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Abstract

Upper and lower estimates of Stieltjes function byN-point Padé approximants can be obtained using the new
general inequality reported by Tokarzewski et al. (Arch. Mech. 54 (2002) 141–153) and rigorously proved in the
present paper. In addition, we prove that the multipoint Padé approximants to Stieltjes function are symmetric with
respect to the order of choice of the considered points.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Inequalities between the one-point classical Padé approximants to Stieltjes functionf andf itself are
presented in many monographs, cf.[1,2]. The order equilibrated, optimal inequalities for Padé approx-
imant errors in the Stieltjes case were investigated in[3,4]. The classical inequalities for the two-point
{0,∞} Padé approximants were derived in[10]. Optimal inequalities were recently obtained in[5,6].
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Bounding properties ofN -point Padé approximants to Stieltjes functions were discussed in[8,9,11]. In
this paper, in order to improve the bounds on Stieltjes functions we study the inequalities for theN-point
(N�2) Padé approximants (NPA) allowing to estimatef from top and from below.
Let f1 be a Stieltjes function defined by

f1(x)=
∫ 1/R

0

d�(u)

1+ xu (1)

andf be an analytic function atN different points−R<x1<x2< · · ·<xN <∞
f (x)= f (x1)+ (x − x1)f1(x) (2)

having a finite limit at∞ and the power expansions

∞∑
k=0

ck(xj )(x − xj )k, j = 1, . . . , N.

In practical situations, we only know a few first coefficients of each expansion and then we have to deal
with the limited information characterized by the truncated power series

pj−1∑
k=0

ck(xj )(x − xj )k +O((x − xj )pj ), j = 1, . . . , N. (3)

Remark. The reader may wonder why we always deal with functions defined by (2) instead of pure
Stieltjes functions. In fact, our motivation is to apply the NPA in mechanics to estimate the effective
moduli of inhomogeneous two-phase media which are represented precisely by functions of the form (2).
The aim of this paper is to present two new results. First, we give a complete revised proof of a

general inequality between theN-point Padé approximants tof andf itself on]−R,∞] announced by the
authors in[11]. This inequality allows to obtain lower and upper bounds off on the real axis. Secondly,
we generalize the known property of Thiele interpolants showing thatN-point Padé approximants are
symmetric with respect to all pointsxj .
TheN-point Padé approximant tof, if it exists, is a rational functionPm/Qn = [m/n] denoted, when

needed, as follows:

[m/n]p1p2...pNx1x2...xN (x)=
a0 + a1x + · · · + amxm
1+ b1x + · · · + bnxn , (4)

m+ n+ 1= p = p1 + p2 + · · · + pN
satisfying the following relations:

f (x)− [m/n](x)=O((x − xj )pj ), j = 1,2, . . . , N. (5)

Eachpj represents the number of coefficientsck(xj ) of expansion (3) actually used for the computation
of NPA given by (4). In the following we deal only with diagonal[n/n] and subdiagonal[n+1/n]NPA,
where

n= E

(
p − 1

2

)
, m= p − 1− n, (6)
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E(x) denoting an entire part ofx. All previous definitions of NPA are also valid for points in the complex
domain, but here we are concerned only with the inequalities on the real axis.
Let us recall the usual notation of a continued fraction:

r

K
k=1

ak

1
:= a1

1+
a2

1+ · · · ar
1
.

We begin by expanding the functionf in an one-point continued fraction:

f (x)= f (x1)+ (x − x1)f1(x)= f (x1)+ (x − x1)f1(x1)
1+ (x − x1)f2(x)

= · · · = f (x1)+
r−1
K
k=1

(x − x1)fk(x1)
1+

(x − x1)fr(x)
1

. (7)

To expandf in aN-point continued fraction (NCF) we introduce a nondecreasing step-wise functionL

L(x)=
N∑
j=1

pjH(x − xj ), H(t)=
{
0 if t <0,
1 if t�0, (8)

whereH is the Heaviside function. The valueL(x) denotes the total number of given coefficients of power
expansions off at all pointsxj �x:

L(xk)= p1 + p2 + · · · + pk, L(xN)= p =
N∑
j=1

pj .

