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Mathematical theory of defects

Part 1. Statics

E. KOSSECKA (WARSZAWA)

TuE BAsIC formulations of the theory of defects in the infinite, linearly elastic continuum are
discussed. The point of departure is the displacement description and the theory of surface
defects, which are represented by the elastic potentials of a double layer. The corresponding
to it total distortion field splits up into its regular part, called elastic and singular part, called
plastic or initial. The elastic stress field satisfies the equilibrium equation ok x = 0, which is the
point of departure for the theory of initial deformations. Next we discuss the theory of disloca-
tions, formulated with the help of elastic distortion field and the theory of disclinations formula-
ted with the help of elastic strain and elastic bend-twist tensor. The transition to the general
incompatibility problem is demonstrated together with the solution for an arbitrary anisotropy
of the medium. ;

Oméwione sa podstawowe sformutowania teorii defektow w nieskoriczonym kontinuum liniowo
sprezystym. Punktem wyjécia jest opis przemieszczeniowy i teoria defektow powierzchniowych,
ktore sa opisywane przez sprezyste potencjaly warstwy podwojnej. Odpowiadajace im calkowite
pole dystorsji rozbija sie na cze$¢ regularng zwana sprezysta i czesé osobliwa, zwana plastyczna
lub wstepna. Sprezyste pole naprezefi defektu powierzchniowego spelnia réwnanie réwnowagi
oirx = 0, ktére jest punktem wyjécia dla teorii deformacji wstgpnych. Nastepnie omoéwiona
jest teoria dyslokacji sformulowana przy uzyciu pola dystorsji sprezystej i teoria dysklinacji
sformutowana przy uzyciu tensora odksztalcenia sprezystego i tensora gietno-skretnego. Poka-
zane jest przejécie do ogélnego problemu niezgodnosci i jego formalne rozwiazanie dla dowolnej
anizotropii.

OGcysKIeHbI OCHOBHEIE (DOPMYNIHPOBKH TEOPHH AeeKTOB B GECKOHEUHOM JIMHEHHO YIPYyrom
KOHTHHYYM. Mcxommoil TOUKOH SBIAIOTCA ONMCAHHE B IEPCMEINCHHMAX M TEOPHUs IOBCPX-
HOCTHBIX Ae(heKTOB, KOTOpbIE OMHCHIBAIOTCA YIPYTHMH HOTCHIHAAMY JBOHHOTO CIIOAL. OTtBe-
YaroIHe WM IOJHOE HOJe UCTOPCHiT pasbuBaeTcs Ha PEryIAPHYIO YaCTh, HA3LIBAEMYIO YIIPY-
Toif, # 0COGYIO YaCTh, HASHIBAEMYIO INTACTHYUECKOH MIH BCTYIIMTEJIBHOI . YIIpyroe IoJjie Hanps-
JKeHMif OBepXHOCTHOro AedheKTa YAOBJIETBOPSET YPABHEHUIO PABHOBECHA Ok = 0, xKoTopoe
SBIAETCS HMCXOMHON TOUKOH I TEOpHHM HauanbHBIX Aedopmauuii. 3arem oOCYyM</eHa Teo-
pHs AuCTOKAmi, chopMyTHpOBaHHAsA [IPH HCIOJb30BAHAMN IO YIPYroif JHCTOPCHH H TEO-
pHUA THCKIHHALMIH, chOpMyTHPOBaHHAA IIPH HCIOJB30BaHUH TEH30pa yopyroi gedopmaimu
M HSrHOHO-Kpyualiero Tensopa. ITokasaH mepexof K ofliell 3a/iauH HECOBMECTHOCTH 1 €€ ¢dop-
MaJBHOE pellleHHe I IPOH3BOJIBHOI AHW30TPOIMH. §

1. Introduction

TuE AM of this work is to demonstrate relations between different formulations of the
theory of defects. We shall consider defects in the linearly elastic, homogeneous, infinite
medium. We shall discuss in principle those formulations of the theory which are applicable
to the theory of dislocations and disclinations. Special methods of the two-dimensional
crack theory will be omitted. We shall apply generalized functions technique.

