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Disclination kinematics
E. KOSSECKA (WARSZAWA) and R. deWIT (WASHINGTON)

A MATHEMATICAL theory of moving disclinations is developed. Kinematics is derived for a con-
tinuous distribution of disclinations and disiocations as well as for moving discrete disclination
and dislocation lines. The concept of the plastic velocity is used to give the theory a symmetrical
form. The new concepts of disclination and dislocation loop currents are introduced. The rela-
tion between the disclination theory and the incompatibility theory is given.

Praca po$wiecona jest matematycznej teorii ruchomych dysklinacji. Przedstawiona jest kinema-
tyka ciaglego rozkladu dysklinacji i dyslokacji oraz ruchomych pojedynczych linii dysklinacji
i dyslokacji. Wykorzystuje si¢ pojecie predkosci plastycznej, co nadaje teorii symetryczna forme.
Whprowadza sig pojecie pradu petli dysklinacji i dyslokacji. Przeprowadza si¢ por6wnanie teorii
dysklinacji i teorii niezgodnosci.

PaBora mocBsIlleHA MaTeMaTHUECKOH TEOPHH TOABINKHBIX AWCKIMHammii. IlpemcraBnena ku-
HEMaTHKa HelIPepLIBHOIO PaclpeaesIeHHs AUCKIMHALMI M JUCIOKAIMI, a TAKKe TOABHIKHBIX
CHAHYHBIX JIMHHH IHCKIMHAUMNA W AuciIokaumii. VcnosissyeTcsi NMOHATHE IJIACTHYECKOM
CKOPOCTH, UTO IPHAAET TEOPHH CHMMETPHUHYIO (opmy. BBOAHTCA NOHATHE TOKA IETJIA JIHC-
KIMHAIMHK ¥ Juciokatuy. IIpoBOAUTCSA CpABHEHHE TEOPHH JHCKIMHAIMIL ¢ TeopHell HeCOBMeCT-
HOCTH.

1. Introduction

THis ARTICLE develops disclination kinematics. We introduce kinematical quantities which
appear in the theory of moving disclinations and dislocations in a linearly elastic, con-
tinuous medium. We refer to the results of dislocation dynamics [I, 2, 3, 4, 5, 6, 7, 8, 29],
the theory of stationary disclinations [9, 10, 11, 12, 13, 14, 15], the dynamic theory of
incompatibility [16], the theory of disclinations in the Cosserat-continuum [17] and the
four-dimensional theory of disclinations [18, 19, 20, 21].

Disclination dynamics will be published independently [31].

By “defects” we shall mean the combination of dislocations and disclinations. We
first give the compatibility conditions for the classical dynamic elasticity theory in terms
of the basic total fields: the strain, bend-twist, and velocity. However, the constitutive
equations relate the stress only to the basic elastic fields, which do not necessarily satisfy
the compatibility conditions. The difference between the total and elastic fields gives the
plastic or stress-free fields. These do not satisfy the compatibility conditions either, and
the deviation from compatibility logically provides the definitions for the defect densities
and their currents. The Burgers and Frank vectors are defined as in the static theory.

Section 5 treats the moving discrete defect line. A procedure is developed to find the
basic plastic fields. The analysis is facilitated by introducing the concepts of defect loop
densities and their currents in terms of which the basic plastic fields are conveniently
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expressed. These expressions are all surface integrals. The defect densities and their currents
then follow by a straightforward derivation from the equations in Sect. 4 as line integrals
along the defect line.

In Sect. 6 we show how the incompatibility tensor and its current are related to dis-
clination kinematics.

Throughout the development of this paper we find that many concepts or quantities
from dislocation kinematics generalize into pairs in disclination kinematics. For example,
dislocations generalize to defects consisting of dislocations and disclinations, and disloca-
tion current generalizes to defect current. We have found it useful to introduce the new
concept of “basic fields” consisting of the strain, bend-twist, linear and rotational velocity.
Then the distortion and velocity of dislocation kinematics generalize to the basic fields
of disclination kinematics. These ideas are summarized in Tables 1 and 2.

Table 1. Defect densities and currents in disclination

kinematics
: Dislocation Disclination
Quantity z § 1
Density | Current | Density t Current
Defects Olpt | Ju Opa Sk
% '3 *
Loops b, | %k o s

Table 2. Basic fields in various stages of defect

theory
Dislocation Disclination
Statics B €x1y Xmq
Dynamics B, v €K1y ¥ma> Ui, Wa

2. The plastic strain problem

2.1. The plastic velocity

Before stating the general problem of the dynamic plastic strain, we make a digression
here to introduce and motivate a new concept, the plastic velocity @, due to KOSSECKA
[28].

For this purpose, we anticipate some of the material covered in Sect. 3.2. Kossecka
defined a defect by a displacement field %, which has a jump discontinuity on the defect
surface S(#). It is then found that the spatial derivative of the displacement, i.e. the total
distortion ff;, has a singularity on this surface. The singular part of the total distortion
is found to be the plastic distortion ff;. For a discrete dislocation line it is given explicitly
by the well-known Eq. (3.25) in Sect. 3.2, where the dislocation is the boundary of S(#).
It is well known for the static case that the elastic fields of a dislocation in an infinite body

"
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do not depend on the specific location of the defect surface, but only that its boundary
coincides with the dislocation line [14].

