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Adaptive resolution simulations for classical systems are currently made within a reasonably

consistent theoretical framework. Recently we have extended this approach to the

quantum-classical coupling by mapping the quantum nature of an atom onto a classical

polymer ring representation within the path integral approach [Poma & Delle Site, Phys.

Rev. Lett., 2010, 104, 250201]. In this way the process of interfacing adaptively a quantum

representation to a classical one corresponds to the problem of interfacing two regions with

a different number of effective ‘‘classical’’ degrees of freedom; thus the classical formulation

of the adaptive algorithm applies straightforwardly to the quantum-classical problem. In this

work we show the robustness of such an approach for a liquid of para-hydrogen at low

temperature. This system represents a highly challenging conceptual and technical test for the

adaptive approach due to the extreme thermodynamical conditions where quantum effects

play a central role.

I. Introduction

The development of adaptive resolution simulation schemes

is a subject of growing interest within the community of

condensed matter, material science and chemical physics.

For adaptive resolution is meant that the space is partitioned

in regions characterized by different molecular representation,

molecules can freely diffuse among the different regions and

change their resolution accordingly. Several approaches have

been presented during the last few years, they differ considerably

for the level of conceptual rigor and numerical complexity1–6

(see also ref. 7 for further clarifications). The interest in this

kind of approach rises from the fact that in principle it may

efficiently tackle the problem of interplay between different

scales. This occurs by properly treating, simultaneously, all the

relevant molecular degrees of freedom in each region of the

simulation box and, because of the free diffusion of molecules

from one region to another, properly accounting for density

fluctuations. The practical consequences are an optimal

employment of computational resources and an efficient

analysis of the simulation data. In fact it allows for the

reduction of computational costs by treating high resolution

models, which are computationally demanding, only in

restricted regions, and at the same time assures that details

not relevant for the problem are not processed in regions

where high resolution is not required. This last aspect allows in

turn to derive a clear understanding of the basic physical

features characterizing a given problem avoiding an excess of

details that can overshadow the essential physics. However

while the adaptive idea can be implemented in molecular

dynamics codes in a reasonable way, by employing the basic

principles of classical dynamics and thermodynamics, when

quantum mechanics is considered the situation becomes by far

more complicated because it involves not only the change of

the number of degrees of freedom, but also the physical

principles that govern their evolution. Practical methods6,8,9

that couple the two regimes in a straightforward way are, in

general, not bothered by the ‘‘conceptual’’ discontinuity of

passing from a probabilistic (quantum) to a deterministic

(classical) approach (and vice versa), and base their validity

on empirical and numerical criteria only. We have instead

developed a scheme where the two regimes are coupled in

such a way that the passage from the quantum principles

to the classical principles is realized in a smooth, consistent

way. The idea consists of considering the atoms described

within the path integral formalism, and thus they are

represented (effectively) by classical polymer rings (see e.g.

ref. 10). Within the path integral formalism, a classical

polymer ring provides the quantum character of delocalization

of an atom, and the interaction site (the center of the sphere

in the classical force field) is delocalized on several beads

of the polymer. A bead of the polymer is connected to

its neighbors by a harmonic spring where the elastic

constant depends on the temperature and the number of

beads (n) employed, k ¼ nmðkBTÞ2

�h2
, (kB Boltzmann constant,

�h Planck’s constant and m the mass of the particle). In this
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context the set-up of a consistent framework for adaptive

resolution between the quantum (path integral/polymer ring)

atom and the classical one corresponds to the coupling of

two classical regions with a different number of effective

‘‘classical’’ degrees of freedom. This means that one has

polymer rings, each with n classical degrees of freedom,

in the quantum region and classical spherical atoms (or

coarse-grained molecules as in ref. 11) in the classical region

with their associated degrees of freedom. In this way the

principles of classical adaptive methods would apply straight-

forwardly to the quantum-classical case. We have tested this

idea for a toy model of a liquid of tetrahedral molecule

at standard (ambient) thermodynamic conditions and proved

that the basic idea works.11 The tetrahedral molecules posses

enough structural complexity typical of small multiatomic

molecules and the study of ref. 11 has been important in

proving that a large reduction of the number of degrees

of freedom in the adaptive process could be described

well by the AdResS method. In fact in the path integral

representation of the tetrahedral molecule each atom

was represented by 30 beads and thus each molecule has

120 degrees of freedom. The classical coarse-grained

representation instead consists of a one site spherical object

(3 translational degrees of freedom), thus when a molecule

passes from a path integral to a coarse-grained representation

the number of degrees of freedom are reduced of a factor 40,

and, equivalently, from a coarse-grained to a path integral

representation the molecules acquires 117 degrees of freedom.

