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The path integral single sweep method is used to assess quantum effects on the free energy barrier

for hydrogen vacancy diffusion in a defective Na3AlH6 crystal. This process has been investigated

via experiments and simulations due to its potential relevance in the H release mechanism in

sodium alanates, prototypical materials for solid state hydrogen storage. Previous computational

studies, which used density functional methods for the electronic structure, were restricted to a

classical treatment of the nuclear degrees of freedom. We show that, although they do not change

the qualitative picture of the process, nuclear quantum effects reduce the free energy barrier

height by about 18% with respect to the classical calculation improving agreement with available

neutron scattering data.

1. Introduction

Sodium alanates have been extensively investigated, in

experiments1–4 and simulations,5–10 because they are considered

prototypical systems for solid state hydrogen storage. Palumbo

et al.,11,12 in particular, first detected an activated mobility

process triggered during the dissociation reaction

3NaAlH4 3 Na3AlH6 + 2Al + 3H2 (1)

which has attracted considerable interest. They measured the

activation barrier to mobility, DFex = 0.126 eV, but could not

identify the microscopic species moving in the sample. Several

calculations – and further experiments – have been performed

to identify this species and three hypotheses have been put

forward. Two attribute the signal to the presence of H defects in

the sample, most likely in the Na3AlH6 crystal formed in the

reaction. These are the so-called ‘‘local’’ and ‘‘non-local’’ vacancy

diffusions corresponding, respectively, to the rearrangement of

the hydrogens around a defective AlH6–x group and to the

exchange of an H vacancy between a fully hexacoordinated

aluminium and a defective group. The third hypothesis assigns

the barrier to the diffusion of a sodium vacancy. Focusing on

computational results, Voss and co-workers13 and Wang et al.14

used the Nudged Elastic Band method15–17 (NEB) to compute

potential energy barriers for these processes. In these calculations,

they found considerable barriers for the H related mobility:

DVl E 0.4 eV and DVnl E 0.75 eV for the local and non-local

processes, respectively. Voss et al.13 also performed neutron

scattering experiments on Na3AlH6 and determined that there

is a hydrogen related diffusion with activation barrier equal to

DFns = 0.37 eV. They associated this barrier with local

H diffusion, and the signal observed via anelastic scattering

by Palumbo and co-workers to sodium vacancy mobility. On

the other hand, we18,19 recently investigated the hydrogen

vacancy diffusion processes using the single sweep20 method

for free energy reconstruction. Our results show no appreciable

free energy barrier for the local diffusion, while we find an

activation barrier of DF= 0.4 eV for the non-local process. We

then attribute to this process the barrier associated with the

neutron scattering experiment. The different outcomes of the

calculationsw leave the identity of the mobile species observed

via anelastic scattering unresolved and suggest that more work

is necessary. In particular, in spite of growing evidence that,

contrary to what hypothesized by Palumbo and co-authors, the

0.126 eV barrier cannot originate from processes related to H

vacancy diffusion, there is still one point to investigate before

these processes can be conclusively ruled out: the relevance of

quantum nuclear effects. Both the potential and free energy

calculations carried out so far, in fact, used ab initio molecular

dynamics in which the density functional theory (DFT)

description of the electronic structure was combined with the

classical treatment of the nuclear degrees of freedom. However,

it is well documented that phenomena involving hydrogen can

show significant nuclear quantum behavior also at the relatively

high temperature of these calculations (T = 380 K in our

previous work, NEB is, by construction, at zero temperature).
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In the gas phase, for example, the intramolecular proton transfer

in malonaldehyde shows that, at room temperature, tunneling

can reduce the barrier of the reaction by a factor of three or

more.21–24 Quantum effects are also important for hydrogen in

solids,25 where zero point energy is estimated around at least

0.1 eV (non-negligible compared to ambient thermal energy

E0.025 eV). Finally, considering research related to hydrogen

storage, recent work26 has demonstrated the relevance of zero

point energy in calculating the enthalpy of formation of hydride

LaNi5H7, a material with significant H capacity and rapid

absorption/desorption rate.27,28 In the following, we will thus

reconsider the non-local hydrogen vacancy diffusion in sodium

alanates (the only H related process showing activation

according to our results), by modifying the free energy

calculation performed in ref. 19 so as to account for quantum

nuclear effects. This completes the analysis of the previous

papers by determining if tunneling and/or zero point energy

can lower the calculated free energy barrier to non-local

diffusion and make it closer to Palumbo’s result, or improve

agreement with the neutron scattering. The quantum free energy

will be computed using a recently developed method29 that is

summarized in Section 2 (we refer to ref. 29 and the Appendix

for some details on its derivation). In Section 3 the simulation

setup is described together with the collective variable that we

adopted and the results of our calculation are presented and

compared with the classical free energy reconstruction.

