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The qualitative behavior of charged particles in a vacuum is given by Earnshaw’s theorem, which states
that there is no steady configuration of charged particles in a vacuum that is asymptotically stable to
perturbations. In a viscous fluid, examples of stationary configurations of sedimenting uncharged particles
are known, but they are unstable or neutrally stable—they are not attractors. In this Letter, it is shown by
example that two charged particles settling in a fluid may have a configuration that is asymptotically stable
to perturbations for a wide range of charges, radii, and densities. The existence of such “bound states” is
essential from a fundamental point of view and it can be significant for dilute charged particulate systems in
various biological, medical, and industrial contexts.

DOI: 10.1103/PhysRevLett.121.254502

Earnshaw’s theorem gives fundamental insights into the
stability of charged systems. Introduced in Ref. [1], the
theorem states that there is no stable equilibrium of charged
particles distributed in a vacuum without a boundary.
An informal reading is that electrostatic interactions are
inherently destabilizing and one must add, e.g., boundaries
or stabilizing forces [2]. Historically, Earnshaw’s theorem
informed the development of models of the stability of
matter and studies of qualitative features of charged
systems [2,3]. Finding the stable configurations allowed
by Earnshaw’s theorem when a spherical boundary is
imposed—the “Thompson problem”—is an active field
[4]. Earnshaw’s theorem underpins classical models of
Wigner crystallization (for instance, see Ref. [5]). It even
allows one to find quantitative limits on parameters for
stable classical models of complex molecules [6]. In this
Letter, we show that the presence of an unbounded
electrically neutral fluid can stabilize systems of charged
microparticles.
At micro and nano scales, both active “agents” and

passive objects, whether of biological [7–9] or inorganic
materials [10,11], and naturally or artificially made, have
been modeled theoretically as particles in a fluid. In
general, such particles can have complex shapes and be
deformable. Their rich dynamics have been extensively
investigated [12–19]. The development of microfluidics,
Lab-On-Chip technologies [20], and advances in medicine
and the design of innovative materials and devices—e.g., to

carry drugs [21] or treat wastewater [22]—depends on this
research.
The concept of a noninertial “Stokes flow,” introduced

in Ref. [23], holds a central place in the theory of the
dynamics of micro and nano particles [24,25]. In particu-
lar, Stokes equations are widely used to determine the
influence of a viscous fluid on the dynamics of particles
experiencing external forces, such as gravity or in a
centrifuge [14,26–30]. For a single particle, Stokes flow
is an appropriate model when the particle has reached
its terminal velocity, its so-called Stokes velocity. The
terminal velocity is reached swiftly at a microscale.
In systems of microparticles in a Stokes flow, the velocity
of each particle is a linear combination of the forces
on every particle. The coefficients of this combination
depend on positions of all the particles.
The goal of this Letter is to find asymptotically stable

configurations of two sedimenting charged particles. The
existence of such “attractive states” (configurations such
that if the particles were disturbed from this configuration
then they would tend to return) may be of a great
significance for sedimenting suspensions that exhibit
electrostatic interparticle interactions.
First, we briefly outline known results for uncharged

particles. Owing to reversibility of Stokes equations,
identical spherical sedimenting particles can form steady
configurations, such as, e.g., horizontal regular polygons
made of arbitrary numbers of particles [31]. More simply,
any arrangement of two identical particles in free space is
steady. However, these steady configurations are, at most,
neutrally stable, and therefore are not attractive.
The more interesting case of two spherical uncharged

sedimenting particles with different radii and densities was
examined in the seminal paper [32]. If the particles are far
enough from each other that their interaction can be
neglected, then particle A with a larger Stokes velocity
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will fall faster than particle B with a smaller Stokes
velocity. Intuition may suggest that if particle A is above
particle B with their centers in a vertical line, then they will
tend to approach each other no matter what their distance.
Counterintuitively, it was found that, in a certain range of
parameters, the particles do not tend to touch each other
(in an infinite time) but instead “capture” each other at a
distance a bit larger than the sum of their radii [32]. Even
more surprisingly, particle A can move slower than B if the
interparticle distance is smaller than its steady value. In this
uncharged system, vertical steady configurations are stable
against vertical, but unstable with respect to horizontal,
perturbations.
The main idea of this Letter is to introduce charge to such

a system, to find a steady vertical configuration and check
if electrostatic attraction between the particles will cause
them to come back to the steady configuration if perturbed.
In the following, we will show that indeed this is the case—
we discover stable configurations. Counterintuitively to
Earnshaw’s theorem in vacuum, electrostatic interactions
between charged particles in fluids can play a stabiliz-
ing role.
We now introduce a model of two charged, spherical

particles settling under gravity in a fluid of dynamic
viscosity μ. We assume that Brownian motion, fluid
compressibility, and inertia are irrelevant, and we describe
the fluid flow by the Stokes equations [24,25]. Thus, the
external forces on the particles are in balance with the fluid
resistance forces, and therefore the dynamics of particles is
described by a system of first order differential equations.
We denote particle radii by a1 and a2. Let M1 and M2

represent the mass of particle 1 and 2. The reduced density
of each particle is the difference between its density and
the density ρ of the fluid. Similarly, m1 ¼ M1 − 4

