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A distinctive feature of the examined class of solids is that a part of the entropy
production is due to rate-independent dissipation, as in models of plasticity, damage or
martensitic transformations. The standard condition for thermodynamic stability is
shown to be too restrictive for such solids and, therefore, an extended condition for
stability of equilibrium is developed. The classical thermodynamic theory of irreversible
processes is used along with the internal variable approach, with the emphasis on the
macroscopic effects of micro-scale instabilities in the presence of two different scales of
time. Specific conditions for material stability against internal structural rearrangements
under deformation-sensitive loading are derived within the incremental constitutive
framework of multi-mode inelasticity. Application to spontaneous formation of
deformation bands in a continuum is presented. Conditions for stability or instability
of a quasi-static process induced by varying loading are given under additional
constitutive postulates of normality and symmetry. As illustration of the theory, the
stability of equilibrium or a deformation path under uniaxial tension is analysed for a
class of inelastic constitutive laws for a metal crystal deformed plastically by multi-slip
or undergoing stress-induced martensitic transformation.

Keywords: thermodynamic stability; rate-independent solid; energy criterion;
multi-mode inelasticity; plasticity; martensitic transformation
On
1. Introduction

The classical (Gibbs) condition for thermodynamic stability of equilibrium
(cf. Callen 1960) is a fundamental tool for examining stability of equilibrium
states in various branches of science. In the form that requires maximum entropy
for constant energy of an isolated system, it is directly based on the second law of
thermodynamics. Nevertheless, for the particular but widely used class of
material models examined in this paper, the maximum entropy condition turns
out to be too restrictive and thus of limited applicability. A part of this paper is
devoted to a discussion of this important point.

Concepts of the classical thermodynamics of irreversible processes
(cf. Meiksner & Reik 1959; de Groot & Mazur 1962) are accepted here, including
the internal variable approach. The background formalism to be used is thus well
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known. A distinctive property of the examined class of solids is that a part of the
entropy production in transition between two neighbouring equilibrium states
does not depend on the duration of the transition. This property, referred to as
rate-independent dissipation, is typical for number of macroscopic models of
inelastic phenomena, including rate-independent plasticity of metals or
geomaterials, propagation of microcracks or damage growth, mechanical
twinning or diffusionless phase transformations, etc.

The distinctive feature of rate-independent dissipation may be attributed to
the scale of size and time on which the phenomena are considered, in particular
to how the neighbouring equilibrium states are understood. In this paper, the
material description involves macro-scales of size and time much larger than the
typical activation volume and relaxation time, respectively, of an individual
micro-event in the material, such as a displacement of a single dislocation,
microcrack or interface. The internal microstructure of a material sample may
suffer rapid local rearrangements due to micro-scale instabilities, and the speed
and duration of local non-equilibrium jumps are not controlled by an external
loading rate; cf. e.g. Neuhäuser (1986) for experimental evidence in the context of
metal plasticity. When smoothed out after transition to the macro-level, such
local jumps may be treated as the physical source of macroscopic dissipation of
rate-independent type. Consequences for the interpretation of certain macro-
scopic thermodynamic quantities are discussed in the introductory §2.

That discussion is only auxiliary for this paper which concentrates on
macroscopic conditions for stability. However, it helps in explaining why the
classical condition of thermodynamic stability does not comply with the concept
of rate-independent dissipation. In short, rigorous fulfillment of this condition
would exclude any local instabilities at a micro-level, eliminating thus the
postulated physical source of the macroscopic rate-independent dissipation itself.

The difficulty can be overcome (Petryk 1995) by splitting the total dissipation
rate into the intrinsic (rate-independent) and complementary parts assumed to
be separately non-negative, and using only the complementary part to construct
a modified Lyapunov functional whose value is non-increasing in an unperturbed
process. This leads to the extended condition for thermodynamic stability of
equilibrium which in general is less restrictive than the classical one, and reduces
to it in the absence of rate-independent dissipation. Instabilities appearing only
at a micro-scale are no longer treated as genuine macroscopic instabilities but
just as a physical source of the rate-independent dissipation at the macro-level. If
the temperature is assumed constant then the extended condition for stability of
equilibrium can be reduced to those derived earlier for rate-independent solids on
the basis of the energy balance. In those derivations, Hill (1958) used the work
functional determined by integration of the stress power, and Nguyen (1993,
2000) split the required energy supply into an increment in the free energy and a
time integral of the dissipation function. Both approaches receive a thermodyn-
amic support via the extended condition applied under different constitutive
assumptions.1
1 However, the reduced, second-order stability conditions, derived in this paper without postulating
a normality law, are interpreted merely as sufficiency conditions for ‘directional’ (and not
unconditional) stability of equilibrium.

Phil. Trans. R. Soc. A (2005)
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In this paper, the extended condition for stability is further developed for a
material sample with generalized displacements and forces as external variables
and with a finite number of internal mechanisms of rate-independent inelastic
deformation. Specific conditions for stability of equilibrium against spontaneous
internal structural rearrangements within the sample are derived. These
conditions, while being of thermodynamic origin, are applicable within a purely
phenomenological, isothermal constitutive description of multi-mode inelasticity,
without any need to specify internal state variables or associated thermodynamic
driving forces.

A related but different topic addressed below is the stability of a quasi-static
deformation process (or path, in alternative terminology). A quasi-static process,
dissipative, rate-independent and induced by a loading program, may itself be
unstable (in the rough sense of sensitivity to small disturbances) even if each of
the traversed equilibrium states separately is stable. This possibility is closely
related to the well-known phenomenon of path bifurcation under varying loading
(cf. Hill 1978; Petryk 1993a) in the absence of any disturbances. While the
bifurcation theory can predict in many cases the critical instant and mode of the
loss of uniqueness of a theoretical solution, it does not provide a criterion of
choice among the non-unique post-critical paths. Since, the condition for stability
of equilibrium is also insufficient for that purpose, and a study of initial
imperfections may be not effective, there is a need for a plausible criterion of path
stability or instability.

A fully general theory of path stability in inelastic systems with rate-
independent dissipation has not been developed yet. Specific results concerning a
contractivity property of plastic flow were obtained so far under rather
restrictive assumptions, e.g. Nguyen (1984), Simo (1991). Also the energy
criterion of path stability proposed by the author (Petryk 1982, 1985),
formulated later in an alternative thermodynamic form (Petryk 1993b; Fedelich
& Ehrlacher 1997), becomes plausible only under additional assumptions. The
energy criterion is examined in §5 within the isothermal constitutive framework
of multi-mode inelasticity under the normality and symmetry hypotheses.
Extensions of the previous results obtained in (Petryk 1991b, 1993b, 1999; Petryk
& Thermann 1992) are presented.

The theory of stability of equilibrium or path is illustrated by the examples of
spontaneous formation of shear bands in a homogeneous stressed continuum (§4)
and of stability under uniaxial tension in single crystals deformed plastically by
multi-slip or undergoing stress-induced phase transformation (§6).
2. Constitutive framework

(a ) Local thermodynamic processes

Consider a material sample undergoing non-uniform inelastic deformation on a
fine size scale such that the continuum approach is acceptable locally;
phenomena at a still lower scale where discrete nature of matter becomes
important are not investigated in this paper. A material point within the sample
is regarded here as a closed system: chemical reactions and diffusion are
disregarded. The axiom of local state is adopted as in the classical formalism of
non-equilibrium thermodynamics (cf. de Groot & Mazur 1962). It is assumed
Phil. Trans. R. Soc. A (2005)
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that a local state of a material point can be characterized by a triple (e,T,b),
where e is a measure of the local finite strain relative to a fixed reference
configuration, TO0 is the local absolute temperature, and b stands for a
collection of local internal state variables considered in the reference
configuration. A local state at fixed (e,T,b) is regarded as that of constrained
equilibrium (cf. Kestin & Rice 1970; Maugin & Muschik 1994), and the specific
entropy and other thermodynamic variables are defined locally as in
thermostatics.

It will be convenient to work with thermodynamic quantities defined relative
to an arbitrary, fixed reference configuration. To simplify the formulae by
eliminating a mass density r which in the reference configuration does not vary,
the densities s and f of entropy and Helmholtz free energy, respectively, are
taken per unit reference volume.

Variables conjugate to (e,T,b) are obtained in the usual way from the
postulated Gibbs relation expressed in terms of the thermodynamic potential
f(e,T, b),

dfZ t$deKsdTKB$db; t Z
vf

ve
; sZK

vf

vT
; BZK

vf

vb
; ð2:1Þ

where a prefix d denotes a differential. Viscous effects are neglected, so that t is the
total stress, work-conjugate to the total strain e. A central dot denotes a product
with full contraction. For instance, if b is identified with a column matrix of
components bK (which may be scalars or arbitrarily ordered tensor components)
then the set of thermodynamic forces (affinities)B conjugate to b is identified with
a row matrix of components BKZKvf/vbK, and B$dbZ

P
KBKdbK . Similarly,

t$deZtijdeij with the summation convention over repeated indices that denote
tensor components on a fixed orthonormal triad. To simplify the notation, we will
use the same symbol for a function and its value and omit the set of independent
variables whenever it is evident or has been defined beforehand.

The Gibbs equation in the form (2.1) encompasses an alternative, frequently
used description with an appropriately oriented stress-free configuration as a
moving reference frame (Mandel 1971) provided the deformation gradient after
unloading is regarded as a function of b, cf. Kleiber & Raniecki (1985). For the
purposes of the present paper, it is more appropriate to take as an independent
variable of f the total and not elastic strain.

Consider a transition from some state to a neighbouring state within an
infinitesimal increment dt of time t. The local entropy production inequality, on
using equation (2.1), takes the form

B$dbCTh$VðTK1ÞdtR0; ð2:2Þ
where P denotes the spatial gradient and h is the heat flux, both considered in
the reference configuration.

We adopt the common assumption that the two terms in equation (2.2) are
separately non-negative, which results in the thermal dissipation inequality

Th$VðTK1ÞR0; ð2:3Þ
and the intrinsic dissipation inequality

B$dbR0: ð2:4Þ
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2483Thermodynamic stability
This classical description of irreversible processes at the level of a material point
is applied below to a macroscopic material sample, generally heterogeneous,
which occupied in the reference configuration a given finite volume �V .
Straightforward averaging procedures are employed for that purpose, but
extended to averaging over a time interval as well.

The intrinsic dissipation increment in a time interval (t, tCDt) in the material
sample reads

DDZ

ð
�V

ðtCDt

t
BðtÞ$ db

dt
ðtÞdt

� �
d�VR0; ð2:5Þ

with an implicitly understood dependence of variables B,b also on place.

(b ) Macroscopic thermodynamic process

Henceforth, attention is focused on thermodynamic description of a generally
heterogeneous material sample (or macroscopic cell) M in terms of macroscopic
variables. The assumption is introduced that the temperature T, while generally
varying in time, remains uniform within the sample of sufficiently small size.
Fields of strain and internal variables over the volume �V , say ~e and ~b,
respectively, constitute conceptually useful state variables for M which,
however, may be less convenient in analysis. To simplify the description,
suppose that, to a suitable approximation, in place of a strain field ~e we may use
a vector of generalized displacements (or strains) q, and in place of a field ~b of
local internal state variables we may use averaging variables (Rice 1971) denoted
collectively by a. At the level of generality attempted here, the (scalar or
tensorial) nature of elements of a is not essential. Dimensionality of the spaces of
q and a is assumed to be finite but is otherwise arbitrary; we may wish to keep it
reasonably low in applications. However, the deformation of the material sample
need not be macroscopically uniform in any sense. If it is then q may have the
meaning of an overall strain, but in general q may have more degrees of freedom
to accommodate, for instance, a mode of strain localization. In short, the
material sample M is regarded as an arbitrarily discretized system of uniform
temperature.

