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Abstract. The paper deals with the adaptive optimal semi-active control of the slender vibrating structures
subjected to the moving loads. The deflection of the structure is governed by Euler-Bernoulli beam equation
approximated by the system of bilinear ordinary differential equations. The damping function of the structure
support is chosen as the control function. The optimal control problem consists in finding such bang-bang control
function to minimize the energy as well as the vibrations of the carrying structure. Although the switched optimal
control is a very efficient tool in the reduction of structure vibrations it is very sensitive with respect to changes
of the speed of the traveling load. This paper deals with the development of the adaptive descent type algorithm
that enables the update of the optimal controls in real time based on the measured speed of the traveling load or
structure’s state. The proposed algorithm uses reference optimal controls computed for the constant speeds and
the set of functions describing the sensitivity of the system dynamics with respect to the measured parameters.
Numerical computations are carried out for different speed scenarios of the moving load. The obtained numerical
results indicate that the proposed adaptive controller can significantly outperform the reference optimal solutions.

1 Introduction

The high speed traveling loads interacting with the slen-
der structures generate their vibrations and/or reduce their
stability. The primary aim of the structural control is to re-
duce these undesired oscillations and to enhance the struc-
ture’s stability [1]. Many control methods of vibrating
structures, including adaptive controllers (see references in
[2]) are proposed in literature. Most of the existing optimal
adaptive controllers (see [3]) are based on complex itera-
tive procedures that often do not guarantee convergence to
a solution in the required time.

The aim of this paper is to develop and test new method
that enables online adaptation of the optimal damping of
the structure’s supports according to both the measured
speed of the traveling load and the estimated state of the
structure. The control aim consists in finding the bang-
bang control function minimizing the objective functional
related to the total energy of the structure. The design of
the adaptive controller will be based on two optimal con-
trol subproblems. The first one will be the bilinear optimal
control subproblem involving some given reference pas-
sage velocity. For this subproblem, we will formulate the
necessary optimality conditions and identify the switched
structure of the optimal controls. For the assumed ref-
erence velocity, the set of optimal switching times will
be computed off line by solving the corresponding two
point boundary value problem. In the second subprob-
lem, intended for the sequential solution, we will consider
the actual measured velocity. To find the set of optimal

⋆Corresponding author: myslinsk@ibspan.waw.pl

switching times for this subproblem, we will use the sim-
ple gradient-based iterative procedure involving the opti-
mal solutions computed for the reference speed and the
set of functions describing the sensitivity of the system
dynamics with respect to the measured velocity. The sen-
sitivity of reference solutions with respect to velocity is
calculated based on Taylor series expansion rather than on
the analysis of the second order optimality conditions as in
[2, 4]. Since the sensitivity functions can be computed off
line the solution to the second subproblem can be calcu-
lated very quickly. This feature allows the frequent update
of the optimal controls. The performance of the designed
adaptive method will be validated by means of numeri-
cal simulations for different speed scenarios of the moving
load.

2 Structure model

Consider the carrying structure supported by the set of
controlled dampers as illustrated in Fig. 1. The struc-
ture is governed by one-dimensional fourth order Euler–
Bernoulli beam equation [5] and is characterized by the
bending stiffness EI and density per unit length µ. The in-
teraction between the mass and the beam is represented by
contact point. The inertial forces associated to the mass
are neglected [5]. The position and the velocity of the
moving mass at time t are denoted by ξM(t) and v(t), re-
spectively. The mass position is computed by formula
ξM(t) =

∫ t
0 v(t̄) dt̄ .
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Fig. 1. A span supported by the set of controlled dampers and
subjected to the traveling mass.