In every formulation, the theory breaks up into geometrical conditions, which are at
the same time the constraints equations and the methods of solution of the equilibrium
equations, which result from the theory of elasticity.
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From the classical theory of elasticity comes the diplacement description, to which
corresponds the idea of an ideal medium. It is convenient to think of defects as of some
forced deformations of the ideal medium. Deformations corresponding to defects are
characterized by the fact that the displacement field u suffers discontinuities on certain
surfaces inside the medium, called the defects surfaces. The discontinuous u field we treat
further as a generalized function. The total distortion field w;;, which corresponds to
a defect in the displacement description, breaks up into its regular part B and singular
part B, the latter having the character of a delta function concentrated on the defects sur-
face. In the same way the total strain ug;;, breaks up into its regular part e and singular
part . The regular part of strain, and the stress field corresponding to it, always have
a good physical interpretation; this is the elastic field corresponding to a defect. The sin-
gular part of strain has an interpretation of initial strain, in the theory of defects we call
it plastic strain. The regular part of distortion field B, called the elastic distortion, has
a good physical interpretation in the case of dislocations.” This suggests the description
applied in the theory of dislocations. We consider not the ideal medium described by
means of the displacement field u with discontinuities, but the non-ideal medium described
by the field of elastic distortions . The field @ satisfies the constraints equation, which
formally is a relation between the derivatives of the elastic distortion @ and plastic distortion
B; de facto, it is the field equation which describes the influence of the dislocations on the
field B. The dislocations distribution is represented by the dislocation density tensor e

A slightly different description is to be applied for the medium with disclinations.
If the disclinations are present in the medium, no uniquely defined elastic distortion field
exists; the state of elastic deformation is represented by means of elastic strain and what
is called the elastic bend-twist tensor, which describes the relative rotation of the elements
of the medium. In the constraints equations, the dislocation density tensor and the discli-
nation density tensor appear.

As already indicated, for a defect of any kind the elastic strain field and elastic stress
corresponding to it are well defined. For the ideal medium, the strain field satisfies the
de Saint Venant compatibility equation. For the medium with defects, to which correspond
plastic strains e, the compatibility equation is not satisfied; instead, we have the constraints
equations between what are called the incompatibilities of the fields e and é. We can
thus describe the medium by means of elastic field e to which the incompatibility tensor
v corresponds. v is connected with the presence of defects in the medium; formally it is
connected with the presence of plastic strains é. This approach was formulated by
E. KRONER,

2. The displacement description

2.1. Geometry

It is convenient to consider defects as certain forced deformations of the ideal elastic
medium. We thus imagine that a defect was introduced into the medium by making a cut
along some surface S and forcing some finite relative displacement U of the two faces of
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the cut. Thus we define a surface defect as a surface of discontinuity of the displacement
field u. Such a formulation has a clear geometric interpretation. If we use the displacement
description, any defect is a surface defect. A point defect is a limiting case of a defect having
the close surface converging to a point.

The displacement field u does not describe the state of the medium. We say that it is
not the state quantity such as the stress and strain fields. Thus it may occur that in some
cases it is not uniquely defined. For what are called linear defects, dislocations and discli-
nations, the elastic strain field produced in the medium by the defect, depends only on the
defect line, which is the boundary of the surface S. Such defects are the whole class of the u
fields having discontinuities on different surfaces with the same boundary. -

In what follows, it will be convenient to assume that the function U admits the exten-
sion outside the surface S and can be represented as the function of the surface point €.
The condition of discontinuity of the u field we write in the form:

2.1) @] = U®E); Ees.

The double bracket denotes here the discontinuity of a function at the point § belonging
to S. The condition (2.1), which we call here the geometric condition, is de facto the de-
generate boundary condition.