Macroscopic inelastic deformation of M can be considered as a consequence of
microstructural rearrangements (Rice 1971, 1975), described at the micro-level
by changes in ~b, e.g. due to dislocation movement, microcracking, phase
transformation, etc. As indicated in the introduction, kinetics of those
microstructural rearrangements can be highly irregular due to a large number
of local instabilities. There are illustrative models which show associated
macroscopic effects, e.g. Ericksen (1975), Müller & Villaggio (1977), Ponter et al.
(1979). In view of such local instabilities, the concept of a macroscopic strain-rate
or stress-rate for inelastic solids should involve averaging not only over a
representative volume of the material, but also over a representative time
increment as well. Accordingly, two different time scales are to be used, where
the differentials at the micro-level in equation (2.1) are of a smaller order of
magnitude than physically meaningful infinitesimal increments in averaging
variables, to be denoted by a prefix ‘d’ in the macroscopic description.

Consider a non-equilibrium process in the material sample M between two
states close to each other, of small duration dtO0 which is regarded as
infinitesimal at the macroscopic scale of time t. While processes at the
Phil. Trans. R. Soc. A (2005)
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micro-level need not be continuous with respect to t, all macroscopic variables in
view of their averaging sense are assumed to vary continuously in time t. The
(forward) rate of any macroscopic variable with respect to time t is interpreted at
the micro-scale in the averaged sense as the quotient of a small increment in that
quantity divided by dt, i.e.

_JðtÞZ dJ

dt
; dJZJðtCdtÞKJðtÞ: ð2:6Þ

Following the well-known approach, at each instant of a non-equilibrium process
we associate with M an accompanying equilibrium state characterized by
GZðq;T ;aÞ; see Maugin & Muschik (1994) and the references therein (e.g.
Germain et al. 1983) for detailed exposition of this concept. If (q,T,a) are
imagined to be fixed then M is regarded to be in a state of constrained
equilibrium. In analogy to equation (2.1), variables conjugate to (q,T,a) are
obtained from the macroscopic Helmholtz free energy function F(q,T,a), viz.

_FZQ$ _qKS _TKA$ _a; QZ vF=vq; S ZKvF=vT ; AZKvF=va: ð2:7Þ
Here, Q stands for the vector of generalized forces (or stresses) conjugate to
q,S is the macroscopic entropy, and A denotes collectively macroscopic
thermodynamic forces (or affinities) conjugate to a. Equations (2.7) provide, of
course, only an approximation to a more accurate description at the micro-level
in terms of fields ~e and ~b. Macroscopic state variables S,F are identified with
volume integrals of respective local quantities, SZ

Ð
s d�V ; FZ

Ð
f d�V (recall

that T is assumed uniform). The link between other variables appearing in
equations (2.1) and (2.7) is more complex, especially due to different time scales
involved in the description at the micro- and macro-levels.

The rate of intrinsic dissipation within the material sample M is defined on
account of equations (2.5) and (2.6) by

_DZ

ð
�V

1

dt

ðtCdt

t
BðtÞ$ db

dt
ðtÞdt

� �
d�VR0: ð2:8Þ

This expression in general cannot be reduced to a single volume integral of the
local dissipation rate, since a local B may vary strongly with respect to a ‘fast’
local time variable t for physically reasonable values of dt. A small change in an
overall state of M may correspond to a large jump in a local b.

Similarly, the rate of deformation work within M is defined as

_W Z

ð
�V

1

dt

ðtCdt

t
tðtÞ$ de

dt
ðtÞdt

� �
d�V ; ð2:9Þ

with analogous comments. The deformation work and intrinsic dissipation are
functionals dependent on the entire process within the material sample.

Calculation of _F by integrating equation (2.1) and neglecting an infinitesimal
term of order _TdS now yields

_FZ _WKS _TK _D: ð2:10Þ
From the first law for the material sample,

_U Z _W C _Q; ð2:11Þ
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where UZFCTS is the internal energy of M and Q is the heat absorbed by M,
it follows that equation (2.10) is in agreement with the usual definition
_DZT _SK _Q of the rate of intrinsic dissipation. In turn, on eliminating _F between
equations (2.10) and (2.7), we obtain

_WKQ$ _q Z _DKA$ _a: ð2:12Þ

In the absence of external disturbances (see below), this is consistent with the
following straightforward identification

_W ZQ$ _q; _DZA$ _aR0 in an unperturbed process: ð2:13Þ

By comparing the expressions for _D in equations (2.8) and (2.13)2, a remarkable
conclusion is obtained (Petryk 1995) that the averaging thermodynamic forces A
need not vanish in unconstrained equilibrium, even if the local thermodynamic
forces B do vanish in equilibrium states assumed at instants t and tCdt and
deviate from zero only in non-equilibrium processes between those states. This
feature of A is crucial in the thermodynamic description of plasticity and other
inelastic phenomena with the macroscopically rate-independent dissipation, i.e.
when a dissipation part in the transition between two neighbouring states at the
macro-level does not depend on the macroscopic deformation rate. Local
instabilities at the micro-level related to local jumps in b and associated peaks
in B, when smoothed out with the help of averaging variables a, are identified as
the basic source of macroscopic dissipation of rate-independent type.

In stability investigations we wish to analyse perturbed processes. Denote by
_W
dist

the rate of work supplied directly to the material by a disturbing agency,
independently of the rate of work done by generalized forces Q. Accordingly,
equation (2.13)1 is replaced by

_W ZQ$ _qC _W
dist

; ð2:14Þ
while equation (2.9) is still valid. Note that the disturbing work-rate _W

dist
need

not vanish even if the respective differential quotient, cf. equation (2.6), concerns
two states of equilibrium at instants t and tCdt. Physically, this might
correspond to a disturbing wave travelling through the material sample in a short
time interval interior to (t, tCdt). The presence of two time scales manifests here
again. The meaning of equation (2.14) can be seen better after the
transformation of the formula (2.9) by expressing de/dt through the velocity
gradient, using the divergence theorem and substituting the perturbed equations
of motion; details of that standard transformation are omitted.

On substituting equation (2.14) into equation (2.12), we obtain that in a
perturbed process

_DZA$ _aC _W
dist

R0; ð2:15Þ

which differs from equation (2.13)2.
We shall assume that the knowledge of a forward rate _a in a given state G

determines, with sufficient accuracy, the intrinsic dissipation rate _D in the
material sample M in any process, either perturbed or not. Moreover, the
intrinsic dissipation rate at the macro-level is assumed to be entirely rate-
independent. It means that the dissipation function D of ðG; _aÞ is given such that,
Phil. Trans. R. Soc. A (2005)
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to a suitable approximation,

_DZDðG; _aÞ; DðG; r _aÞZ rDðG; _aÞ for all rO0: ð2:16Þ
Since, _a represents here only virtual structural rearrangements which generally
can only be realized under suitable perturbing forces within the material sample,
the function D defines a virtual dissipation rate. The difference between D as the
virtual rate of intrinsic dissipation defined by equation (2.8) and the expression
A$ _a as the actual dissipation rate in an unperturbed process is equal to the rate
of work supplied to the material by a disturbing agency, cf. equation (2.15).
Although the concept of a dissipation function has been widely used, the above
distinction between the dissipation function and the actual dissipation rate was
usually not emphasized.

Of course, if a particular _a corresponds to an unperturbed (actual) process
then D should yield the actual value of the dissipation rate. Denote by LðGÞ a
cone in _a-space that contains all _a compatible with the current thermodynamic
forces AðGÞ. Consequently,

DðG; _aÞZAðGÞ$ _a for all _a 2 LðGÞ; ð2:17Þ
so that D is then linear in _a within that cone.
(c ) Multi-mode inelasticity

To complete the constitutive framework, we must specify the form of evolution
rules for internal state variables (for which no balance equation is assumed). It is
not required that the local behaviour of a material point within M be rate-
independent on the time scale adopted at the micro-level, especially in view of
possible high strain-rates induced locally by micro-scale instabilities. However,
the behaviour of the material sample M on the macro-scale is investigated below
only in a rate-independent limit (which need not be uniquely defined).

By adopting the well-known concept of time-independent multi-mode
plasticity (e.g. for metal crystals) extended to other rate-independent inelastic
phenomena, smooth loading functions fKðGÞ, KZ1,.,N, are defined such that in
an admissible unperturbed process

fK%0 and ðfK!0 for all K implies _aZ 0Þ: ð2:18Þ
Each loading function fK is associated with an internal mechanism of inelastic
deformation, which may be activated if fK reaches the zero threshold value. The
respective K-th direction of non-zero _a is specified for each mechanism in the
current state, while the magnitude of _a is set by a scalar multiplier denoted by
g8 K . Accordingly, for possibly more than one mechanism activated simul-
taneously, we assume that

_aZ
X
K

hKðGÞg8 K : ð2:19Þ

A circle rather than a dot over gK is used to emphasize that g8 K , unlike the rate of
a state variable, is an independent variable not defined by a formula analogous to
equation (2.6). The orientation of each hK is assumed such that g8 KR0 by
convention (a mechanism which may operate in two opposite directions is
Phil. Trans. R. Soc. A (2005)
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regarded as split into two separate mechanisms). In result, the basic rule for
activity of K-th mechanism takes the familiar form

g8 KR0; fK%0; fKg
8
K Z 0; ð2:20Þ

with no implicit summation assumed for the mechanism index. In the special case
NZ1, the framework of classical elastoplasticity is obtained with a single
(averaged) mechanism of inelastic deformation. A case NZ2 may correspond, for
instance, to the classical elastoplasticity accompanied by damage or phase
transformation, etc.

Values of inelastic multipliers g8 K in an unperturbed process are to be
determined from the consistency conditions

_f K%0; _f Kg
8
K Z 0 for every K 2 P hfK : fK Z 0g; ð2:21Þ

which follow from equation (2.20) by differentiation, while g8 KZ0 for K;P .
The set PðGÞ of indices of potentially active mechanisms in a state G will play an
essential role in the stability conditions.

The postulated expressions for the rates of Q and fK in terms of _q, _T and g8 K
are as follows

_QZKe$ _qKk _TK
X
K

Np
Kg

8
K ;

_f K ZNK$ _qCkK _TK
X
L

gKLg
8
L: ð2:22Þ

The state-dependent coefficients, which can be expressed from equations (2.7)
and (2.19) under appropriate smoothness assumptions as

Ke ZF;qq; k ZKF;qT ; Np
K ZKF;qa$hK ;

NKZ fK ;q; kKZ fK ;T ; gKL ZKfK ;a$hL; ð2:23Þ
are assumed to vary in any process continuously and with a bounded rate if the
g8 K ’s, _q and _T are bounded. Henceforth, the usual short-hand notation is used
that a comma as a lower index denotes partial derivative with respect to
quantities that follow the comma. Note that K e is symmetric but the matrix
(gKL) need not be symmetric in general.

Although the expression (2.22) is linear in the rate-variables, the resulting
incremental constitutive law defined by equations (2.22) and (2.21) as a whole is
not linear, since the set of active mechanisms (for which g8 KO0) is not known in
advance. It should be noted that the constitutive rate equations (2.22) may be
postulated as phenomenological relationships without explicit reference to
thermodynamics.