2.1 ODE representation

Using the separation technique the transverse deflection
w(ξ, t) of the vibrating beam at point ξ and time t governed
by Euler–Bernoulli equation can be approximated [5] by
the following Fourier series:

w(ξ, t) =
2
L

∞
∑

j̄=1

V j̄(t)θ j̄(ξ), θ j̄(ξ) = sin( j̄πξ/L). (1)

We will rely on the approximated solutions by taking j̄
from 1 to n = 10. The state vector x(t) ∈ R2n is defined as

x(t) = [V1(t), V̇1(t),V2(t), V̇2(t), ...,Vn(t), V̇n(t)]T , (2)

where V̇ j = dVj/dt, j = 1, ..., n. Let us also introduce
the system matrices A2n×2n, Bi2n×2n, i = 1, 2, ..,m equal
to: (A) jk = 1 for ( j, k) = (2l̄ − 1, 2l̄) , l̄ = 1, 2, ..., n,
(A) jk = − EIµ

( j/2)4π4

L4 for ( j, k) = (2l̄, 2l̄ − 1) , l̄ = 1, 2, .., n,
(A) jk = − 2

µ L
∑m
i=1 sin (( j+1)/2)πai

L sin (k/2)πai
L for ( j, k) = (2l̄−

1, 2l̂)l̄, l̂ = 1, 2, ..., n, (A) jk = 0 in other cases. More-
over for i = 1, ...,m, (Bi) jk = − 2

µ L sin ( j/2)πai
L sin (k/2)πai

L
for ( j, k) = (2l̄, 2l̂) l̄, l̂ = 1, 2, ..., n and (Bi) jk = 0 else. The
excitation vector F2n×1 is given by: (F) j = −Mgµ sin ( j/2)πv t

L
for j = 2l̄ , l̄ = 1, 2, ..., n and (F) j = 0 else. The beam
dynamic equation can be written [2, 5] as the following
system of the ordinary differential equations in time inter-
val t ∈ [0, T ] with the fixed final time T > 0:

ẋ(t) = A x(t) +
m
∑

i=1
ui(t) Bi x(t) + F(v, t), (3)

x(0) = x0.

The time horizon T is equal to the time of the beam pas-
sage, i.e., T = L/v. For j̄ = 1, 2, ..., n the function x0 ∈ R2n

in the initial condition is given and equal to

x0 = [V1(0), V̇1(0),V2(0), V̇2(0), ...,Vn(0), V̇n(0)]T . (4)

Elements V j̄(0) and V̇ j̄(0) are computed based on the orig-
inal boundary conditions imposed on vibrating beam [2].
The function x0 ∈ R2n is assumed to be bounded. The ma-
trices A and Bi, i = 1, ...,m, are bounded. Each control
input ui(t), i = 1, ...,m, t ∈ [0, T ] is assumed bounded by
two positive real values umini and umaxi corresponding to the

minimum and maximum values of the admissible damp-
ing coefficients, i.e., u = u(t) de f

= {ui(t)}mi=1, u ∈ U de f
=

[umini , u
max
i ]m ⊂ Rm

+
. Moreover 0 < umini < u

max
i ≤ α̃, where

for i = 1, ...,m α̃ > umini is a given real constant.
Note that the control variable u appears linearly in the

state system (3). Due to the middle term in the right hand
side of (3), the system is classified as the bilinear [2].

The excitation vector F = F(v, t) = {Fi(v, t)}2ni=1 is
dependent on velocity v = v(t) : [0, T ] → R. The
velocity v is assumed bounded, i.e., for all t ∈ [0, T ]
vmin < v(t) < vmax where vmin and vmax are a given real
constants and continuously differentiable. Each compo-
nent function Fi(v, t) : R × [0, T ]→ R, i = 1, ..., 2n, of the
excitation vector F is assumed bounded and continuously
differentiable with respect to time t and velocity v. In the
paper, the bang-bang type of control u ∈ U is considered.
It generates the discontinuity of the right hand side of the
system (3).