Once U is given, the discontinuities of the tangent derivatives of the u field are pre-
scribed.“In what follows, we shall assume that U is an at least twice differentiable function
of €. The derivatives of U with respect to § we denote by a comma:

d
(2.2) Ui = ¢ Us
Let us define the operator of tangent differentiation:
@3) L S
Bk s

where u is the normal vector of the surface S. The geometric compatibility condition
takes the form:

(2.4)¢ D U; = [ i — il [ms24i,6l 5
(2.4)2 Ui p—mits Up s = [ ]| —mien| [ 6] -

2.2.-Theory of elasticity

We have now to construct the displacement field corresponding to a defect in a linearly
elastic, infinite medium.
The medium, when acted upon by a force density X(x), obeys the static Lamé equa-
tion('):
d

(25) ciklmvkvmul(x) = _Xi(x)s Vk = ?_9
Xk

(') For the derivatives of the functions depending on x or x—{ we shall apply both denotations: f
and Vi f they denote always the differentiation with respect to x, only for the functions of €, fx denotes
the differentiation with respect to {x.
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We accept force densities as being generalized functions. ¢ is the tensor of elastic moduli
of the medium. The particular solution of (2.5) has the form: '

(2.6) u; = Gy % Xx,
where G is the basic solution or the Green tensor of the Lamé equation:
2.7 CiximVk VG = — 6:503(%).

The star in (2.6) denotes the convolution with respect to the three spatial variables.
For the isotropic medium:

(2.8); Cixtm = A0k Otm + (81t S + Sim Or) »
(2‘8)2 . Gik(x) = 431;# {T T ? z +2‘u Vi Vk Fe, ' = lxl )

4 and p are the Lamé constants.

Similarly as for the Laplace equation, for the static Lamé equation we have two im-
portant solutions called the elastic potential of a single and double layer. The theory of
these potentials has been worked out by W. D. KupRADSE [1], the applications to the de-
fects theory having been elucidated by H. Zorsk1 [2], see also the author’s papers [3, 4, 5].
The role of the function 1/4mr is played by G, the role of the normal derivative by the
operator -

2.9 ;nr = Ny Crprs Vs»

;,,,.u, is the stress vector acting on the surface S. The potential of a double layer has the
form:

(210) Uy = — f ds‘b U, CnprsVs Gir
S

The above expression has the following properties:

2.11), [[:]l = Ui,

AL, [fwrtts]] = O.

We assume the potential of a double layer to describe a defect. The condition (2.11),—
the continuity of the stress vector on the defect’s surface—ensures that a defect is a self-
equilibrated formation.

Formally, we can write:

(2 12) u‘iiGir *% [ - f dsb Un Cnbrs Vs 63("’ _E)]
s

= Gir * [ _Cnbrsvsfdsb Un 53("’—%)] 5 E €S.
s

We can interpret the expressions in brackets as the force distribution producing the dis-
placement field describing a defect. It is constructed of gradients of the delta function
distributed over the surface S, and is thus a surface distribution of double forces. In view
of the symmetry of the tensor ¢, it is the selfequilibrated distribution of forces, its resultant
moment is equal to zero. The resultant force is also equal to zero. Consequently, in the
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displacement description, the single static defect is equivalent to the selfequilibrated distri-
bution of double forces X:

@.13); X, = — [ dsgn(B)V.0:(x—8); Ee€S5,
S

(213)2 : drs = Crsnb U.n,.

This question was discussed in detail in [5].

Taking into account the condition (2.11); and the geometric compatibility condition,
we can calculate the normal derivative of the u field as a function of the derivatives of U.
From the condition

(214) 0= I [nb Chbrs ur,s]i = HpCnbrs {Ds U, +n, nkn [ur,k]l}
= HyCbrs Utr,s + Cubrs Mo s {'_nk U +11| [ur.k”}:

we calculate:

(21 5) —H; Ui,s +ns![ui,s], = gilm U{l,m) 3

where the structure of the tensor gi. depends on the structure of c. Hence the disconti-
nuity of the distortion field u;;:

'(2.16), [l = Uig +18iim Ud,mys
(2.16), [[tgiio)l = [0u Otm + 1k &isim] Uct,my >
(2.16); [l il = Upigg +11x8iyim Uctmy -

The strain and stress fields are thus continuous through the surface if U is a constant
vector or if Uy = 0. These two cases realise the dislocations and disclinations. Discli-
nations are also called Volterra dislocations of the second kind (see [7, 8]). Dislocation
is characterised by the constant Burgers vector b:

@17 U= —b;, Uy=0, |l =0,

disclination by the constant rotation vector €, and the position vector of the rotation
axis é ;

2.18), U= —eipg2(6—C);  E€5,

(2.18), Uz‘.k‘= eip2ps [Mcioll = 0, [upull = enpQp.

