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  ABSTRACT: The purpose of this study is a practical engineering formulation of the topology optimization problem for three dimensional 

elastoplastic structures. The present study constitutes a comprehensive approach to topology optimization of elastoplastic structures, 

including both the mechanical problem statement and its efficient computer implementation. 

Instead of the traditional approach based on compliance minimization the aim of this work is to find a minimum weight structure, which is 

able to carry a given load while satisfying the condition that the corresponding stresses do not exceed an allowable limit. The general form 

of the problem is based on the classical limit design formulations of plasticity. The proposed method finds the optimal structure in an 

iterative way using only stress intensity distribution and does not require from the User explicit knowledge of any gradients or sensitivities. 

The effectiveness of the proposed methodology has been illustrated on two representative examples including simply supported and 

cantilever beams.  
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1. INTRODUCTION 

The traditional approach to design of engineering structures relies on a 

set of candidate structural systems from which, based on the results of 

finite element analysis, the optimal solution is chosen. The optimal 

structure found in this way strongly depends on the structural engineer's 

experience and in the case of newly designed structures of complex 

functionality, such an approach might not necessarily give a truly 

optimal solution. 

As a result of this, structural topology optimization has been proposed to 

give an even less experienced designer more flexibility in her or his 

work. There are two alternative methods for finding structures of 

optimal topology, namely the continuum based approach and the truss 

layout method. The former assumes that the whole allowable design 

space is filled with a solid material from which the optimal topology (a 

truss-like structure) is extracted. The latter uses a dense grid of nodes 

connected by bars in all possible ways, from which only the most 

effective bars are left in the final optimal solution. 

 

Among the civil engineering community topology optimization is also 

known as 'Structural morphology' or more specifically as 'computational 

morphogenesis'. As is commonly known, the beginnings of 

computational morphogenesis are dated at 1904 when the revolutionary 

work by Michell was published. However, the first topology work was 

presented by Maxwell in 1870 (Ref.1). Since that time many researchers 

contributed to this field and it is beyond the scope of this short literature 

review to mention all of them. For that reason, only the most 

representative papers are referred to here. However, an excellent 

comprehensive review of the Michell-type structures can be found in the 

book by Lewiński et al. (Ref.2).  

 

Essentially, two basic approaches are applied in the case of continuum 

structures. These are: the fully stressed design (FSD) method (Gallagher, 

Ref.3, Berke and Khot, Ref.4) and the Solid Material with Penalization 

(SIMP) method (Bendsoe, Ref.5). 

In the first method we tend to obtain such a topology for which stresses 

within the whole structure are close or equal to the yield limit. The 

second method assumes that the designed structure is made of a porous 

material for which effective material properties are represented by 

density-like parameter based techniques. The FSD is based on the 

principle, that all elements are fully stressed (in this way the local stress 

constraints are fulfilled while the SIMP method generally does not use 

local stress constraints. The modified version of the SIMP–type 

algorithm is suitable for using local stress constraints.  

A method for finding optimal topologies based on the FSD approach has 

been proposed by Xie and Steven (Ref.6), while Duysinx and Bendsoe 

(Ref.7) used the SIMP approach. 

An additional difference between the FSD and SIMP methods is related 

to the applied objective function. In FSD, researchers usually minimize 

the weight of the structure under stress constraints, while in SIMP the 

objective function is the structure’s compliance and constraints are 

imposed on the volume fraction. An interesting comparison of the 

minimum weight design under both stress and compliance constraints 

has been presented by Bruggi and Duysinx (Ref.8). 

 

It is worth noting here that the frequently cited paper by Bendsoe and 

Kikuchi (Ref.9) showing that the optimal layout can be generated by the 

representative volume element of a specific porous composite is not 

fully correct, since the 1st rank composites do not lead to the optimal 

solution at it was shown by Allaire and Aubry (Ref.10). The first correct 

papers on compliance minimization of elastic structures were written by 

Lurie, Cherkaev and co-authors already in the 1970’s (Ref.11). 

Additionally, SIMP utilizes a simplified assumption that the stiffness 

modulus depends on density through a power law, whereas in other 

approach such as homogenization this claim is not supported. The 

homogenized modulus depends on the density in a different manner, 

rather Pade approximation is necessary, as it was presented in the paper 

by Tokarzewski and Telega (Ref.12). Besides the above papers 

assuming linearly elastic material behaviour there are papers 
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investigating elasto-plastic materials (example is paper by Pedersen and 

Taylor, Ref.13). 

Within the International Association for Shell and Spatial Structures 

(IASS) there is a working group called 'Structural morphology' and its 

activity since the foundation in 1991 has been described by Motro 

(Ref.14). Recent developments in computational morphogenesis can be 

found in review papers by Ohmori (Ref.15) and Li et al (Ref.16).  