Kossecka found similarly that the time derivative of the displacement, i.e. the total
velocity of , has a singularity on the defect surface S(7) and called the singular part the
plastic velocity f. For a discrete dislocation line it is given explicitly by Eq. (3.26) in
Sect. 3.2,

Furthermore in the dynamic case it is found that the dislocation density and current
depend only on the particular location of the dislocation line and not the defect surface
(viz. (3.28)—(3.29)). In other words, the defect surface S(#) can be chosen arbitrarily except
for its boundary which must coincide with the dislocation line.

2.2. The elastic and plastic fields

For a given displacement u] (r, 7), which is a function of space and time, the total
distortion and velocity are defined by

(21) ﬂg‘i == ul?:k’
2.2) D)=zl

Here the comma denotes the spatial derivative and the dot the time derivative.

In general when defects are present, in the elastic medium, the total deformation
is not completely elastic, but a part of it is plastic. Therefore, we generalize the results
Kossecka found for the special case discussed in Sect. 2.1, i.e. we assume that the total
distortion and velocity consist of an elastic and plastic part

(2.3) B = Bu+ P
(2.4) of = o+,

The plastic distortion B, is a well-known concept in the dislocation theory. The existence
of a plastic velocity @] has not been so widely recognized. However, at this point it can
be argued that in an elasto-plastic deformation a part of the relative motion between
neighbouring points of the medium may be of a plastic nature. Therefore, the plastic
velocity is introduced for completeness. As it is already apparent from Egs. (2.3) and (2.4)
and as we shall see further on, this quantity lends a certain amount of symmetry to the
dynamic equations. In this sense its introduction is in the same spirit as other fundamental
theories of physics where symmetry considerations have often motivated the full develop-
ment of the theory.

The strain is the symmetric part of the distortion. Hence, we have for the symmetric
part of Egs. (2.1) and (2.3) the following equations:

(2‘5) 5‘15 = “5.1:):
(2.6) eh = eu+eq-

Here the parentheses on the subscripts indicate that the symmetric part is to be taken
with respect to k and /.
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3. Review of dislocation kinematics in the linearly elastic continuous medium

3.1. Continuous distribution of dislocations

For a continuous simply-connected body that undergoes an elasto-plastic deformation
without breaking, the total deformation satisfies the classical conditions of compatibility.
These conditions are a consequence of the fact that a total displacement function uf can
be defined for every point of the continuous body at any time. Hence, in the mathematical
sense they are integrability conditions. These conditions can be formulated in a variety
of ways. We shall show three forms for them in this paper, one below for application to
dislocations, a second in Sect. 4.1 for disclinations, and a third in Sect. 6.1 for the in-
compatibility. In the present section the compatibility conditions are formulated in terms
of the total distortion B and the total velocity ©F, which could be called the basic total
Jields for dislocation dynamics. These quantities are in general defined by

(3'1) ﬁ;{l = ul?:ka
(3:2) o =],

for a given displacement. Conversely, if Egs. (3.1) and (3.2) are regarded as partial dif-
ferential equations for uf;, then it can be shown that the necessary and sufficient condi-
tions to assure the existence of a continuous single-valued solution for #{ throughout
the body is that the relations

(33) apmkﬁ{l.m = Os
(3.4) of—fh =0,

are satisfied everywhere in the body. These relations are the compatibility conditions
expressed in terms of the total distortion and velocity for the dynamic case.

Though dislocations and their currents have traditionally been defined entirely in
terms of kinematical concepts, their physical significance does not become evident until
their relation to dynamics is considered. The relation between kinematics and dynamics
is established by the constitutive equations which, in the case of the linear elasticity theory,
are the Hooke’s law and the equation of motion. They relate the stress a;; to elastic fields.
In classical or compatible elasticity the total and the elastic fields are one and the same,
Le. the deformation is purely elastic. However, when dislocations and their currents are
present the total fields exceed the elastic ones by amounts which are stress-free or plastic:

(3.5) By = Bu+Bi,

(3.6) o] = g+of.

These relations correspond to Egs. (1.5) and (2.5) in ref. [28]. In general the elastic or
plastic fields do not satisfy compatibility conditions of the type in Egs. (3.3) and (3.4)
separately, i.e. they are not derivable from displacement funtcions. The plastic fields may
be introduced arbitrarily into the body in which case they determine the defects and their
currents, whereas the elastic fields are subject to the constitutive equations. If the plastic
distortion is given, then the dislocation density tensor is defined by

(37) Opt = — epmkﬁfbm-
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If in addition the plastic velocity is also given, then the dislocation current tensor is defined
by

(3.8) Ju = =+

In other words, the dislocation density and current can be regarded as the deviation of
the plastic deformation from compatibility. The definition (3.7) was first given by KRONER
[23]. KosevicH [3] and TeopoSIU [8] called Ji, the “dislocation flux” and gave an expression
like Eq. (3.8), but without the term involving the plastic velocity of. MURA [4] has
introduced a different tensor, Vjm, which he called the “dislocation-flux tensor”. It is
related to our result by the relation

(39) Ju = — € Ko

We shall not need this tensor in our subsequent work, but Eq. (3.9) will allow us to show
the connection with Mura’s work. The continuity equations for dislocations

(3.10) Opl,p = 0,
(311) d'-pl'l"epmk"rkf.m = Or

follow directly from Egs. (3.7) and (3.8). Relation (3.10) is by now well known and implies
that dislocations cannot end inside the body. Relation (3.11) was first given by HOLLANDER
[1] and shows that the dislocation density can only change by a dislocation current, i.e.
by the motion of dislocations. Several other authors have also given this equation, but
in different forms, which have been compared with each other by GUNTHER [5]. This is
Eq. (3.9) of KossecKA [7], except that in the present work we have reversed the sign in
the definition of J; from that of Ref. [7], in keeping with the older literature.