By way of illustration, we derive now the important formula for the displacement field
due to a dislocation; it will be represented as the sum of the discontinuous term, being
the harmonic potential of a double layer, and the continuous term depending on the line
only. -

Let us introduce the Green potential K satisfying the Poisson equation (see [9D:

T(2.19); 4K, = =Gy,

(2.19), Ky = —A71Gy = Gir*—l—-
4qr
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K also satisfies the equation:

|
(2.20) Cixim Vi VmKjy = — 0yj7—
For the isotropic medium:
e _ 1 A+u .3
(221) Ky = m { aik r+ ﬁ-—i_i_—zﬂv,vk r }

Then using (2.10), (2.17), (2.19); we obtain:

222)  wi= [ dsbacwrsViGir = — [ dsybycopaV.V.VoK
S S

== f [dsb —a_ - dsﬂ —a_] bn cnbrsvs VaKir == f dS.u bn Cnbrs Vb Vs Va Kir-
J [~ e )
From (2.20) and the Stokes theorem:

223) eum f ds,% F= )f di.f, f [dska‘g —dsb_(%] P B f L.t
K m L s b k I

it follows then that (L is the boundary of S):

(2‘24) U; = f dcksbakbn Cnbrs Vs Va Kir + b_t f dsﬂ Va 41“‘
7 4z J r

The second discontinuous term does not give rise to the distortion discontinuity, since
the derivatives of the harmonic potential of a double layer are continuous through the
surface; this result is consistent with (2.17).

3. Elastic and plastic fields

3.1. Geometry

It can easily be proved (see (10)) that to a discontinility U of the displacement field u
on the surface S corresponds the singularity of the distortion field @, having the character
of a delta function concentrated on the surface S. If we represent u;, as ()

3.1 Ui = P +13aiks

the singular term f3 is equal:

(3.2) Bu = fdskUiég(x—’;'); EeS.
h

é: is called the initial or plastic distortion corresponding to a defect. The term plastic is
rather in use in the defect theory. This term is motivated by the fact, that B represents
that part of the deformation which is responsible for the discontinuity of the field u; in
other words, it is the forced deformation which introduces a defect into the medium.

(*) The denotations u;; = fi;i+ Bkg are in use in many publications.
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The field B, which represents the deformation of the medium around the defect surface,
is called the elastic distortion.

We introduce also the elastic and plastic strain field:

(3.3) Uy = i +e.

The singular plastic surface distortion corresponding to a surface defect is of a more
fundamental character than the plastic distortion corresponding to a point defect :ﬁ,-k =
= 75 03(x—¥) (see [11]), the latter can be obtained from the former as a limit case; the
form of a tensor < will depend on the form of a point defect.

Note also that for line defects the plastic distortion [3 is not uniquely defined. The
surface S may be understood as a real surface, along which has occured the plastic slip
giving rise to creation of defect, but it may also be some imaginary surface. It is not de-
termined by the actual position of the line of the defect. The quantity [3 may also be de-
fined for the continuous distribution of defects, but even so it will not be determined uni-
quely by the distribution of defects.

Let us now discuss in detail the case of a dislocation. For a dislocation

(3.4) Bu = —b; [ ds.0x—8); EeS,
S

b is the Burgers vector.
The notation

[ dsss(x—8) = 8(5),
S

3.5
&2 [ dsi 55(x—E) = m(®)8(S),
S

is often in use; (see [12, 13]).

Note that the general expression (3.2) can be understood as a superposition of small
dislocation loops A4S, each characterized by the Burgers vector —U®(Fig. 1):

(3.6) Bu = [ dsUi03(x—8) = D) UPnPo(AS™).
s n

Such a formation is called a Somigliana dislocation. This idea is used when constructing
what is called a dislocation model of a crack or a low angle grain boundary; we also speak
of the dislocation model of a disclination.