However the toy model does not possess explicit physical

properties which naturally ask for a specific quantum

treatment of its atoms. For the reason above, in this paper

we apply the procedure to a liquid of para-hydrogen at low

temperatures. Such a system represents a challenging test for

the procedure because of: (a) the extreme thermodynamic

conditions of low temperature and pressure; and (b) the

corresponding strong quantum nature of the hydrogen

molecule at these conditions. Moreover, this is a system

where the path integral/polymer ring approach is largely

employed and thus there exists an extended literature to which

one may refer for comparison. In general this test will tell us

whether the method can be successfully applied to a molecule

of hydrogen in thermodynamic conditions which are by far

more challenging that the ambient conditions. If the test is

satisfactory then one can be rather confident that the method

is robust enough to tackle problems involving hydrogen

atoms (e.g. as an atomic component of water) at ambient

conditions. We show that indeed the method is rather robust

and discuss two different algorithms, each with its own

convenience given the simulation conditions. It must be also

clarified, as it has been already implicitly stated, that here we

do not intend to find new results about the liquid para-

hydrogen, but only reproduce known results in order to

validate our approach. The paper is organized as follows;

after an overview of the methods used, we then provide the

basic physics of a liquid of molecular hydrogen at low

temperature and its treatment with path integral. Next we

describe the technical aspects of the simulation and finally we

discuss the results for the two systems chosen, at the temperature

of 25 K and 14 K, and close with the conclusions.

II. Methods

A Path integral molecular dynamics

Let us consider a system of N distinguishable particles

described by the Hamiltonian of the form

H ¼
XN
I¼1

P2
I

2MI
þ VðR1; . . . ;RNÞ: ð1Þ

The corresponding density matrix in the position space is

given by

r(R,R0;b) = hR|e�bH|R0i, (2)

with b = 1/kBT. The definition of the quantum mechanical

partition function is given by the trace of the density matrix:

Z � Tr(e�bH) =
R
dRhR|e�bH|Ri (3)

At this point the Trotter theorem12 can be used to factorize

e�bH in a kinetic and a potential part:

e�bðKþVÞ ¼ lim
n!1
½e
�b
2n

Ve
�b
n
Ke
�b
2n

V �n ð4Þ

where K is the kinetic and V the potential operator. Substituting

the Trotter discretization into eqn (3) and using the definition

of the identity operator,
R
|RihR|dR, n � 1 times yields:

Z ¼ lim
n!1

Z
dRð1Þ . . . dRðnÞhRð1Þj½e

�b
2n

Ve
�b
n
Ke
�b
2n

V �jRð2Þi . . .

hRðiÞj½e
�b
2n

Ve
�b
n
Ke
�b
2n

V �jRðiþ1Þi . . . hRðnÞj½e
�b
2n

Ve
�b
n
Ke
�b
2n

V �jRð1Þi:
ð5Þ

Since the potential is diagonal in |Ri, each matrix element

takes the form:

hRðiÞje
�b
2n

Ve
�b
n
Ke
�b
2n

V jRðiþ1Þi

¼ e
�b
2nVðR

ðiÞÞhRðiÞje
�b
n K jRðiþ1Þie

�b
2nVðR

ðiþ1ÞÞ:

ð6Þ

At this point using the identity operator in momentum space,R
|PihP|dP, the remaining matrix elements can be written as:

hRðiÞje
�b
n
K jRðiþ1Þi ¼

Z
dPhRðiÞjPihPje

�b
n
K jRðiþ1Þi

¼
Z

dPhRðiÞjPihPjRðiþ1Þie�bP2=ð2MnÞ

ð7Þ

which can be simplified further by using the projection of a

momentum eigenstate on a position eigenstate

hRjPi ¼ 1ffiffiffiffiffiffiffiffi
2p�h
p eiP�R=�h: ð8Þ

In fact replacing eqn (8) into eqn (7) one gets:

hRðiÞje
�b
n
K jRðiþ1Þi ¼ Mn

2pb�h2

� �1=2

e
� Mn
2pb�h2

ðRðiÞ�Rðiþ1ÞÞ2
: ð9Þ
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Substituting this last results into the eqn (5) one obtains:

Z ¼ lim
n!1

YN
I¼1

Mn

2pb�h2

� �n=2 Z
dR
ð1Þ
I . . . dR

ðnÞ
I

" #

� e�b
PN

I¼1

Pn

s¼1
1
2
MIo2

nðR
ðsÞ
I
�Rðsþ1Þ

I
Þ2þ1

n
VðfRðsÞ

I
gÞ;