The Authors background in the field of topology optimization contains 

the development of new methods based on optimality criteria (Ref.17) or 

structural optimization with the aid of graphs (Ref.18). Recently, the 

Authors extended their approach to topology optimization of structures 

made of elasto-plastic materials (Ref.19, 20 and 21) and subjected to 

multiple loading cases (Refs.22 and 23). 

 

At the end of this short overview of different aspects of computational 

morphogenesis it is worthwhile to mention papers describing the 

application of topology optimization in architecture and in particular in 

conceptual design of tall building (Beghini et al Ref.24 and Kazakis et 

al, Ref.25) or even airplane wings (Aage, Ref.26). 

 

The aim of this work is to present a practical method for topology 

optimization of 3D continuum structures subjected to stress constraints. 

Structural weight is considered in this study as the objective function 

contrary to the classical compliance approach with a volume fraction 

constraint. The method presented here, although simple, can be 

successfully used to design optimal structures of various types such as 

skeletal buildings or stadium roofs. The method is based on determining 

the stress intensity within the structure and then applying a redundant 

material removal strategy to the least stressed regions of the structure. 

This procedure is repeated until the load capacity of the structure may 

become exceeded. 

 

 

Finally, the effectiveness of the proposed methodology is demonstrated 

on several benchmark problems such as a simply supported structure 

subjected to multiple loading conditions. 

 

2. METHODS, THEORY AND CALCULATION 

In the following sections topology optimization under stress constraints 

will be formulated in continuous domain. Then, the problem will be 

discretized using standard finite element method and finally some 

computational aspects will be discussed. 

 

2.1. Topology optimization of elastoplastic structures - problem 

statement 

In the present study we are looking for minimum weight structures made 

of elastoplastic material. Constraints are imposed on allowable stresses 

and density. 

Mathematically, we can express our approach for topology optimization 

in the following form 

 

Minimize volume  V = ∫V ρ(xi) dV  

Subjected to           ∫V σij δεij  dV - ∫Γ fi δui  dΓ = 0 

                               dσij = Dep dεij 

                               σHMH  ≤  σ0 

                               ρmin ≤ ρ ≤ 1 

(1) 

 

where V is the volume of the structure, σij  is the stress tensor, δεij is the 

virtual strain, fi represents external loading, δui is the virtual 

displacement, Dep – elastoplastic material stiffness tensor, σHMH  is the 

Huber - von Mises - Hencky stress, σ0 denotes the yield limit and finally 

ρ(xi) represents the density of the material distribution. 

 

 

 

 

 

 
Fig 1. Computational steps in structural topology optimization 

 

 

Convergence 

criterion 

  Initial design 

Stop 

Elastoplastic finite 

element analysis 

Low-pass filtering 

Design variables 

updating 

Results smoothing 

True 

False 

Finite element 

discretization 

Structural 

response 

Checkerboard 

removal 

Binary 

penalization 

Plastic zones 



In modern computational mechanics the above continuous formulation 

of topology optimization is typically replaced with discretized version 

obtained with aid of the finite element method. Then, instead of  (1) the 

structural topology optimization investigated in this study can be 

expressed in the following form: 

 

Minimize volume  V = ρTA  

Subjected to           K(ρ) u(ρ) - f = 0 

                               σ/σ0 -1 ≤ 0 

                               ρmin ≤ ρ ≤ 1 

(2) 

where A is a vector representing area of  individual finite element, K(ρ) 

denotes tangent stiffness matrix depending on the design variables ρ,  

u(ρ) is displacement vector, f is external loading vector. 

 

The general flowchart of topology optimization problem is presented in 

Figure 1. As we can easily observe two main parts in the problem can be 

identified. The first one is devoted to elastoplastic analysis using finite 

element method and return mapping algorithm, while the second one is 

connected to iterative modification of design variables using selected 

updating scheme. 

 

Algorithm 1. Stress intensity driven topology optimization 

Step 1. Initialize design variables as a vector of ones ρ(0) = {1,1,…,1} 

and erased element list as an empty list ℒ  = {}. 

Step 2. Until load capacity is not exceeded repeat Steps 3 to 7. 

Step 3. At k-th iteration of the optimization algorithm solve nonlinear 

equilibrium equations for elastoplastic problem  K(ρ(k)) u(ρ(k)) - f = 0 . 

Step 4. Determine stress intensity vector σavg,e  for every finite element 

e=1…Ne calculated as average of equivalent von Mises stresses σHMH,g 

evaluated at each Gauss point g=1…Ng , then normalize obtained value 

dividing it by yield limit   σavg,e = 1/( Ng  σ0 ) ∑ g=1…Ng  σHMH,g. 

Step 5. Apply design filter to avoid checkerboard phenomenon. To this 

end the filtering technique proposed by Sigmund in his famous 99 line 

code can be used 

[σavg,e]FILT = 1/( ρe
(k)  ∑ f=1…Ne  Hf ) ∑ f=1…Ne Hf ρe

(k) σavg,f 

where the convolution operator Hf is understood as Hf = rmin−dist(e, f), {f 

belongs to the set of elements, for which the following condition is 

satisfied dist(e, f) ≤ given radius}, 

The operator dist(e, f) is defined as the distance between the center of 

element e and center of element f. Hf is zero outside the filter area. 