Let vre f ∈ R denote a given reference velocity of the
moving load. For such a velocity and a positive definite
2n × 2n matrix Q let us recall from [6–8] the optimal con-
trol problem considered for the system (3): For a given ve-
locity vre f find the pair of functions (u(t), x(t)) ∈ U × R2n

minimizing the objective functional

J(u) = J(x(u), vre f ) =
∫ T

0
xT (t)Q x(t) dt, (5)

subject to the constraints on the interval [0, T ]

ẋ(t) = A x(t) +
m
∑

i=1
ui(t) Bi x(t) + F(vre f , t) , (6)

x(0) = xvre f0 . (7)
The solution to problem (5)-(6) will be later referred

to as (u⋆vre f (t), x⋆vre f (t)). The objective functional J :
R2n ×R→ R is associated with the energy of the structure.
The aim of this optimal control problem is to find the con-
trol function, i.e., variable damping coefficients, so that for
a given velocity, the energy of the beam subjected to the
traveling load is minimized. As it is shown in [6], by min-
imizing the objective functional (5) we also provide the
smooth trajectory of the moving load. The existence of an
optimal solution u⋆vre f (t) ∈ U to problem (5)-(6) follows
from Filippov theorem and the continuity of the objective
functional (for details see [9]).

2.2 Necessary optimality condition for problem
(5)-(6)

Let us introduce Hamiltonian function H(t, x, u, p, vre f ) :
[0, T ] × R2n × U × R2n × R→ R defined as follows:

H(t, x, u, p, vre f ) = pT (t)(A x(t)+ (8)
m
∑

i=1
ui(t) Bi x(t) + F(vre f , t)) − xT (t)Q x(t),

where p(t) ∈ R2n is a column vector denoting the adjoint
state. The part of Hamiltonian function associated with the
control function u is called the switching function [4]

σ(t, x, p, vre f ) = (σ1(t, x, p, vre f ), ..., (9)
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σm(t, x, p, vre f )),

σi(t, x, p, vre f ) = pT (t) Bi x(t) for i = 1, 2, ...,m. There-
fore, the necessary optimality condition for (5)-(6) takes
the following form [2, 5]: If u⋆vre f (t) is the optimal control
for the problem (5)-(6) then there exists absolutely contin-
uous function p : [0, T ] → R2n satisfying the following
conditions:

ṗ(t) = −
∂H(t, x, u, p, vre f )

∂x
, p(T ) = 0, (10)

H(t, x, u⋆vre f , p, vre f ) = min
u∈U

H(t, x, u, p, vre f ). (11)

From the minimum condition (10) for the admissible con-
trol set U results the following control law for the ith op-
timal control component

u⋆vre fi (t) =



























umini , if σi(t) < 0,
umaxi , if σi(t) > 0,
undetermined , if σi(t) = 0.

(12)

Throughout the rest of the paper, by the kth switching time
we will mean the column vector τk = (τk1, τk2, ..., τkm)
where τki is associated with the control component ui.

3 Sensitivity of optimal bang-bang
controls with respect to velocity

Assume that for a given velocity vre f the optimal control
structure τk for the problem (5)-(6) is known. As it was
shown in [5], the solution to optimal control problem (5)-
(6) exhibits significant sensitivity with respect to changes
in the speed v of the traveling load. Denote by t′ ∈ [0, T )
the measurement time instant of the traveling load and the
state of the structure. Assuming that for the chosen time
instant t′ the real speed v = v(t′) of the traveling load and
the real state x(t′) of the structure are known from the mea-
surements our goal is to develop a method that enables the
real-time adaptation of the optimal control functions ac-
cording to both measured values. The method will use the
reference optimal control functions computed for a given
reference speed and the set of functions describing the sen-
sitivity of the system dynamics to the measured parame-
ters. Assume that the velocity perturbation

dv = v − vre f , (13)

is suitably small. Let us now consider new finite-
dimensional optimization problem involving the perturbed
switching times as the optimization variables. First, we
will introduce the following assumptions [2, 4]:
A1 The optimal control u⋆vre f (as well as the switching
function σ(t)) has a finite number of switching times (ze-
roes) τ⋆vre fk , k = 1, ...,K satisfying

0 = τ⋆vre f0 < τ
⋆vre f
1 < τ

⋆vre f
k < ... < τ

⋆vre f
K+1 = T. (14)