ð10Þ

where the effective path integral Hamiltonian is given by

Hn ¼
XN
I¼1

Xn
s¼1

1

2
MIo2

nðR
ðsÞ
I � R

ðsþ1Þ
I Þ2 þ 1

n
VðfRðsÞI gÞ: ð11Þ

Eqn (11) is formally equivalent to the classical interactions of

N ring-polymers consisting of n beads each connected by

harmonic springs and with a polymer–polymer interaction as

sketched in Fig. 1. Note that the bead–bead interaction

between different polymers is attenuated by a factor 1/n. Here

on ¼ m
ffiffiffi
n
p
ðkBTÞ=�h is the frequency of the ring-polymer, n is

the Trotter number, T the temperature and M is the physical

mass. The calculation of Z in eqn (11) requires a sampling of

the configurational space of the N ring-polymers; in order to

devise a molecular dynamics scheme to calculate Z, one has to

add n-Gaussian integrals in the momentum space to eqn (10)

and this gives,

Z ¼ lim
n!1

YW
I¼1

W

Z
dR
ð1Þ
I . . . dR

ðnÞ
I

Z
dP
ð1Þ
I . . . dP

ðnÞ
I

" #

� e
�b
PN

I¼1

Pn

s¼1
½PðsÞ
I
�2

2M0
I

þ1
2
MIo2

nðR
ðsÞ
I
�Rðsþ1Þ

I
Þ2þ1

n
VðfRðsÞ

I
gÞ
;

ð12Þ

where W is a proper normalization factor and M0
I is the

fictitious mass of the beads. The momenta PI are fictitious

quantities that allow mapping of the static problem of the

interacting ring-polymers into a dynamical sampling, however

they do not have any physical meaning. The Hamiltonian for

the molecular dynamics scheme can now be written

explicitly as:

HnðR;PÞ¼
XN
I¼1

Xn
s¼1

½PðsÞI �
2

2M0
I

þ1

2
MIo2

nðR
ðsÞ
I �R

ðsþ1Þ
I Þ2þ1

n
VðfRðsÞI gÞ

ð13Þ

The approach illustrated above is commonly known as the

path integral molecular dynamics (PIMD) in the real space.

Within PIMD the ring–polymer dynamics can be employed to

evaluate the expectation value of any observable A as follows:

hAi¼ lim
n!1

YN
I¼1

W

Z
dR
ð1Þ
I . . .dR

ðnÞ
I

Z
dP
ð1Þ
I . . .dP

ðnÞ
I

" #

�e�bHnðR;PÞAnðRÞ ð14Þ

where An is calculated over the ring–polymer trajectories:

AnðRÞ¼
1

n

Xn
s¼1

AðRðsÞ1 ; . . . ;R
ðsÞ
N Þ ð15Þ

B The adaptive resolution simulation scheme (AdResS)

The basic requirement of an adaptive resolution method is that

the change of resolution occurs without perturbing the thermo-

dynamic equilibrium;13–19 this is done by the extensively tested

AdResS method,20–23 within a Molecular Dynamics scheme,

which we employ in this work. In the AdResS method the

molecular resolution is changed on-the-fly during a simulation

as a molecule transits from the a high resolution region (e.g.

atomistic) to a low resolution region (e.g. coarse-grained). The

exchange of the molecules between the different regions occurs

under condition of thermodynamic equilibrium, that is:

ratom = rcg (density equilibrium); Patom = Pcg (pressure

equilibrium); Tatom = Tcg (thermal equilibrium). The thermo-

dynamic state point is the same as that of a full atomistic

system. From the technical point of view the method consists

of a two step procedure: (a) derive an effective (coarse-grained)

potential from the reference atomistic simulation; (b) couple

the two regimes via a space dependent interpolation formula

on the forces (see e.g. ref. 1 and 24):

Fab = w(Xa)w(Xb)F
atom
ab + [1 � w(Xa)w(Xb)]F

cg
ab (16)

a and b are the two molecules, Fatom is the atomistic force and

Fcg is the coarse-grained one, X is the x coordinate of the

molecular center of mass and w is a ‘‘switching’’ function

which smoothly interpolates the forces. w is 0 in the coarse-

grained/lower resolution region and 1 in the atomistic/high

resolution region, while it is continuous and monotonic in

between (hybrid/transition region), as illustrated in Fig. 4.