The field equations for dislocations
(3.12) Epmk Bri,m = %pl>
(3.13) k= P = Ju,
follow from Egs. (3.3) to (3.9). The fundamental meaning of these equations is that the
dislocation density and current are the sources of elastic distortion and velocity. Equa-
tion (3.12) is well-known from KRONER’S work [23]. Equation (3.13) has also been given
by HOLLANDER [1], KOsEvICH [2, 3], TEODOSIU [8], and AMARI [6]. In the four-dimensional
non-Riemannian formulation it has been given by SIMMONS [29] with his Eq. (3.14).
It corresponds to Eq. (3.7) in Ref. [7].

We define a Burgers circuit as any closed curve 4 inside the body. For generality the
position of this curve could be a function of time A(t). The Burgers vector associated
with this Burgers circuit is then defined for a given plastic distortion by the closed line
integral

3.14) bit) = — § AR, DL
(1)

The minus sign in this definition is introduced to conform to sign convention A [24] or
FS/RH [25] for the Burgers vector. It is clear that the Burgers vector is a function of time,
both because the integrand B explicitly depends on time and because the Burgers circuit
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A in ref. [14]) and Eq. (3.7)

Hitihugtion of dlkeenyibom

. . ?3ﬂ.a e = 2\
(3.15) b = [ au@,0ds,,

where the Burgers surface o(r) is any open surface inside the body bounded by (7).
It follows from Egs. (3.5), (3.1) and (3.14) that
(3.16) § Bute, )dL = bi(0).

a0
We see that the above relations for the Burgers vector are unchanged from the stationary
case, i.e. Egs. (3.7), (3.8) and (3.11) of Ref. [14]. The rate of change of the Burgers vector is

(3.17) bi(t) = = § 1@, )= epmiti(r,1) 03 (x, )] dLy.
F10)

This relation can be derived from Egs. (3.14) or (3.16) by applying (A3) (see Appendix),
using Eqgs. (3.7) and (3.8) or (3.12) and (3.13) and noting that certain terms vanish on
integrating around a closed circuit. Here v, is the velocity of the Burgers circuit A).
The first term in Eq. (3.17) represents the loss in the Burgers vector due to the dislocation
current out of the Burgers circuit, and the second term represents the gain in the Burgers
vector due to the new dislocations that are encircled by the Burgers circuit due to its motion.
From Eq. (3.15) and (A2) we have, alternatively, ‘

(3.18) b = f [(epr+ (ot Uin).m) ASp — U1 Opn  ASin] -
(o)t

By Egs. (3.10), (3.11) and Stokes’ theorem this relation is equivalent to Eq. (3.17).
Consider now the case where o(z) is a closed surface. Then we have for Eq. (3.15)

(3.19) b= f endS, = [op,dv =0,
a(r) V()

by the divergence theorem (Appendix A in [14]) and Eq. (3.10). Of course the same result
can also be obtained from Eq. (3.14) since when the surface o closes, the boundary line
4 shrinks to zero. Similarly, the rate of change of the Burgers vector, Eq. (3.17), vanishes
for a closed surface o, and this can also be shown from Eq. (3.18) by using the divergence
theorem and Eq. (3.10). The above result shows that the continuity equation for o, im-
plies conservation of the Burgers vector.

Finally, for later use we note that the plastic strain is the symmetric part of the plastic
distortion:
(3-20) e = By

i.e. the same relationship holds for the total strain and distortion, cf. Egs. (2.1) and (2.5).
3.2. The discrete dislocation line

The discrete dislocation line L(7) which may change its position with time 7 is defined
as the boundary of a surface S(r), where the material below S has been plastically displa-
ced with respect to the material above S by a constant amount given by the Burgers vec-
tor bp
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Hence the difference between the displacement just below and above S(t) is given by
(3.21) [w(r, 1)] = —b.
Now, if we can find the corresponding plastic distortion and velocity, then the equations
1 Sect. 3.1. can be used to find all the desired results for kinematics. We use the straight-
forward procedure that was developed before [14] to find these quantities. Let us first
assume that S(¢) is closed, enclosing a volume F(¢) which is smoothly changing with
respect to time. Then

(3.22) W, 1) = [O@®)bidV’
V()

represents a displacement that is constant and equal to &; inside ¥(#) and that has the
jump, Eq. (3.21), at the surface S(z). By Eq. (3.1) this displacement leads to the following
distortion

