~C22, ~C33, ~C44, ~C55 and ~C66, it is also

possible to evaluate the probability density function of the crystallite orientation,

p (h;u;u). An example of such a simplified situation is as follows:

If ~r0
11 6¼ 0; ~r0

22 6¼ 0 and ~r33 ¼ 0 (the case of plane background stress), and if the values of the

twelve quantities V11, V22, V33, V12, V21, V13, V23, V31, V32, ~c11, ~c12 and ~c44 are known at the

start of computing, then the probability density function of the crystallite orientation,

p (h;u;u), can be estimated by making use of Eqs. (6), (12), the normalization condition for

p (h;u;u) as well as by utilizing the Jaynes’ [9] principle of the maximum Shannon entropy as a

constructive criterion for setting up the function p (h;u;u) on the basis of partial knowledge

given by Eq. (12). In the case of ~r0
11 ¼ ~r0

22 ¼ ~r0
33 ¼ 0 or ~r0

11 � 0; ~r0
22 � 0; ~r0

33 � 0 it is sufficient

to know, as it follows from Eqs. (12) and [14, Eqs. (22)], the values of only six quantities: three

velocities (e.g., V11;V13, V33) and ~c11; ~c12 and ~c44. In the two last cases it is also possible to

evaluate the changes in V11, V22, V33, V12, V21, V13, V23, V31, V32, ~C11, ~C22, ~C33, ~C44, ~C55, ~C66 and

p (h;u;u) with increasing ~r0
11; ~r0

22 and ~r0
33 by small known steps D~r0

11;D~r0
22 and D~r0

33. The

proposal of an algorithm for such evaluations will be presented in the next Section.

3 Algorithm

In this paper, Eqs. (6), (12) and the Jaynes’ [9] principle of the maximum Shannon entropy are

the basis for making up an algorithm enabling us to estimate the previously mentioned changes

in the orthorhombic acoustic anisotropy and texture of prestressed (~r0
11 6¼ 0; ~r0

22 6¼ 0; ~r0
33 6¼ 0)

polycrystalline aggregates, the changes being caused by increasing background stress ~r0
ij. Now

let us present the preliminaries of this algorithm.

When Eqs. (12) are considered together with Eq. (6) and [14, Eq. (4)], we obtain for the case

of ~r0
11 6¼ 0; ~r0

22 6¼ 0; ~r0
33 6¼ 0

~C11 ¼ ~c11 � 2ð~c11 � ~c12 � 2~c44Þhr1ðn;u;/Þi ¼ V2
11 � ~r0

11; ð14Þ

~C22 ¼ ~c11 � 2ð~c11 � ~c12 � 2~c44Þhr2ðn;u;/Þi ¼ V2
22 � ~r0

22; ð15Þ

~C33 ¼ ~c11 � 2ð~c11 � ~c12 � 2~c44Þhr3ðn;u;/Þi ¼ V2
33 � ~r0

33; ð16Þ

~C44 ¼ ~c44 þ ð~c11 � ~c12 � 2~c44Þhr4ðn;u;/Þi ¼ V2
23 � ~r0

22; ð17Þ
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~C55 ¼ ~c44 þ ð~c11 � ~c12 � 2~c44Þhr5ðn;u;/Þi ¼ V2
13 � ~r0

11; ð18Þ

~C66 ¼ ~c44 þ ð~c11 � ~c12 � 2~c44Þhr6ðn;u;/Þi ¼ V2
12 � ~r0

11; ð19Þ

~r0
11 � ~r0

33 ¼ V2
13 � V2

31; ~r0
22 � ~r0

33 ¼ V2
23 � V2

32; ~r0
11 � ~r0

22 ¼ V2
12 � V2

21; ð20Þ

hr4ðn;u;/Þi ¼ hr3ðn;u;/Þi þ hr2ðn;u;/Þi � hr1ðn;u;/Þi; ð21Þ

hr5ðn;u;/Þi ¼ 2hr1ðn;u;/Þi � hr2ðn;u;/Þi þ hr4ðn;u;/Þi; ð22Þ

hr6ðn;u;/Þi ¼ 2hr1ðn;u;/Þi � hr5ðn;u;/Þi; ð23Þ

where Eqs. (21)–(23) follow from the following definitions of r1, r2; . . . ; r6 and some trigono-

metrical identities:

r1 ¼ l21 l22 þ l21 l23 þ l22 l23; r2 ¼ m2
1 m2

2 þm2
1 m2

3 þm2
2 m2

3; ð24Þ

r3 ¼ n2
1 n2

2 þ n2
1 n2

3 þ n2
2 n2

3; r4 ¼ m2
1 n2

1 þm2
2 n2

n þm2
3 n2

3; ð25Þ

r5 ¼ n2
1 l21 þ n2

2 l22 þ n2
3 l23; r6 ¼ l21 m2

1 þ l22 m2
2 þ l23 m2

3; ð26Þ

li ¼ Ei � e1; mi ¼ Ei � e2; ni ¼ Ei � e3; i ¼ 1; 2; 3: ð27Þ

The abbreviations hrtðn;u;/Þi, t ¼ 1; 2; . . . ; 6, in Eqs. (14)–(19) denote averaging the function

rtðn;u;/Þ over all the crystallites in the sample, i.e., hrtðn;u;/Þi denotes rtðn;u;/Þ weighted by

pðn;u;/Þ:

hrtðn;u;/Þi ¼
Z1

�1

dn
Z2p

0

du
Z2p

0

d/ rtðn;u;/Þpðn;u;/Þ: ð28Þ

Every of Eqs. (14)–(19) consists actually of two equations. In each of these equations we

will distinguish its left- and right-hand part. For example, the equations ~C11 ¼ ~c11�
2ð~c11 � ~c12 � 2~c44Þhrtðn;u;/Þi and ~c11 � 2ð~c11 � ~c12 � 2~c44Þhrtðn;u;/Þi ¼ V2

11 � ~r0
11 are the

left- and right-hand part of Eqs. (14), respectively.

Let us note that the texture pðn;u;/Þ and one of the velocities Vij; i; j ¼ 1; 2; 3, appear in

each of Eqs. (14)–(19). Hence the idea [5] of regarding equations similar to Eqs. (14)–(19) as a

basis for estimating the function pðn;u;/Þ from ultrasonic measurements of Vij and by max-

imizing conditionally the Shannon entrophy of the function pðn;u;/Þ. From Eqs. (24)–(27), it

follows that among the six expectation values hrtðn;u;/Þi, t ¼ 1; 2; . . . ; 6, only three are linearly

independent of each other. Therefore, in this paper no more than three expectation values

hrtðn;u;/Þi may be involved in each considered problem of estimating the function pðn;u;/Þ
for prestressed polycrystalline aggregates with orthorhombic symmetry, pðn;u;/Þ being esti-

mated from the velocities Vij and by using the Lagrangian multipliers method for conditional

maximum of missing information (Shannon entropy).

Since the present work involves the maximum number, three, of the expectation values

hrtðn;u;/Þi, t ¼ 1; 2; . . . ; 6, which may be involved in the problem of determining the function

pðn;u;/Þ by maximizing conditionally the Shannon entropy, we choose the normalization

condition

h1i ¼
Z1

�1

dn
Z2p

0

du
Z2p

0

d/ pðn;u;/Þ ¼ 1 ð29Þ
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as well as the right-hand parts of Eqs. (14), (16) and (18) as a reliable basis for the formulation

of the variational problem of the estimation of the texture pðn;u;/Þ. The right-hand parts of

Eqs. (14), (16) and (18) may be rewritten in the following forms:

hr1ðn;u;/Þi ¼
~r0

11 þ ~c11 � V2
11

2ð~c11 � ~c12 � 2~c44Þ
; ð30Þ

hr3ðn;u;/Þi ¼
~c11 � V2

33

2ð~c11 � ~c12 � 2~c44Þ
; ð31Þ

r5ðn;u;/Þi ¼
V2

13 � ~r0
11 þ ~c44

ð~c11 � ~c12 � 2~c44Þ
: ð32Þ

Equations (29)–(32) express the constraints which should be subject to the Shannon entropy I,

I a�
Z1

�1

dn
Z2p

0

du
Z2p

0

d/ pðn;u;/Þ ln pðn;u;/Þ ð33Þ

upon maximization, when the procedure of the maximum-entropy estimate [6, Appendix] is

utilized for determining the function pðn;u;/Þ. In this way we obtain the function pðn;u;/Þ in
the form

pðn;u;/Þ ¼ 1

Z
exp½�L1r1ðn;u;/Þ � L3r3ðn;u;/Þ � L5r5ðn;u;/Þ�; ð34Þ

where 1� ln Z; L1; L3, and L5 denote the Lagrangian multipliers corresponding to the

conditions (29)–(32), respectively. On finding the Lagrangian multipliers L1; L3; L5 and the

partition function Z, the maximum-entropy probability density function, pðn;u;/Þ can

be estimated.