This procedure assures that when a molecule passes from a

region with atomistic resolution to a region with coarse-

grained resolution the switching function w smoothly

‘‘freezes’’ the dynamical evolution of those degrees of freedom

that are switching off (that is those that the molecule is losing)

and their contribution to the interactions with the rest of the

system. Vice versa, when a molecule follows the opposite

path (coarse-grained to atomistic), w smoothly reactivates

the dynamics of the switching degrees of freedom (that the

molecule is now acquiring) and their contribution to the

Fig. 1 Path integral representation of two quantum particles for

n = 7 beads (Trotter number).
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interactions with the rest of the system. By construction the

third Newton’s Law is conserved, a crucial point for a

molecular dynamics scheme. Essentially what eqn (16) does

is to allow for a smooth transition from an atomistic

to a coarse-grained (and vice versa) dynamics keeping the

perturbation due to the change of resolution as small as

possible. However eqn (16) implies a non-Hamiltonian

approach and the lack of a conserved energy poses the

question of how one can assure the control of the thermo-

dynamic equilibrium of the system, as this latter is an essential

ingredient for a conceptually correct adaptive scheme. We

have shown that a scheme based only on eqn (16) would create

a ‘‘resolution dependent’’ chemical potential across the simulation

box. This implies a preferential tendency of the molecules to

migrate towards the region of lower chemical potential which

in turn leads to an unphysical inhomogeneous density across

the box.1 This problem is solved by interpreting the resolution

dependent chemical potential in terms of some ‘‘latent heat’’

acquired by the molecule (acquiring degrees of freedom, e.g.

vibrational and rotational) or released by the molecule (losing

degrees of freedom). We have shown that this process of

acquiring or releasing heat can be properly taken into account

by a locally acting thermostat.1 In order to reach high

accuracy a thermodynamic force which balances the chemical

potential across the box can be added.2 However, in most of

the cases (as the one treated in this work), the thermostat is

sufficient to assure that the discrepancy between the results of

the adaptive simulation and those of a full atomistic simulation

stays within a 5% difference. Moreover, it has been shown that

the use of the forces rather than the potentials is conceptually

more rigorous15–17 (see also ref. 7 for further explanations).

The effective coarse-grained potential, at a given thermo-

dynamic conditions, is derived from a reference all-atom

simulation employing (typically) an iterative inverse Boltzmann

procedure that matches the molecular center of mass radial

distribution.25 In the case of the quantum-classical adaptive

scheme, the same procedure as for the classical case applies.

The difference is that the atoms are described as polymer rings

in a path integral approach and the effective coarse-grained

potential for a molecule is derived from a full path integral

reference simulation at the given thermodynamic state point.

This means that the interpolation according to w occurs

between Fpi acting on the beads of the rings (which now plays

the equivalent role of Fatom in eqn (16)) and the Fcg derived

from the effective coarse-grained potential acting among the

centers of mass of the molecules (of both path integral and

coarse grained representation).

III. Liquid of molecular hydrogen: basic physics

The liquid and solid phases of molecular hydrogen and

deuterium have been extensively studied experimentally26

and theoretically.27,28 These many-body systems continue to

appear in very fundamental problems for several reasons. It is

known that hydrogen molecules are the principal constituent

of distant planets29 and in the field of high-pressure physics

the hydrogen exhibits the fluid metal–insulator transition.30,31

The spectrum of molecular hydrogen in the liquid phase

exhibits the effect of the internal nuclear degrees of freedom

which leads to the characterization of two spin isomers

of hydrogen diatomic molecules and different levels of

excitations. One of the isomeric forms is the ortho-hydrogen

where its two proton spins are aligned parallel and form a

triplet with a total spin quantum number of J = 1; in the

other form, the para-hydrogen, its proton spins are aligned

antiparallel and form a singlet with a total spin quantum

number of J = 0.

A The path integral description of para-hydrogen

In general, liquid hydrogen does not exhibit the strong identical

particle exchange effects typically observed in liquid helium,

and thus the physics of the system is simplified. In fact even at

very low temperature (e.g. around the triple point, 13.8 K) the

thermal de Broglie wavelength l = h/(2pmkBT)
1/2 = 3.3 Å,

is slightly larger than the mean distance between two hard

spheres in the classical representation of hydrogen in a

molecules (s = 3.0 Å). This implies that the exchange of

identical para-hydrogen molecules will not have a pronounced

effect in the properties of the liquid phase32,33 and therefore

the para-hydrogen molecules follow the Boltzmann statistics.

Another characteristic of the liquid molecular hydrogen at low

temperatures is the inversion of the predominant population,

i.e. ortho-hydrogen at room temperature to the para-hydrogen

at lower temperatures. Since the majority of the para-

hydrogen molecules are in the ground state (J = 0) , the wave

functions that characterize such a molecular state are

spherically symmetric; this means that the interaction between

molecules can be modeled by an effective isotropic pair

potential34 (see Fig. 2). Details of the classical potential

are provided in the Technical section. Due to the inherent

quantum behavior of the para-hydrogen molecules at low

temperatures, several computational techniques based on the

path integral formulation of quantum mechanics became

routine methods to calculate static (e.g. ref. 35 and 36)

and dynamic (e.g. ref. 37–40) properties of this quantum

liquid. In Fig. 2 we show the conceptual transition from the

(effective spherical) classical model to the corresponding

quantum (polymer ring) model by means of the path integral

approach.