323) a0 = [0, RbdV = — [0, ®RBAV = — § oR)bdSE,

() V() S()
where we have used the divergence theorem (see Appendix A in Ref. [14]). By Eq. (3.2)
and (A1) we find that Eq. (3.22) leads to the following velocity:

(3.24) ol (r, 1) = fé(R)b,v,’c(r’, 1)dSy,
S(1)
where o} is the velocity of the surface S(z). These results reveal that the distortion and
velocity are concentrated at the surface S(z). We now simply generalize these results to
the open surface S(¢) used in the definition of the dislocation loop above, and further-
more assume they are the basic plastic fields.
In other words, we postulate that the plastic distortion and velocity are given by

(3.25) B, ) = — [o®)bidS;,
5@
(3.26) o, 0 = [SR)boi(r, 1)dS;,
S@)

for a moving discrete dislocation line. It can be shown that these expressions give the
jump condition (3.21) [28]. These relations correspond to Egs. (5.17) of ref. [7], and (1.6)
and (2.6) of Ref. [28]. By the methods of Appendix B of Ref. [14], it is easily shown that
(3.25) is consistent with (3.14), just as for stationary dislocations [14]. Relation (3.26)
further clarifies the meaning of the plastic velocity. For a discrete loop its direction is
the same as the direction of the Burgers vector and its magnitude is determined by the
component of the surface velocity ; normal to the surface dS;. If S(f) changes in time
only by the motion of its boundary, then v;dS; = 0, then the plastic velocity vanishes.
This has usually been assumed in the literature. We note from Egs. (3.25) and (3.26) that

(3.27) o = —vifh,

i.e. the plastic velocity and distortion are not completely independent for a discrete dislo-
cation line. This contrasts with a continuous distribution where #f and §f, may be prescrib-
ed in a completely arbitrary manner. The reason for this is that for a discrete dislocation
line we have introduced a restriction, namely the constancy of the Burgers vector of the
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dislocation line. This means that the strength of the dislocation remains constant as it
moves. On the other hand, for a continuous distribution the strength of the dislocation
density may be varied independently of its motion. We next find the dislocation density
from Egs. (3.7) and (3.25),

B28) @@, 1) = [epmudn®bASi = — [ epmd w®bdS, = § SR)EAL,
S5() S() L(f)

where we have used Stokes’ theorem (see Appendix A in Ref. [14]). The dislocation current
is found from Egs. (3.8), (3.25) and (3.26),

(29) a0 = = [0, RBUE, )dSy+ § pmd®)bTH(, 1)L,
(1) L(n)
= [86®by(, )dS, = § emdR)boA(E, 1)dL),
S(1) L(1)

where we have used (A2). In this relation ©j, represents the velocity of the dislocation
line L(#). The expressions (3.28) and (3.29) have also been given by TEODOSIU [8]. The
above relation is the combination of Egs. (2.28) and (2.23) in Ref. [7]. We note that for
a discrete dislocation line

(330) JM = ep,,,kaplv,',, "

This relation was also given by Teoposiu [8]. It is easy to verify that Egs. (3.28), (3.29)
satisfy the continuity conditions (3.10), (3.11). Also it is easily shown by the methods of
Appendix B of ref. [14] that Eq. (3.28) is consistent with Eq. (3.15).

3.3. The dislocation loop current

It is well known that the plastic distortion ¢ can be identified with the dislocation
loop density tensor [14]. This means that a distribution of dislocations can always be
represented by a continuous distribution of infinitesimal dislocation loops.

We wish to show in this section that a similar type of interpretation can also be given
to the plastic velocity 7. First we note from Eq. (3.8) that we can write

(3.31) [Boav = §orasi+ [Juav,
v S %

by the divergence theorem where ¥ is an arbitrary volume enclosed by the surface S.

We now investigate the last term in this equation. For a discrete dislocation line it
is given by
(3.32) JTu(e, 0@V = § epmbith(, dL,

¥z L(t)

from Eq. (3.29) where the line integration is only over that part of the curve L(¢) which
lies inside V. An infinitesimal loop will in general fall completely inside ¥, so that it is
indeed a closed line integral.

If the loop moves as a rigid unit, i.e. when o,,(r," t) is constant with respect to r’ around
the line L(¢), the line integral vanishes because the integrand is then a constant with re-
spect to the integration. Note that this result remains valid even when /,(r’, #) changes
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with respect to time. Hence Eq. (3.32) vanishes if the dislocation loop retains its original
character, i.e. it does not change its size, shape, and orientation. The same result is assumed
to hold for a continuous distribution of moving infinitesimal dislocation loops. Now the
left hand side of Eq. (3.31) gives the rate of change of dislocation loop density inside V.
Hence the right hand side must represent the dislocation loop current crossing the
boundary S of V.

So the plastic velocity 2f can be identified with the density of the dislocation loop cur-
rent.

If the above restrictions on Eq. (3.32) are relaxed, i.e. if the dislocation loop is allowed
to change its size, shape, or orientation, then Eq. (3.32) represents the dislocation loop
creation inside V. Hence the dislocation current Jy; can also be interpreted as a source
function for dislocation loop creation. In this case o] still represents the dislocation loop
current, even though Eq. (3.32) does not vanish. Equation (3.31) then shows in general
that the rate of change of dislocation loop density inside the volume ¥ is due to the dislo-
cation loop current crossing its surface S plus the creation of dislocation loop density
inside V.