To construct a multipoint continued fraction off, we begin by expandingf at x1 as shown in (7), we
follow by expandingfL(x1)=p1 atx2, and so on:

f (x)= f (x1)+
L(x1)−1
K
k=1

(x − x1)fk(x1)
1+

x − x1
x − x2

L(x2)−1
K

k=L(x1)
(x − x2)fk(x2)

1+
. . .
x − xN−1
x − xN

L(xN)−1
K

k=L(xN−1)

(x − xN)fk(xN)
1+

(x − xN)fp(x)
1

. (9)

One can readily verify that the diagonal or subdiagonal NPA tof is given by the truncation of the last
term in (9)

[m/n]p1p2...pNx1x2...xN (x)= f (x1)
+ · · · + L(x1)−1

K
k=1

(x − x1)fk(x1)
1+

x − x1
x − x2

L(x2)−1
K

k=L(x1)
(x − x2)fk(x2)

1+
. . .
x − xN−1
x − xN

L(xN)−1
K

k=L(xN−1)

(x − xN)fk(xN)
1

. (10)
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2. Basic inequality

To prove the main inequality we need some preliminary lemmas.

Lemma 1 (Baker Jr.[1, p. 244]). If F is a Stieltjes function defined by

F(x)=
∫ 1/R

0

d�(u)

1+ xu,

then for the reala ∈] − R,∞[ the functionf (x)= F(x + a) is also a Stieltjes function:

f (x)= F(x + a)=
∫ 1/(R+a)

0

d�(v)

1+ xv .

Proof. If d� is a positive measure, then after the change of variablesu = v/(1 − av) the measure
d�(v)= (1− av)d�(v/(1− av)) is also positive:

∫ 1/R

0

d�(u)

1+ xu =
∫ 1/(R+a)

0

(1− av)d�(v/(1− av))
1+ xv .

The radius of convergence ofF is at leastR, while the radius of convergence off is at leastR + a. �

Lemma 2. If f is a Stieltjes function, then the inverted Stieltjes function g given by the following shifted
linear fractional transformation(LFT):

f (x)= f (a)

1+ (x − a)g(x) (11)

is also a Stieltjes function.

Proof. The classical nonshifted LFT relates the Stieltjes functionF to the inverted Stieltjes functionG
as follows:

F(x)= F(0)

1+ xG(x) . (12)

Definingf (x + a) := F(x) andg(x + a) := G(x), and changing nowx by x − a we obtain (11) using
the Lemma 1. �

Lemma 3. Let f and g are the Stieltjes functions with a radius of convergence at least R related by(11),
then

∀x ∈] − R,∞[: 1+ (x − a)g(x)�0. (13)

Proof. f (a)>0 becausef, being Stieltjes function, is a positive decreasing function. Then the denomi-
nator in (11) cannot vanish in] − R,∞[ and it is also positive. �

Now we are in a position to prove the main result of this paper.
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Theorem 4. Letf (x)= f (x1)+ (x − x1)f1(x),wheref1 is a Stieltjes function defined by(1).Then the
diagonal[n/n] and subdiagonal[n + 1/n] N-point Padé approximants[m/n]p1p2...pNx1x2...xN (x) to f obey the
following inequality:

x ∈] − R,∞[: (−1)L(x)[m/n](x)�(−1)L(x)f (x), (14)

whereL(x) is defined by(8).

Remark. The last theorem is also valid for the pure Stieltjes functionsf1 if one changes the sense of
inequality (14).

Proof. Following Lemma 2 allfk in (9) are Stieltjes functions, and so they are decreasing positive
functions. Then, following Lemma 3 we have

∀x ∈] − R,∞[, ∀k, j : 1+ (x − xj )fk(xj )�1+ (x − xj )fk(x)>0. (15)

Removing now(x − xN)fp(x) in (9) we obtain the finite NCF equal to the NPA[m/n]p1p2...pNx1x2...xN (x) to f.
The last denominator of this NCF is

1+ (x − xN)fp−1(xN)�1+ (x − xN) fp−1(xN)
1+ (x − xN)fp(x) = 1+ (x − xN)fp−1(x).