Fig. 2 Quantum representation of the para-hydrogen by the path

integral approach. On the left side the classical form for a diatomic

hydrogen molecule is depicted where the shadowed sphere indicates

that the classical intermolecular potential is isotropic. On the right

side is depicted the corresponding quantum description of the

molecule by a ring–polymer representation within the path integral

approach. In this latter case the interaction between polymer a and

polymer b occurs only between pairs of beads with the same index i,

i.e. aibi.
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IV. para-Hydrogen in AdResS

In Fig. 3 we illustrate the transition of the molecule from a

classical one site coarse grained representation to a quantum

representation by means of the path integral approach, in

between is depicted the hybrid representation. The adaptive

method AdResS applies as in the classical case. First we

perform a full path integral/polymer ring simulation of the

liquid system, taking the structural properties of such a

system (center of mass radial distribution function, RDF)

as a reference. Next we derive an effective potential acting

on the center of the ring and use this as a coarse-grained

model for a (spherical) classical representation of the para-

hydrogen molecule in the adaptive simulation. This step

of the procedure provides structural consistency between

the two representations used.41 Next the adaptive resolution

molecular dynamic simulation is performed according

to the AdResS algorithm as it is schematically depicted in

Fig. 4.

A Technical details of the simulation

To perform path integral simulations we have used the iso-

tropic part of the Silvera–Goldman pair potential,34 standard

in several study employing this approach for para-hydrogen

liquid at the given thermodynamic conditions specified below.

VðrÞ ¼ ea�br�gr
2 � C6

r6
þ C8

r8
þ C10

r10

� �
fcðrÞ þ

C9

r9
fcðrÞ; ð17Þ

where

fcðrÞ ¼ e�ðrc=r�1Þ
2

; if r � rc
1; otherwise;

�
ð18Þ

The first term on the right-hand side in eqn (17) corresponds to

the short-range repulsive interaction, while the second term

describes the long-range attractive interaction. The last term,

C9/r
9, is an effective two body approximation to the three-

body dispersion interaction. The fc(r) is used to screen the

effect of the attractive interaction at short distance. The value

of the parameters are listed in Table 1. V(r) is shown in Fig. 5.

In our simulations we consider two cases at two different

temperature (14 K and 25 K respectively) and use the theoretical

number density obtained from the earlier path integral Monte

Carlo (PIMC)32 calculations (r=0.0035 (bohr)�3 at 14 K and

r = 0.0028 (bohr)�3 at 25 K), at zero pressure. Atomic units

(i.e. e,�h,m= 1) are used and this means that the unit of energy

is given in Hartree (Eh = 4.3597 � 10�18 J) and the distance in

atomic bohr (a0 = 0.529 Å). The interaction between

bead–bead of neighboring ring-polymers was truncated at

Fig. 3 Adaptive resolution scheme for para-hydrogen; the high

resolution on the left corresponds to the quantum path integral

representation. The low resolution on right corresponds to the effec-

tive spherical classical model obtained by coarse-graining the high

resolution representation. This latter is obtained by iterative inverse

Boltzmann procedure which reproduces structural properties of full

path integral reference simulations of the liquid. In the middle the

hybrid resolution as the molecules is continuously transformed from a

quantum to a classical representation.

Fig. 4 AdResS set up for the para-hydrogen liquid.

Table 1 Parameters used in the Silvera–Goldman pair potential (in
atomic units)

a 1.713 C6 12.14
b 1.5671 C8 215.2
g 0.00993 C9 143.1
rc 8.32 C10 4813.9

Fig. 5 A plot of the potentials resulting from the Iterative Boltzmann

Inversion (IBI) procedure. The solid (blue) line corresponds to

T = 25 K, r = 0.0028 (bohr)�3 and the (black) dashed line for

T = 14 K, r = 0.0035 (bohr)�3. The classical Silvera and Goldman

potential34 in solid (black) line is also depicted.
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15 bohr. From the earlier simulation with PIMC it is known

that for the low temperature case (T = 14 K) the quantum

character of para-hydrogen becomes stronger and the number

of beads used in the path integral approach should be

increased to 48. For the higher temperature (T = 25 K) case,

28 beads are enough to guarantee the convergence of the

static properties. We perform simulations employing two

different approaches to path integral: (a) path integral

formulation in the primitive space PIMD (real space) which

is computationally less demanding but proves not to be

accurate enough for the lower temperature; and (b) the path

integral formulation in terms of normal modes (PIMD + NM),

computationally more-demanding but more accurate at the

lower temperature. In fact at the lower temperature the use of

a larger number of beads leads to the situation that the

bead–bead interaction between corresponding beads of

different polymer becomes less relevant due to the fact that

(as it follows from the path integral formalism) it scales as
1
n
Vai ;bi (ai indicates the ith bead of the polymer representing