A2 There exists a set of twice continuously differentiable
functions uk(t, x) such that the control u⋆vre f (t) is given in
a state feedback form, i.e., for k = 1, ...,K + 1 it holds

u⋆vre f (t) = uk(t, x⋆vre f (t)), ∀t ∈ (τ⋆vre fk−1 , τ
⋆vre f
k ). (15)

A3 The time derivative σ̇ of the switching function σ is
assumed not to vanish, i.e., the strict bang-bang property
[4] is assumed to be satisfied

σ̇(τ⋆vre fk ) � 0, k = 1, ...K. (16)

Based on the assumptions A1–A3 we will reformulate
[2, 4] the optimal control problem (5)-(6) as the finite-
dimensional nonlinear induced optimization problem in
terms of the switching times rather than solve it directly
as the original problem (5)-(6). Let us introduce the ma-
trix of switching times

η = (τ1, τ2, ..., τK) ∈ RK×m, (17)

0 = τ0 < τ1 < τk < ... < τK+1 = T ,

taken from a neighborhood of the optimal reference vector
η⋆vre f = (τ⋆vre f1 , τ

⋆vre f
2 , ..., τ

⋆vre f
K ). For any η satisfying (17),

we will write uη(t) for the nonsingular bang-bang control
for τk−1 < t < τk, k = 1, ...,K + 1 defined as follows:

uη(t) = (uη1(t), uη2(t), ..., uηm(t)) = (uk1, uk2, ..., ukm). (18)

Let us denote by K the following subset of the switching
times indicators:

K = {k : k = 1, ...,K + 1, τk ≥ t′}. (19)

For the control uη(t), η = ((τk)k∈K ), let x = x(t, x(t′), η, v)
be the absolutely continuous function satisfying the initial
value problem

ẋ(t) = A x(t) +
m
�

i=1
uηi (t) B

i x(t) + F(v, t), (20)

for τk−1 < t < τk , k ∈ K , x(t′) = xv0 .

Referring to problem (5)-(6), we have x(t, x⋆vre f (t′), η⋆vre f ,
vre f ) = x⋆vre f (t). Using the solution of the state equation
(20), we can now formulate the parametric optimization
problem in terms of η as the optimization variable: For a
given velocity v find η = ((τk)k∈K ) minimizing the objec-
tive functional

J(η) = J(x(η), v) =
� T

t′
xT (t)Q x(t) dt, (21)

subject to the constraints (20) on the interval [t′, T ]. The
solution to problem (21) will be from now on referred to
as η⋆v = ((τ⋆vk )k∈K ).

3.1 Directional derivatives with respect to
switching time

To solve the optimization problem (21) with constraints
(20) we develop an iterative algorithm based on the
method of the steepest descent. For that purpose we need
to estimate the relevant derivatives corresponding to the di-
rections of the descent for the decision parameter η. It can
be verified (see, for instance, [5]) that the derivative of the
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objective functional (21) with respect to the kth switching
time of the ith control component is given by

dJ
dτki
= −

∫ T

t′

(

∂H
∂τki

)

|τki

dt. (22)

From (11) it yields

dJ
dτki
= (u(k+1)i − uki) pT (τki, (23)

x(t′), (τk)k∈K , v) Bi x(τki, x(t′), (τk)k∈K , v) .

Here, uki is the value of the ith control component in the
time interval t ∈ (τk−1, τk), k ∈ K . In order to evalu-
ate the derivatives (23), we employ approximations of the
state x and the adjoint state p. The approximation of the
state x, denoted later by xapp, will combine the optimal
reference state x⋆vre f and the appropriate differentials due
to the changes in the speed of the moving load, the initial
condition, and the switching times. Similarly, for the ap-
proximate adjoint state p, later referred to as papp, we will
use p⋆vre f and the relevant differentials.

It follows from the assumption (13) on the velocity
perturbation that the perturbation of the initial state dx =
x(t′)− x⋆re f (t′) can also be assumed to be suitably small. It
implies small perturbations of the switching times, defined
as follows:

dτk = (dτk1, dτk2, ..., dτkm) , (24)

dτki = τki − τ⋆re fki , i = 1, 2, ...,m , k ∈ K .