The considerations of the second and current section have brought us to Eqs. (14)–(23),

(29)–(32), (34), Eqs. (30)–(32) being another form of the right-hand parts of Eqs. (14)–(16),

(18). In the paper, these equations are regarded as a basis for the evaluation of the changes

both in the values of the ultrasonic velocities V11, V22, V33, V12, V21, V13, V23, V31, V32 and the

values of Lk; k ¼ 1; 3; 5, and Z, the changes being caused by the changes in the values of the

plane background stresses r0
11, r0

22, r0
33. The above mentioned quantities are connected with

each other by Eqs. (14)–(23), (29), (34) in a complicated nonlinear and even functional

manner. ‘‘There are no good, general methods for solving systems of more than one non-

linear equation. Furthermore, it is not hard to see why (very likely) there never will be any

good, general methods’’ [15, p. 372]. For this reason, we have performed the computations

for the case of plane background stress (r0
11 6¼ 0, r0

22 6¼ 0 and r0
33 ¼ 0) with using our own

method. The computations have been performed for the background plane stress r0
ij with the

values of r0
11 varying in the interval [1 MPa; 750 MPa] and r0

22 ¼ c � r0
11; c ¼ 1

2
:

Applying the previously defined algorithm to prestressed steel, it is assumed that stress r0
ij of

values of the order 750MPa cannot cause any change in the values of the single-crystallite elastic

moduli cij of any polycrystalline aggregate (metal). On the other hand, it is supposed that

changes in the values of L1, L3, L5 and Z (i.e., in the texture) are permissible if r0
ij � 750 MPa.

The numerical caculations have been performed in order to know from our own experience

how the proposed algorithm is useful for acoustoelastic investigations. In this way, we have

analyzed a few examples. In order to simplify the subsequent elaborations and to avoid making

the paper even longer, the remainder of the paper is dealing with the numerical calculations

concerning only one of the examples.
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4 Numerical results and discussion

In the subsequent numerical analysis, we are interested in the properties of the algorithm given

by Eqs. (14)–(23), (29), (34) and in the predicted changes in the values of the ultrasonic

velocities V11, V22, V33, V12, V21, V13, V23, V31, V32, normalized effective elastic stiffness moduli
~C11, ~C22, ~C33, ~C44, ~C55, ~C66, Lagrangian multipliers L1, L3, L5, and partition function Z, all the

values being evaluated in the maximum-entropy approximation for a rolled steel plate subjected

to plane stress with ~r0
11 increasing from 1 MPa to 750 MPa and ~r0

22 ¼ 1
2

~r0
11. The other com-

ponents of the plane stress ~r0
ij are not involved in the algorithm, after assuming ~r0

33 ¼ 0. The

rolled steel is assumed to be characterized by the following values of the single-crystal effective

stiffness moduli and density:

c11 ¼ 205 GPa; c12 ¼ 133 GPa;

c44 ¼ 125 GPa; q ¼ 7819 kgm�3:
ð35Þ

In examining the changes in the elastic and propagation properties of the polycrystalline

aggregate as well as in the maximum-entropy probability density function, pðn;/Þ, the task

is to determine the dependence of the Lagrangian multipliers L1, L3, L5, partition function

Z and the values of V11, V22, V33, V12, V21, V13, V23, V31, V32, ~C11, ~C22, ~C33, ~C44, ~C55 and
~C66 on the varying (increasing) plane stresses ~r0

11 and ~r0
22. These purposes are attained in

tedious numerical calculations performed on the basis of the system of Eqs. (14)–(23), (29),

(34). For the sake of brevity, any detailed description of the program will not be given in

this paper.

In calculating the changes in the dynamical properties and texture of the polycrystalline

material, the stresses r0
11and r0

22 ¼ 1
2
r0

11 have been assumed to be increasing from 1 MPa to 750

MPa and from 0:5 MPa to 375 MPa, respectively, in 750 equal and rather small steps Dr0
11 ¼ 1

MPa, Dr0
22 ¼ 0:5 MPa. For every 750 pairs of r0

11 and r0
22 values, a running program of the

calculation is a succession of successful and fruitless iteration steps. If an iteration step leads to

increase the calculation accuracy it is successful; otherwise, it is fruitless. In performing the

calculation it is necessary to have a check of the current accuracy of the calculation. Therefore,

it is necessary to evolve an error parameter Qm. In order to define this parameter, let us focus

our attention again on the right-hand parts of Eqs. (14)–(19) and call them Eqs. (14r)–(19r).