molecule a, same for b). At the same time the bead–bead

interaction between bonded neighboring beads of the same

polymer becomes dominant because it scale as n. In this

situation problems of ergodicity arise in a real space approach,

instead the normal mode approach, by ensuring the proper

sampling of all the frequency of the system, solves the

problem.43 In practice this method allows for propagating all

the modes over the same time step and thus the time scale of

the integration is non pathological (see also the section VIII).

Each simulation discussed here was equilibrated for 100 ps and

then the static properties were calculated by averaging over

1000 consecutive 10 ps path integral trajectories with a time

step equal to 0.5 fs.

B Effective coarse grained potential

To obtain an effective one-site coarse grained (CG) potential

from the path integral representation of para-hydrogen

we used the standard procedure known as the Iterative

Boltzmann Inversion (IBI).25 Such a procedure derives an

effective potential given the center-of-mass RDF as a target

from the full explicit path integral simulation. Although the

pressure must be zero for both thermodynamic state points, a

pressure correction has been performed as it is routinely

required to get as close as possible to the target pressure

(see for example ref. 44). In this aspect the coarse-graining

procedure at these thermodynamic conditions becomes more

difficult since the large pressure fluctuations (of the order

of 10�7 Eh/bohr
�3) and the inherent error of the iterative

procedure lead to a large relative error on the pressure of the

coarse-grained model. For each system the IBI was applied

over 30 iterations until convergence of the target radial

distribution was reached. Each iteration consists of 50 ps

and 500 ps of equilibration and production respectively. Our

results are shown in Fig. 5 where we plot the effective CG

potential obtained for each temperature studied and for

comparison is depicted the classical Silvera and Goldman

potential. As one can see the effective potential becomes less

attractive and the minima of the potential is shifted as the

temperature decreases from T = 25 K to T = 14 K.

V. Results

In this section we present the result of our approach in

AdResS for the two thermodynamic state points studied.

The path integral implementation in the real space will be

denoted by PIMD and the Normal Modes implementation as

PIMD + NM.

A For T = 25 K

This thermodynamic state represents a ‘‘less quantum’’ system

with Trotter number (number of beads) n = 28 compared to

the other system at T = 14 K shown later. As one can see in

the Fig. 6(a) for the bead–bead RDF in the full (explicit) path

integral simulation the PIMD and PIMD+NM implementation

perform quite well and no differences are found compared to

the reference data.32 In part (b) and (c) we report the

Fig. 6 (a) Comparison of the bead–bead RDF in a full explicit path

integral simulation at T = 25 K. The PIMD and PIMD + NM are

compared to earlier work32 (whose data are available up to 16 bohr)

and full agreement is obtained. (b) The bead–bead partial RDF

calculate only in the region corresponding to the quantum region in

AdResS for the PIMD compared with the same quantity calculated in

the PIMD/AdResS approach. (c) Shows the same as in (b), but for the

PIMD + NM implementation.
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bead–bead RDF obtained within AdResS, with PIMD and

the PIMD + NM, calculated in the quantum region of the

adaptive resolution system. This is here compared with the

RDF calculated in the same subregion but from a full explicit

path integral simulation. The agreement is highly satisfactory.

In Fig. 7 we compare the center-of-mass RDF in all the box

for the PIMD and PIMD + NM in AdResS and compare it

with the reference data; also in this case a full agreement is

found at this temperature. To complete the prove that in the

adaptive simulation a valid thermodynamic equilibrium is

reached we calculate the density profile in Fig. 8. This shows

the typical 5% drop of density in the hybrid region (D) which
is compensated by the increment of the density in the path

integral and coarse grained regions.11 The slightly larger

density in the coarse-grained region is mostly due to the

above-mentioned problem of the difficulties of targeting the

coarse-grained model to the exact pressure of the high resolution

system. However the agreement is rather satisfactory. Finally

in order to check the free diffusion and exchange of particles

across the regions we calculated the diffusion profile in Fig. 9;

this proves that indeed the molecules move through the hybrid

region diffusing from the high resolution to the low resolution

and vice versa.