The last term in the expression for _Q in equation (2.22), on usingQZQ(q,T,a)
equal to

_Q
p
hQ;a$ _aZKF;qa$ _aZK

X
K

Np
Kg

8
K ; ð2:24Þ

defines the inelastic (plastic) part of the rate of generalized forces, cf. Hill & Rice
(1973). If K e is invertible then an equivalent dual formulation is available where
the roles of _Q and _q are interchanged. The aspects of duality and invariance have
been discussed in detail elsewhere (cf. Hill & Rice 1973; Hill 1978; Kleiber &
Raniecki 1985; Petryk 2000a). Therefore, we only mention here that in the dual
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formulation, where qZq(Q,T,a), the inelastic (plastic) part of the rate of
generalized displacements is defined as follows

_qp hq;a$ _aZ ðKeÞK1$
X
K

Np
K g8 K ZKðKeÞK1$ _Q

p
: ð2:25Þ

The rate of free energy defined by formula (2.7) can be expressed as

_FZQ$ _qKS _TK
X
K

pK g8 K ; pK ZpKðGÞ; ð2:26Þ
where

pK ZA$hK ;
X
K

pKg
8
K ZA$ _a: ð2:27Þ

It is emphasized that F itself is not regarded here as a function of the gK’s
obtained formally by time integration of g8 K ’s since usually such gK’s are not
state variables.

In analogy to Rice (1971), the loading functions fK are now given the following
thermodynamic interpretation

fK ZpKKpc
K ; pc

KR0; pc
K Zpc

KðGÞ; ð2:28Þ
where pc

K is a state-dependent threshold value for a thermodynamic driving force
pK. However, an essential distinction from Rice’s theory is that pc

K may depend
here not only on internal variables a but also on elastic changes in strain or
stress. In this way, the restriction to a normality rule is removed and non-
associative plasticity is included in equation (2.28). This is related to stress-
dependence of the dissipation function, cf. Collins & Houlsby (1997).

The dissipation function equations (2.16) is specified as follows

_DZD G;g8 K
� �

Z
X
K

pc
KðGÞg8 KR0; ð2:29Þ

in accord to the interpretation of pc
K as a non-negative value of pK at which the

K-th mechanism actually operates. A virtual g8 KR0 not compatible with the
current fKðGÞs0 may be induced after compensating the difference between
pKðGÞ and pc

KðGÞ by applying to M an extra set of internal forces (e.g. a
perturbing wave) at fixed q and T. From equations (2.15), (2.27)–(2.29) it follows
that the associated rate of work supplied by a disturbing agency reads

_W
dist

ZK
X
K

fKg
8
K : ð2:30Þ

Hence, we arrive at the following version of equation (2.14)

_W ZQ$ _qK
X
K

fKg
8
K : ð2:31Þ

Note that the dissipation function D in the multi-mode inelasticity framework is
linear on the whole set of the inelastic multipliers g8 K in a given state G. This is a
simplification in comparison with a dissipation function (2.16) which, according
to equation (2.17), must be linear only within some cone in _a-space. In related
approaches, the dissipation function D is usually assumed to be convex in _a, cf.
Maugin (1992), Nguyen (2000).
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(d ) Normality and symmetry

The additional assumptions to be formulated in this subsection will not be
needed to formulate conditions for stability of equilibrium; however, they will be
used later in the analysis of stability of a quasi-static deformation process.

The normality flow rule in time-independent inelasticity (plasticity), correctly
extended to finite deformation and generalized variables (cf. Hill & Rice 1973;
Hill 1978), can be written down for each mechanism separately as follows

_qp ZL
8

K

vf̂ KðQ;T ;aÞ
vQ

5 _Q
p
ZKL

8

K

vfKðq;T ;aÞ
vq

; L
8

KR0; ð2:32Þ

where f̂ KðQ;T ;aÞh fKðq;T ;aÞ under the assumed invertibility of K e. It is
essential that the inelastic (plastic) parts of the rates of generalized
displacements and forces are defined as in equations (2.25) and (2.24),
respectively. The equivalence in equation (2.32) follows from the chain rule of
differentiation of f at fixed T and a along with the symmetry of K e. The
normality rule (2.32) can be deduced from the classical Ilyushin postulate (Hill
1968; Hill & Rice 1973). Equation (2.32) can be rewritten as

g8 KN
p
K ZL

8

KNK : ð2:33Þ
Let each loading function fK be normalized such that jNK jZ jNp

K j. Then, the
normality rule (2.32) reduces to

Np
K ZNK : ð2:34Þ

If the normality rule in the form (2.34) is assumed then the stability analysis is
more conclusive when the following symmetry restriction is also imposed

gKL Z gLK for K ;L 2 P : ð2:35Þ

It is worth mentioning that the above normality and symmetry conditions can be
deduced from the thermodynamic postulate that requires the dissipation
evaluated to the second-order terms along any path connecting two adjacent
states to be always minimized on a straight (or direct) path (Petryk 2000b). Both
equations (2.34) and (2.35), although not universally valid, may thus be regarded
as physically plausible restrictions.
3. Thermodynamic conditions for stability of equilibrium

(a ) Compound thermodynamic system

We shall consider a compound system A that consists of the material sample M,
a loading device as a work source, and a surrounding heat reservoir of constant
absolute temperature �TO0. According to the approximations adopted, the
Helmholtz free energy F and entropy S of M are treated as functions of
GZðq;T ;aÞ, i.e. of generalized displacements q, internal state variables a and a
uniform temperature T which may differ from �T .

The loading device is defined as a mechanical conservative system, of a
potential energy U being a twice differentiable function of (q,l), which supplies
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work W ext (but no heat) to M, such that

_W
ext

ZP$ _q; P ZPðq; lÞhKU;qðq; lÞ; ð3:1Þ

where l is a loading parameter. The considerations are restricted to cases where q
is not constrained kinematically. Entropy of the mechanical loading device is
neglected for simplicity, so that U is interpreted as the internal energy of the
device. As a counterpart to equation (2.22), we have the following constitutive
rate equation for the vector of generalized loads P

_P Z _P
�
KK�$ _q; _P

�
ZKU;ql

_l; K� ZU;qq: ð3:2Þ

The matrix K* describes the effect of deformation-sensitive loading which should
not be excluded from general investigations of material stability (cf. Hill 1978;
Petryk 2000a,b).

Kinetic energy KA of the system A is merely assumed to be non-negative and
to vanish in equilibrium.

Internal energy and entropy of the heat reservoir are denoted by Eh and Sh,
respectively. We shall assume that the system A is thermally isolated, so that
heat Q supplied to the material sample M from the reservoir satisfies
dQZKdEhZK�TdSh. Any extra heat supplied to M by a disturbing agency is
also included in dQ.

The total (internalCkinetic) energy EA and total entropy SA of the compound
system A are

EA ZU CUCEh CKA; SA ZSCSh; ð3:3Þ

with U as the internal energy of M.
At a fixed value of the loading parameter l and in the absence of external

disturbances, the system A is regarded as fully isolated. This fundamental
property motivates the selection of A for thermodynamic stability investigations.
An equilibrium state of A is characterized by (and for convenience identified
with) GZG0 constant in time at fixed l.

The use of the first law (2.11) yields

_EA Z _W C _UC _KA: ð3:4Þ

From the second law we obtain

_SA Z _SK _Q= �T h _S
i
R0: ð3:5Þ

Under the assumptions introduced, the entropy production rate _S
i
consists of

two parts, thermal _S
th

and intrinsic rate-independent _S
in
,

_S
i
Z _S

th
C _S

in
; _S

th
Z

1

T
K

1
�T

� �
_Q; _S

in
Z

1

T
_D: ð3:6Þ

More generally, other contributions to ð _S i
K _S

inÞ might exist, e.g. due to viscous
dissipation, which are neglected here. This would not influence the extended
condition for stability, to be based on the second law assumed in the following
strengthened form: both _S

in
and the complementary part of _S

i
are separately
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non-negative

_S
in
R0; _S

i
K _S

in
R0: ð3:7Þ

Before formulating the extended condition, the classical condition for stability is
briefly discussed first.
(b ) Classical condition for stability of equilibrium

Let the prefix D denote an increment in some quantity in a process, perturbed
in general, leading from an equilibrium state G0 to a state G,

DJZJðGÞKJðG0Þ or DJZJjGKJjG0 ; ð3:8Þ

for a state variable or a quantity which depends also on the transition path
between the two states, respectively. Henceforth up to the end of §4, all
increments are considered at a fixed loading parameter l.

The classical condition for stability of an equilibrium state G0 of an isolated
system A can be written down in the form

DSA!0 whenever DEA Z 0: ð3:9Þ
Importance of inequality (3.9) as a fundamental condition for thermodynamic
stability is unquestionable. However, for the specific class of solids with rate-
independent dissipation, the condition (3.9) turns out to be too restrictive. To
show this, is it convenient to reformulate inequality (3.9), for the compound
system A defined above, equivalently as

DEAK �TDSAO0 for every GsG0: ð3:10Þ
The equivalence follows from the possibility of manipulating the value of DEA by
exchanging extra heat between external sources and the heat reservoir, without
affecting the value of the left-hand expression in inequality (3.10). It is a
standard result that the conditions

T Z �T andQZP in G0; ð3:11Þ
of thermal and mechanical equilibrium in A, respectively, follow as consequences
of inequality (3.10) by equating to zero the first quasi-static variation of the left-
hand expression in inequality (3.10) at fixed a. However, if a is allowed to vary
then inequality (3.10) in an equilibrium state implies also (cf. §3c) that

dEAK �TdSA ZKAðG0Þ$daR0 in G0: ð3:12Þ
As discussed in §2, the thermodynamic forces A generally do not vanish in an
equilibrium state, moreover, _a compatible with A and corresponding to a
positive intrinsic dissipation rate must satisfy equation (2.13)2 with strict
inequality. This contradicts inequality (3.12) unless there is no rate-independent
intrinsic dissipation.

It may be concluded that the classical thermodynamic condition (3.9) does not
provide a satisfactory basis for investigations of stability in materials or systems
with rate-independent dissipation. The existing attempts (cf. Bažant & Cedolin
1991) refer, in effect, only to equivalent (essentially elastic) systems without an
explicit definition of intrinsic dissipation of rate-independent type.
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(c ) Extended condition for stability of equilibrium

The above conclusion that the maximum entropy inequality (3.9) is too
restrictive for materials or systems with rate-independent dissipation is not
surprising. In view of its interpretation as a sufficiency condition for stability of
equilibrium, which follows from the second law, its rigorous fulfillment would also
exclude local material instabilities at the micro-level. Adopting the point of view
that just local instabilities appearing at a lower scale represent the physical source
of the rate-independent inelastic behaviour of themacroscopicmaterial sample, the
reason for the over-sufficiency of the classical condition becomes clear.

The classical condition for thermodynamic stability must thus be appro-
priately extended to comply with the concept of rate-independent dissipation.
This can be done (Petryk 1995) by taking, as a basis, the second law of
thermodynamics not in its fundamental form (3.5) but rather in its strengthened
version (3.7). More specifically, it is the second inequality in equation (3.7) which
replaces that in equation (3.5) in the usual argument.