3
πa31ρ and

m2 ¼ M2 − 4
3
πa32ρ are the reduced masses. We assume

m2 > 0 with other cases covered in the Supplemental
Material [33]. Let r1 and r2 be the positions of the centers
of particle 1 and 2. Then the relative position is
d ¼ r2 − r1. We choose a coordinate system so that the
particle centers and the direction of gravity are in the plane
y ¼ 0 and ẑ is a unit vector pointing antiparallel to the
constant gravitational field g. We can now write the
superposition of electrostatic and gravitational forces on
the particles 1 and 2

f1 ¼ −kq1q2
d
jdj3 −m1gẑ ð1Þ

f2 ¼ kq1q2
d
jdj3 −m2gẑ; ð2Þ

where k is Coulomb’s constant, q1 and q2 are the charges
on particles 1 and 2, jvj is the length of any vector v, and
g ¼ jgj. Assuming pointlike charges, we consistently take
a point particle approximation for the interaction with the

fluid [25,34], and we obtain the following system of
ordinary differential equations (ODEs):

_r1 ¼
1

8πμ
G · f2 þ

1

6πμa1
f1 ð3Þ

_r2 ¼
1

8πμ
G · f1 þ

1

6πμa2
f2; ð4Þ

where Gij ¼ δij=jdj þ didj=jdj3 is the Green tensor for the
Stokes equations in an unbounded fluid [25]. The total
velocity of each particle has a mutual part that depends on
the force on the other particle and a self-part that depends
on the force on the particle itself. Notice that it is necessary
to take into account the particle radii in the self-terms.
Because of the translational invariance of the system G
depends only on the relative position d. We are interested in
the relative motion, which satisfies the following ODEs

_d¼ 1

8πμ

�
−
2kq1q2
jdj3 G · dþ ðm2 −m1ÞgG · ẑ

�

−
1

6πμ

�
−
kq1q2
jdj3

�
1

a1
þ 1

a2

�
dþ

�
m2

a2
−
m1

a1

�
gẑ

�
: ð5Þ

Before we examine the properties of Eq. (5), we describe
physical properties of the system using nondimensional
parameters, which are independent of each other and
constant during particle motion

γ ¼ a1
a2

; δ ¼ m1

m2

; β ¼ −
kq1q2
L2m2g

; ð6Þ

so that γ is the ratio of particle radii, δ is the ratio of reduced
particle masses, and β is the ratio of characteristic Coulomb
force Fe ¼ −kq1q2=L2 to the characteristic gravitational
force Fg ¼ m2g. The sign of Fe is chosen to be positive
when the charges attract each other. There are some
physically interesting functions of these parameters. For
instance, the ratio of reduced densities is δ=γ3 and the ratio
of Stokes velocities is δ=γ.
We now choose the units

L ¼ a1 þ a2; V ¼ m2g
6πμL

ð7Þ

where L—the characteristic length—is the distance the
particle centers would have if the particle surfaces were in
contact, and V is a characteristic velocity. These scales
define a characteristic timescale T ¼ L=V. Notice that
changing the viscosity μ modifies only the velocity and
timescales. The nondimensional parameters [Eq. (6)] are
invariant. In the Stokes regime, changes in viscosity do not
alter the paths on which the particles move but only the rate
at which they move on said paths [24,25].
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Finally, we nondimensionalize the relative position

α ¼ d
L

ð8Þ

so that, if the particle surfaces were in contact, jαj ¼ 1. We
can now write Eq. (5) involving only the nondimensional
ratios

_α ¼ 3

2jαj3 βG · αþ 3

4
ð1 − δÞG · ẑ − β

ð1þ γÞ2
γjαj3 α

−
ðγ − δÞð1þ γÞ

γ
ẑ; ð9Þ

where Gij ¼ δij=jαj þ αiαj=jαj3 and from now on the dot
denotes derivative with respect to nondimensional time
ratio t=T.
We now analyze Eq. (9) and discover a class of vertical

configurations that are stable to any perturbation.
We denote a nondimensional stationary configuration

by α� ¼ α�ẑ, with α� > 0. Our convention is then to assign
label 2 to the particle with larger ẑ component in the steady
state. To examine the stability of such a configuration, we
investigate how the system evolves if we have a first order
perturbation ϵ in the direction perpendicular to gravity and
a positive component α in the ẑ direction (not necessarily
close to α�). If α ¼ ϵx̂þ αzẑ and we neglect second and
higher order terms in ϵ then α ¼ jαj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2z þ ϵ2

p
≈ αz.