4. Continuous distribution of moving defects

As mentioned in the Introduction, we shall denote the combination of dislocations
and disclinations by the word defects in the remainder of this paper.

1. The compatibility equations

In this section we shall formualte the compatibility conditions for the total deformation
in terms of the basic total fields by which we mean the strain ej;, bend-twist g, linear
velocity v}, and rotational velocity wy. For a given total displacement #, these quantities
are defined by

(4.1) ek = Uit

(42) x;:q = (U;:m == 1/25quu;{-krn,
4.3) vl =,

4.4) wl = ol = 1/2ey,t 1.

On the other hand, if Egs. (4.1) to (4.4) are regarded as partial differential equations
for uf, then it is easy to show that the necessary and sufficient conditions to assure the
existence of a continuous single-valued solution for % is that the relations

(4.5) & pmik(€ht,m+ Exta¥mg) = 0,
(4.6) Epmi%igm = 0,
(4.7) Ok —eki—engwg =0,
(4.8) War—%*ig = 0,

are satisfied everywhere in the body. These are the compatibility conditions in terms of
the basic total fields for the dynamic case.
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4.2. The defect density and current tensors

If defects and their currents are present then the basic total fields exceed the elastic
ones by amounts which are stress-free or plastic:

4.9) ek = eu+en,
(4>10) 7"{4 = xkq"*“xgq:
4.11) of = v+,
(4.12) Wy = Wo+WE.

This occurs in a general elasto-plastic deformation. In general the basic elastic or plastic
fields do not satisfy the compatibility conditions separately, i.e. they are not derivable
from a displacement function. The basic plastic fields may then be introduced arbitrarily
into the body, in which case they determine the defect density and current in the body.
The dislocation density o, and the disclination density 0, are then defined by

(4.13) ol =L Epmi(ERL,m T Eilg¥mg) s

4.149) Opg = — Epmhgms

while the dislocation current Jy and the disclination current Sy, are defined by
(4.15) Ju = =0+ el + eagwy,

(4.16) Ska = — Wi+,

In other words, the defect densities and currents measure the deviation of the basic plastic
fields from compatibility. The definitions (4.13) and (4.14) have been given before [13, 14].
Kruce’s [21] formulation in terms of the Cosserat-continuum gave relations similar
to Egs. (4.15) and (4.16), but without the plastic velocity term of. Moreover, the author
misinterpreted Sy, as the foreign atom current. Also note that the relation (4.15) can
easily be derived from Eq. (3.8), while Eq. (4.16) can be written down in analogy to
Eq. (3.8). Relations (4.13) to (4.16) lead directly to the continuity equations for the defects

(4.17) pt,p+ €ipgPpg = 0,
(4.18) Opa,p = 0,
(4.19) pt + €pmi(Jit,m+ Ex1gSmg) = 0,
(4.20) Opa+ Epmk Skq,m = 0.

SCHAEFER [10] and ANTHONY et al. [26] first gave the relation (4.17) which has been inter-
preted to mean that dislocations can end on disclinations [13, 14]. Relation (4.18) shows
that disclinations cannot end inside the body. Relation (4.19) was first given in the four-
dimensional non-Riemannian formulation by Smmons [29], his Eq. (3.24). Relations
(4.19)-(4.20) have also been given by KLUGE [20, 21], SCHAEFER [17], and GUNTHER [18, 19].
They require that the change in dislociaton and disclination density can only be achieved
by their currents. From Egs. (4.5) to (4.16) follow the field equations for defects,

(421) spmk(ekl,m'i' Eklg %mq) = Upi,
(4.22) Epmk Hkq.m = ﬂpq,
(4.23) Uk —Cr— EagWa = Jus

(4.24) Wa,k— ékq = Skff .
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The fundamental meaning of these equations is that the defect densities and currents
are the sources of the basic elastic fields. Relations (4.21) and (4.22) have been given
before [13, 14] and the relations (4.23), (4.24) have been given by KLUGE [20, 21] and
ScuAErer [17] for the Cosserat-continuum.

Instead of the dislocation density it is sometimes convenient to use the confortion which
is defined by [23, 13]
(4.25) Kip = Epmk €hitym—ip-

Comparing with Eq. (4.13) we see that the contortion is related fo the dislocation density
by

(4.26) K, = 1/26 00—,

(4.27) opr = O K—Kip = Epmir1q Komg -

In terms of the contortion the continuity equations (4.17) and (4.19) become
(4.28) K.1—Kip,p+ Eipgtpa = 0,

(4.29) Epmi i .m+ Exta(Sma+ Kung)] = 0.

The field equation for the contortion is

(4.30) — EpmkCrt,m+1p = Kip.

These relations in terms of the contortion will be useful in Sect. 6 relating the present
work to the incompatibility tensor.

4.3. The characteristic vectors

We define a Burgers circuit as any closed curve A(f), inside the body, whose position
can change continuously with time. The characteristic vectors associated with this Burgers
circuit are the fotal Burgers vector By and the Frank vector 2, which are defined by

(4.31) B(t) = — § [k, )= tiarhar, O)x,1dLy,
20
(4.32) Q) = — § #(x, dLy.