Define a functional V by

DV hDEAKTDSAC �TDS in; ð3:13Þ
where

DS in Z

ðt
t0

_S
in
dt Z

ðt
t0

1

T
_Ddt ð3:14Þ

is the path-dependent intrinsic production of entropy in any perturbed process
leading from an equilibrium state G0ZGðt0Þ to a current state GðtÞ. The value of
V varies continuously with respect to time t in any process, since the energy and
entropy do. Moreover, in a process free of actual (persistent) disturbances, which
follows any earlier temporary disturbance, we have

_V Z _EAK �Tð _S i
K _S

inÞ%0; ð3:15Þ
from equation (3.7)2 and the energy conservation law _EAZ0 at fixed l. This
shows that DV is a natural candidate for the Lyapunov functional.

We arrive thus at the following conclusion (Petryk 1993b, 1995): If

DVO0 for every GsG0; ð3:16Þ
and for every path connecting G0 with G, then the equilibrium state G0 of an
isolated system A is stable with respect to the distance jDV j.

The condition (3.16) may be regarded as an extension of the classical condition
(3.10) to systems with rate-independent dissipation. Further discussion of
condition (3.16) and its consequences for stability in continuous systems can be
found in the references quoted above.

On substituting equation (3.3) into (3.13), we obtain

DV ZDUK �TDSC �TDS in CDUCDKA: ð3:17Þ

The theory of thermodynamic stability can be developed by using the functional
E defined by

DE ZDUK �TDSC �TDS in CDU: ð3:18Þ
Since, the kinetic energy KA is non-negative and vanishes in equilibrium, from
condition (3.16) we have the basic corollary: Stability of an equilibrium state G0
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(with respect to the distance jDV j) is ensured if

DEO0 for every GsG0; ð3:19Þ

and for every path connecting G0 with G.
It is worth mentioning that condition (3.16) implies KA!DV , so that the

kinetic energy in a process satisfying inequality (3.15) is bounded by the initial
positive value of DV adopted as a measure of an initial disturbance strength.

For isothermal processes, equation (3.18) simplifies to

DE ZDFCDDCDU ðT h �TÞ; ð3:20Þ

or equivalently, on using equation (2.10), to

DE ZDW CDU ðT h �TÞ: ð3:21Þ

Under this restriction to constant temperature, the quantity E can be identified
(cf. equation (3.4)) with the internal energy of the compound system A.
Isothermal stability conditions for inelastic solids, which can be expressed in
terms of the quantities in equation (3.20) or (3.21), have been previously based on
the energy balance, cf. Hill (1958),Nguyen & Radenkovic (1976), Petryk (1982)
and Nguyen (1993). Their thermodynamic justification follows from the extended
condition (3.19) by the limiting passage from a non-isothermal case (Petryk 1995).

Our present aim is to examine consequences of the condition (3.19) for the
discretized material sample M. The primary task is to examine the sign of DE
after infinitesimal deviations from G0. In view of the non-existence of the
standard variation of DS in, an infinitesimal increment denoted by a prefix d or
the associated rate (2.6) denoted by a superimposed dot have the meaning of a
one-sided directional variation or derivative, respectively.

A virtual one-sided variation of equation (3.18), on substituting equations
(2.7), (2.16), (3.1) and (3.6)3 can be written down as follows

dE Z ðQKPÞ$dqCðTK �TÞdSC
�T

T
DðG; daÞKA$da: ð3:22Þ

As a condition necessary for fulfillment of equation (3.19), in place of the
previous unacceptable condition (3.12), in an equilibrium state we now obtain

dE ZDðG0; daÞKAðG0Þ$daR0 in G0: ð3:23Þ
Of course, the infinitesimal increments can be replaced by forward rates defined
by equation (2.6).

It should be remarked that while the condition (3.23) is necessary for the
fulfillment of inequality (3.19), its status as a necessity condition for stability

itself is less clear. All _a 2 LðG0Þ compatible with the actual thermodynamic forces

AðG0Þ satisfy equation (3.23) with the equality sign, cf. equation (2.17). Any other
_a requires an instantaneous finite perturbation of averaging thermodynamic forces
A. It is an open question in which circumstances such perturbations may be
regarded as physically realizable. We will consider below only those perturbations
which satisfy equation (3.23) with the equality sign and thus do not require
instantaneous finite perturbation of actual thermodynamic forces. Consequently,
second-order terms are to be analysed.
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(d ) Second-order stability conditions

The stability analysis will now be continued within the framework of multi-
mode inelasticity, where _a is expressible through equation (2.19) in terms of
g8 K ’s. The results can be compared with differently formulated second-order
stability conditions given elsewhere (cf. Hill 1958, 1978; Nguyen 1993, 2000;
Petryk 1993b, 1995).

Infinitesimal increments are henceforth replaced by forward rates (2.6).
Equation (3.22) is transformed to

_E Z ðQKPÞ$ _qCðTK �TÞ _SC
X
K

�T

T
pc
KKpK

� �
g8 K ; ð3:24Þ

which is applicable in any state. In particular, inequality (3.23) is satisfied
automatically for all gK

8 R0 if fKðG0Þ%0.
Under no instantaneous finite perturbations of driving forces pK, all the

conditions in equation (2.20) are satisfied in the examined equilibrium state G0.
Denote by P 0ZPðG0Þ the set of indices of potentially active mechanisms in the
state G0, i.e.K 2 P 05 fKðG0ÞZ0, and by [j] a column matrix of components jK

withK 2 P 0. Relations like [j]R[0] are to be read componentwise. Then, the set of
all ½g8 �R ½0� can be identified with the set of virtual modes of inelastic deformation
realizable under arbitrary small perturbations of driving forces pK. The required
perturbations of pK are initially zero in G0 and their magnitude grows in time with
a finite rate if the consistency conditions (2.21) are violated in the state G0.

From equation (3.24) it follows that _EZ0 for every set ð _q; _T ; ½g8 �Þ in an
equilibrium state G0. A natural further step is to examine the sign of the
forward second-order rate of DE (with respect to an appropriate time scale)
calculated as the rate of equation (3.24). On substituting next the equilibrium
conditions and rearranging, this yields2

€E Z ð _QK _PÞ$ _qC _Tð _SK _S
inÞK

X
K2P 0

_f K g8 K in G0: ð3:25Þ

The second-order condition for stability of equilibrium, corresponding to the
basic condition (3.19), is expressed as follows3

€EO0 for every non-zero _q; _T ; ½g8 �R ½0�
� �

in G0: ð3:26Þ
It is pointed out that condition (3.26) is, in general, not sufficient for stability but only
for directional stability of an equilibrium state G0. It excludes the most
straightforward form of instability, namely, a spontaneous departure from
equilibrium on a direct path along which all macroscopic state variables vary
proportionallywith respect to somedistancemeasure,with accuracy to the first order.

It has also not been shown that violation of inequality (3.26) implies a
physically meaningful instability. Accordingly, inequality (3.26) or its particular
2 A non-zero increment dg8K for K;P 0 has been excluded as requiring an instantaneous finite
perturbation of pK. It may be noted that such dg8K would give a positivce contribution to E€, in view
of the implication g8KZ00dg8KR0, not influencing thus the stability condition (3.26).
3 Non-zero ðq_;T_; ½g8�R ½0�Þ means that some of q_, T_ or g8K differs from zero, for K 2 P 0 and all
g8KR0.
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versions below are interpreted merely as sufficiency conditions for directional
stability of a general or specified type, respectively.

From inequality (3.26) we easily deduce several more specialized conditions
(all formulated in G0):

For thermal stability ð _qZ0; ½g8 �Z ½0�Þ
KF;TTO0; ð3:27Þ

i.e. the classical condition of positiveness of the specific heat at constant
deformation.

For elastic stability ð _TZ0; ½g8 �Z ½0�Þ

_q$ðKeCK�Þ$ _qO0 for every _qs0; ð3:28Þ

which coincides with the classical condition of positive definiteness of the second
variation of the total potential energy of the system.

For thermoelastic stability ð½g8 �Z ½0�Þ: the conditions (3.27) and (3.28) jointly,
and no other condition is generated.

For intrinsic stability ð _qZ0; _TZ0ÞX
K ;L2P 0

gKLg
8
Kg

8
LO0 for every non-zero ½g8 �R ½0�; ð3:29Þ

i.e. stability against spontaneous internal structural rearrangements in the
material sample at fixed macroscopic deformation and temperature. As a
thermodynamic condition for material stability, equation (3.29) was apparently
derived first in (Petryk 1993b), although that inequality appeared earlier in the
literature in a different context, cf. Havner (1992).

Henceforth, we restrict attention to isothermal stability, assuming that
T h �T .

On substituting equations (2.22) and (3.2), the condition (3.26) reduces to the
following second-order condition for isothermal stability of equilibrium of the
material sample under deformation-sensitive loading

_q$ðKeCK�Þ$ _qK _q$
X

K2P 0

Np
K CNK

� �
g8 K C

X
K ;L2P 0

gKLg
8
Kg

8
LO0

for every non-zero _q; ½g8 �R ½0�
� �

:
ð3:30Þ

This condition obviously includes conditions (3.28) and (3.29) as immediate
consequences.

It may be important to note that the stability condition (3.30) and its
consequences that follow, although derived from thermodynamic considerations,
eventually involve only those constitutive parameters that appear in the
phenomenological constitutive rate equations, (2.22) for the material and (3.2)
for the loads. In effect, applications of condition (3.30) do not require
specification of internal state variables or thermodynamic forces. The particular
form (3.30) of the stability condition appears to be new.

We shall assume that the condition (3.28) of elastic stability is satisfied, which
allows the rate of generalized displacements to be eliminated from the stability
condition (cf. Nguyen 1984). Then the left-hand expression in condition (3.30) for
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given ½g8 � reaches a minimum with respect to _q at

_qm Z
1

2
G�$

X
K2P 0

Np
K CNK

� �
g8 K ; G� hðKeCK�ÞK1: ð3:31Þ

On substituting _qZ _qm into equation (3.30), the following condition is obtained

X
K ;L2P 0

gKLK
1

4
Np

K CNK

� �
$G�$ Np

LCNL

� �� �
g8 Kg

8
LO0

for every non-zero ½g8 �R ½0�:
ð3:32Þ

Clearly, the conditions (3.28) and (3.32) considered jointly are equivalent to
condition (3.30). The condition (3.32) is more restrictive than condition (3.29) on
account of the positive definiteness of G* implied by inequality (3.28).

The condition (3.32) ensures directional stability of equilibrium for the most
unfavourable combination of disturbances both at the macro-level (associated
with _Qs _P) and at the micro-level (associated with _f Kg

8
K s0), and may be thus

over-sufficient for directional stability. Two less restrictive versions of inequality
(3.32) are as follows.

First, if external quasi-static equilibrium remains unperturbed then, from
equations (2.22) and (3.2),

_QZ _P 5 _q ZG�$
X
K

NP
Kg

8
K : ð3:33Þ

On substituting equation (3.33), the condition (3.30) reduces to the following
condition for internal stability under deformation-sensitive loading

K
X

K2P 0

_f Kg
8
K Z

X
K ;L2P 0

g�KLg
8
Kg

8
LO0 for every non-zero ½g8 �R ½0�; ð3:34Þ

where
g�KL Z gKLKNK$ðKe CK�ÞK1$Np

L: ð3:35Þ

This is another condition for stability against spontaneous internal structural
rearrangements in the material sample. In contrast to condition (3.29) applicable
under rigid boundary constraints for M, the condition (3.34) is explicitly
dependent on the constraints stiffness K*.