From (3.1), we can climinate the field u by acting with the rotation operator. We ob-
tain the following relation:

(3‘7) sklmviﬁim i e ekImV!Bim-



1002 : ‘E. KOsSECKA

We introduce the dislocation density tensor a(3):

(3.8) i = —&am Vi fim- )
From the definition (3.8) follows that the divergence of o is equal to zero:
(3.9) ot,-;;'_k =:{}, V
For a single dislocation line L:
" e,
(310 o= =By [ dsnesn 5 05(x—) = by f dEuds(x—).
5 T

The components of the tensor « are proportional to the products of the appropriate com-
ponents of the Burgers vector and the tangent vector of the dislocation line, moreover o
is concentrated on the dislocation line; by contrast with [3 it is determined by the actual
position of the dislocation line. Thus e, not { is a good source function of the theory and
corresponds to the physical quantlty—dlslocatlon density. Note that, although (3 8) appears
to be the definition of e in terms of p it is & which is the primary quantity. (3 should be
so constructed that (3.8) may be satisfied. The tensor a admits generalisation to the case
of continuous distribution of dislocations.

The Eq. (3.7) in the form
(3.11) Exim V1Bim = ik
may be understood as the constraints equation for the elastic distortion field @ [14]. We can
assume now, that @ itself describes the non-ideal, orin the language of defect theory
non-compatible medium in a state of elastic deformation. The incompatibility of the
medium (in terms of B) describes the Eq. (3.11). Such a medium can be projected to an
ideal medium only locally, in the areas where o = 0. This approach is close to physical
reality.

The constraints equation for (3, called also the Burgers condition, may be derived directly
by examining the geometric properties of an elastic distortion field around a dislocation
(see [3, 13]), without making use of the ideas of the u and B fields.

However when, in addition, disclinations are present in the medium, the incompatibi-
lities are of more complicated nature and B is no longer a satisfactory physical quantity
to describe the medium. (see [16, 17]). From (2.18), it follows that the antisymmetric
part of the distortion field is discontinuous on the disclination surface. We introduce the
elastic and plastic rotation vectors:

3.12), ' Uik = Uiy TUnx
= @i — EikaWyq +eak_‘5rkawa;
(3.12), |[wa]| = —0,.

Since the discontinuity of the rotation vector wis constant over the surface S, its derivatives
[by analogy with (3.1)] can be represented as the sum of the continuous part which we
denote by x and the singular part ¢:

(313) Wa,m = xam'*'&’am
(°) The here defined o is the transpose of that used in [8, 15, 18, 19].
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x is called by de Wit the elastic bend-twist tensor, ¢ is called by Mura the plastic rotation
field (see [8, 16])(*). The sum of ¢ and @, will be denoted by x—the plastic bend-twist
tensor:

(314) ;%am = CDa,m +(°Pam;
then
(315)1 Uikm = €ikm — Eika?am +Eik,m — Eika¥ams
(3.15); Uikml = eik,ml;Eika”am,l+éﬂc,m1_6ika”am,l-
For a single disclination, the plastic distortion by (3.2), (2.18), is:
(3.16) B = — § dsieine(6y—E 85(x—8),

s
the plastic rotation field, by analogy with (3.1), (3.2) is:
(3.17) o = — [ ds2:05(x~5).

Y

From (3.15);,, follow the two constraints equations, being the relations between e, %
and &, %:

(3.18), U, pemy = 0,

(3.18), Exim[€im1— Eima¥at] = — ExtmlEim1— Eima¥al]s
and

(3.19), Uy ppmi; = 0,

(3.19), Enlm¥*am,l = _Sulm;‘am.l'

We define the two source quantities: the dislocation density tensor a and the disclina-
tion density tensor 6(%):

(320)1 O = “'sklm[élm,l_sima;‘a!]:
(3.20)2 aun = _‘entm;‘am.l'
In terms of B and ¢, « and 0 are:
(321)1 Uiy = _Eklm[ﬁjim,l_gimafual]s
(3.21), Oan = —Enlm&:’nm,!-
From the definitions (3.20),,,, the following compatibility equa_tions for a and 0 follow:
(322)1 “ik,k._giamoam = 0:
(322)2 . Ban,n = 0. . )
For a single disclination line L, from (3.16), (3.17) we obtain:
(3.23), | e = § deueipe@p(Ca—E) 3:(x=1),
L

(323)2 ean = denQa aS(X_E)'

- i

(*) The transposes of % and ¢ are used in [8, 16].
(%) The transposes of o and © are used in [8, 16].