Then, this denominator is increased with respect to the actual denominator off (x). Then remounting the
NCF, the previous denominator is decreased ifx >xN (L(x) = p) and increased ifx <xN (L(x)<p).
Then the NPA[m/n], that is a finite NCF, is increased ifp is even and decreased ifp is odd (cf. (14))
with respect tof (x) which is identified with the nontruncated NCF. This completes the proof.�

Remark. We can observe that the parity ofL controls the position of NPA with respect tof and so we
can obtain two-sided estimates off playing with this parity. It is illustrated byFig. 1, where in each case
the four-point PA is accompanied by “poorest” three-point PA which is calculated by removing the point
x1. This three-point PA bounds the given function on the opposite side with respect to the four-point
PA. Consequently, one obtains a curious result giving the two-sided estimates by removing some part of
information. We can also readily verify that for the one-point (X1 = 0) classical PA, the inequality (14)
reduces to the classical one: on[−R,0[ all PA to f are greater thanf, and on]0,∞[ their positions with
respect tof change with the parity ofL used coefficients.

3. Symmetry property of multipoint Padé approximants

The symmetry of NCF and consequently of NPA is not necessarily a property of Stieltjes functions.
The necessary condition requires that the Thiele continued fraction interpolatingf be nondegenerate,
that is, the Thiele interpolant must represent all initial nodes used to its construction. Let us analyze
the following example of three-point Padé approximants and the corresponding continued fractions
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Fig. 1. Three- and four-point Padé approximants to the functionf (x) = 1 − ln(2) + xf 1(x), where
x1= 0, x2 = 1, x3= 103, x4= 106, and wheref1(x)= (1/x) ln(1+ x).

in the case of the nonStieltjes functionf (z)= zez:

[2/1]1,2,1−1,0,1(z)=
.368z

1− .632(1+ z)/(1+ .462z)
= [2/1]1,2,11,0,−1(z)=

2.718z

1− 1.718(z− 1)/(1+ .462z)
= [2/1]2,1,10,1,−1(z)=

z

1− .632z/(1+ .316(z− 1))
= z+ .462z2
1− .462z .

In each expansion in continued fraction the three points are taken in different order. However, the final
result is the same. This interesting property is well-known for the Thiele interpolants (Thiele reciprocal
differences method[7]), which are the NPA with allpj = 1: [m/n]1,1...,1x1x2...xN

(x). This property can readily
be generalized to allN-point Padé approximants.

Theorem 5. Let f be a function having a nondegenerate expansion in N-point continued fraction at the
pointsx1x2 . . . xN and let(�1, �2, . . . , �N) be an arbitrary permutation of(1,2, . . . , N).Then all N-point
Padé approximants[m/n]p�1p�2...p�N

x�1x�2...x�N
(x) coincide.

Proof. Let us consider the ThieleN-point continued fraction constructed withN nodes(x1, f (x1) =
a1), . . . , (xN, f (xN)):

f (x)= a1

1+
(x − x1)a2

1+ · · · (x − xN−1aN)
1+

(x − xN)fN+1(x)
1

.

TakingfN+1(x)= 0 we obtain the Thiele interpolant, or the NPA[m/n]1,1...,1x1x2...xN
(x). If this interpolant is

nondegenerate and conserves this property for arbitrary pointsxj (it is, for instance, the case of Stieltjes
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functionswhereallaj arepositivenumbers)wecanproceedas follows: Ifr firstxj tendy1 ands=N−r last
points toy2, we obtain the NPA[m/n]r, sy1,y2. The symmetry of Thiele interpolants allows us to interchange
the position of the firstr points with the lasts points without changing the interpolant. Then, after the
above coalescence we obtain the NPA[m/n]s, ry2,y1 = [m/n]r, sy1,y2. Similar statement is also true for more
limit pointsyj , what proves the theorem.�

Our next aim will be the derivation of the inequalities between different NPA and also optimal inequal-
ities for the errors in the Stieltjes case, like for the one- and two-point PA.
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