It should be noted that if the additional assumption of normality Np
KZNK

� �
is introduced then the conditions (3.32) and (3.34) coincide. This means that a
macroscopically quasi-static deformation mode in equation (3.33) is then most
critical for internal stability.

Second, assume alternatively that equation (3.33) is perturbed while there are
no internal disturbances that would perturb directly the values of driving forces
pK. Then the consistency condition (2.21) must be satisfied, which for each given
_q leads to the linear complementarity problem for unknown ½g8 �. Suppose that
inequality (3.29) holds, which ensures existence of a solution ½g8 � to that problem
for every _q (cf. Cottle et al. 1992). Then, _Q in a given state is expressible in terms
of _q, although not necessarily unique. For those _Q, the condition (3.30) reduces
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now to

_Q$ _qOK_q$K�$ _q for every _qs0: ð3:36Þ
For dead loading (K�Z0), the familiar condition _Q$ _qO0 is recovered, which
corresponds to Hill’s (1958) integral condition for stability in a continuum.
Conditions in the form (3.36) and (3.37) for material stability at locally uniform
strain were given by Hill (1978).

If all principal minors of the matrix (gKL) with K ;L 2 P 0 are positive then the
solution g8½ � to the above mentioned linear complementarity problem is unique;
cf. (Cottle et al. 1992) for the mathematical theory and (Maier 1969; Petryk
2000a) for its applications to inelastic materials. Then _Q in a given state becomes
a continuous and piecewise linear function of _q, and inequality (3.36) can be
written down as follows

_q$ðKð _qÞCK�Þ$ _qO0 for every _qs0; K Z
v _Q

v _q
: ð3:37Þ

If _Qð _qÞ is not differentiable at some _q then inequality (3.37) is to be understood
in the limit sense as this _q is approached from any side. K is identified as the
tangent stiffness matrix for the material sample, dependent on the direction of _q
in a piecewise-constant manner. Of course, inequality (3.37) is different from
(and less restrictive than) the requirement of positive definiteness of every well-
defined matrix ðKð _qÞCK�Þ.
4. Stability against spontaneous formation of deformation bands

The specific kind of material instability related to the localization of deformation
into planar bands has attractedmuch attention in the last decades. It is beyond the
scope of this paper to make even a brief review of the relevant vast literature; cf.
(Rice 1977) as a basic reference and a survey, e.g. (Petryk 1997b). Thepresent aim is
only to show how the second-order condition (3.26) for stability of equilibrium, and
its versions discussed above, can be directly applied to the problem of spontaneous
formation of shear bands under fixed remote loads or displacements. For this
purpose, the isothermal stability condition (3.30) will be specified for a material
element placed within a possible deformation band in an infinite homogeneous
continuum. The material is supposed to be stressed to a level such that multiple
internal mechanisms of inelastic deformation may be activated.

Constitutive rate equations which accompany equations (2.20) and (2.21) for a
material element at finite deformation are assumed in the following general form

_S ZCe$ _FK
X
K

L
p
Kg

8
K ;

_f K ZLK$ _FK
X
L

gKLg
8
L; ð4:1Þ

analogous to equation (2.22) at fixed T, where F, ST and C e are the deformation
gradient, nominal stress and related elastic stiffness moduli tensor, respectively.
The reader is referred to Hill (1978) and Petryk (2000a) for the relations between
equations (4.1) and constitutive equations expressed in other (objective) rate-
variables.

It is assumed that the deformation gradient outside a planar band remains
unaffected by the band formation, and is thus kept fixed in the present study of
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stability of equilibrium. Then, the rate of F within a deformation band of a unit
normal n in the reference configuration must satisfy the standard kinematic
compatibility condition in the form

_F Z _g5n; ð4:2Þ

where _g is an arbitrary spatial vector and 5 denotes a dyadic product. On
substituting equation (4.2) into equation (4.1) and multiplying the former
equation (4.1) by n, we obtain

_Sn ZAe _gK
X
K

L
p
Kng

8
K ;

_f K Z ðLknÞ$ _gK
X
L

gKLg
8
L: ð4:3Þ

Here, the notation (Sn)iZSijnj is used, and Ae is the acoustic tensor for the
purely elastic constitutive branch, of components

Ae
ik ZAe

ikðCe;nÞZC e
ijklnjnl : ð4:4Þ

The condition for purely elastic stability is that Ae is positive definite, i.e. C e is
strongly elliptic, which is henceforth assumed.

From the assumption of constant deformation gradient outside the band it
follows that the nominal surface tractions on the band boundaries are also
constant. The second variation of the potential energy of loads thus vanishes, and
the condition (3.26) reduces to €WO0 as can be seen from equation (3.21).
Generally, _g may vary across the band, and inelastic deformation in some layer
within the band may be compensated by elastic unloading in other layers.
However, the stability condition €WO0 is readily satisfied for all possible
distributions of _g across the band if and only if it is satisfied for every constant _g.
Hence, on using equations (4.2) and (4.3), it follows that the stability conditions
from §3d become directly applicable with the following correspondence

ð _q; _Q;KeÞ4ð _g; _Sn;AeÞ and ðNp
K ;NKÞ4ðLp

Kn;LKnÞ; ð4:5Þ
along with K*Z0.

From condition (3.32) we obtain the following condition for stability of
equilibrium against spontaneous formation of deformation bands of orientation nX

K ;L2P
gbandKL g8 Kg

8
LO0 for every non-zero ½g8 �R ½0�; ð4:6Þ

where
gbandKL Z gKLK

1

4
L

p
KnCLKn

� �
$ðAeÞK1 L

p
LnCLLn

� �
: ð4:7Þ

If the less restrictive version (3.34) of the stability condition is used then

we arrive at equation (4.6) with gbandKL defined by

gbandKL Z gKLKðLKnÞ$ðAeÞK1 L
p
Ln

� �
; ð4:8Þ

in place of equation (4.7). In either version, the condition (4.6) appears to be new.
The stability condition (4.6) can be compared with a different condition for

uniqueness, also expressed in terms of the matrix (4.8), which excludes quasi-
static bifurcation within a band at varying deformation gradient outside the band
(Petryk 2000a).
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5. Stability of a quasi-static process

(a ) Assumptions

We proceed now to examining stability of a quasi-static process (or path)
induced in the compound system A by a loading program with _ls0. The author
has not found in the literature a counterpart to the condition (3.19) which would
be of similar generality and at the same time pertinent to stability of deformation
processes with rate-independent dissipation. From the argument given in §3b it
follows that the maximum entropy criterion, referred to in such context by
Bažant & Cedolin (1991), does not provide a satisfactory basis for examining
path stability of systems with rate-independent dissipation.

In comparison with the general circumstances in which the condition (3.19) for
stability of equilibrium has been obtained, the path stability analysis will be
carried out below under the following specific assumptions

(i) constant temperature ðT h �TÞ,
(ii) multi-mode inelasticity (§2c),
(iii) normality rule (2.34),
(iv) symmetry property (2.35),
(v) the first approximation, in which all state-dependent parameters in

equations (2.22) and (3.2) are fixed.

It will be shown that under the assumptions (i)–(v) the criterion of path
stability, although different from equation (3.19), can still be formulated in terms
of DE expressed equivalently by equation (3.20) or (3.21). For isothermal
processes, DE can be defined (Petryk 1982) as the amount of energy to be
supplied from external sources to the examined system in order to produce quasi-
statically a deformation increment, in general with the help of perturbing forces.

From equation (3.24) complemented by the term proportional to _l, we now
have

_E Z ðQKPÞ$ _qK
X
K

fKg
8
K CU;l

_l: ð5:1Þ

Consider a fundamental, unperturbed process F 0 defined as a theoretical,
isothermal and quasi-static solution GðtÞ that satisfies (2.20) and (3.11) at every
instant t, obtained for the system A for a given function l(t). The fundamental
process is assumed to go on sufficiently slowly to allow inertia effects to be
neglected. Quantities pertinent to the fundamental process will be distinguished
by a superscript ‘0’. Evidently, _E

0
ZU;l

_l.
We will examine stability of the fundamental process F 0 at a selected

deformation stage, defined by a small interval of l starting from a given
equilibrium state, say G0

R. According to the assumption (v), the process F 0 is
linearized in that interval, i.e. directions of _q0 and ½g8 �0 are treated as fixed while
their magnitude is proportional to _l (which may vary in time). However, the
stability problem itself is still non-linear. The state G0

R is chosen such that no
abrupt unloading takes place in G0

R along the fundamental path; consequently,
the set P 0 of the indices of potentially active mechanisms does not change in the
linearized process F 0, including the state G0

R. In the notation P 0ZP G0
R

� �
and

[j]Z(jK), K 2 P 0, analogous to that used previously, we thus select G0
R such
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that

½f �0 Z ½0� and ½ _f �0 Z ½0� in G0
R: ð5:2Þ

Note that such G0
R corresponds to a regular point on the fundamental path, in the

sense that the set of other (singular) points is discrete on account of finite N. All
increments denoted by a prefix D are to be taken now relative to G0

R.
Suppose that G0

R is a stable equilibrium state. A temporary disturbance is
imagined to initiate in G0

R a perturbed process which, after a transitory period,
reaches an equilibrium state G close to G0

R. No further disturbances are
considered, and at slowly varying l the perturbed process is continued from G as a
quasi-static process F s in which QZP and fKg

8
KZ0 at each instant. The

question of stability of the process F 0 is examined below by checking whether
the energy measure (DEKDE 0) of the distance between F s and F 0 possesses the
usual properties of a Lyapunov function.

As in §3d, only such temporary disturbances are considered which are not
associated with finite perturbations of thermodynamic driving forces. By the
continuity argument, there exists some neighbourhood R of the state G0

R such
that G 2R implies fKðGÞ!0 for K;P 0. Accordingly, for the examined class of
disturbances, we have

fK G0
R

� �
g8 K Z 0 in every G 2R: ð5:3Þ

(b ) Energy condition for quasi-static stability

For two quasi-static solution paths F s and F 0 close to each other, the
difference between respective values of _E at a given l reads

_E
s
K _E

0
ZKðqKq0Þ$ _P

�
; ð5:4Þ

in the first approximation (v), from (3.2) and (5.1). In the sequel, all quantities
are also evaluated at a given value of l. Equation (5.4) can be transformed as
follows

_E
s
K _E

0
ZKðqKq0Þ$ðK�$q0 C _P

0ÞZ ðPKP0Þ$ _q0K _P
0
$ðqKq0Þ

Z ðQKQ0Þ$ _q0K _Q
0
$ðqKq0Þ

Z ðDQKDQ0Þ$ _q0K _Q
0
$ðDqKDq0Þ: ð5:5Þ

The first equality follows from equation (3.2), the second from the first
approximation of (PKP0), the third from the assumption of quasi-static
processes, and the last is obvious. On substituting now the constitutive rate
equations (2.22) in either direct or straightforwardly integrated form using (v),
we obtain

_E
s
K _E

0
ZK

X
K

DgkKDg0
K

� �
Np

K$ _q
0 C

X
K

g8 0K Np
K$ DqKDq0
� �

Z
X
K

fK g8 0kK DgKKDg0
K

� �
_f
0
K

� �
K
X
K ;L

ðgKLKgLKÞ DgKKDg0
K

� �
g8 0L;

ð5:6Þ
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where the former equality follows from equation (2.22)1 and symmetry of K e,
and the latter from (2.20)3, (2.22)2 and the assumed normality rule (2.34). The
values of DgK and Dg0