With this, Eq. (9) becomes

_ϵ ¼ gðαÞϵ ð10Þ

_α ¼ fðαÞ ð11Þ

where

fðαÞ¼ 6γβ−2βð1þ γÞ2αþ3γð1−δÞα2−2ðγ−δÞð1þ γÞα3
2γα3

ð12Þ

gðαÞ ¼ 12γβ − 4ð1þ γÞ2βαþ 3γð1 − δÞα2
4γα4

: ð13Þ

In the numerator of f the four terms are, consecutively, the
mutual and self-parts of velocity arising from electrostatic
forces, and the mutual and self-parts of velocity arising
from the gravitational forces. This is similar for g, except
that there is no self-part of horizontal velocity arising from
vertical gravitational force.
For any system of differential equations of the form (10)

and (11), if g and f are continuous, then the condition for
α� ¼ α�ẑ to be an steady state is

fðα�Þ ¼ 0: ð14Þ

If f is continuously differentiable and g is continuous in an
open neighborhood of a steady state α�, then α� is stable if
and only if

gðα�Þ < 0 ð15Þ

f0ðα�Þ < 0: ð16Þ

A proof that Eqs. (14)–(16) are necessary and sufficient for
local asymptotic stability [35] is given in section II of the
Supplemental Material [33].
Finally, we impose the feasibility condition

1 < α� ð17Þ

in order to rule out ghostlike overlapping particles.
We now demonstrate that there exist solutions to

Eqs. (14)–(17). We provide examples of stable stationary
feasible configurations in Fig. 1 with the parameters in
Table I. In Fig. 1, the density of particle 2 is held constant
and painted black, while brighter colors are used to
represent denser particles. Similarly, radius a2 of the upper
particle is taken to be the same across columns and the
radius a1 of the lower particle is drawn to scale.
In case A, small δ and γ are chosen. This corresponds to

the higher particle being much larger and more massive
than the lower particle. Case B shows that stability is
possible when δ ¼ γ. This corresponds to particles that

A B C D E F   HG

FIG. 1. Examples A–H illustrate stable stationary configura-
tions of charged particles settling under gravity in a Stokes flow
for the parameter values listed in Table I. Gravity points down.

TABLE I. Positions and parameters of the stable stationary
configurations shown in Fig. 1.

α� β δ γ δ=γ δ=γ3

A 2.5 0.160… 0.075 0.1 0.75 75
B 1.2 0.45 0.5 0.5 1 4
C 12.4 2.18… 0.5 0.51 0.980… 3.76…
D 3 0.361… 0.5 0.54 0.925… 3.17…
E 1.03 0.930… 1.1 0.6 1.83… 5.09…
F 2.5 0.523… 1 0.75 1.33… 2.37…
G 1.24… 0.125 0.875 0.885 0.988… 1.26…

4.13…
H 2.33… 0.009 97… 0.986 0.988 0.998… 1.02…
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have identical Stokes velocities. Next we look at cases C
and D where the separation distance α� is large. Cases E
and F give examples where δ=γ > 1, so that the lower
particle has a greater Stokes velocity than the upper
particle. Case G illustrates that, for the same parameters,
two distinct stable stationary configurations can exist.
In case H, γ ≈ 1, δ ≈ 1, and β ≈ 0, showing that there
are stable stationary configurations very close to the classic
case of two identical uncharged particles.
Now that we know that the solution set is nonempty,

we investigate the range of parameters consistent with
a stable feasible steady configuration. The range will
come directly from the necessary and sufficient conditions
[Eqs. (14)–(17)]. The physical implications of these bounds
will also be discussed.
We start with the ratio of characteristic electrostatic to

characteristic gravitational force β. By manipulating the
conditions [Eqs. (14)–(17)], one can see

3β

α�3
¼ 3fðα�Þ − α�½f0ðα�Þ þ 2gðα�Þ� > 0: ð18Þ

Therefore, if a solution exists, then β > 0. This means
that the particles must attract each other in order for the
system to be stable, in agreement with our predictions that
motivated this Letter. This is also important because it
allows for stable systems that have a zero net charge,
q1 þ q2 ¼ 0.
Next, we show that the ratio of reduced masses δ > 0.