By using the perturbations (13) and (24) the state
x(t, x(t′), (τk)k∈K , v) can be evaluated as the function de-
pendent on

x(t, x⋆re f (t′) + dx, (τ⋆re fk + dτk)k∈K , vre f + dv) . (25)

Since for t ∈ [t′, T ] we have x⋆vre f (t) = x(t, x⋆re f (t′),
(τ⋆re fk )k∈K , vre f ), by using Taylor series expansion formula
and the standard arguments [2] we can employ the follow-
ing approximation of the state function:

xapp(t) = x⋆vre f (t) +
(

∂x
∂v

)

|t
dv +

1
2

(

∂2x
∂v2

)

|t
dv2+ (26)

(

∂x
∂x0

)

|t
dx +

m
∑

i=1

∑

k∈K

(

∂x
∂τki

)

|t
dτki .

For i = 1, 2, ...,m and k ∈ K let us introduce the following
definitions of the sensitivity functions

S xv =
∂x
∂v
, S xvv =

∂2x
∂v2
, S xx0

=

∂x
∂x0
, S xτki =

∂x
∂τki
. (27)

Denote by f the right hand side of equation (6) for t ∈
[t′, T ]. Thus, f = ẋ and due to (20) we have the following
relations:

f = f (x(x0, (τk)k∈K , v), (τk)k∈K , v) . (28)

Thus, using the standard sensitivity approach [9] and dif-
ferentiation with respect to the perturbed parameters we

obtain ordinary differential equations satisfied by the sen-
sitivity functions (27) in [t′, T ]:

Ṡ xv =
∂ f
∂x
S xv +

∂ f
∂v
, S xv (t

′) = 0, (29)

Ṡ xvv =
∂ f
∂x
S xvv +

∂2 f
∂v2
, S xvv(t

′) = 0, (30)

Ṡ xx0
=

∂ f
∂x
S xx0
, S xx0

(t′) = 1, (31)

and for i = 1, 2, ...,m and k ∈ K

Ṡ xτki =
∂ f
∂x
S xτki +

∂ f
∂τki
, S xτki (t

′) = 0 . (32)

From (6) we obtain

∂ f
∂x
= A +

m
∑

i=1
ui Bi, (33)

∂ f
∂τki
= (u(k+1)i − uki) Bi x δ(t − τki), (34)

where ∂ f
∂v
=
∂F
∂v

, ∂
2 f
∂v2
=
∂2F
∂v2

. The approximation papp of
the adjoint state p is based on the adjoint state p⋆vre f cor-
responding to the optimal state x⋆vre f . It is computed sim-
ilarly as the approximation xapp of the state function x,
i.e., Taylor series expansion (26) is used with the adjoint
function p rather than the state function x.

4 Optimal control algorithm
The developed adaptive control numerical algorithm is
based on the concept of the Receding Horizon Control.
This class of algorithms employs the solutions to the finite
horizon optimal control problems where both the initial
and the final times are repetitively being pushed forward.
In this paper, a sequence of problems (21) with incremen-
tally increasing time t′, but fixed final time T , is consid-
ered. The final time is equal to the time in which a moving
load is passing the structure with the constant velocity vre f .
The fixed final time enables us to employ the optimal ref-
erence solutions. Based on the measurements of the actual
velocity v(t′) and the actual state x(t′) as well as using the
formulas for the objective functional derivatives (23) com-
bined with the formula (26) to calculate the approxima-
tion of the state and adjoint functions the algorithm is able
to compute the descent directions to update the set of the
optimally switched controls. Remark that all of the sensi-
tivity state and adjoint functions (29)-(32) can be precom-
puted off line and stored in a controller’s memory. Since
the computation of the values of the objective functional
derivatives (23) can be executed instantaneously, the adap-
tive method can be implemented in real-time. For detailed
description of the algorithm see [2].