5 Arch. Mech. Stos. nr 6/T4
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Both densities o and 0 are concentrated on the line only. e is proportional to the product
£2x (E—é); thus, when the disclination line § coincides with the rotation axis, « is equal
to zero. The variation of & with respect to rotation axis is equivalent to the addition of
a dislocation with the Burgers vector § x (E—En) to the disclination line. If both the
dislocations and disclinations are simultaneously present in the medium then o defined

by (3.21),, with {§ understood as due to dislocations and disclinations, is the combined
dislocation density tensor. When there are no plastic rotations in the medium, the defi-
nition (3.21); coincides with (3.8).

3.2. Theory of elasticity
Notice first, that the elastic potential of a double layer (2.10) can by (2.12) and (3.4)
be written as:
(3.29) Uy = Gip % [ = Cotrs Vs Pusl = — Gy ¥ Cuprs Vsnp.
From the above it follows(®) that:
(3:25) ik = —Gip % Cutrs Vs VieBu Gy Cusrs Vs Vi e =

= Gir * Cnbrs Vs [ﬁnk,b = ﬂnb,k] +ﬁ|'k s
or in terms of e:

(3.26) Ui = Gir ¥ Cubrs Vil€nb e — €nip] +1i.
To be in agreement with (3.1), we have to identify(7):

(327)1 ﬁik = Gir * Cnbrsvs[énk,b_&nb.k]:
(3.27), ek = Gir X Cnbrs Vs[€an,o—Enp il ity -

We derive now the formula for @ starting immediately from (2.10):

G28) sy = — [ BV VVeGut [ dscUscunsV, VoG =
s

S
3 d ]
= dsy—— — dsp—— UC',, rsVsGir
E!-I: AT o5, Sk % nCnb

= f [dsy Un x—dsi Uy bl Cuprs VsGir + f ds, U653 (x—§)
5 5

= f dCa Ebka Un Cabrs Vs Gir - f [dS], Un,k = dSk Un,b] Chbrs Vs Gir +ﬁ1’k ’
L s
thus:
(329) ﬁik = f dza Ebica Uu Cnbrs Vs Gir = f {dsb Un,k"'dsk Un,b] Cnbrsvs G:‘r-
L s

The first term of the above expression is continuous on S, the second one is at least disconti-
nuous on S and does not have the singularities of the delta function type.

) Here + means the simultaneous addition and subtraction of a term.
7) Here <ik> means the symmetrisation of the whole expression with respect to indices o
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We can generalize formulae (3.24), (3.25), (3.26) and (3.27)y, , to the arbitrary distri-
bution of defects and the plastic distortion field corresponding to it.
The u field given by (3.24) is a solution of the equation:

(3.30) CirtmUtmk = — Cikim Vi Vi Gir % Catrs Vs€ap = Cisnp Vs
From this it follows that the elastic field e satisfies the equation:
(331) c,-k;,,,Vke,,,. = 0.

The above important result can be obtained also by direct calculation:

(332 cinCotrsVVs | [ dsnUGirp— [ d5sUnGio| =
S S

= Cl‘klmvk f dsm UI 63(X_E)" ai:-cnlzcrsv.t_fd'-s'b Un aS(X_E) =0.
S S

By o we indicate the elastic stress due to the elastic strain e:

(3.33) “ Oik = Cikim€Im>
Thus:
(3.34) i = 0.

When solving the problem of stresses due to initial deformations, we always assume the
Eq. (3.34) for the elastic stress due to initial deformation. Here we find some justification
for this procedure, since for a surface defect, which is a fundamental form ofinitial deform-
ation, the part of the stress which has the interpretation of elastic stress satisfies the
Eq. (3.34) identically.