K represent time integrals of g8 K in the perturbed and
fundamental processes, respectively, starting from the common initial state G0

R.
From equation (5.3) it follows that the summation in equation (5.6) need only

be performed over the set P 0 as long as both processes F s and F 0 continue
within R. On substituting into equation (5.6) the assumed conditions of
symmetry (2.35) and regularity (5.2), from fK%0 in F s we finally obtain

_E
s
K _E

0
Z

X
K2P 0

fK g8 0K%0 in every G 2R: ð5:7Þ

We arrive thus at the following conclusion (cf. Petryk 1993b). If

DEODE0 for every GsG0
R; G 2R; ð5:8Þ

and for every path connecting G0
R with G within R then the fundamental process

F 0 is quasi-statically stable in the first approximation at G0
R with respect to the

energy distance jDEKDE0j.
The energy condition (5.8) may be regarded as an extension of the condition

(3.19) for stability of an equilibrium state G0
R to an isothermal quasi-static

process going through G0
R. The energy excess (DEKDE 0) reduces to DE if the

process F 0 degenerates to a single equilibrium state. The character of stability
implied by equation (5.8) is, however, different from and complementary to the
dynamic stability of equilibrium implied by equation (3.19) at fixed l. The
perturbed process now takes place at varying l and, except in an initial
transitory period, is regarded as quasi-static; this is why the term quasi-statically
stable has been used. The stability is established for the non-linear problem but
only in the first approximation, cf. assumption (v), and as such has a physical
meaning within a sufficiently small interval of the loading parameter l. Note that
this may correspond to an unbounded interval of time t. A further discussion on
the concept of stability in the first approximation (which represents a
generalization of the linear stability concept) can be found in (Petryk 1993b).

It should be pointed out that on account of the specific assumptions (i)–(v),
the path stability condition (5.8) is much less universal than the condition (3.19)
for stability of equilibrium.

(c ) Second-order conditions for path stability

The rate _W of deformation work in a perturbed process is expressed by

equation (2.31) which includes the work-rate _W
dist

of internal disturbing forces.
Along any deformation path starting from G0

R, that expression can be rearranged
under the assumptions (i)–(iii) and (v) as follows

_W ZQ$ _qK
X
K

fKg
8
K ZQ G0

R

� �
$ _qK

X
K

fK G0
R

� �
g8 K C _q$Ke$DqC

X
K ;L

gKLDgLg
8
K

K
X
K

NK$ _qDgK Cg8 KDq
� �

: ð5:9Þ

Advantage has been taken of the fact that, under the assumption (v), the rates in
equation (2.22) can simply be replaced by the respective increments reached on
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an arbitrary path. Denote by j0
R a quantity j evaluated in the state G0

R. If
equation (5.3) is satisfied then straightforward integration of equation (5.9) along
any path within R with the use of symmetries of K e and (gKL) (from (iv)) yields

DW ZQ0
R$DqC

1

2
Dq$Ke$DqC

1

2

X
K ;L2P 0

gKLDgKDgLK
X

K2P 0

NK$DqDgK

ZQ0
R$DqC

1

2
Dq$Ke$DqK

1

2

X
K ;L2P 0

gKLDgKDgLK
X

K2P 0

DfKDgK

ZQ0
R$DqC

1

2
DQ$DqK

1

2

X
K2P 0

DfKDgK : ð5:10Þ

These expressions are exact due to the assumption (v); analogous expressions
valid to the second-order terms were derived without that assumption in (Petryk
1991a) for a uniformly strained material element. From equation (5.10) it follows
that a work increment DW is independent of the path in (Dq, DgK)-space within
R, being only dependent on the final increments.

With the help of equation (3.2), the following expression for DU is obtained

DUZU q0
R; l

� �
KU q0

R; l
0
R

� �
K P0

RKU;qlDl
� �

$DqC
1

2
Dq$K�$Dq: ð5:11Þ

When combined with equation (5.10), it yields

DEZ
1

2
Dq$ðKeCK�Þ$DqC1

2

X
K ;L2P 0

gKLDgKDgLC U;qlDlK
X

K2P 0

NKDgK

 !
$Dq

CU q0
R;l

� �
KU q0

R;l
0
R

� �
Z

1

2
ðDQKDPÞ$DqK1

2

X
K2P 0

DfKDgKC
1

2
Dq$U;qlDl

CU q0
R;l

� �
KU q0

R;l
0
R

� �
: ð5:12Þ

Clearly, DE is path-independent in (Dq, DgK)-space within R.
Alternatively, the forward rate of the expression (5.1) in the state G0

R under
the restriction (5.3) reads

€E jG 0
R
Z ð _QK _PÞ$ _qK

X
K2P 0

_f Kg
8
K C _q$U;ql

_lCU;ll G0
R

� �
ð _lÞ2 CU;l G0

R

� �
€l

Z 2Jð _q; ½g8 �ÞCU;ll G0
R

� �
ð _lÞ2CU;l G0

R

� �
€l; ð5:13Þ

where the last two terms have prescribed values, and

J _q; ½g8 �
� �

Z
1

2
_q$ðKeCK�Þ$ _qC

1

2

X
K ;L2P 0

gKLg
8
Kg

8
LK

_P
�
C
X

K2P 0

NKg
8
K

 !
$ _q:

ð5:14Þ
Comparison between equations (5.12) and (5.13) shows that under the
assumptions (i)–(v) and equation (5.3), the condition (5.8) is equivalent to the
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following second-order energy condition for path stability

€E _q; ½g8 �
� �

O €E _q0; ½g8 �
0

� �
for every _q; ½g8 �

� �
s _q0; ½g8 �

0
� �

; ½g8 �R ½0� in G0
R;

ð5:15Þ

which in turn is equivalent to

J _q; ½g8 �
� �

OJ _q0; ½g8 �0
� �

for every _q; ½g8 �
� �

s _q0; ½g8 �0
� �

; ½g8 �R ½0� in G0
R: ð5:16Þ

For comparison, the condition (3.30) for stability of equilibrium under the
normality assumption (iii) takes the form

J _q; ½g8 �
� �

OK _P
�
$ _q for every non-zero _q; ½g8 �R ½0�

� �
: ð5:17Þ

Moreover, for any quasi-static solution ð _qs; ½g8 �sÞ, we readily have

J _qs; ½g8 �s
� �

ZK
1

2
_P
�
$ _qs: ð5:18Þ

Some immediate implications follow, e.g. that inequality (3.30) implies _P
�
$ _q0O0

or that inequality (5.15) is necessarily violated if there exists _qss _q0 such that
_P
�
$ _qsR _P

�
$ _q0.

Suppose that the condition (3.28) for elastic stability of equilibrium is
satisfied. Then, the minimum of equation (5.14) with respect to _q for given ½g8 � is
attained at

_qm Z _qm ½g8 �
� �

ZG�$ _P
�
C
X

K2P 0

NKg
8
K

 !
5 _Q

m
Z _P; ð5:19Þ

where G* is defined in equation (3.31) and _Q
m

is constitutively related to _qm.
Thus, the ‘most critical’ mode associated with path stability condition (5.15) is
a quasi-static one. From (2.22)2 and (5.19)1 we obtain that _f

m
K related

constitutively to ð _qm; ½g8 �Þ reads

_f
m
K Z _f

�
KK

X
L2P 0

g�KLg
8
L;

_f
�
K ZNK$G

�$ _P
�
; ð5:20Þ

with g�KL defined by equation (3.35). It is essential that the matrix ðg�KLÞ is now
symmetric on account of the assumptions (iii) and (iv). On substituting
equation (5.19) into equation (5.14) and rearranging, the path stability
condition (5.15) is reduced to

Jm ½g8 �
� �

OJm ½g8 �0
� �

for every ½g8 �s½g8 �0; ½g8 �R ½0� in G0
R; ð5:21Þ

where

Jm ½g8 �
� �

Z J _qm ½g8 �
� �

; ½g8 �
� �

C
1

2
_P
�
$G�$ _P

�
Z

1

2

X
K ;L2P 0

g�KLg
8
Kg

8
LK

X
K2P 0

_f
�
Kg

8
K :

ð5:22Þ
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A minimizer ½g8 �m of Jm on the set of ½g8 �R ½0� must satisfy the Kuhn–Tucker
conditionsX

L2P 0

g�KL g
8
L
mK _f

�
KR0 and

X
L2P 0

g�KL g
8
L
mK _f

�
K

 !
g8 K
m Z0 for everyK 2P 0:

ð5:23Þ
From (5.20) it follows that conditions (5.23) coincide with the consistency
conditions (2.21) imposed on ½g8 �m in the state G0

R, while equation (5.19)2 is the
condition of continuing equilibrium. Hence, a pair ð _qmð½g8 �mÞ; ½g8 �mÞ which
minimizes the function Jð _q; ½g8 �Þ defined by equation (5.14) satisfies automati-
cally all the requirements for a quasi-static solution to the rate-problem defined
by equations (2.21), (2.22) and (3.2) and the rate form of equation (3.11).

From the theory of quadratic programming it follows that the minimizer of Jm

on the set of ½g8 �R ½0� exists if equation (3.34) holds and is unique ifX
K ;L2P 0

g�KLzKzLO0 for every ½z�s½0�: ð5:24Þ

Moreover, if equation (5.24) holds then the unique minimizer ½g8 �m is the only
solution to the problem (5.23) and must thus coincide with ½g8 �0, implying
inequality (5.21). Hence, we arrive at the conclusion that simultaneous fulfillment
of the conditions (3.28) and (5.24) implies fulfillment of the path stability
condition (5.15) (and also ensures uniqueness of a quasi-static solution to the
rate-problem).

If equation (5.2) is replaced by a somewhat stronger condition of fully active
loading in the fundamental process, that is, if

½g8 �0O ½0� in G0
R; ð5:25Þ

then, in turn, inequality (5.24) is implied by inequality (5.15) by the usual
second-variation argument. In that typical case, conditions (3.28) and (5.24)
considered jointly become equivalent to the energy condition (5.15) for path
stability.

In conclusion, equation (5.24) represents the final condition for path stability.
Its fulfillment under the assumptions (i)–(v) and (5.3) implies that the energy
condition (5.8) for path stability is satisfied whenever elastic stability is ensured
by inequality (3.28).