We use that fðα�Þ − α�gðα�Þ > 0 to solve for a bound on δ
to get

δ >
3γ − 4γð1þ γÞα�
3γ − 4ð1þ γÞα� > 0; ð19Þ

because the denominator and numerator are both neces-
sarily negative if γ > 0 and α� > 1. This demonstrates that
if m2 > 0, then m1 > 0. In the Supplemental Material [33],
we extend this to show that stable doublets can exist only in
the m2 > 0 and m1 > 0 case and the symmetric case when
buoyancy dominates over gravity m2 < 0 & m1 < 0.
Moreover, the upper particle must have a larger radius

than the lower particle

γ < 1: ð20Þ
The demonstration is somewhat tedious, so it is given in

the Supplemental Material [33].
If we divide both sides of Eq. (19) by γ3, we can use

γ < 1 and Eq. (17) to show that the middle term in Eq. (19)
will be larger than 1. Therefore,

δ=γ3 >
3 − 4ð1þ γÞα�

ð3γ − 4ð1þ γÞα�Þγ2 > 1: ð21Þ

This means that the lower particle has to be more dense
than the upper one. This has the interesting implication that

in our model stable doublets only form between particles of
different material.
With these bounds in mind, we give Fig. 2 in order to

illustrate the way α� and the parameters δ, γ, and β are
interrelated. These plots visually demonstrate that the set
of parameters that allow a feasible stable steady state is large.
One can also see that there exist stable stationary configu-
rations in the “tail” where α� gets large. Examination of
this tail introduces some facts of physical interest. By
expanding the relations [Eqs. (14)–(17)] in powers of
1=α�, we deduce that, in the tail, the upper particle must
have a slightly greater Stokes velocity than the lower one:
1 − ðδ=γÞ ≈ 3ð1 − γÞ=½4ð1þ γÞ�ð1=α�Þ ≪ 1. Looking at
the ratio of forces, we see that β ≈ 3γð1 − γÞ=
½4ð1þ γÞ2�α� ≫ 1 in the tail. This means that in the tail
electrostatic interactions are strong relative to gravitational
force. This demonstrates how electrostatic forces can stabi-
lize a doublet even when the distances involved are large.
In another limit, we keep α� constant and move values of

δ and γ closer and closer to unity. In this limit, the ratio of
Stokes velocities δ=γ and relative densities δ=γ3 approach
1—that is, the particles get more similar. As a consequence
of Eq. (14), β scales down to β ≪ 1. We are seeing
therefore that a small charge can be expected to stabilize
the system in this limit.
In order to aid physical intuition in interpreting the above

results, we will demonstrate the role of charge in stabilizing

 =0.3
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FIG. 2. Regions of stable steady states in parameter space
are plotted. Given γ and δ, the shade at a point is chosen by
characteristic force ratio β necessary to stabilize the system at α�.
If no amount of charge would stabilize a system with the given
parameters, the point is left white.
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a system of settling particles. For an uncharged system, the
analog of Eq. (14) is 3γð1 − δÞ − 2ðγ − δÞð1þ γÞα� ¼ 0.
The first and second terms are the contributions of gravity
to the mutual and self-parts of velocity. The semistability
condition—the analog of Eq. (16)—can be combined with
the analog of Eq. (14) to get −2ðγ − δÞð1þ γÞ < 0.
Therefore the semistability condition entails the ratio of
Stokes velocities δ=γ < 1, so that the self-term tends to
bring the particles together. We also have that δ < 1;
therefore the mutual term must tend to push the particles
apart. These contributions to the velocity balance exactly at
a certain distance α’. However, if the particles are perturbed
even slightly in the horizontal direction, the story is
different. The analog of Eq. (16) is 3γð1 − δÞ < 0, which
cannot be satisfied if δ < 1. The horizontal velocity—
which contains only this mutual term—is tending to push
the particles apart. There is no asymptotically stable α�.
At α’ the system is “semi-stable”—it is stable only to
perturbations in the vertical direction. For example, α’
≈5.21… in the uncharged system H’, which has the same
mass ratio δ and ratio of radii γ as systemH given in Table I
and illustrated in Fig. 1.
Now consider adding a very slight charge to the system