2. Methods

To obtain the free energy, we will use the quantum single sweep

method.29 This method adapts, viaminor variations (see Appendix),

the single sweep method for classical free energy reconstruction20 to

the quantum case. Its starting point is the path integral30–32

expression of the quantum free energy of a system of distinguishable

particles. In this formalism (see eqn (8) and (9) in the Appendix) the

quantum free energy, F(z), can be represented as the free energy of a

classical system in which each quantum particle is represented as a

(closed) polymer with P beadsz:

F(z) = �b�1 lnQ�1
R
dx1. . .dxPe

�bUeff(x1,. . .,xP;b)d(y(x1)�z)
(2)

where y(x) = {y1(x),. . .,yn(x)} is a set of collective coordinates,
z = {z1,. . .,zn}, and dðyðx1Þ � zÞ �

Qn
a¼1 dðyaðx1Þ � zaÞ. In the

equation above, Q =
R
dx1. . .dxPe

�bUeff(x1,. . .,xP;b) and

Ueffðx1; . . . ; xP; bÞ ¼
XP
i¼1

1

2
mo2

Pðxiþ1 � xiÞ2 þ
1

P

XP
i¼1

VðxiÞ
" #

ð3Þ

(where xP+1 = x1 and oP ¼
ffiffiffiffi
P
p

=b�h).

To compute eqn (2), single sweep combines an exploration

and a reconstruction step. In the exploration step, usually

referred to as TAMD33 (see also ref. 34–36), a set of auxiliary

variables z = {z1,. . .,zn} is introduced. In quantum single

sweep, these variables are coupled, via the potential
k
2

Pn
a¼1 ðyaðx1Þ � zaÞ2, to the coordinates of the physical

system. The auxiliary variables are thermostated at a

temperature %T higher than the temperature of the system, T,

and a ‘‘mass’’M is assigned to them. Sampling of the extended

phase-space is then performed via the system of equations

where x = {x1,. . .,xP} and Therm(b) indicates coupling to a

thermostat at b = 1/kBT. If, by an appropriate choice of M

and of the thermostat’s parameters, adiabatic separation of

the x and zmotions is induced (making the zmuch slower than

the x), it can be shown37,38 that the z evolve according to an

average force that, in the limit k-N, tends to the gradient of

the exact quantum free energy of the physical system (see

eqn (12) and (13) and discussion in the Appendix). If %T is high

enough, this free energy can be explored quite efficiently even

if there are metastabilities. In the second single sweep step, the

free energy is reconstructed by interpolation. First, points

(centers) along the trajectory of the extended system are

used to construct a (irregular) grid in the z space: the first

center is the initial position of the z variables, and a new center

is deposed when the z-trajectory visits a point farther than a

prefixed threshold, d, from all previously generated centers.

Second, the free energy is expressed as a linear combination of

Gaussians centered on the grid points {zj}

~FðzÞ ¼
XJ
j¼1

aje
�
ðz�zj Þ2

2s2 þ C; ð4Þ

where C is an additive constant, J is the number of grid points,

and a = {aj}, s > 0 are adjustable parameters. The optimal

parameters are determined by minimizing (as described in

ref. 20 and 39) the objective function

Erða; sÞ ¼
XJ
j¼1

Xn
a¼1

eja fja þ
@ ~FðzÞ
@za

� �
z¼zj

" #2
ð5Þ

where fja is the a component of the mean force computed at

z = zj using

fj ¼ limt!1
k

t

Z t

0

ðyð�x1ðtÞÞ � zjÞdt ð6Þ

( %x1(t)) is a trajectory obtained by propagating the first two

equations in the system above with fixed z. Following

Monteferrante et al.,39 in eqn (5) we set eja = 1/|fja|
2.