5 Numerical examples
The optimal control problem (21) with constraints (20) has
been solved numerically for several passage scenarios in-
cluding both constant and varying speed profiles. For each
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scenario the same reference optimal controls computed for
given constant reference speed is used. Our primary goal
is to estimate the range of velocity perturbation that guar-
antees high performance of the designed method. Ma-
trix Q in the objective functional (21) is assumed as the
identity matrix and the time horizon T is computed for
L = 4 [m]. Here v(t) is the actual velocity in the speed sce-
nario. Other parameters are set as equal to n = 10, m = 4,
EI = 801 [Nm2], µ = 2.3 [kg/m], umin = 500 [N/m],
umax = 5000 [N/m], ai = 0.2L, 0.4L, 0.6L, 0.8L, M =
4 [kg]. In the simulations, maximal number of iterations is
set to lmax = 20 and stop criterion ǫ = 3 · 10−10. Four con-
trol functions ui, i = 1, 2, 3, 4, associated with four con-
trolled dampers are used. For each control function ui two
switching times τ1i and τ2i are assumed (see Fig. 2). The
structure of the controls is defined as follows:

ui(t) =



























umin , if 0 ≤ t < τ1i, i = 1, 2, 3, 4,
umax , if τ1i ≤ t ≤ τ2i, i = 1, 2, 3, 4,
umin , if τ2i < t ≤ T, i = 1, 2, 3, 4.

(35)

The solution to the reference optimal control prob-
lem (5)-(6) has been computed for the moving load speed
vre f = 8 [m/s] and zero initial condition xvre f0 = 0. The cor-
responding time horizon is equal to T = 0.5 [s]. The time
interval [0, T ] is represented by the following set of time
instants {t j} j=0,1,...,1000, t0 = 0, t1000 = T . For this repre-
sentation we obtain the set of optimal switching times for
problem (5)- (6):

damper no. 1 τ
⋆vre f
11 = t1 , τ

⋆vre f
21 = t366 ,

damper no. 2 τ
⋆vre f
12 = t152 , τ

⋆vre f
22 = t596 ,

damper no. 3 τ
⋆vre f
13 = t322 , τ

⋆vre f
23 = t732 ,

damper no. 4 τ
⋆vre f
14 = t80 , τ

⋆vre f
24 = t972 . (36)

The results for the exact optimal controls, later referred
to as the optimal controls and denoted by u⋆⋆ are com-
puted as the solutions to the problem (5)-(6), where in-
stead of the reference velocity vre f and the initial state xvre f0
we assume the actual speed profiles as equal either to con-
stant velocity vconst or piecewise linear variable velocity
vvar. For each case, the optimal control is assumed to pre-
serve two switches structure as given by (35).

Time

u
i

0

τ1i

umax

T

τ2i

umin
umin

Fig. 2. The assumed structure of the switched controls ui, i =
1, 2, 3, 4.

The first set of simulations has been carried out for per-
turbed velocity scenarios. We have considered three sce-
narios of constant speed vconst and three scenarios of vary-
ing speed vvar. The assumed profile of the varying speed
vvar is displayed in Fig. 3. For each of the constant speed

Time

v
v
a
r

Tt200t0
v0

Fig. 3. The profile of the varying speed vvar used in the simula-
tions.

Table 1. The values of the objective function J in the cases of
the perturbed velocity scenarios.

Speed Passive Reference Adaptive Optimal
variant case optimal control control
in [m/s] (u = umax) control (u = u⋆v) (u = u⋆⋆)

(u = u⋆vre f )
vconst = 8 1.0000 0.4801 0.4801 0.4801
vconst = 9 1.0000 0.5295 0.4990 0.4881
vconst = 12 1.0000 0.9081 0.5448 0.5327
vvar, v0 = 8 1.0000 0.5136 0.4939 0.4855
vvar, v0 = 9 1.0000 0.5859 0.5202 0.5025
vvar, v0 = 12 1.0000 1.1314 0.5696 0.5463

scenarios vconst, we assume that the traveling velocity is
within the range of 8-12 [m/s]. The same range is assumed
for the starting velocity v0 in the cases of the varying speed
vvar.