so that β ¼ 0.009 97…, in other words system H. In a
vertical arrangement, the electrostatic force adds to the self
and mutual contributions to velocity without changing their
signs, so that the first thing we find is that the stationary
configuration of the system contracts to α� ≈ 2.33…. Now
consider horizontal perturbations. There are two electro-
static contributions to the horizontal motion. A mutual
term, 12γβ ¼ 0.118…, which tends to push the particles
apart and a self term, −4ð1þ γÞ2βα� ¼ −0.367…, which
tends to bring them back. As before, the gravitational
contribution to horizontal velocity, 3γð1 − δÞα2 ¼ 0.225…,
tends to push the particles apart. The restoring term
dominates. Therefore, system H is stable.
In this way, we have demonstrated ostensively how

settling charged particle systems (even with small charge)
can have qualitatively new behavior (local asymptotic
stability) absent in their uncharged counterparts. It
applies also to semidiluted polydispersed suspensions of
microparticles.
The core prediction of the model presented in this

Letter is the formation of stable asymmetric doublets.
The existence of such doublets is experimentally testable.
These doublets are not stable without charge, indicating the
novelty of the settling dynamics explored here.
In future work, we will expand the model to include

electrostatic screening and precise treatment of hydro-
dynamic interactions between hard spheres with stick
boundary conditions, applying the multipole expansion
corrected for lubrication [36]. We will also investigate the
influence of charge on essential features of the dynamics,
such as existence of periodic motions [32].
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Stable Configurations Of Charged

Sedimenting Particles: Supplemental

Material

C I Trombley & M L Ekiel-Jeżewska
Institute of Fundamental Technological Research,

Polish Academy of Sciences,
Pawińskiego 5b, 02-106 Warsaw, Poland

1 Searching For Feasible Stable Stationary States
When Particle 2 Is Not More Dense Than The
Surrounding Fluid

In the text we assumed that the reduced mass m2 of particle 2 was greater than
zero - i.e. particle 2 was more dense than the fluid. In this section, we will
examine the dynamics for m2 ≤ 0. When particle 2 is not more dense than the
fluid, the normalization scheme used in the text is not applicable because the
characteristic velocity scale must be positive and finite. We now will consider
four remaining cases: Case 1 m2 ≤ 0 & m1 < 0, Case 2 m2 < 0 & m1 ≥ 0,
Case 3 m2 = 0 & m1 > 0 and Case 4 m1 = m2 = 0.

Table 1: We summarize our results in this table. First we show whether there
exist feasible stable stationary state. Next, we give where to find a proof.

m2

<0 =0 >0
<0 Yes: No: No:

Case 1 Case 1 Main Text
m1 =0 No: No: No:

Case 2 Case 4 Main Text
>0 No: No: Yes:

Case 2 Case 3 Main Text

Case 1: m2 ≤ 0 & m1 < 0

We choose our new characteristic velocity as follows:
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V ′ = − m1g

6πµL
(S.1)

And choose our non-dimensional parameters to be

γ′ =
a2
a1

(S.2)

δ′ =
m2

m1
(S.3)

β′ =
kq1q2
L2m1g

(S.4)

This makes the dynamics of the system evolve according to the non-dimensional
ordinary differential equation

α̇ =
3

2|α|3
β′ G ·α+

3

4
(1− δ′)G · ẑ− β′ (1 + γ′)2

γ′|α|3
α

− (γ′ − δ′)(1 + γ′)

γ′
ẑ (S.5)

This equation is formally the same as the original equation (9), so the anal-
ysis can be repeated in exactly the same way as in the text with the appropriate
reinterpretation of parameters. In particular, there exist feasible stable station-
ary state with the conditions analogous to those in the main text.

We can derive β′ > 0 & δ′ > 0 as necessary conditions for stability as in
the main text. This rules out feasible stable stationary states when m2 = 0
& m1 < 0. There can exist feasible stable stationary states when m2 < 0 &
m1 < 0 and the charges are opposite in sign. In fact, there is a one-to-one
correspondence between the feasible stable stationary states in the m2 < 0 &
m1 < 0 case and those that exist in the main text - i.e. in the m2 > 0 & m1 > 0
case. In both cases, particle 2 is ”above” particle 1 with respect to the sum of
gravitational and buoyancy force.