The condition (5.24) has been derived from inequality (5.16) on eliminating _q
under the assumed conditions (3.28) of elastic stability. It is possible to proceed
in an alternative way by eliminating ½g8 � with the help of the consistency
condition (2.21), which means that the driving forces pK are assumed to be not
perturbed directly. In analogy to the implications of problem (5.24), a unique
solution ½g8 �R ½0� to equation (2.21) exists for any given _q ifX

K ;L2P 0

gKLzKzLO0 for every ½z�s½0�: ð5:26Þ

Consequently, if inequality (5.26) holds then _Q in a given state becomes a
function of _q which under the assumptions (iii) and (iv) admits a potential.
Further analysis can follow known lines, cf. Petryk & Thermann (1992),
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Petryk (1997b). Under the additional assumptions (5.25) and (5.26), the path
stability condition (5.15) can be reduced to

_q$ðKð _q0ÞCK�Þ$ _qO0 for every _qs0: ð5:27Þ

Note the difference between this requirement of positive definiteness of the
fundamental tangent stiffness matrix ðKð _q0ÞCK�Þ for the system and the
previous condition (3.37) for stability of equilibrium. The condition (5.27) has
also the interpretation as the uniqueness condition.
(d ) Energy criterion of path instability

Suppose that inequality (5.15) fails due to

€E _q; ½g8 �
� �

! €E _q0; ½g8 �0
� �

for some _q; ½g8 �R ½0�
� �

in G0
R; ð5:28Þ

while the condition (3.26) for stability of equilibrium is still satisfied.
We conclude first from inequality (3.26) that the condition (3.28) of elastic

stability must hold, which by using the argument employed to derive condition
(5.21) allows inequality (5.28) to be transformed to

Jm ½g8 �
� �

!Jm ½g8 �0
� �

for some ½g8 �R ½0� in G0
R: ð5:29Þ

Moreover, the condition (3.34) for internal stability of equilibrium under
deformation-sensitive loading must also hold as a consequence of inequality
(3.26), here for Np

KZNK . From formula (5.22) and inequality (3.34) it follows
that Jmð½g8 �Þ is bounded from below on the set of ½g8 �R ½0� since J m is a continuous
function and Jmð½g8 �Þ/CN as g8 K/CN for some K 2 P . From the Frank-Wolf
theorem we obtain that Jmð½g8 �Þ attains at some ½g8 �m its absolute minimum on the
set ½g8 �R ½0 �.

Further, from inequality (5.29) it follows that the absolute minimizer ½g8 �mR0
of Jmmust differ from ½g8 �0. As stated earlier after the formula (5.23), eachminimizer
generates a quasi-static solution to the rate-problem. In the first approximation
(v), the solution _qð½g8 �m; ½g8 �mÞ can be extended to a straight path, simply by
replacing the rates by finite increments. We have thus proven the following
theorem:

If the inequality (5.28) is satisfied simultaneously with the condition (3.26) for
stability of equilibrium then, under the assumptions (i)–(v), there exists another
quasi-static solution path emanating from G0

R, which is energetically preferable to
the fundamental path in the sense of assigning a smaller value to DE.

This conclusion is similar in spirit to the previous theorems proven under
different specific assumptions in (Petryk 1991b; Petryk & Thermann 1992;
Petryk 1999). It shows that a fundamental path along which conditions (5.28)
and (3.26) hold simultaneously at every instant represents a continuous range of
quasi-static bifurcations and as such may be regarded as unstable, the more that
the branching solutions are energetically preferable. The inequality (5.28) may
thus be regarded as the condition sufficient for path instability. Taken jointly
with the condition (5.15) for path stability, it provides the energy criterion of
instability of quasi-static processes under consideration.
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Along a sufficiently regular fundamental path, the critical stage between the
ranges (5.24) of path stability and (5.29) of path instability is met when

det g�KLð ÞZ 0 with K ;L 2 P 0; ð5:30Þ
i.e. when the symmetric matrix ðg�KLÞ for potentially active mechanisms ceases to
be positive definite. We shall prove that if ½g8 �0O ½0� then this is the instant of
primary bifurcation, i.e. the first instant of non-uniqueness of a quasi-static
solution to the rate-problem along the path.

Since earlier bifurcations are excluded by inequality (5.24), we must only
show that equation (5.30) corresponds to a bifurcation point if ½g8 �0O ½0�. To
prove this, notice that an eigenvector [w]s[0] of the singular matrix ðg�KLÞ, of a
sufficiently small magnitude jwj, can be added to g8 0

� �
to give g8½ �Z g8 0

� �
C ½w�O0.

For _qZ _qm defined as in equation (5.19), from equation (5.20) we obtain that
the vector ½g8 � corresponds to ½ _f �mZ ½ _f �0Z ½0� as required by equation (2.21). It
follows that the pair ð _qmð½g8 �Þ; ½g8 �Þ is a rate-solution different from the
fundamental one, which completes the proof.

The condition (5.28) can be applied just after the critical instant (5.30) to
reject post-bifurcation paths which are expected to have no physical meaning, cf.
Petryk & Thermann (1992), Petryk (1997a).
6. Illustration: stability under uniaxial tension

Consider a material sample which obeys a constitutive law of multi-mode
inelasticity (§2c) at constant temperature, and examine material stability within
the sample with respect to internal structural rearrangements. Attention is now
confined to macroscopically uniform deformations under uniaxial tension; the
necking problem is not addressed, and stability against spontanenous formation
of shear bands is examined in §4.

Stability analyses in solids should generally include geometric effects, so that a
finite deformation theory is used here. The material sample of a uniform
macroscopic deformation gradient F is thought of to represent a gauge section of
a tensile specimen. In a general case when the tensile axis does not coincide with an
axis of material anisotropy, shearing parallel to the tensile axis must be allowed for
(e.g. by using rotation-free grips). Since testing machines have always some
flexibility, tensile component of F is also not constrained explicitly. On the other
hand, we disregard here any rotations of the tensile axis with respect to thematerial
and fix this axis in space by aligning it along the first axis of a fixed orthogonal
reference frame (x1, x2, x3; figure 1). Trivial rotations around the tensile axis are
eliminated by placing the second axis of the reference frame in a chosen material
plane containing the tensile axis. In effect, the system has six external degrees of
freedom. The restrictions imposed can be written in a concise form as follows

Fij Z
vxi
vxj

Z 0 for iO j; sij Zsji Z 0 for iO1; ð6:1Þ

where the indices denote vector or tensor components on the fixed orthonormal
reference triad, xi and xj are coordinates of a material point in the current and
reference configuration, respectively, and sij are components of the macroscopic
Cauchy stress.
Phil. Trans. R. Soc. A (2005)



x1

x2

x3
. s

Figure 1. Macroscopically uniform deformation under uniaxial tension.
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A potential energy of the loading device is defined as

UZ
1

2
C �$ F11KF�

11ð Þ2 ZK
1

2
S11$ F11KF�

11ð Þ; ð6:2Þ

where S11 denotes the tensile nominal stress, C �R0 defines the stiffness of the
loading device,4 and F�

11 is determined from a controlled external elongation and
may be identified with the loading parameter l.

Convenient identification of the quantities that define the basic matrix ðg�KLÞ
(cf. equation (3.35)) used to formulate the stability conditions may depend on
how the constitutive law for the material is originally specified. We consider
below two classes of material models; the first, well known, for single metal
crystals deformed plastically by multi-slip, and the second for a two-phase elastic
material undergoing stress-induced martensitic phase transformation with
coherent parallel interfaces. The main purpose is to illustrate possible
applications of more general stability conditions given in this paper, however,
some novel conclusions may be of interest in themselves.
(a ) Plasticity of single crystals

We adopt the constitutive framework of multi-mode plasticity with the
normality structure (cf. Hill & Rice 1972; Asaro 1983; Havner 1992). For
simplicity, the reference configuration it has taken to coincide momentarily with
the current configuration. Accordingly, the basic formulae (2.20) and (2.21) are
complemented with the following constitutive rate equations

t
V
ZLe$DK

X
K

lKg
8
K ;

_f K Z lK$DK
X
L

gKLg
8
L: ð6:3Þ

Here, t
V
is the corotational (Zaremba–Jaumann) flux of the Kirchhoff stress, D is

the Eulerian strain-rate, L e is the elastic moduli tensor for these rate-variables
under the current Cauchy stress, and lK is an outward normal to the yield
surface for the K-th slip system (fKZ0) in the strain space.

Assuming that L e as an operator acting in the space of symmetric second-
order tensor possesses an inverse M e (the current elastic compliance tensor),
these equations can be equivalently written down in a dual form, viz.

DZDeCDp; De ZM e$ t
V
; Dp Z

X
K

mKg
8
K ;

_fK ZmK$ t
V
K
X
L

hKLg
8
L:

ð6:4Þ
4 It is assumed for simplicity that C � is constant, but the incremental analysis below can easily be
extended to non-quadratic U.
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A yield-surface normal mK in the stress space and effective hardening moduli hKL

satisfy

mK ZM e$lK ; hKL Z gKLKlK$M
e$lL: ð6:5Þ

For this familiar class of constitutive equations, it is convenient to identify the
vector q of generalized strains with the logarithmic strain measure e based on the
current configuration as reference, both of six independent components. Then, we
have the correspondence ð _q; _Q;KeÞ4 D; t

V
;Le

� �
, which follows from the known

fact (Hill 1968) that t
V
coincides with the material time derivative of the stress

work-conjugate to this e. More specifically, we define the correspondence
between a single index (say z) of a vector and a pair of indices (say (ij)) of a
symmetric tensor as (1, 2, 3, 4, 5, 6)4(11, 22, 33, 23, 13, 12), and put

ð _q1; _q2; _q3; _q4; _q5; _q6ÞZ D11;D22;D33;
ffiffiffi
2

p
D23;

ffiffiffi
2

p
D13;

ffiffiffi
2

p
D12

� �
;

ð _Q1; _Q2; _Q3; _Q4; _Q5; _Q6ÞZ t
V

11; t
V

22; t
V

33;
ffiffiffi
2

p
t
V

23;
ffiffiffi
2

p
t
V

13;
ffiffiffi
2

p
t
V

12

� �
;

ð6:6Þ

and in consequence,

Ke
zh4rzrhL

e
ijkl ; z; hZ 14ð11Þ;.; 64ð12Þ;

rz Z
1 if zZ 1; 2; 3;ffiffiffi
2

p
if zZ 4; 5; 6

:

( ð6:7Þ

For instance, Ke
11ZLe

1111, K
e
16Z

ffiffiffi
2

p
Le
1112, K

e
66Z2Le

1212. Assuming that g8 K and fK
are invariant, the correspondence between NK and lK must reproduce that
between _Q and t

V
, and the matrix (gKL) is also invariant.

It remains to identify K* defined in equation (3.2) from the invariance of the
potential energy U of the loading device, calculated to the second-order terms. In
the current configuration taken as reference, under uniaxial tensile stress sO0 we
have P1ZS11Zs, and all other components of P are zero. Suppose that F�

11 is
fixed; then time differentiation of _UZKP$ _qZKS11

_F11 yields

_q$K�$ _qKP1€q1 ZC�ð _F11Þ2KS11 €F 11; ð6:8Þ

in the current configuration. From the second-order formula for the logarithmic
strain e expressed in terms of the Green strain (cf. Hill 1968) and by imposing
next the restriction (6.1), we obtain

€q11 Z €e11 Z €F 11C _Fi1
_Fi1K2D1iDi1 Z €F 11KD2

11K2D2
12K2D2

13; ð6:9Þ

with the summation for repeated i. Substitution of equations (6.9) and (6.6)1 into
equation (6.8) gives the following identification

K� ZDiag:ðC�Ks; 0; 0; 0;Ks;KsÞ; ð6:10Þ

where Diag. denotes a diagonal matrix of components that follow in parentheses.
Under the assumption that the elastic stiffness matrix K e is positive definite,

the matrix ðg�KLÞ defined by equation (3.35) can be transformed with the help of
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equations (6.5) and (6.6) as follows

g�KL Z hKL CNK$ðKeÞK1$NLKNK$G
�$NL

Z hKL CNK$ððKe CK�ÞK1ðKeCK�ÞKðKeCK�ÞK1KeÞðKeÞK1$NL

Z hKL CNK$ðKeÞK1H �ðKeÞK1$NL;

ð6:11Þ

where

H � hðI CK�ðKeÞK1ÞK1K�; ð6:12Þ

with the usual notation for matrix multiplication.
Suppose for simplicity that L e coincides with the elastic stiffness tensor of

infinitesimal isotropic elasticity. On using equation (6.10), straightforward
matrix transformations then yield