When we have to deal with an incompatible medium, which we describe by incompat-
ible elastic fields, we take the Eq. (3.34) together with the constraints equations as the
basic set of equations of the theory. Let us consider the medium with dislocations, which
can be described in terms of elastic distortion field B. The set of equations

(3.35), Cikim Vi €m = 0,

(3.35), _ €im Y1 Pim = Oiks,

has to be simultaneously satisfied. Multiplying (3.35), by é,,bk we obtain:
(3.36) Biv,a— Biap = Eaprtix = — [ﬂnib.a_lé:‘a.b]-

Now, we differentiate (3.35),:
(3.37) 0 = cinViVseim = CitimVi Vs Pim
= CittmVkVmBis + Cittm Vil Bim,s — Brs,ml -
From (3.36), (3.37) follows the equation of the Lamé type for the field p:
(3.38) Citim Vi Vi B1s = Cistrn Vi Emsr iy -
The particular solution of (3.38) has the form:
(3.39) Bis = Gij ¥ Citam VxEspur Oty

S
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and is equivalent to:
(3.40) Bis = Gy ¥c jk:mkaﬁrs,::: —Dﬂm,s],
which is in agreement with (3.27),.

We present here the formal solution of the Eq. (3.38) in terms of the Green function G.
It is known that for most of the anisotropic bodies, G is not known in the closed form.
However, for some cases of special geometry—for example the rectilinear screw dislocation
perpendicular to the symmetry surface (see [21])— it is possible to find the solution of
(3.38) in the closed form.

The set of equations:

=<ui,k) = eptéy

341
( ) O =0 = Ciklm Cim,k

} =u; = G ¥ ChbrsCnb,s

is also postulated in thermoelasticity. Initial strain & is given there as a function of the tem-
perature. However, there is a difference in the interpretation of the quantities we deal with,
since in thermoelasticity u and o are the real quantities, while e and & are the subsidiary
ones; whereas in the defect theory e and o are the real quantities, while u and & are the
subsidiary ones.

4. The incompatibility problem

4.1. Geomefry

From (3.27), we conclude that the elastic strain field e, and therefore also the elastic
stress @, can be represented in terms of e alone. Moreover, it is e which describes the state
of the body and which appears in the equations of equilibrium. It is important thus to derive
the constraints equations for the e field when the plastic € field is prescribed. When we have
to deal with defects, the e field is given as the symmetric part of (3.2), but the formulae
derived in this section are applicable to any problem with initial strains é.

The following identity for the derivatives of the u field takes place:

4.1) Ui km = —[“; fem T U fm]+ 3 [u, ke U ] — - [Hk,mi"f-um,ki]-
Inserting into the above formula the expression ug i, = e +§,-k, we obtain:
4.2) Ui km = Citm+ Cim k— Cm,i + it m+Cim k— Chom.

and

4.3) Ui kml = Cite,mt + Coms k1t — Cican, 11 + Cike ot +Cim k1 — hom, i1 -

Simultaneously,

4.4) Ui ktm = €ite,tm it Jom — €l im F Citclm + €3t ko — k1, im -

Subtracting (4.4) from (4.3), we obtain:

4.5 Cim,k1 T €kt im — Ckm,it— it om = — [Cim,c1 + € im— Choms, it — €11 fom] -

In view of the antisymmetry in the indices (i, k), {/, m), we can write (4.5) in the form:

(4.6) Erik Eplm Chkm,it = Erik Epinhm,il -
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This is the basic constraints equation for the e field in the presence of initial (plastic) e field.
When there are only elastic deformations in the medium, (é = 0), (4.5)is the classical de
Saint Venant compatibility equation for the strain field. We define the incompatibility
tensor ¥ (the definition of ¥ is due to Kroner [18]):

4.7 Nij = Siklsjmnéln,km-
The constraints equation (4.6) for the field e now takes the form:
(4 8) Epik Eplmelcm it = MNpr-
From the definition (4.7) it follows that v is a symmetric tensor and that the divergence
of m is equal to zero:
(4.9) ‘ Mg = 0n
Let us now explain the role of the incompé.tibi]ity tensor.

Since a vector field can be represented as the sum of the gradient of a scalar field and the
* rotation of the vector field, a symmetric tensor can be represented as the sum of the symmet-
ric part of a gradient of a vector field and the “double rotation” of a symmetric tensor field
(see [18, 19]). We derive such a representation for the & field. We make use of the identity:

I

(4.10) A4 g— = = 8:(0).