Case 2: m2 < 0 & m1 ≥ 0

If particle 2 is less dense than the fluid and particle 1 not less dense - then there
again needs to be a change of parameters. We choose our new characteristic
velocity and characteristic force ratio:

V ′′ = − m2g

6πµL
(S.6)

β′′ =
kq1q2
L2m2g

(S.7)

And choose the other parameters as before. We now get
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α̇ =
3

2|α|3
β′′ G ·α− 3

4
(1− δ)G · ẑ− β′′ (1 + γ)2

γ|α|3
α

+
(γ − δ)(1 + γ)

γ
ẑ (S.8)

The stability conditions for this differential equation can be worked out as
in the main text. It will now be shown that there is no feasible stable stationary
state in this case. This will be a proof by contradiction. We start by finding
the conditions analogous to equation and inequalities (14) - (17) for our new
equation. The new dynamics will be of the form

ε̇ = G(α)ε (S.9)

α̇ = F (α) (S.10)

where G is analogous to g in (12) and F is analogous to f in (13). Explicitly:

G(α) =
12γβ′′ − 4(1 + γ)2β′′α− 3γ(1− δ)α2

4γα4
(S.11)

F (α) =
6γβ′′ − 2(1 + γ)2β′′α− 3γ(1− δ)α2 + 2(γ − δ)(1 + γ)α3

2γα3

(S.12)

Just as before, the necessary and sufficient conditions for a feasible vertical
asymptotically stable stationary state are

F (α∗) = 0 (S.13)

G(α∗) < 0 (S.14)

F ′(α∗) < 0 (S.15)

1 < α∗ (S.16)

The first task is showing that if such an α∗ obtains, then β′′ > 0. Exactly
as (18) in the main text, we get

3β′′

α∗3
= 3F (α∗)− α∗(2G(α∗) + F ′(α∗)) > 0 (S.17)

Where the last inequality comes from combining all four conditions (S.13) -
(S.16). By (S.16), this entails β′′ > 0.

Next we partition equation (S.13) into 0 = 2γα∗3F (α∗) = 2
3γα

∗4F ′(α∗) +
r1(α∗)+r2(α∗) where r1(α∗) = −γ(1−δ)α∗2 and r2(α∗) = − 2

3β
′′(2(1+γ)2α∗−

9γ). Notice that, since γ > 0 and δ < 0, r1 < 0. This and (S.15) imply r2 > 0,
therefore
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α∗ <
9

2

γ

(1 + γ)2
<

9

8
(S.18)

This also gives us a bound on γ

1

2
< γ < 2 (S.19)

We will now derive a bound on 1 − δ and show that the bound cannot be
satisfied if δ ≤ 0. Let A = γ

(1+γ)2 and B = γ
1+γ . The above bounds then

entail 2
9 < A < 1

4 and 1
3 < B < 230

3 . To eliminate β′′, we rewrite (S.13)
as 2β′′(α∗ − 3A)(1 + γ) = 2α∗2

[
(1 − δ)(α∗ − 3

2B) + (γ − 1)α∗
]

Notice that

(α∗−3A) > 0. Therefore, inequality (S.15) becomes α∗
[
(1−δ)(α∗− 3

2B)+(γ−
1)α∗

]
> 3(α∗ − 3A)

[
(1− δ)(α∗ −B) + (γ − 1)α∗

]
Collecting the 1− δ terms on

one side gives

−2(γ − 1)α∗(α∗ − 9

2
A) > (1− δ)

[
3(α∗ −B)(α∗ − 3A)− (α∗ − 3

2
B)α∗

]
(S.20)

The term in the square brackets on the RHS is an increasing function of
α∗ in the relevant range. Therefore, the term in the square brackets is lower
bounded by its value at α∗ = 1, i.e. 3(1 − B)(1 − 3A) − (1 − 3

2B). This can
be seen numerically to be positive over the relevant range. Since the RHS of
(S.20) is positive, the LHS must also be positive. By (S.18), −2(α∗ − 9

2A) > 0.
Combining this with (S.20) gives γ > 1. Further, the term inside of the square
brackets of (S.20) is positive, so we can get a function of γ and α∗ which bounds
1− δ

1− δ <
−2(γ − 1)α∗(α∗ − 9

2A)

3(α∗ −B)(α∗ − 3A)− (α∗ − 3
2B)α∗

(S.21)

We will examine this bound by first showing the RHS is a decreasing function
of α∗ in the relevant range. The derivative of the numerator is −2(γ− 1)(2α∗−
9
2A), which is negative. The derivative of the denominator is 4α∗ − 9A − 3

2B,
which is positive. Putting these together in the usual quotient rule - along with
the already established fact that the numerator and denouement are positive -
one sees that the whole derivative is negative. Therefore the right hand side is
upper bounded by its value at α∗ = 1, giving a bound on 1− δ

1− δ <
−2(γ − 1)(1− 9

2A)

3(1−B)(1− 3A)− (1− 3
2B)

(S.22)

Numerically, the RHS has a maximum less than one, contradicting the claim
that δ < 0. Therefore, there is no feasible stable stationary state in this case.
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Case 3: m2 = 0 & m1 > 0

We choose as a new characteristic velocity & characteristic force ratio

V ′′′ =
m1g

6πµL
(S.23)

β′′′ = − kq1q2
L2m1g

(S.24)

These choices give as a nondimensional dynamic equation

α̇ =
3

2|α|3
β′′′ G ·α− 3

4
G · ẑ− β′′′ (1 + γ′)2

γ′|α|3
α

+ (1 + γ′)ẑ (S.25)

This equation is the same as (S.8) with δ → 0, β′′ → β′′′ and γ → γ′.
Therefore there is no feasible vertical stable stationary state in this case.