B For T = 14 K

This case represents a ‘‘more quantum’’ situation due to the

larger Trotter number used, n = 48. As one can see in the

Fig. 10(a) the path integral implementation in the real space

(PIMD) does not converge to the reference data and only its

implementation with the normal modes reproduces the reference

structure of the system32 in a full explicit simulation. This

means that PIMD in AdResS will also not reproduce the true

physics of the system, and for this reason we will not consider

it here. This is instead the case where the PIMD + NM

becomes ideal and for this reason we test his performance in

the adaptive scheme. Fig. 10(b) shows the comparison between

the partial bead–bead RDF (calculated as in Fig. 6) for the full

explicit PIMD + NM and that of the PIMD + NM in

AdResS; a rather satisfactory agreement is found. In part

(c) the center-of-mass RDF for the PIMD + NM in AdResS

with the reference data32 is compared and satisfactory agreement

is found. Similarly to the previous case we show the density

profile in Fig. 11 for the PIMD+NM and once again we note

a satisfactory agreement. The same can be said for the diffusion

profile shown in Fig. 12.

VI. Discussion and conclusions

We have reported an application of the AdResS classical/

path-integral method, to the liquid of para-hydrogen at two

different temperatures, namely 25 K and 14 K. These two

systems represent a challenging test for the method because of

the dominant character of the quantum effects. We have

presented two different algorithms, one based on the real

space treatment of the polymer rings representing the atoms,

and one on the normal mode treatment of them. The first is

computationally less demanding but loses precision as the

number of beads in the polymer increases, the second is

computationally more demanding but can well describe

situations where the number of beads is large. In any case,

for both approaches we have shown that the adaptive method

AdResS reproduces in a rather satisfactory way the static

properties of the liquid when compared to the results of full

explicit path integral simulations and to those available in

Fig. 7 Center-of-mass RDF evaluated in the whole box at T= 25 K.

The agreement between the ref. 32 calculation, the PIMD in AdResS

and PIMD + NM in AdResS are highly satisfactory.

Fig. 8 Normalized density profile along the x direction at T = 25 K

in AdResS. The vertical lines denote the boundaries between the path

integral (PI), coarse grained (CG) and hybrid (n) regions of the

system. In the Figure is depicted the case of both PIMD and

PIMD + NM within the AdResS scheme. The drop of density in

the hybrid region is about 5% of the reference value (horizontal

dashed line), while the overestimation in the CG region compared to

that in the PI region is below 2%.

Fig. 9 Diffusion profile for para-hydrogen molecules from the CG to

the PI region and vice versa. Here showed for the case of PIMD

(a similar profile was obtained also for the PIMD + NM case, for

simplicity not reported here).
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literature. The message of this work is that since at ambient

conditions the quantum effects can be important, but not

dominant, and the coarse-graining procedure is technically

simpler, the adaptive classical/path integral method can be

applied with confidence to standard systems in soft matter,

chemical physics and condensed matter. For example one may

think of extending the classical AdResS study of the locality of

hydrogen bond network at hydrophobic surfaces23 to the case

where the quantum nature of the protons of water is considered.

The application of this scheme would tell us whether the

conclusions reached with classical models hold in the presence

of quantum effects. This is only one representative example

where the method can be applied and in this context this work

has shown that there are no conceptual or technical barriers to

proceed along these directions in applications.

VII. Appendix: Implementation of the normal

modes (NM) in AdResS

The Hamiltonian in the path integral approach for N particles

interacting by the force field V(R) is given by eqn (13). The

direct use in molecular dynamics of such a scheme becomes

inefficient as the number of beads n becomes large. In fact as

this number increases, the harmonic spring terms become

stiffer and the neighboring bead–bead intra-polymer interaction

dominates the dynamics over the inter-polymer bead–bead

interaction which is instead scaled by 1
n
. In this situation the

sampling of the frequencies is not properly done. A solution

for this problem is given by normal mode transformation

which allows to carry out the evolution of all the frequencies

(see ref. 10 and also ref. 45). For a large n the harmonic modes

have to be decoupled so that one can move all the modes over

the same simulation time scale. In order to do so the harmonic

potential from eqn (13) is expressed as a sum of n uncoupled

harmonic oscillators. This, in vector notation, writes as:

VI({R
(s)
I }) = 1

2
MIo

2
nR

T
I �A�RI (19)

Fig. 10 (a) Comparison of the bead–bead RDF in a full explicit path

integral simulation at T = 14 K. PIMD and PIMD + NM

are compared to earlier work.32 Agreement between the reference data

and PIMD + NM is obtained while PIMD shows to not be

appropriate at this temperature. (b) Bead–bead partial RDF for a full

explicit PIMD + NM and in AdResS. (c) Center-of-mass RDF for

PIMD+NM in AdResS compared to the reference data (available up

to 16 bohr).