Now denote by RðlÞ and LðlÞ, l ¼ 14; 15; . . . (19), the values of the right- and left-hand sides of

Eqs. (14r)–(19r), respectively, which are calculated after every successful iteration step. Then we

can define the maximum relative error Qm of finding the current values of Lk, k ¼ 1, 3, 5, Z,

V11, V22, V33, V12, V21, V13, V23, V31, V32 as follows:

Qm ¼ DMAX1½Gmð14Þ; Gmð15Þ; . . . ;Gmð19Þ�; ð36Þ

where DMAX1 is the FORTRAN intrisinc function, which returns the maximum value in the

argument list. The nomenclature introduced in the last equation is as follows:

GmðlÞ ¼ DABSf½RðlÞ � LðlÞ�=Lð1Þg; l ¼ 14; 15; . . . ; ð19Þ; ð37Þ

where the FORTRAN intrisinc function DABS returns the absolute value of its argument,

The numerical calculations, whose results are presented in the paper in Figs. 1–3, have been

performed with the maximum relative error Qm ¼ 5:5 � 10�5, The consequences of this error to

the values of Vij is, consistent with that of the error �0:5 ms�1 of the respective ultrasonic

measurements.

Figure 1 shows the plots of L1, L3, L5, and Z versus ~r0
11. The values of L1, L3, L5, and Z vary

monotonously from 3:41241, 11:3020,�4:07668, 13, 3875 for r0
11 ¼ 1 MPa to 3:20248, 11:5754,
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�4:03822, 13:3010 for r0
11 ¼ 750 MPa, respectively, with increasing r0

11 and r0
22 ¼ 1

2
r0

11. In

order to evaluate the influence of these changes in the values of L1, L3, L5, and Z on the

theoretically predicted distribution of the single-crystallite orientation, let us utilize the quan-

tities defined by the following equations:

nuðu1;u2; r0
11 ¼ rmÞ ¼

Z1

�1

dn
Zu2

u1

du
Z2p

0

d/ pðn;u;/Þ; ð38Þ

n/ð/1;/2; r0
11 ¼ rmÞ ¼

Z1

�1

dn
Z2p

0

du
Z/2

/1

d/p ðn;u;/Þ; ð39Þ

nhðn1; n2; r0
11 ¼ rmÞ ¼

Zn1

n2

dn
Z2p

0

du
Z2p

0

d/ pðn;u;/Þ: ð40Þ

These quantities characterize the distribution of the single-crystallite orientation in the

polycrystalline aggregate subjected to the plane stress r0
ij with r0

11 ¼ rm and r0
22 ¼

1
2
rm, 0 � rm � 750 MPa, namely nhðn1; n2; r0

11 ¼ rmÞ, nuðu1;u2; r0
11 ¼ rmÞ and

n/ð/1;/2; r0
11 ¼ rmÞ. denote the fractions of the total number of crystallites in the material with

the angle of nutation, h, lying in the interval h1 � h � h2 (where h1 ¼ cos�1 n1; h2 ¼ cos�1 n2Þ,
with the angle of precession, u, lying in the interval u1 � u � u2 and with the angle of proper
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Fig. 1. Lagrangian multipliers L1, L3, L5 and partition function Z versus the stress r0
11
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rotation, /, lying in the interval /1 � / � /2, respectively. The numerical calculations of

nuðu1;u2; r0
11 ¼ rm), n/ð/1;/2; r0

11 ¼ rm) and n/ðn1; n2; r0
11 ¼ rm) have been performed with

the whole domains [0, 360] of the angles of precession u and proper rotation / as well as with the

whole domain [0, 180] of the angle of nutation h, the domains being divided into parts (sub-

domains) of equal size of 18 with centres at uc;/c and hc, respectively. Hence,

uc ¼ ðuk þ ukþ1Þ=2

/c ¼ ð/l þ /lþ1Þ=2

9=
; ¼ 9�; 27�; . . . ; 351�; k; l ¼ 0; 1; . . . ; 19;

u0;u1; . . . ;u20

/0;/1; . . . ;/20

9=
; ¼ 0� 18�; . . . ; 360�; hc ¼ ðhm þ hmþ1Þ=2 ¼ 9�; 27�; . . . ; 171�;

m ¼ 0; 1; . . . ; 9; h0; h1; . . . ; h10 ¼ 0�; 18�; . . . ; 180�:

Making use of Eqs. (38)–(40), we define the following quantities:

Dnu n1; n2; r0
11ð1% 750Þ

� �
¼ nuðu1;u2; r0

11 ¼ 750Þ � nuðu1;u2; r0
11 ¼ 1Þ

nuðu1;u2; r0
11 ¼ 1Þ

; ð41Þ

Dn/ n1; n2; r0
11ð1% 750Þ

� �
¼ n/ð/1;/2; r0

11 ¼ 750Þ � n/ð/1;/2; r0
11 ¼ 1Þ

n/ð/1;/2; r0
11 ¼ 1Þ

; ð42Þ

Dnh n1; n2; r0
11ð1% 750Þ

� �
¼ nhðn1; n2; r0

11 ¼ 750Þ � nhðn1; n2; r0
11 ¼ 1Þ

nhðn1; n2; r0
11 ¼ 1Þ

: ð43Þ
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Fig. 2. Ultrasonics phase velocities V11, V22, V33, V12, V13 V31, V23, and V32 versus the stress r0
11
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The quantities Dnu n1; n2; r0
11ð1 % 750Þ

� �
, Dn/ n1; n2; r0

11ð1 % 750Þ
� �

, and Dnh n1; n2;f
r0

11ð1 % 750Þg, which in Table 1 are denoted by Dnu, Dnu; Dnu, respectively, characterize the
relative changes in the distribution of the single-crystallite orientation in the polycrystalline

aggregate subjected to the plane background stress ðr0
11 6¼ 0, r0

22 6¼ 0, r0
33 ¼ 0Þ, the changes

being induced by the stress increase from r0
11 ¼ 1MPa to r0

11 ¼ 750 MPa with r0
22 ¼ 1

2 r0
11

and r0
33 ¼ 0. The predicted values of the quantities nuðu1; u2; r

0
11 ¼ 1Þ, n/ð/1; /2; r

0
11 ¼ 1Þ,

nhðn1; n2; r0
11 ¼ 1Þ, Dnu n1; n2; r0

11ð1 % 750Þ
� �

, Dn/ n1; n2; r0
11ð1 % 750Þ

� �
, Dnh n1; n2;f

r0
11ð1 % 750Þg calculated from Eqs. (36)–(41), respectively, are given in Table 1. In the first

column of Table 1, the angle intervals 0� � 18�; 18� � 36�; . . . ; 162� � 180� correspond to

the intervals Du; D/; Dh of the angles u; / and h, respectively. The bottom horizontal line of

Table 1,which corresponds to the values u; /; h ¼ 180�,would be the axis of the mirror

symmetry of the parts (columns nu; Dnu; n/; Dn/Þ of Table 1 if they were lengthened to

concern the angles 0� � u � 360� and 0� � / � 360�. This fact is a consequence of the

orthorhombic symmetry of the polycrystalline aggregate under consideration. For this reason,

in Table 1 there are given only the halves of the columns nu; Dnu; n/, and Dn/ which cor-

respond to 0� � u � 180� and 0� � / � 180�.

The results of the numerical calculations given in Table 1 in the columns entitled Dnu, Dn/

and Dn�h reveal that the presented considerations predict small influnce of the plane stress r0
ij on

the texture. This small effect of the stress r0
ij on the texture ðpðh;u;/ÞÞ is also revealed in Fig. 1

by small changes in the values of the Lagrangian multipliers L1, L3, L5 and partition function Z

with the varying (increasing) plane stress r0
ij. It can easily be seen from Figs. 2 and 3 that,

contrary to the texture, some acoustoelastic properties of the polycrystalline aggregate sub-

jected to the varying stress r0
ij are significantly affected by the stress.
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Certainly, the theoretical predictions of the algorithm are influenced on by the simplyfying

assumptions of the considerations presented in the paper, which have led us to the algorithm.

The fitness of the predictions of the algorithm with experimental results would be revealed if the

experiments were performed. Now we confine ourselves only to try to perceive some tendencies

of the algorithm in its predicting of the changes in acoustoelastic properties of the polycrys-

talline aggregate in the situation when the changes in the texture increase slowly with the

increasing background stress.

Suppose that the values of L1, L3, L5, Z, V11, V22, V33, V12, V21, V13, V23, V31, V32, ~C11, ~C22,
~C33, ~C44, ~C55, and ~C66 have been found for the orthorhombic polycrystalline aggregate which

was assumed to be approximately free of stress ðr0
11 ¼ 1 MPa � 0, r0

22 ¼ 0:5 MPa � 0, r0
33 ¼ 0Þ

at the start of computing. Figures 1–3 and Tables 1 and 2 show some predictions of the

algorithm in the situation when the background stresses r0
11 6¼ 0; r0

22 6¼ 0 and r0
33 ¼ 0 increase

from r0
11 ¼ 1 MPa to r0

11 ¼ 750 MPa with r0
33 ¼ 0 and r0

22 ¼ 1
2 r0

11 in 750 equal steps, and

simultaneously C11, C12, C44 retain their constant values.

