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1. Introduction 

Metal Matrix Composites (MMCs) are widely used in several strategic industrial sectors, 

such as defense, aerospace, nuclear power plants, space exploration, being the main source 

of technological progress in the others, for example machining. In this communication, we 

use meshless method that is peridynamics for simulation of impact of a sample. 

Peridynamics is a non-local, meshless quite recently formulated method of stress analysis. 

Nonlocal methods were developed for crystal analysis [1], [2]. The nonlocal methods were 

generalized on the coupled problems in [3].  The peridynamics was formulated for the first 

time by Silling [4, 5].   

2. Problem statement 
The elastic-plastic model in the peridynamic format is defined in similar form as in the 

continuous model [6, 7] but with a dependence on peridynamic states.  

 
Fig. 1. State of deformation of a body. 

 

The scalar extension state is given: XYY )(e . We can decompose the scalar extension 

state into spherical and deviatoric parts: di eee  . The elastic force state relation is given 

in analogous form to the standard stress strain relation being the sum of the spherical and 

deviatoric parts as follows: dex
m

k
Yt 




3
)( , where k is the bulk modulus, m is the 

weighted volume, θ is the dilatation, ω is the influence function, x is the basic scalar state, α 

is the coefficient related to shear modulus as follows: α = (15μ)/m, where μ is the shear 

modulus, de is the deviatoric part of the extension state. 
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Further on, the relations are similar in structure to the continuous theory of plasticity, [12, 

13] but they are written in peridynamic theory format. The relations are as follows:  

Additive decomposition of the deviatoric extension state
de into elastic state 

d ee   and plastic 

state 
d pe :  dpded eee    ; Elastic force state relation with applied the above additive 

decomposition   dpd eex
m

k
Yt  

3
)( ; Yielding condition:   0)(

o
 dd tΨtf , 

where  
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tΨ  ; Flow rule:  ddpe  ; Kuhn-Tucker conditions (loading and 

unloading):     0,0,0  dd tftf  ; and finally the consistency condition: 

  0dtf . 

 

3 Computational model 
The computational model is obtained from CT scans that are converted into peridynamics 

discretisation. A part of the CT scan showing the WC grains and diamond grains are shown 

in Fig. 2 (a). The grains are embedded into a Co matrix.  

               (a)    (b)  
Fig. 2.  CT scan (left); discretized WC and diamond grains (right) that are embedded into a Co matrix.                                         
 
The discretization is done with 1663535 points. The material properties of the diamond are: 

Young’s modulus 1210E+08 Pa, Poisson’s ratio 0.22 and density 3440.0 kg/m
3
, the material 

is ideally elastic. The material properties of WC are Young’s modulus 6.86E+11 Pa, 

Poisson’s ratio 0.22, density 15880 kg/m
3
 and critical stretch 0.0005. The elastic-plastic Co 

material properties are Young’s modulus 211.0E+09 Pa, Poisson’s ratio 0.296, density 

9130.0 kg/m
3
, yield stress 460.0E+06 Pa and hardening modulus 500.0E+07 Pa. 

In this example, the sample hits the rigid obstacle with the velocity of 150 m/s downwards. 

 

4. Demonstrative example 
The calculations are done with the highly parallelized program Peridigm [8]. We present 

results of the simulation over the time interval 5.0E-09 s. The damage distribution in the WC 

grains is given in Fig. 3. Damage appears in the grains at the very beginning of the loading 

process and reaches the value 0.756, Fig. 3 (left). The maximum value of damage parameter 
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at the end of the process is not much higher reading 0.798, Fig. 3 (right). However, we note 

that many more grains are damaged. 

   

 

   
 
Fig. 3.  Damage distribution at time instant 6.0E-10 s (left) and 5.0E-09 s (right). 

 

  
Fig. 4. Equivalent plastic strain distribution at time instant 6.0E-10 s (left) and 5.0E-09 s (right). 

 

Equivalent plastic strains are given in Fig 4. At the beginning of the process, the equivalent 

plastic strain appears in distinct spots and they are low, Fig.4 (left).  They appear in the 

neighborhood of the WC grains. When the process advances, the plastic strains are higher, 

and they cover greater regions of the Co matrix. 

 

  
 
Fig. 5. Mises stress distribution at time instant 5.0E-09 s, in the Co matrix (left) and in diamond grains (right) 
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Fig. 6. Mises stress distribution at time instant 5.0E-09 s in the WC grains. 

Finally, we observe von Mises stress distribution in three phases of the composite. We find 

that the lowest Mises stress is in the Co matrix reaching maximum 5.65E+08 Pa, Fig. 5 

(left). The highest von Mises stress is achieved in diamond, Fig. 5 (right), reading 4.59E+09 

Pa, and the highest von Mises stress in the WC grains, Fig. 6, reaches 2.47E+10 Pa. 

The calculations are performed on a CRAY XC-40 with the pool of 960 processes in 960 s. 

5. Summary 

We present a flow of calculations of a three-phase material WC/Co/diamond along 

with results of damage, plastic strains and von Mises stresses. Further research will 

focus on crack initiation in such kinds of composites. 
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