3. Results

To study the quantum effects on the non-local diffusion free

energy barrier we used a simulation setup very similar to the

m€x1 ¼ �rx1Ueff ðx; bÞ � k
Pn
a¼1
ðyaðx1Þ � zaÞrx1yaðx1Þ þ ThermðbÞ

m€xi ¼ �rxiUeff ðx; bÞ þ ThermðbÞ i ¼ 2; :::;P
M€za ¼ kðyaðx1Þ � zaÞ þ Thermð�bÞ a ¼ 1; :::; n

8>><
>>:

z we use one dimensional notation, but the generalization to more
dimensions is straightforward.
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one adopted in the classical calculations.13,18,19 The microscopic

picture that we associate with the non-local diffusion process is

quite simple: a pair of Al units is selected in the crystal (one of the

units hosts the vacancy) and the process corresponds to an

hydrogen transfer from the fully hexacoordinated to the defective

unit. We assume that the H transferring from the AlH6
3� to the

defective Al group is always the one closer to the acceptor

alumina.y The collective variable chosen to represent this

transfer is then the same as in ref. 19, where we also

demonstrated via a committor test40 that it can safely represent

the reaction. This collective variable is defined as the difference

among the distances of the selected hydrogen atom and the two

Al atoms, thus

D(x) = |
-
xAl1
� -

xH| � |
-
xH � -

xAl2
| (7)

where
-
xK is the position of atom K. Given the equilibrium

distances of the crystal, in the classical case, the hydrogen

transfer is characterized by D changing from D1 E �2.5 Å

(H bound to the first Al) to D2 E 2.5 Å (H bound to the

second). As we shall see, a similar behavior is found also in the

quantum case, where we will consider D(x1), i.e. the function

evaluated at the position of bead number 1 for all atoms

involved. As discussed in ref. 19, the crystal lattice is such that

the transferring H can experience three different environments

(differing for the position of the sodium atoms in the region

of the hop) depending on the chosen pair of Al, see Fig. 1

(the figure is the same as in ref. 19). The classical calculations

showed free energy barriers substantially independent of the

specific case. Since we expect this similarity also for the

quantum free energy, in this work we will repeat the

calculation only for one of them, corresponding to the most

symmetric Na configuration (case (a) in the figure).

All calculations were performed using CPMD.41 The simulation

box was constructed starting from the classical representation

of the nuclei. We first removed a negatively charged Hz from a

(2� 2� 1) cell of the Na3AlH6 (classical) perfect crystal. With this

choice, the cell, shown in Fig. 2, contains 24 Na+ ions, 7 AlH6
3�

non-defective aluminium groups, and 1 AlH5
2�. The initial

configuration for the path integral representation of each atom

was generated by placing the first bead at the classical position and

then sampling directly, using Levy flight,43 P � 1 coordinates for

the other beads from the harmonic part of the effective potential,32

see eqn (3).8 We found, by computing the value of the average

force at a characteristic point for an increasing number of beads

(see below), that P = 16 beads were sufficient to converge the

path integral representation of the nuclei. To perform the

electronic structure calculations, the orbitals were expanded in

plane waves, with a spherical cut-off of Ec = 1360 eV. Only

orbitals corresponding to the G point were included. DFT was

implemented using the BLYP exchange correlation functional44,45

with generalized gradient approximation. Troullier-Martins

pseudopotentials46 were employed with nine electrons in the

valence state of sodium, three electrons in the valence state of Al

and one in that of hydrogen. Since we are considering a charged

vacancy, the net charge of our system is plus one, thus a

background charge was used to eliminate the divergence in the

electrostatic energy.47 The path integral molecular dynamicsmodule

of the CPMD code, appropriately modified, was used to propagate

the equations of the TAMD system. Due to the considerable cost of

path integral ab initio MD for a system of this size (the number of

nuclear degrees of freedom is 16 � 3 � 79 = 3792) we used

Car-Parrinello dynamics48 to evolve the system. The presence

of high nuclear frequencies in the harmonic part of the effective

potential Ueff made it necessary to use a fictitious mass equal

to me = 300 a.u. for the electronic degrees of freedom to

ensure adiabatic separation in the Car-Parrinello dynamics.