Now let us give some comments on the results of the numerical analysis, the considered

results being presented in Figs. 1–3 and Tables 1 and 2.

(i) It should perhaps be stressed at first that the presented predictions have been obtained by

using the algorithm deduced under the assumption that the single-crystal effective stiffness

moduli c11, c12 and c44 retain their constant values with increasing background stresses

r0
ii; ii ¼ 11; 22; 33. This assumption is not in contradiction to another assumption that the

background stresses r0
ii are increasing only up to the values at which there still does not

occur any significant effect of plastic deformation on the texture (i.e, on the shape of

pðh;u;/ÞÞ, the texture being determined by the Lagrangian multipliers L1, L3, L5 and the

partition function Z. These assumptions

– allow us to use for all considered values of the background stresses the same algorithm

in computing the values of the quantities being of interest for us;

– in discussing the obtained numerical results, allow us both to regard the Lagrangian

multipliers and partition function as functions of the background stresses

r0
ii; ii ¼ 11; 22; 33 and to suppose that good approximations of these functions may be

of the form of the power series with respect to the background stresses r0
ii, each of the

series being truncated after the terms linear in r0
ii. In the computations presented here,

r0
22 ¼ c � r0

11, c ¼ 0:5, r0
33 ¼ 0. Hence there are approximately linear dependences of the

numerically computed values of the quantities L1, L3, L5 and Z on the stress r0
11.

Table 1. Texture estimation of the prestressed polycrystalline aggregate

Du D/ Dh nu and Dn�/ n/ and Dn/ nh and Dnh

nu Eq. (38) Dnu Eq. (41) n/ Eq. (39) Dn/ Eq. (42) nh Eq. (40) Dnh Eq. (43)

0�–18� 7:26 � 10�2 7:15 � 10�3 6:27 � 10�2 �7:54 � 10�3 6:86 � 10�2 1:88 � 10�2

18�–36� 3:84 � 10�2 �8:54 � 10�3 4:77 � 10�2 5:66 � 10�3 6:99 � 10�2 �6:51 � 10�3

36�–54� 2:79 � 10�2 �1:37 � 10�2 3:91 � 10�2 1:33 � 10�2 4:52 � 10�2 �2:88 � 10�2

54�–72� 3:84 � 10�2 �8:56 � 10�3 4:38 � 10�2 5:31 � 10�3 8:59 � 10�2 �1:59 � 10�2

72�–90� 7:26 � 10�2 7:16 � 10�3 5:66 � 10�2 �9:70 � 10�3 2:30 � 10�1 7:93 � 10�3

90�–108� 7:26 � 10�2 7:16 � 10�3 5:66 � 10�2 �9:70 � 10�3 2:30 � 10�1 7:93 � 10�3

108�–126� 3:84 � 10�2 �8:56 � 10�3 4:38 � 10�2 5:31 � 10�3 8:59 � 10�2 �1:59 � 10�2

126�–144� 2:79 � 10�2 �1:37 � 10�2 3:91 � 10�2 1:33 � 10�2 4:51 � 10�2 �2:89 � 10�2

144�–162� 3:84 � 10�2 �8:56 � 10�3 4:77 � 10�2 5:67 � 10�3 6:98 � 10�2 �6:57 � 10�3

162�–180� 7:26 � 10�2 7:16 � 10�3 6:27 � 10�2 �7:55 � 10�3 6:88 � 10�2 1:89 � 10�2
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In this way, we arrive at the conclusions that the changes in the values of the stastistical

moments hrtðn;u;/Þi, t ¼ 1; 2; . . . ; 6, with increasing background stresses r0
ii may be ex-

pected to be also small. Consequently, the right-hand parts of Eqs. (14)–(19) imply that the

stress-induced changes D ~Cðr0
iiÞtt can be written in a good approximation also in the form of

the power series with respect to r0
ii; the series being reduced (truncated) to the sum of the

terms of zeroth- and linear-order in r0
ii. In this way, for the case of r0

22 ¼ c.
r0

11; c ¼ 0:5; r0
33 ¼ 0 and for each propagation velocity Vij, i; j ¼ 1; 2; 3, we can obtain,

from the right-hand part of the respective one of Eqs. (14)–(19), relationships like the

following ones for V11 from the right-hand part of Eqs. (14):

Vð~r0
11Þ11¼½ ~Cð~r0

11Þ11þ ~r0
11�

1=2,Vð~r0
11Þ11¼½ ~Cð~r0

11¼0Þ11þD ~Cð~r0
11Þ11þ~r0

11�
1=2

ffi½ ~Cð~r0
11¼0Þ11�

1=2 � 1þ1

2
½D ~Cð~r0

11Þ11=
~Cð~r0

11¼0Þ11þ ~r0
11=

~Cð~r0
11¼0Þ11�

� �
: ð44Þ

Hence there is an approximately linear dependence of the computed values of each prop-

agation velocity Vij; i; j ¼ 1; 2; 3, on the stress r0
11.