A(D

By Stokes’ theorem (Appendix A in ref. [14]) and Egs. (4.13) and (4.14) these relations
can also be put in terms of the defect densities,

(4.33) Bt) = [ Letp(e, )= e1arOpar, 0)%,1S,
o(t)

(4.34) Q1) = [0p(r, 1)dS,,
a(t)

where the Burgers surface o(z) is any open surface bounded by A(z). From Egs. (4.9)
and (4.10), (4.1) and (4.2), (4.31) and (4.32), we also find

(4.35) § leue, )= i a@: 3:1dLe = Bi(t),
A0
(4.36) § o, AL, = 24(0).

o)
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The relations (4.31) to (4.36) for the characteristic vectors are unchanged from those for
the stationary case, i.e. Eqs. (4.5) and (4.6), (4.7) and (4.8) and (4.20) and (4.21) of Ref.
[14]. The rates of change of the characteristic vectors are

(437) B! T f [Jki — Epmk mp!v;n — Egr (Skq N epmk gpqz';r:) xr] de s
A1)

— f 1S EpmbypevildLy.
A1)
These relations can be derived from Egs. (4.31) and (4.32) or (4.35) and (4.36) by applying
(A3) and using Eqs. (4.13) to (4.16) or (4.21) to (4.24). Here vy, is the velocity of the Bur-
gers circuit A(z).
Consider now the case where o(7) is a closed surface. Then we have for Egs. (4.33)

and (4.34)
439 Bi= f (= w0peX)dSy = [ (2.5 e1008pa— 1 Bpapxr)dV = 0,

a(1) H(r)
440) Q= §0,,dS, = [0,,,aV =0,

a(t) V(1)
where we have used the divergence theorem and Egs (4.17) and (4.18). This shows that
the continuity equations for «,; and 6,,, imply the conservation of the characteristic vectors.
Of course the same conclusion, Eqgs. (4.39) and (4.40) can also be reached from the fact
that the characteristic vectors can be written as line integrals. Similarly, we can conclude
from Egs. (4.37) and (4.38) that the rate of change of the characteristic vectors vanishes
for a closed surface o.

(4.38) a,

5. The moving discrete defect line

5.1, The basic elastic fields

The discrete defect line L(r) which may change its position with time is defined as the
boundary of a surface S(7), where the material below S has been plastically displaced
with respect to the material above S by an amount which represents a rigid motion.

Hence the difference between the displacement just below and above S(z) is given by
(.1 [n(r, )] = —bi— &1, Qo(x, —xP),
where b, represents a rigid translation and the second term a superposed constant rota-
tion of amount £, around an axis through the point x7. The constant b, will be called
the Burgers vector for the discrete dislocation line contained in the defect line, and is to
be distinguished from the general Burgers vector defined by Eq. (4.31). The constant
£, will be identified with the Frank vector, Eq. (4.32). The rotation term in Eq. (5.1) is
conventionally associated with the discrete disclination line. However, it is clear that the
same discrete defect line can be described by different values of x? and &, [14].

Now our problem is how to embody the relation (5.1) into definitions for the basic
plastic ficlds. Then the equations in Sect. 4 can be applied to find all the desired results.
We use a straightforward procedure that has been developed earlier [14]. Let us first
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assume that S(¢) is closed, enclosing a volume F/(¢), which is smoothly changing with
respect to time. Then the expression

(5.2) W, 1) = [ OR) b+ 1 Qi —x3) YV
140)

represents a displacement that is the same as Eq. (5.1) inside V(t) and vanishes outside
V(t). Thus it has the required jump across S(¢). Equation (5.2) can be regarded as describ-
ing a grain of volume ¥(¢) whose orientation with respect to the surrounding material
is given by the rigid motion of Eq. (5.1), and whose boundary S(¢) is migrating. We shall
assume that the axis of rotation remains constant, i.e. x; is not a function of time. By
Egs. (4.1) to (4.4) the relation (5.2) then leads to the following basic total fields:

(53) (.’{t(l', t) T fé(R) {bl+ Elquq(x;_xﬁ,)}dS;c (kly»
S

(54) (e 1) = =128 § 0. {bi 61 Qi =39 dSi— f SRR, dSh,
S S

G5 om0 = § IR bt e Quli—x)}oir’, )ASE,
S(t)

56 wir ) = 1260 § 84®R) bt e 2p(x— XD}, 1)dS:,

S()
where we have used the divergence theorem and (A1). Here o;*is the velocity of the surface
S(7). These results show that the basic total fields are concentrated at the surface S(z).
The next step is to assume that these relations hold in the same form for the open surface
S(7) used in the definition of the defect loop, and that they represent the basic plastic
fields.