H � ZDiag:ðH1; 0; 0; 0;KH2;KH2Þ;

H1hððC�KsÞK1 CEK1ÞK1; H2 hðsK1Kð2GÞK1ÞK1;
ð6:13Þ

where E is the Young modulus and G is the elastic shear modulus. On
substituting equation (6.13) into equation (6.11) and using the correspondence
between (K e)K1$NK and mK which reproduces that between _q and D in equation
(6.6)1, the matrix ðg�KLÞ specified for the present problem as guniKL

� �
takes the form

g�KL/guniKL Z hKL CH1ðm11ÞKðm11ÞLK2H2ðm12ÞKðm12ÞLK2H2ðm13ÞKðm13ÞL: ð6:14Þ

The corresponding quadratic form reads

X
K ;L2P 0

guniKLzKzL Z
X

K ;L2P 0

hKLzKzL CH1

X
K2P 0

ðm11ÞKzK

 !2

K2H2

X
K2P 0

ðm12ÞKzK

 !2

K2H2

X
K2P 0

ðm13ÞKzK

 !2

: ð6:15Þ

From condition (3.34) we obtain the following condition for stability of
equilibrium against internal structural rearrangementsX

K ;L2P 0

guniKLzKzLO0 for every ½z�s½0�; ½z�R ½0�; ð6:16Þ

under the restriction to uniform deformation in uniaxial tension. Analogously,
from inequality (5.24) we obtain the following condition for stability of a process
of internal structural rearrangementsX

K ;L2P 0

guniKLzKzLO0 for every ½z�s½0�; ð6:17Þ

under the restriction to uniform deformation in uniaxial tension and under the
assumption hKLZhLK. The latter condition is clearly more restrictive in general.
Phil. Trans. R. Soc. A (2005)



H. Petryk2510
In the case of single slip, when all indices K, L are omitted, the conditions
(6.16) and (6.17) coincide and reduce to

hCH1m
2
11K2H2 m2

12Cm2
13

� �
O0: ð6:18Þ

If the elastic compliances are neglected then H1ZC*Ks, H2Zs, and inequality
(6.18) simplifies to

hCC�m2
11Os m2

11C2m2
12C2m2

13

� �
: ð6:19Þ

From condition (6.18) or (6.19) the critical value of the hardening modulus h can
be read off for a givenC*, or conversely. It may be noted that if m11s0 then for any
h!0 the condition (6.19) can be satisfied if the loading device is sufficiently stiff
(i.e. C* sufficiently large), but this is not true for the condition (6.18). Obviously,
the reduced forms (6.18) or (6.19) of the stability conditions are not limited to
crystal plasticity but pertain to any model of classical associative elastoplasticity
with a single (averaged) mechanism of plastic deformation, provided the
normality rule has been correctly extended to finite strain as in equation (6.4).
For a controlled tensile load (C*Z0), the above formulae may be compared with
those for dead loading derived by Hill (1967) on a completely different route.

It is beyond the scope of this paper to examine implications of conditions
(6.16) and (6.17) in detail for multiple mechanisms. We restrict ourselves to a
few remarks on models with double slip. Consider a matrix of effective hardening
moduli in the form

h11 h12

h21 h22

 !
Z

1 1Cq

1Cq 1

 !
h; hO0; qO0: ð6:20Þ

We do not enter here the discussion to what extent equation (6.20) is justified
experimentally; cf. Asaro (1983), Havner (1992). Suppose that q is given, (m11)1
and (m11)2 are positive, and that the influence of elastic compliances on the
stability conditions is negligible so that we can substitute H1ZC*Ks, H2Zs. If
the tensile load is directly controlled (C*Z0) then the critical value of h
corresponding to violation of the condition (6.16) is positive and proportional to
s. For a loading device sufficiently stiff (C* sufficiently large), the condition
(6.16) for stability of equilibrium holds for every h (positive by assumption).
Suppose that this is so, and eliminate the term proportional to C* in the
quadratic form (6.15) by taking z1/z2ZK(m11)2/(m11)1hKr. From equation
(6.20) it follows that the path stability condition (6.17) necessarily fails for every
positive h if qO(1Kr)2/2r.

We arrive thus at the conclusion that under the assumptions introduced, the
process of uniform symmetric double slipping obeying condition (6.20) is never
stable under uniaxial tension, in the sense that the path instability condition
(5.28) is always met. According to the interpretation of path instability given in
§5d, this means that in every stable equilibrium state along the unstable path of
double slipping, another rate-solution with only one active slip system exists
which is energetically preferable. Thus, an unstable path of double slipping can
at every instant be continued further as a (possibly stable) path with single slip.
The foregoing conclusion remains valid for uniform non-symmetric double
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slipping if qO(1Kr)2/2r, but should not be automatically extended to multifold
symmetry with more than two active systems.

The above analysis illustrates how the energy criterion of path stability can be
used to deal with the long-standing difficulty in crystal plasticity connected with
non-uniqueness of the set of active slip systems. A related approach was proposed
by Franciosi & Zaoui (1991); other existing approaches are not reviewed here.
(b ) Stress-induced martensitic transformation

Consider a material sample undergoing elastic deformation and stress-induced,
diffusionless phase transformation (or mechanical twinning) with coherent
interfaces. We assume that the local strain and stress are uniform on every
material plane orthogonal in the reference configuration to a fixed vector, and
may suffer jumps across such planes. For instance, this can correspond to
formation of successive parallel martensitic plates in an austenitic single crystal
of a shape memory alloy (cf. e.g. Huo & Müller 1993; Patoor et al. 1996). This
process is modelled at some selected stage as propagation of a single (equivalent)
planar interface between two phases (figure 2). Of course, the figure is only
schematic: a fine phase mixture is actually considered such that the material
sample undergoes macroscopically uniform deformation. The material before
transformation (parent phase) and after transformation (martensite) is treated
as one elastic material with a local free energy function that fails to be strongly
elliptic at some unobservable strains (cf. Knowles & Sternberg 1978). Thermal
effects are disregarded in this example of so-called pseudoelasticity. The phase
transformation criterion, as a specific form of the activity rule (2.20) with a single
mechanism, is adopted in the form

_hR0; f hpKpc%0; f _hZ 0; pc Z constR0; ð6:21Þ

where h is the volume fraction of martensite evaluated in the reference
configuration, p is the thermodynamic driving force associated with phase
transformation and pc is its threshold value, assumed here constant.

Not entering into details, we take the resulting macroscopic constitutive rate-
equations in the form derived by Petryk (1998); see also the references therein.
These equations have a structure analogous to that of single-mode plasticity with
normality at finite deformation, viz.

_S ZCe$ _FKL _h; _f ZL$ _FKg _h; ð6:22Þ

where F, ST and C e are the overall deformation gradient, nominal stress and
related elastic stiffness moduli tensors, respectively, for the whole material
sample, and

LZCe$DF locKDS loc; g ZDF loc$Ce$DF loc; DS loc$DF loc Z 0: ð6:23Þ

Here, DF loc and DSloc are the jumps in the local deformation gradient and
nominal stress, respectively, due to instantaneous phase transformation. These
jumps, regarded here as known, are to be found from the local compatibility
conditions and a free energy function determined with the help of a
crystallographic analysis.
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Figure 2. Schematic view of a single crystal undergoing martensitic phase transformation induced
by overall uniaxial tension. Boundary effects are neglected.
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Since, basic constitutive equations are expressed in terms of non-symmetric
tensors, it is now convenient to identify components of F itself with elements of q
as generalized strains. For macroscopically uniaxial tension5 under the constraint
(6.1), we may assume the correspondence ð _q; _Q;KeÞ4ð _F; _S;CeÞ with a single
index zZ1,., 6 of a quantity from the former triple corresponding to a double
index (ij)Z(11), (12),., (33), i%j, of the associated quantity from the latter
triple. For invariant f and h, we have the analogous correspondence between Nz

and Lij with i%j. Finally, for this choice of q, the matrix K* has only one non-
zero element K�

11ZC�.
For the assumed single mode of martensitic transformation, the stability

conditions (3.34) for equilibrium and (5.24) for the transformation process
coincide and reduce to

gKN$ðKe CK�ÞK1$NO0: ð6:24Þ

The influence of constitutive quantities on fulfillment of equation (6.24) is not
transparent and requires further analysis. We will proceed by removing the
constraint imposed on _F by equation (6.1) and identifying the whole _F with a
nine-dimensional vector _q in the stability conditions. Accordingly, a full
correspondence ð _q; _Q;KeÞ4ð _F; _S;CeÞ is now assumed, where a single index
zZ1,., 9 of a quantity from the former triple corresponds to a double index
(ij)Z(11),.,(33) of the associated quantity from the latter triple, with the
analogous correspondence between Nz and Lij. The matrix K* is taken to
correspond in analogous manner to the fourth-order tensor C* of only one non-
zero component C�

1111ZC�.
A difficulty now arises since C e is not invertible in the state of uniaxial

tension. It can be overcome in a simple although somewhat artificial way by
superimposing an arbitrarily small tensile stress in x2 direction, say, kept fixed as
a nominal stress. We assume thus that the current state of overall Cauchy stress
is

s11 ZsO0; s22 Z 3s with 1[3O0; other sij Z 0: ð6:25Þ

For that (predominantly tensile) overall stress, we may assume that the
macroscopic elastic stiffness tensor C e for the phase mixture is positive definite,
5 It is emphasized that the local stress field inside the specimen may be non-uniform with self-
equilibriated fluctuations in the direction of n. Other fluctuations near specimen boundaries are
neglected, assuming that the phase mixture is sufficiently fine.
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which is the macroscopic condition for elastic stability under all-round dead
loading (Hill 1967), i.e. for C*Z0. The condition (3.28) for elastic stability is
then fulfilled also for C*O0.

The stability conditions (3.34) and (5.24) coincide and reduce now to

gKL$ðCeCC�ÞK1$LO0: ð6:26Þ
This can be transformed further as follows. From equation (6.23) we have

g ZKDSloc$ðCeÞK1$DS locCL$ðCeÞK1$L: ð6:27Þ
Substitute this into condition (6.26) and rearrange analogously as in the
transition from equation (6.11) to (6.14). With the use of the notation

M11 Z ðDF locKðCeÞK1$DS locÞ11; H hððC�ÞK1 CððCeÞK1Þ1111ÞK1; ð6:28Þ
we obtain in that way from condition (6.26) the following condition for stability
against uncontrolled phase transformation

HM 2
11KDS loc$ðC eÞK1$DS locO0; ð6:29Þ

in the state (6.25) of ‘almost’ uniaxial overall stress and under the restriction to
parallel interfaces at a micro-scale.

For macroscopic dead loading we have HZ0. Then, the tensile axis has no
longer a privileged meaning in the stability condition (6.29) which can thus be
immediately extended to any other state of stress such that C e is positive
definite. For other C e the energy condition (3.26) for stability fails in the purely
elastic regime. We arrive thus at the following conclusion: irrespective of the
actual jumps on micro-scale in local strain, stress and elastic properties across a
moving interface, the stability condition (3.26) cannot be satisfied under dead
loading at fZ0 for the assumed criterion (6.21) of phase transformation.

This work was partially supported by the State Committee of Research (KBN) in Poland under the
project No. 7 T07A 001 14 and submitted on 14 July 2000.
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