(ii) Let us remind that in the numerical analysis in the present paper we are interested in the

situation where the initially stress-free (or approximately stress-free) bulk sample of the

textured polycrystal is subjected to small applied stresses Dr0
ij � 1 MPa; i; j ¼ 1; 2; 3: After

approaching the equilibrium deformed configuration of the material points of the body, the

values of the applied stresses are increased again by the same constant and small steps Dr0
ij,

and, consequently, the material points of the bulk sample tend to a new equilibrium

deformed configuration. The sequences of two following events: increasing the applied

stresses r0
ij by the successive steps Dr0

ij and then approaching the new equilibrium deformed

Table 2. Computed changes in the values of some quantities F in the prestressed polycrystalline

aggregate

F F1 _¼Fðr0
11 ¼ 1MpaÞ F750 _¼Fðr0

11 ¼ 750MpaÞ DF _¼ðF750 � F1Þ=F1

L1 3:412417698197 3:202480799663 �0:061521

L3 11:30196649049 11:57547247279 0:024200

L5 �4:076682080805 �4:038222859390 0:0094340

Z 13:3875 13:3010 �0:0064613
~C

eff

11 [m2s�2] 3:35855 � 107 3:36017 � 107 0:00048235

~C
eff

22 [m2s�2] 3:28625 � 107 3:28757 � 107 0:00040167

~C
eff

33 [m2s�2] 3:20784 � 107 3:20009 � 107 �0:0024160

~C
eff

44 [m2s�2] 3:34181 � 107 1:34587 � 107 0:0030258

~C
eff

55 [m2s�2] 1:26951 � 107 1:27320 � 107 0:0029066

~C
eff

66 [m2s�2] 1:19110 � 107 1:18549 � 107 �0:0047099

V2
31 [m2s�2] 12695111 12731980 0:0022904

V2
32 [m2s�2] 13418082 13458699 0:0030270

V2
33 [m2s�2] 32078403 32000970 �0:0024139

V2
11 [m2s�2] 33585618 33697677 0:0033365

V2
12 [m2s�2] 11911126 11950780 0:0033291

V2
22 [m2s�2] 32862588 32923726 0:0018604

V2
13 [m2s�2] 12695254 12827858 0:0104452

V2
23 [m2s�2] 13418155 13506654 0:0065955
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configuration of the body material points are repeated as many times (N ¼ 750) as the

applied stresses r0
ij ¼ n. Dr0

ij; n ¼ 1; 2; . . . ;N reach the desired limiting values N Æ Dr0
ij.

Simultaneously, the plane wave motion governed by Eqs. (8) is superimposed successively

on each of the equilibrium deformed configurations of the body materials points. Strictly

speaking, we substitute into Eqs. (8) its plane wave solution huðx; tÞi which is given by Eqs.

(9)–(11), successively in the form of each of the nine wave modes (11), the phase velocities

Vij; i; j ¼ 1; 2; 3, normalized effective moduli, ~Cijkl ¼ C
eff

ijkl=q; i; j; k; l ¼ 1; 2; 3 and Eqs. (8)

being referred to the currently considered equilibrium deformed configuration of the

material points of the body. There are numerous procedures of approximating the C
eff

ijkl

proposed by such authors as Voigt [8], Reuss [16] and Hill [17]. In the present paper, we

confine ourselves to considering only the case when C
eff

ijkl; i; j; k; l ¼ 1; 2; 3, are calculated

using the Voigt averaging procedure. We do that for the following reasons:

(a) Allen et al. [18] used neutron diffraction to measure the texture (distribution function of

the crystallite orientation) of a bulk sample of highly textured and stress-free austenitic

weld material. The values of the ultrasonic velocities Vij in three orthogonal directions

in the sample were calculated from the measured texture by using successively the

Voigt, Reuss and Hill approximations (averaging procedures), and next the calculated

values were compared with the measured ones of the same ultrasonic velocities Vij. The

Voigt approximation is found to give good agreement with experiment and appears to

be the most useful approach for the calculation of ultrasonic velocities in highly tex-

tured materials [18, p. 555].