To facilitate writing down the final results it is convenient at this point to introduce
four new quantities that can be related to defect loops and their currents, distributed over
the open surface S(¢). They are the dislocation loop density B, the disclination loop density
¢, the dislocation loop current Uf, and the disclination loop current y¥ (Table 1). These
quantities are defined by

(5.7) B, 1) = — [ OR) {brt ey Qi —x0)}dSk
S(1)
(5:8) (e, 1) = — | SR D,dSk.
S
(5.9 o (r, 1) = [ O(R) {bi-+ erar Lu(xi—xD)}k(r', 1)dSk.,
S(1)
(5.10) yE@, ) = [ SR 2o, 1)dSiy
S(1)
Then we postulate that the basic plastic fields are given by
(5.11) ekt = B »
(5’12) zrl:lq = llzequﬁlﬁ.m‘i“i’:q:
(5.13) v = of,

(5.14) wE = 1/26uBh+ V.
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These are the results we sought in this section. We note here that the transition from Egs.
(5.3)-(5.6) to Eqs. (5.11)—(5.14) involves a certain arbitrariness in that the latter equations
may contain line integrals along L(¢) that vanish in the former. Thus, instead of Eq. (5.14)
we could alternatively have defined wy = 1/2 e,v¥, by comparison with Eq. (5.6). But
this definition was found to be inconsistent with the relation (4.15) and therefore discarded.
Relations (5.7) and (5.8) have been given before by MURA [12] and the relations (5.11)
and (5.12) in Ref. [14]. The relations (5.9) and (5.10) as well as (5.13) and (5.14) form
logical extensions of Egs. (5.7) and (5.8) as well as Egs. (5.11) and (5.12). We note that
the theory of line defects can be constructed entirely without the quantities @¥ and Yx
if we assume that S(#) changes in time only by the motion of its boundary, i.e. when
0 dSy = 0. In this case o] also vanishes, but not wE. Nevertheless it is comfortable to deal
with an arbitrarily moving S(¢), for then the theory is more symmetric.

The total Burgers vector can be found from Eq. (4.31), Egs. (5.11) and (5.12) as well
as (5.7) and (5.8)
(5.15) By = by— g1, 2,x0,

where we have integrated using the method of Appendix B in [14]. Hence the total Burgers
vector is also a constant for the discrete defect line. In a similar way we can show that
Egs. (5.12) and (5.8) are consistent with Eq. (4.32).

5.2. The defect density and current tensors

From Egs. (4.13) to (4.16) and Egs. (5.11) to (5.14) we find the following relationships:

(516) Oy = — Spmk(ﬁﬁ.m + sk!q¢;ﬁq)s
(5.17) qu T (4 Epmk¢k*q,m:

(5.18) Ju = —T’?fkﬂé:ﬁ'i'sm'f’;s
(5.19) Siq = —YEut+oiy.

These are the fundamental relations between the defect densities and their currents and
the corresponding loop densities and loop currents. From Egs. (5.7) to (5.10) these relations
can then be written as the following line integrals:

(5.20) (T, 1) Zf;) B(R) {b1+ e1r Qu(x; = X} L,

(5.21) 0,4(r, 1) = ,—_%() S(R)2,dL,,

(5.22) T, 8) = L(f) EomkO(R) (b1 + 10 Qo (x) — X0) 0l x', 1)L,
(5.23) SialT, 1) =L(f) Epmi S(R) Q0 (x, 1) dL,

where we have used Stokes’ theorem and (A2). Now o}, is the velocity of the defect line
L(z). These relations represent the defect densities and their currents for a moving discrete
defect line.



DISCLINATION KINEMATICS 647

We shall make a few comments here about these relations. First from Egs. (5.20)
to (5.21) we find that Eq. (4.33) also leads to Eq. (5.15), and that Eq. (5.21) is consistent
with Eq. (4.34), using the methods of Appendix B in Ref. [14]. Second, Eqgs. (5.20) to (5.23)
satisfy the continuity Eqs. (4.17) to (4.20) by (A3). Third, we defined the discrete discli-
nation line as the rotational component of Eq. (5.1) which corresponds to the terms con-
taining 2, in Egs. (5.20) to (5.23). Hence the discrete disclination line contributes to the
dislocation density in Eq. (5.20) and the dislocation current in Eq. (5.22). ANTHONY [11]
and GUNTHER [18] therefore felt it necessary to split these quantities into two components,
one associated with the discrete dislocation line, and the other associated with the discrete
disclination line. We do not think this distinction is necessary [14]. Fourth, we note that
for a discrete defect line the relations (5.20) to (5.23) show that

(524) JkI = Epmkaplv:ns

(525) Skq = Epmk quv:-ru

(5.26) = e Opg(rr =30+ § SRBL,
L(1r)

(5.27) Tit = e SigCer=20)+ f epmdR) .0}, dLy.
()

Relation (5.24) to (5.25) have also been given by GUNTHER [18].

6. Relation to the incompatibility tensor and its current

6.1. The compatibility equations

In this section we shall formulate the compatibility conditions for the total deformation
in terms of the total strain ef; and velocity vf. For a given total displacement u; these
quantities are defined by Egs. (2.5) and (2.2)

(6]) E{; = H(T}.k),
6.2) of =ul.
On the other hand, if Eq. (6.1) to (6.2) are regarded as partial differential equations for

uf , then it is easy to show that the necessary and sufficient conditions to assure the existence
of a continuous single-valued solution for #{ is that the relations

(63) —— gpmk 8qu.l e{I.mn = 0:
(6.4) — W katC el = =0

are satisfied everywhere in the body. These are the compatibility conditions for the total
strain and velocity in the dynamic case. Note that Eq. (6.3) can also be obtained by eliminat-
ing #%, from Egs. (4.5) and (4.6), as well as Eq. (6.4) by eliminating wf. from Eq. (4.7)
and (4.8), using Eq. (4.5) to eliminate 2.