Case 4: m2 = m1 = 0

If both particles are neutrally buoyant we have as a dimensional dynamic equa-
tion

ḋ =
1

8πµ

(
− 2kq1q2
|d|3

G · d
)
− 1

6πµ

(
− kq1q2
|d|3

(
1

a1
+

1

a2
)d

)
Owing to the rotational symmetry of this system, there is clearly no feasible

stable stationary state in this case.

2 Necessity And Sufficiency Of Stability Condi-
tions

We now examine formally the local stability conditions for a class of systems that
evolve according to equation (9). We will show that (14) - (16) are necessary
and sufficient conditions for the stability of equilibria of the form α∗ = α∗ẑ.
We denote the relative position of the particles by α = αzẑ + εx̂. We assume
that ε � 1 so that third and higher order terms in ε of (9) are neglected. In
this approximation the dynamics are

α̇z = f(αz)− ε2r(αz) (S.26)

ε̇ = g(αz)ε (S.27)

where the algebraic form of f and g are given in equations (13) & (12) and the
forms of r is
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r(αz) =
6β

α5
z

− 3β(1 + γ)2

2γα4
z

+
3(1− δ)

2α3
z

(S.28)

The dynamic equations (S.26) & (S.27) are valid for ε � 1 and any αz.
However, it will become necessary to assume |αz − α∗| � 1 to complete the
proof. It is important to notice that if αz > 0, then f(αz) is continuously
differentiable and g is continuous in an open neighborhood of a steady state α∗.

That equation (14) and inequalities (15) & (16) are necessary for an stable
steady state α∗ is clear. If equation (14) does not hold, the system isn’t even
in a steady state. We now move on to the inequalities. Use the fact that, by
continuity, if these inequalities hold at α∗ then they hold approximately in an
open neighborhood of α∗. Suppose, for contradiction, one of the inequalities
(15) & (16) is violated. If we perturb the system in whichever direction the
relevant function is nonnegative, there will not be a restoring force in that
direction. This contradicts the claim that the system is stable.

We now check the sufficiency of inequalities (15) and (16). Call a system
”locally Lypunov stable” if the so-called Lypunov function V has a root at the
given stationary state α∗, is positive off of the stationary state and has negative
time derivative in an open set around the stationary state. We examine the
simple Lypunov function V (α) = (α − α∗)2. This obviously has the desired
properties V (α∗) = 0 and V (α) > 0 if α 6= α∗. Taking the non-dimensional
time derivative one finds

V̇ (α) = 2(αz − α∗)α̇z + 2εε̇ (S.29)

We will now show that this is negative in an open neighborhood containing
α∗. We will do so by relating the above equation to the dynamics (S.26) &
(S.27). Start with the ε̇ term. Combining (S.27) with (S.29), one sees that

V̇ (α) = 2(αz − α∗)α̇z + 2g(αz)ε
2 (S.30)

We now move on to work out the α̇z term. From (S.26), one finds that (S.30)
becomes

V̇ (α) = 2(αz − α∗)f(αz) + 2g(αz)ε
2 − r(αz)(αz − α∗)ε2 (S.31)

Finally we must assume that αz is approximately α∗ so that (αz−α∗)ε2 ≈ 0.
Therefore the remainder term r(αz) disappears and one has

V̇ (α) = 2(αz − α∗)f(αz) + 2g(αz)ε
2 (S.32)

If (15) holds, then the second term is negative. If (14) & (16) holds, then the
first term is negative in a neighborhood of α∗. This demonstrates the sufficiency
of (14) - (16).

Therefore, (14) - (16) are necessary and sufficient conditions for this system
to have a locally asymptotically stable configuration at α∗ẑ.
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3 Bounds For Ratio Of Particle Radii When The
Particles Are In Feasible Stable Stationary
States

We will now show that in the m1 > 0 and m2 > 0 case there are stable config-
urations only if the higher particle 2 is larger in radius than the lower particle
1 - i.e. the ratio of radii γ = a1

a2
< 1. This will be a proof by contradiction. We

will start by showing that there cannot be a solution when γ = 1. Following
this, we will establish that if γ > 1 then a feasible, asymptotically stable steady
state does not exist.