(b) Inverting successively the averaging procedures of Voigt, Reuss and Hill, Lewan-

dowski [5] determined three maximum-entrophy extimates of the function pðh;u;/Þ
for the orthorhombically textured and stress-free polycrystalline aggregate. Each of

the three estimates was determined from the same three ultrasonic velocities vij, which

were regarded as known (observables) and chosen from the set of nine velocities

vij; i; j ¼ 1; 2; 3; in such a way that each of the numbers 1,2 and 3 appeared as

subscripts i or /and j at no more than two velocities vij. It can readily be verified [5,

p. 233] that the knowledge (measurement) of the values of three such velocities is

sufficient for the set of nine values of the velocities vij; i; j ¼ 1; 2; 3; to be determined

from the symmetry conditions (orthorhombic for the bulk sample and cubic for the

grains). Next the values of another ultrasonic velocities Vij were calculated in four

ways: Firstly, in three ways by employing successively each of the three averaging

procedures together with the estimate of the function pðh;u;/Þ implied, in the pre-

vious step, by inverting the same averaging procedure. Secondly, in one way imme-

diately from three known velocities Vij (observables) and the symmetry conditions.

Afterwards, the results of calculating the values of the same ultrasonic velocities Vij

from the symmetry conditions and by employing sucessively one of three estimates of

pðh;u;/Þ together with the averaging procedure, which had yielded the pðh;u;/Þ in
the previous step, were successively compared with each other in pairs, for each of the

three applied averaging prodecures, to verify the usefulness of each of the proposed

methods of estimating the texture (i.e., of finding the function pðh;u;/Þ) from the

measurements of the respective three ultrasonic velocities Vij. In these tests, the

velocities Vij in every pair with one velocity value deduced from pðh;u;/Þ by

employing the Voigt averaging procedure, fitted approximately the same values with

the best accuracy as compared with Vij in each other pairs with one velocity value

deduced from the Reuss and Hill averaging procedure. Therefore, it was concluded
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that inverting the Voigt averaging procedure leads to such a maximum-entropy

estimate of the probability density function of the crystallite orientation, pðh;u;/Þ,
that the medium acoustic anisotrophy implied by this function approximates with the

best accuracy the acoustic anisotropy deduced from the three observed velocities Vij

and symmetry rules. The results suggest that the Voigt averaging procedure is the

most suitable one (as compared with that of Reuss and Hill) for estimating the

effective acoustelastic properties of the polycrystalline agregate from its maximum-

entropy estimate of the texture.

Generally, the results of numerical experiments suggest that the smaller the plane stresses r0
11

and r0
22 at the start of computing as well as the smaller the stress steps Dr0

11 and Dr0
22, the better

the agreement in the values of the theoretically predicted texture and ultrasonic velocities V11,

V22, V33, V12, V21, V13, V23, V31, V32 with that obtained experimentally, if the respective

experiments were performed. Such ultrasonic experiments would also be the most infallible

method of determining the stress upper limit of applicability of the algorithm for a given set of

the values of the algorithm and program parameters. Moreover, if the computer analysis was

accompanied by even fragmentary experimental measurements then among others (i) one

would be enabled to verify the choice of the parameters and their values controlling the

exactness and rate of the iteration procedures of the program, and (ii) one would be enabled to

vary (respectively improve) the values of all or of some of the parameters in such a way that

these changes together with other changes in the algorithm and programs would extend the

applicability range of the algorithm as well as increase the rate and exactness to be consistent

with that of the measurements.

5 Conclusions

The method proposed in this paper yields a system of integral equations for the eval-

uation of changes in the acoustoelastic properties and texture of the orthorhombic

polycrystalline aggregate of general loading histories, including plastic deformation. The

changes are assumed to be caused by varying (e.g., increasing) background stress sub-

jected to the polycrystal body, the single-crystallite elastic moduli retaining their con-

stant values. The principal directions of the stress are assumed to be coincident with the

axes of the orthorhombic symmetry of the bulk sample. The obtained algorithm sug-

gests, among others, performing the numerical evaluation of these changes under the

assumptions that the background stress is plane and the single-crystallite elastic moduli

retain their constant values. The brief summary of the main results of such an analysis

and computing is:

(i) The predicted changes in the acoustoelastic (propagation) properties of the orthorhombic

polycrystalline aggregate depend on the orientation of the direction of the elastic wave

propagation and polarization with respect to the principal directions of the background

stress and with respect to the symmetry axis of the polycrystal as well as depend on the

values of the background stresses.

(ii) For the plane background stress not greater than 750 MPa, the absolute values of the

predicted relative changes in the distribution of the single-crystallite orientation in the

polycrystalline aggregate, Dnu, Dn �/, Dn�h in Table 1, are smaller than 3:0 � 10�2.
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