2 Arch. Mech. Stos. nr 5/77
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6.2. The incompatibility tensor and its current

If defects and their currents are present, then we have by Egs. (2.6) and (2.4)
(6.5) e = eutep,
(6.6) o = v+,
for an elasto-plastic deformation where the elastic or plastic components do not satisfy
the compatibility conditions separately. The plastic strain and velocity may be arbitrarily
prescribed without specifying the exact nature of the defects and their currents. In that
case it is still possible to define the incompatibility tensor n,, and the incompatibility current
Fy as follows:
(67) Mpg = Epmk Eqni ei!:t.mm
(6.8) Foat = O kn—€Rpn— b, i+ €mp.
In other words, the incompatibility tensor and its current measure the deviation of the
plastic strain and velocity from compatibility. The fundamental meaning of these equa-
tions is that an arbitrary plastic strain and velocity lead to incompatibility and its current,
which are just other words for defects and their currents. The definition (6.7) has been
given by KRONER [23]. The definition (6.8) however differs from the incompatibility current
given by KOSSECKA [16].

Relations (6.7) and (6.8) lead directly to the continuity equations
(6.9 Npg.p = 05
(6]0) ﬁpg"‘ 1 /25pmk Egni Fnki’.m = 0.
KRONER [23] has given the relation (6.9), which implies that there are no sources or sinks

for incompatibility. Relation (6.10) shows that the incompatibility can only change by
its current. From Egs. (6.1) to (6.8) follow the field equations for the incompatibility:

(61 1) = spmk aqn! ek!.mn == qus
(6.12) — Ok +xt,nt €in sk — ikt = F-

The fundamental meaning of these equations is that if defects are present with a distribu-
tion of incompatibility #,, and its current F,, then elastic strain and velocity is produced
according to these laws in order to insure the continuity of matter. Consequently these
equations are the mathematical formulation of the statement that incompatibility and
its current are the sources of elastic strain and velocity.

6.3. Relation to defect densities and their currents

From the definitions of the incompatibility and its current (6.7) and (6.8) and the
definitions of the defect densities and their currents (4.13) to (4.16), it follows that

(6.13) T?Pq = ‘-“(Sqng otp;,,,+9pq)(pq),
(6.14) Fou = =Jatyn—=Iamy .+ Ty 1

These are the fundamental relations between the incompatibility and the defects, and
their currents, respectively. For the subsequent analysis, however, it is convenient to
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work in terms of the contortion rather than the dislocation density. So, by Egs. (4.25),
(4.14) and (6.7), we find

(6]5) Npg = sqrrI‘Klp,n_eqp,

and by Egs. (4.25), (4.15), (4.16) and (6,8) we find

(616) Fuk.l i '"Jkl.n— Squ(an'f']E’nq) .
7. Summary

We derived the compatibility equations for a deformation in terms of the basic total
fields, i.e. the strain, bend-twist, linear and rotational velocity. The basic plastic fields
in general violate these compatibility equations and thus motivate the definitions of the
defect densities and their currents. We introduced the characteristic vectors, i.e. the total
Burgers vector and the Frank vector. These can be given as surface integrals over the
defect densities, whereas their time derivatives are given as line integrals over the defect
densities and their currents.

We defined the moving discrete defect line in terms of a surface across which there
is an appropriate displacement jump. A straightforward procedure motivated the defini-
tions of the basic plastic fields consistent with this jump condition. In this process it was
convenient to define also the defect loop densities and loop currents. Once the basic
plastic fields were found the results for continuous distributions could be specialized to
the discrete case. In this way we found the defect densities and their currents as line in-
tegrals along the defect line. We then noted some special relations between the defect
densities and their currents for the discrete case.

We conclude the paper with an Appendix showing identities for the time derivative
of volume, surface and line integrals. These are very useful in calculation for the moving
discrete defect line.

8. Appendix A. Kinematics of volume, surface and line integrals

For the case of moving discrete defect lines it is often necessary to find the time deriva-
tive of certain volume, surface or line integrals whose position may be changing with
time. When the integrand is a general field f{r, ¢, r’), which is a function of position r
and time 7, and the variable of integration r’, these derivatives are given by

(A.1) % ff(r, t,x)dy’ = f(f{+f.-fw£+fw,-..-,)dx/'= ffv;ds;+ f ‘ng',

ot
¥(r) V(r) S() ¥(r)
a r d ’ : af ! ’ ! s ’
(A.Z) W f(r, 3 r) Si = E+_ﬂj,‘z)j+f?)j.j. dS;_—ij'[,de
S(r) S(1)

= fewpiatis [ (Lasisooias).

L) 8(r)
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! a r r r ’
(A.3) % ff(r, t,v)dL; = fl:(wg";- +f_j,'v_,-)dL¢ +foi,4 dLj:l,
L(n) L(t)
where
(A.4) v} = Xj

is the velocity of the volume, surface or line, respectively. The second equalities in Egs.
(A1) and (A2) follow from the divergence theorem and Stokes’ theorem (Appendix A
in Ref. [14]).
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