3.1 Radii Cannot Be Equal

By way of contradiction, assume both γ = 1 and there exists at least one feasible
attractive steady state configuration α∗ = α∗ẑ. We can now write (14) as

f(α∗) = (4α∗ − 3)((δ − 1)α∗2 − 2β) = 0. (S.33)

The first term cannot be zero because of the feasibility condition (17). By
inequality (18), we know that β > 0. Therefore, α∗2 = 2β

δ−1 . Therefore in order
for a feasible stable steady state to exist in the γ = 1 case, one must have δ > 1.
Take the derivative of (S.33) to find

f ′(α∗) = 4((δ − 1)α∗2 − 2β) + 2(δ − 1)α∗(4α∗ − 3) (S.34)

The first term is zero by (S.33) and the second term is positive by δ > 1
& (17). This contradicts inequality (16). Therefore, there cannot be a feasible
stable stationary state in this case.

3.2 Upper Particle Cannot Be Smaller Than The Lower
One In Feasible Stable Steady State

We move on to the γ > 1 case. We will use proof by contradiction, supposing
that we have a set α∗, β, δ, γ where γ > 1 and conditions (14) - (17) obtain.
Recall that β and δ must both be positive by inequalities (18) & (19). We will
start the demonstration by showing that γ > 1 implies that δ > 1. Then we will
show that conditions (14) and (15) combine in a way that contradict condition
(17).

We start by taking advantage of the fact that, by equation (14) and inequal-
ities (15) (17), f(α∗)− α∗g(α∗) > 0. Simplifying, we find

(1− δ)(3γ − 4α∗(1 + γ))− 4α∗(γ2 − 1) > 0 (S.35)

Because of condition (17), 3γ − 4α∗(1 + γ) < 0. Further, if γ > 1, then
γ2 > 1 so the second term is negative. Therefore, in order for the above relation
to hold, δ > 1.
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Now that we have δ > 1, we aim toward eliminating β by writing (14) as

−2β(1 + γ)2(α∗ − 3γ

(1 + γ)2
) =

(
2(γ − δ)(1 + γ)α∗ + 3γ(δ − 1)

)
α∗2 (S.36)

The left hand side is negative, therefore the right hand side must be negative,
in other words

(γ − 1)α∗ < (δ − 1)(α∗ − 3

2

γ

1 + γ
) (S.37)

Because γ > 1, the left hand side is positive. Therefore, α∗ > 3
2

γ
1+γ . We

now use equation (S.36) to eliminate β from (16). This gives that

(δ− 1)

(
2α∗2− 3γ(7 + γ)

2(1 + γ)2
α∗+

9γ2

(1 + γ)3

)
< 2(γ− 1)α∗(α∗− 9γ

2(1 + γ)2
) (S.38)

The left hand side must be positive or non positive. Because δ > 1, if the
the left hand side in the above inequality is positive, then one can combine the
above with (S.37). Simplifying, one finds α∗ < 3γ

(1+γ)2 which violates condition

(17). Therefore the left hand side must be nonpositive:

2α∗2 − 3γ(7 + γ)

2(1 + γ)2
α∗ +

9γ2

(1 + γ)3
≤ 0 (S.39)

Notice that if α∗ is very large then the polynomial in (S.39) is positive and,
speaking formally, if α∗ = 0 it is also positive. Therefore the above can only be
negative for α∗ > 1 if the polynomial has two distinct positive real roots. We
now look at the discriminant, which must be positive for the roots to be real
and distinct

0 < ∆ =
9γ2(γ − 1)(γ − 17)

4(1 + γ)4
(S.40)

We therefore have γ > 17. Further, notice that the only negative term in
(S.39) is the middle term. Therefore, we have

α∗2 +
9γ2

2(1 + γ)3
≤ 3γ(7 + γ)

4(1 + γ)2
α∗ (S.41)

α∗ <
3γ(7 + γ)

4(1 + γ)2
(S.42)

But right hand side in (S.42) is less than 1 for all γ > 17. This is a contra-
diction to condition (17). Therefore conditions (14) & (16) and condition (17)
cannot be simultaneously satisfied if γ > 1. Thus we have γ ≤ 1.
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3.3 Conclusion

We have established γ 6= 1 and that γ ≤ 1. This establishes that γ < 1, that
the upper particle in the feasible stable steady state must have a larger radius
than the lower particle.
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