Step 6. Select n finite elements with smallest stresses and assign to their 

corresponding design variable values to ρmin i.e. to the lower bound for 

design variables. Then, add the list of newly selected elements l  to the 

list of previously erased elements ℒ  new= { ℒ  new ; l}. 

Step 7. Using current list of erased elements ℒ   update corresponding 

design variables applying the following iterative formula:  

ρ(k+1)= ρ(k)[σavg]
p 

where p is penalty factor to avoid porous intermediate solution. Three 

different cases are distinguished here: 

  

a) if  ρ(k)[σavg]
p

 ≤ ρmin                                

then ρ(k+1)= ρmin 

 

b) if  ρ(k)[σavg]
p

 ≥ 1                                    

then ρ(k+1)= 1 

 

c) if  ρ(k)[σavg]
p

 ≥ ρmin and ρ(k)[σavg]
p

 ≤ 1  

then ρ(k+1)= ρ(k)[σavg]
p 

 

3. RESULTS 

To check correctness of the implemented algorithm several benchmark 

examples have been calculated. The first example is a plane stress 

structure with dimension 30m x 10m (fig. 2) and loaded in the middle at 

top edge. Structure are simply supported with the booth degree of 

freedoms blocked at the left bottom corner and the roller at the right 

bottom corner.  

 

Material parameters in example 1 are following: 

E   = 34.474 GPa  

ν   = 0.11 

ρ   = 568.7 kg/m3 

σ0  = 210 MPa 

thickness  = 0.2286 m 

penalty parameter = 1.75 

filter radius = 2 

 
Fig.2. Design domain and boundary conditions for example 1. 

 

 

Two load versions of load has been applied. First one (Fig.3) is 0.5 x 

collapse load and second one 0.95 x collapse load (Fig.4). Both solutions 

ale similar with literature results although second one with load closer to 

collapse load is significantly thicker. 

 
Fig.3. Optimal topology for load equal to 0.5 x collapse load. 

 

 
Fig.4. Optimal topology for load equal to 0.95 x collapse load. 

 

Next example is a cantilever with force acting at its end (Fig.5). 

Dimensions of design space are 20m x 10m. This example is also 

computed using the above methodology. 

 

 
Fig.5. Design domain and boundary conditions for example 2. 

 



Material parameters used in this second example are as follows: 

E   = 34.474 GPa 

ν  = 0.11 

ρ  = 568.7 kg/m^3 

σ0  = 210 MPa 

thickness  = 0.2286 m 

penalty parameter = 1.75 

filter radius = 2. 

 
Fig.6. Optimal topology of a cantilever structure for load factor 0.5. 

 

This example also has been computed with two load version one with 

half value of collapse force (fig.5). We observe good agreement with 

similar solution taken from the literature. In the case of a plastic-elastic 

material, the load value significantly influences the results. The more the 

load approaches the value of the collapse force, the thicker the topology 

arises. On figures 6 and 7 we present optimal topologies for load factors 

equal to 50 and 95 per cent of the ultimate load of initial topology, 

respectively.  

The third example illustrates the parametric studies of the variation of 

the size of the penalty parameter and the filter radius smoothing the 

chessboard effect. The task data are the same as in the first example. 

 

 
Fig.7. Optimal topology of a cantilever structure for load factor 0.95. 

 

 

Material parameters of the third example  are: 

E   = 34.474 GPa 

ν   = 0.11 

ρ  = 568.7 kg/m3 

σ0  = 210 MPa 

thickness  = 0.2286 m 

 

The variation of the smoothing radius works more similarly as the load 

change. The larger the radius of the smoothing filter, the thicker the 

topology we get. The penalty parameter also affects the thickness of the 

structure but less than the radius of the smoothing filter. The smaller the 

penalty parameter, the thinner the design (Table 1). 

 

 

 

Table 1. Influence of the filter radius and penalty factor on optimal volume 
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4. CONCLUSIONS 

In the paper a practical approach to structural topology optimization 

known also as a 'computational morphogensis' has been proposed. The 

overall method is able to deal with 2D and 3D elastoplastic problems 

subjected to stress constraints.  

The presented contribution consists of a novel formulation of structural 

topology optimization problem, computer implementation using a high-

level programming language and numerical examples. All the above 

contributions proved that the method can be successfully applied in 

solving realistic engineering problems and replace the classical 

compliance minimization technique.  

 

The computer implementation proposed in this study demonstrated that 

our stress intensity driven topology optimization can be utilized in two 

ways:  

   a). it can be easily adapted to existing FE codes, expanding their 

functionality, or  

   b). it can be implemented from scratch in languages for technical 

computing such as MATLAB.  

 

Following the second route, a prototype program has been developed to 

demonstrate the effectiveness of the proposed method for computational 

morphogenesis. 
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