Fig. 11 As in Fig. 8 but for T = 14 K and only in the case of

PIMD + NM. The more symmetric distribution between the PI and

CG region compared to Fig. 8 is not due to some systematic

improvements but to a mere numerical coincidence. In general one

expects for thermodynamic state points similar to those treated here

that the results of Fig. 8 are more common that those in the figure

above. This, as underlined in several points of this paper, is mainly due

to the numerical difficulty of targeting the (almost zero) pressure and

to the corresponding large relative error.

Fig. 12 As in Fig. 9 but at temperature T = 14 K and only for the

PIMD + NM case.
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where A is the matrix that couples the coordinates of

different beads. One can transform A in a decoupled form

by diagonalization. This is done analytically by expressing

eqn (19) in the normal modes variables as follows:

VI({Q
(s)
I }) = 1

2
MIo

2
nQ

T
I �a�QI (20)

where a is a diagonal matrix and QI are the normal modes.

Now using the property of a being diagonal, the eqn (19)

become

VI ðfQðsÞI gÞ ¼
1

2
MIo2

n

Xn
s¼1

asQ
2
s ¼

Xn
s¼1

1

2
MIO

2
sQ

2
s ð21Þ

which has the form of n uncoupled harmonic oscillators with

normal-modes frequencies equal to:

Os ¼ on

ffiffiffiffi
as
p ¼ 2on sinðsp=nÞ: ð22Þ

We use the Hamiltonian from eqn (13) in the Normal Modes

variables without external potential to derive the equation of

motion (EOM) of a free ring polymer. In the new system of

coordinates the EOM takes the form:

P
ðsÞ
I ¼

dQ
ðsÞ
I

dt

d

dt
P
ðsÞ
I ¼ �MIO

2
sQ
ðsÞ
I ; 8s ¼ 1; . . . ; n; ð23Þ

These are the EOM of a n-decoupled harmonic oscillators and

the solution is known to be at time t + Dt:

Q
ðsÞ
I ðtþ DtÞ ¼ Q

ðsÞ
I ðtÞ cosðOsDtÞ þ

P
ðsÞ
I ðtÞ

MIOs
sinðOsDtÞ

P(s)
I (t + Dt) = �Q(s)

I (t)OsMI sin(OsDt)

+ P(s)
I (t)cos(OsDt) (24)

for all s = 1,. . .,n and where Q(s)
I (t) and P(s)

I (t) are the initial

conditions at time t. In a matrix form,

P
ðsÞ
I ðtþ DtÞ

Q
ðsÞ
I ðtþ DtÞ

" #
¼

cosðOsDtÞ �OsMI sinðOsDtÞ
sinðOsDtÞ
OsMI

cosðOsDtÞ

� �
P
ðsÞ
I ðtÞ

Q
ðsÞ
I ðtÞ

" #

For simplicity we show the component of the matrices for the

zero-frequency (i.e. for the centroid), this is the case of s = 0

and from the previous matrix we get

P
ð0Þ
I ðtþ DtÞ

Q
ð0Þ
I ðtþ DtÞ

" #
¼ 1 0

Dt=MI 1

� �
P
ð0Þ
I ðtÞ

Q
ð0Þ
I ðtÞ

" #

where we used the property of limx!0
sinðxÞ
x
¼ 1. This form is

ideal for the numerical implementation of the algorithm. Now

let us synthesize the changes in the velocity Verlet algorithm to

perform the NM in few steps:

STEPs of Velocity Verlet with NM in AdResS:

(1) Calculate forces using AdResS. Evaluate F(s)
I (t) only

from the external potential contribution in the primitive space.

(2) Update velocities, v
ðsÞ
I ðtþ Dt

2
Þ ¼ v

ðsÞ
I ðtÞ þ Dt

2
F
ðsÞ
I ðtÞ, in the

primitive space.

(3) Evolve positions and velocities at t + Dt with NM

algorithm (see below).

(4) Calculate forces, F
ðsÞ
I ðtþ Dt

2
Þ as in STEP 1 from positions

of STEP 3.

5. Update velocities, v
ðsÞ
I ðtþ DtÞ ¼ v

ðsÞ
I ðtþ Dt

2
Þ þ Dt

2
F
ðsÞ
I ðtþ DtÞ,

in the primitive space.

The STEP 3 concerns the implementation of the Normal

Modes and it is presented below

NM algorithm:

(1) Apply the forward FFT to {r(s)I (t)}, {p(s)I (t)} - {Q(s)
I (t)},

{P(s)
I (t)} (coordinates and momenta in NM).

(2) Evolve {Q(s)
I (t)}, {P(s)

I (t)} according EOM of free

ring-polymer (eqn (24)) to t + Dt.
(3) Apply the backward FFT to {Q(s)

I (t + Dt)},
{P(s)

I (t + Dt)} - {r(s)I (t + Dt)}, {p(s)I (t + Dt)}.
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