Fig. 1 Positions of the sodium atoms (white circles) around the

donor and acceptor alumina (black circles). In all cases, the Na and

Al are the vertices of an octahedron. However, while for the (a)

configuration, shown in the leftmost panel of the figure, the octahedron

is a regular bipyramid and the sodii are in symmetric positions with

respect to the line joining the alumina, the other two configurations are

less regular and the vertices of the octahedron are distorted, with the

largest distortion occurring for the (c) case. The numbers indicate the

distances, in Å, between the atoms.

Fig. 2 Snapshot of the simulation box for the defective Na3AlH6

crystal. The molecular groups AlH6
3� and AlH5

2� (indicated with the

arrow) are shown in black: The Als are the black spheres at the center

of the groups, the Hs are the smaller black spheres at the end of the

sticks representing the bonds. The Na+ ions are shown as light gray

spheres.

y This is justified based on preliminary, classical, calculations showing
that the donor and acceptor Al groups are essentially free to rearrange
their hydrogens and rotate so that their relative orientation always
favors this particular transfer.
z Different analyses14,19,42 have shown that a positive vacancy is the
most likely to appear in the system.
8 Quantum free particle behavior is assumed in generating this initial
condition, subsequent equilibration accounts for the potential inter-
action, and for possible shifts of the center of mass of the quantum
polymer. The procedure is implemented in CPMD via the DEBRO-
GLIE keyword.
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This value of the mass, somewhat smaller than the one

employed in the classical calculations (me E 800 a.u.),

required an integration time step Dt = 0.07 fs (vs. Dt = 0.1 fs

in the standard calculation). The nuclear degrees of freedom were

kept at a constant temperature T= 380 K using a Nosè–Hoover

chain with four thermostats, with characteristic frequency o =

15 � 1013 s�1 (the highest nuclear frequency in the system

corresponds to the chain frequency oP E 16 � 1013 s�1). To

further reduce the cost of our calculations, we did not propagate

a TAMD trajectory to set the positions of the centers for the

radial basis reconstruction of the free energy (this is in fact not

strictly necessary when using only one collective variable).

Rather, we selected from the grid used to calculate the classical

free energy in ref. 19 a set of 11 points regularly spaced with

D(x) A [�2.5; 2.5] Å (this number of centers proved enough to

converge the reconstruction). We then computed the quantum

mean forces at these points via restrained dynamics (see eqn (6)).

In this dynamics we set the (asymptotic) value of the coupling

constant between the collective variable and the z equal to k =

0.5 a.u. and used a very large value (M= 1012 a.u.) for the mass

of the fictitious variable. This ensured that the fictitious variables

did not move on the time scale necessary to converge the mean

force calculation. The restrained trajectories were 5 ps long, 1 ps

for equilibration, 4 for average accumulation. This resulted in an

relative error of 3% on the calculated mean forces and required

about 25 000 hours, using 120 processors on a Linux cluster

based on 2-way quad-core Opteron processor (2.1 GHz with

16 GB of RAM) with Infiniband interconnection. 5 ps runs were

performed to compute also the classical average forces in ref. 19.

As observed in similar cases,29,49 classical forces showed less

fluctuations in the average leading to an error about one order of

magnitude smaller. The classical and quantum average forces at

the different grid points are shown in Fig. 3 where they are

represented as triangles and squares, respectively. The data show

differences well outside of the error bars for essentially all points.

In particular, the maximum (minimum) value of the classical

force is shifted towards larger (smaller) distances by about 0.5 Å

with respect to the quantum case. These differences are reflected

in the reconstructed free energies reported in Fig. 4, where the

classical curve is shown as the black curve with triangles while the

quantum result is the curve with squares. The curves in the figure

have been shifted to coincide at the leftmost minimum in the

classical free energy. The transition state (classical and quantum)

is located at the origin, when the transferring proton is

equidistant from the Al groups. For the quantum calculations,

the transition state is characterized by the first bead at equal

distance from the Al groups. The classical free energy profile is

slightly asymmetric, with left and right barriers equal to DFCl =
0.40 eV and DFCr = 0.45 eV, respectively. The asymmetry of the