The comparison of the values of the objective func-
tion for the set of considered speed variants is presented
in Table 1. For each speed scenario the objective values
for the optimal, the reference and the adaptive control are
normalized to the passive case. For moving load velocities
higher than 8 [m/s], the adaptive strategy outperforms sig-
nificantly (by 40.1 % or 43.1 % for velocity 12 [m/s]) the
system driven by the open-loop reference controls. On the
other hand this strategy results in only 2.2 % or 4.2 % loss
compared to the optimal case.

Fig. 4 and 5 display the evolution of the adaptive
switching times during the moving load passage with ve-
locity vconst = 12 [m/s]. For the initial values, we assumed
the set of the corresponding reference optimal solutions.
Then, at each time instant, the switching times were repet-
itively updated until the time t667 corresponding to the end
of the passage. The largest change in switching times val-
ues was observed at the beginning of the adaptive process.

The convergence of the algorithm’s gradient-based pro-
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Fig. 4. Evolution of the optimal adaptive switching times {τ⋆v1i }

during the moving load passage for the case vconst = 12 [m/s].
The set of optimal reference switching times {τ⋆vre f1i } is assumed
for the initial values.
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during the moving load passage for the case vconst = 12 [m/s].
The set of optimal reference switching times {τ⋆vre f2i } is assumed
for the initial values.

cedure for different times instants is shown in Fig. 6. for
the moving load passage with velocity vconst = 12 [m/s].
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Fig. 6. Evolution of the objective functional during the itera-
tion of the gradient-based procedure for the time instant t0. The
procedure is terminated by the condition l = lmax.

In Fig. 7 and 8 we demonstrate the comparison of the
adaptive, reference and optimal control signals as well as
the trajectories of the moving load for vconst = 12 [m/s].
One can notice that the switching times of the adaptive
controls tend to approach their corresponding optimal con-
trol values.

0

5000

u
1
(t

)

0

5000

u
2
(t

)

0

5000

u
3
(t

)

t t t t t t t
0

5000

Time

u
4
(t

)

Reference optimal control
Adaptive control
Optimal control

100 200 400 500 6003000

Fig. 7. Reference, adaptive, optimal controls. vconst = 12 [m/s].

6 Conclusion
Real time adaptive control method for structures subjected
to a moving loads has been proposed and tested. The ob-

tained results indicate that the proposed method can out-
perform the reference optimal solutions. Further numeri-
cal as well as experimental tests are being performed.
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Appl. Methods, Advance online publication,
DOI:10.1002/oca.2321 (2017)

[3] M. Diehl, H.J. Ferreau, M. Abu-Khalaf, N. Haver-
beke, Efficient numerical methods for nonlinear
MPC and moving horizon estimation in nonlinear
Model Predictive Control: Towards new challeng-
ing applications (Springer-Verlag, Berlin Heidel-
berg, 2009)

[4] G. Vossen, J. Optim. Theory Appl. 144, 409-429
(2010)

[5] D. Pisarski, Semi-active control system for trajec-
tory optimization of a moving load on an elastic
continuum (PhD Thesis, Institute of Fundamental
Technological Research of Polish Academy of Sci-
ences, Warsaw, 2012)

[6] D. Pisarski, J. Vibr. Control, Advance online publi-
cation, DOI:10.1177/1077546316657244 (2016)

[7] D. Pisarski, Math. Problems Eng. 2015, 1-12 (2015)
[8] D. Pisarski, C. Bajer, J. Sound Vibr. 329, 140-149

(2010)
[9] D. Liberzon, Calculus of variations and optimal

control theory: A concise introduction (Princeton
University Press, New Jersey, 2012)

t t t t t t t
−10

−8

−6

−4

−2

0

2

Time

w
(ξ

M
(t

),
t)

[m
m

]

Passive case
Reference optimal control
Adaptive control
Optimal control

0 100 200 300 400 500 600

Fig. 8. Trajectories of the moving load for vconst = 12 [m/s].

MATEC Web of Conferences 148, 05006 (2018)	 https://doi.org/10.1051/matecconf/201814805006
ICoEV 2017

6