quantum result is more pronounced, with the new barriers equal

to DFQl = 0.33 eV and DFQr = 0.41 eV. There is also a shift of

the minima towards the origin, often observed in calculations of

this kind,21–24,29 and which is usually considered a manifestation

of tunneling effects. The difference among the classical and

quantum free energy barriers, while detectable, is quite small

with the larger discrepancy observed for the left barrier and equal

to 0.07 eV. The quantum free energy is in better agreement with

the result of the neutron scattering experiment (DFns = 0.37 eV),

with a reduction of the barrier of about 18% that we attribute to

tunneling (as indicated by the shift of the minima). The

calculation presented here improves the agreement with these

experiments, but it does not qualitatively change the result of the

previous calculation. The data thus confirm that the neutron

scattering signal is due to non-local H diffusion, while the signal

in anelastic spectroscopy originates elsewhere. The validity of our

conclusions relies on two main factors. First of all, we trust the

accuracy of the microscopic model adopted (and in particular of

the DFT calculation of the electronic structure). This model was

tested in ref. 18 by comparing structural properties of the

(perfect) crystal with classical nuclei with experimental data2

and proved satisfactory. Secondly, as with all free energy

calculations, our conclusion depends on the choice of the

collective variables adopted to describe the process. In

particular, we assumed that the H transfer is not assisted by

the motion of atoms other than the donor and acceptor Als. For

example, then, cooperative motions of the lattice, and the

Fig. 3 Classical (triangles) and quantum (squares) average forces.

The size of the squares is representative of the error, while the error on

the classical calculations is too small to be visible.

Fig. 4 Classical (black curve with triangle) and quantum (light gray

curve with squares) free energies. To set the zero of the free energies to

the same value, the curves have been shifted so as to coincide at the

leftmost point of the grid.
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possible involvement of the Na ions in ‘‘shuttling’’ the

transferring hydrogen are not accounted for. This choice,

which is the same adopted in all calculations performed on the

system, is motivated by direct observation of the transfer in

preliminary calculations and supported by the (classical)

committor test performed in ref. 40. Having excluded the

local and non-local hydrogen transfer process, the most

likely hypothesis within the set of processes considered for

explaining the signal observed in an elastic scattering seems

indeed to be sodium vacancy mobility.

4. Conclusions

In this paper, we used the path integral single sweep method

to investigate quantum effects on the free energy barrier for

non-local hydrogen diffusion in sodium alanates. We showed

that these effects, due most likely to tunneling, cause a

reduction of the barrier 0.07 eV for the left barrier and

0.04 eV for the right one. Although this reduction is non-

negligible compared to the typical thermal energy, it is not

enough to lead to agreement with the experimental signal of

Palumbo, DFex = 0.126 eV. On the other hand, the new result

is in better agreement with the barrier observed by Voss et al.13

Based on this, we confirm (1) that the non-local H diffusion is

the process observed for the neutron scattering experiment and

that (2) the signal in anelastic scattering cannot be attributed

to either of the H related processes considered so far in

the literature. The more likely origin of this signal among

current hypothesis is thus the mobility of a sodium vacancy as

suggested by the calculation of the potential energy barriers in

ref. 13.

5. Appendix

In the following, we discuss in some more detail the quantum

single sweep method. Let us start from the definition of the

quantum free energy of a system of distinguishable particles.

Introducing a set of collective variables y(x̂) = {y1(x̂),. . .,yn(x̂)},
assumed to be a function of the coordinate operators of the

system, this quantity is given by

FðzÞ ¼ �b�1 lnTr e�bĤ

Z
dðyðx̂Þ � zÞ

( )
ð8Þ

where z = {z1,. . .,zn}, dðyðx̂Þ � zÞ �
Qn

a¼1 dðyaðx̂Þ � zaÞ, and
Z = Tr{e�bĤ} is the partition function. Evaluating the trace in

the coordinate basis, and using the fact that the collective

variables are diagonal in this basis, the free energy can be

expressed as

FðzÞ ¼ � b�1 ln
1

Z

Z
dx1hx1je�bĤdðyðx̂Þ � zÞjx1i

¼ � b�1 ln
1

Z

Z
dx1hx1je�bĤ jx1idðyðx1Þ � zÞ

ð9Þ

The matrix element of the Boltzmann operator can be written

most conveniently using a path integral representation. This repre-

sentation is obtained using the steps introduced by Feynman:30

insert P� 1 resolutions of the identity in the coordinate representa-

tion to write hx1je�bĤ jx1i ¼
R
dx2 . . . dxP

QP
i¼1 hxiþ1je�eĤ jxii

(with e = b/P, and xP+1 = x1) and then use the Trotter

factorization

hxiþ1je�eĤ jxii ¼ xiþ1je�e
p̂2

2mjxi
� �

e�e VðxiÞþVðxiþ1Þ½ �

þ O e2
p̂2

2m
;Vðx̂Þ

� �� �

�
ffiffiffiffiffiffiffiffiffiffiffiffi
m

2pe�h2

r
e
�mðxiþ1�xiÞ

2

2e�h2 e�e VðxiÞþVðxiþ1Þ½ �

ð10Þ

to approximate each matrix element in the product over i.

Using these two steps in eqn (9), the free energy becomes

FðzÞ � �b�1 lnQ�1
Z

dx1 . . . dxPe
�
PP
i¼1

mðxiþ1�xi Þ2

2e�h2
e
�e
PP
i¼1

VðxiÞ

� dðyðx1Þ � zÞ

ð11Þ

where we indicated with Q the path integral representation of

the partition function. The expression above becomes exact for

P - N. If now introduce the ‘‘chain frequency’’ oP ¼
ffiffiffiffi
P
p

=b�h

and the effective potential defined in eqn (3), we obtain the

expression in eqn (2). The harmonic terms in the effective

potential represent the quantum kinetic energy and link the

different beads of the polymer, each feeling the Pth fraction of

the potential V which describes the external and/or interaction

potential (for many particle systems). As a direct consequence

of eqn (9), in this free energy the delta function constraining the

collective variables at the value z acts only on the first bead of

the polymer. Essentially all the classical schemes available for

free energy calculation can be adapted to this expression. As

mentioned in the text, we focused on single sweep.20 The

quantum version of the method is obtained by retracing very

closely the steps of the original derivation. In the following, we

highlight the differences between the quantum and classical cases,

but rely on the original references for the details of the proofs

when these differences do not introduce significant changes. In

particular, we will address only the exploration step (i.e. the

TAMD part of single sweep), since the reconstruction via the

Gaussian basis set is essentially identical to the classical procedure.

The main difference between classical and quantum TAMD is in

the definition of the potential coupling physical and fictitious

variables. In classical single sweep, the ‘‘full’’ particle is coupled

to the auxiliary variable: if we indicate with r = {r1,. . .,rn} the

Cartesian coordinates of the classical system of n particles (with

ri = (rix,riy,riz)), the coupling is k
2

Pn
a¼1 ðyaðrÞ � zaÞ2, see, for

example, eqn (8) in ref. 33. For the quantum case, as indicated

in the text, this interaction takes the form k
2

Pn
a¼1ðyaðx1Þ � zaÞ2.

This coupling affects only the coordinate x1 in each path integral

polymer, so it involves only one of the beads that represent the

quantum particle. With this coupling, we can proceed in analogy

to the classical single sweep to establish the successive steps of the

method, and in particular the evolution defined by the system in

Section 2. The most important property of this system is the fact

that, in the limits for M, k and the thermostat parameters

indicated in the text, the z variables explore the physical free

energy thus ensuring that the centers collected along their

trajectory are in relevant regions of the z space. This can be
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understood by observing that, if the auxiliary variables move

much slower than the physical ones, they are subject to an

effective force which is given by the average of the right hand

side of the third member of the system of equations with respect

to the conditional probability for x given z.37,38 The thermostat

is not affected by this average, so the relevant quantity is

k
R
dx(ya(x1)�za)r(x|z) (12)

where rðxjzÞ ¼ Q�1k e�b Ueff ðx;bÞþk
2

Pn
a¼1 ðyaðx1Þ�zaÞ

2½ � is the condi-

tional probability for x given z (here Q�1k ¼R
dxe�b Ueff ðx;bÞþk

2

Pn
a¼1 ðyaðxÞ�zaÞ

2½ �). Let us now define

FkðzÞ ¼ �b�1 lnQ�1k

Z
dxe�bUeff ðx;bÞe�

bk
2

Pn
a¼1 ðyaðx1Þ�zaÞ

2

ð13Þ

with Q�1k ¼
R
dxdze�b Ueff ðx;bÞþk

2

Pn
a¼1ðyaðx1Þ�zaÞ

2½ �. The average

force is given by rzFk(z). In the limit k - N, the product

of Gaussians in the equation above becomes a product of delta

functions and the path integral form of the quantum free

energy, see (2), is recovered.
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