We have thus:

r

. . . r .
@.11) ey = ey ¥ 03(%X) = —eu % Ad—gg = — €ik,qabb %—8;
r o @ # n o - -
T XAV, Vsleik ab +€ab,ik— €ak,ib— €ib,at]— Va Vb [Eoa—em.n— ex‘b,ak]} =

r - o - o e
= "Q % {Vavb Eiac €cde [edk,eb - edb,ek]'_ Vi Vlc eab,nb +Vie_ak,abb +Vk eib,f:aa} =

r ; ; 1. . i
= E % {Bl'ac Ekbg Va Vb Eced Sgnj Ve Vuedj 4 Vi [eka,abb =5 ?eab,abk] +Vk [eia,abb = Teab,abf‘l} -
If we define
(412)1 Qi = [éab,abi _2§ia,nbb]s
i o - °
(4.12), Dy = —— ¥ [€ap,abi— 2€ig,abb)

8n
and take into account the definition (4.7), (4.11) takes the form:
5 r
(4.13) eix = P ky— Eiab€kcaVaVelba *Ev;'

The term @, can be considered as due to the displacement field @, the second term
describing the incompatibility of the field é. As will be seen, only the incompatibility of the
initial strain e gives rise to the elastic strain e.
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Let us now calculate % in terms of dislocation density & and disclination density .
Taking into account (4.7) and (3.20),, ,, we obtain (see (16)):

(4.14) M) = k1 &mn Vi Vimein
= &it1&jmn Vi [C1n,m T €lnaam)
= — & Vil +&irt Vie[#1— 6 17244
= — &m0+ i Vi #a,
(4.15) Ny = — [emouj x+05)c -

For a single disclination line, v is concentrated at the line only.
Where there are only disclinations present in the medium,

(4.16) Nij = — &gy xcijy -
4.2. The elastic strain field

The incompatibility problem for the elastic medium is thus formulated as follows.
The medium with incompatibilities satisfies the following set of equations:

(4.17)1 : G',‘J"Jl = 0,
4.17) EikI€ jrmn Cln km = ij.

The first is the equilibrium equation, the second is the constraints equation. The method
of solution of the set of equations (4.17);, (4.17), was presented in [9]. Here we shall find
the elastic strain due to incompatibilities by making use of the formula (3.27),, where e
is given in terms of é:

(4.18) €is = Giy ¥ Cjkim Vil[ers,m— Erm,slcisy -
From (4.13) it follows that:

5 . \ 1
(4 1 9) €is,m— €lm,s = EsmpEpgr Cigr = {“2" [‘Pi,sm + s, tm— Pt,ms — (Pm,!s}
r 1
— EsmpEpgr ElabEgcd Ya ViV Npaf % a‘ = 7 [‘Ps,ml == ‘Pm,sl]
¥
— Esmp Slabva [Vc Vc nbp o Vp V,. nbr]} % E‘ .

The divergence of v is equal to zero, Ar = %, we thus obtain:

) . 1
(420) els,m_efm,s - gb[s,m]l +Ssmp8tzIb Vn Mop * W
We insert (4.20) into (4.18):
o il
(4.21) eis = Gij % Cjkim Vi ViP5 my +Gij K g K Cikim Vi Esmp Eatn Vap-

We make use now of (2.8) and the defiinition of the K tensor (2.19),:
(4'22) €is = di[!,s] +Kij * cjklmvkvagsmp Ealb Mop (isy »
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The asymmetric term @p; ,; does not contribute, thus

(4.23) eis = Kij % Cikim Vi VaEsmpEatb Mop cisy -
It is evident from the above formula, that in the static case only the incompatibility of the
initial strain gives rise to the elastic strain e. However, to reconstruct u we need to know e
and e, not only e and 7.

We define the incompatibility source tensor I (introduced by SmmMoNs and BULLOUGH

[20D):

(4.24) Lisbp = Esmp€atp Cikim Vi VaKij isy -
Then
(425 €is = Iisbp * Nbp-
For the isotropic medium, the I tensor can easily be calculated and is equal:
2(A+w) r
(426) Iisbp = {— 651, 5,,41 + 6;'3 abp‘d = )1—+2_,l;_- 5b,ViVs ' E .
Therefore,
r 2(A+
(4.27) €is = 8 * {_T?is,kk +’!?kk,rr5is— —}(ﬁmms}-

This is the well known KRONER solution, presented in [18].
From (4.23) and (4.15) the following expression for the strain field due to a disclination
follows:
(428) €y = —AhHj % cjklmvkvussmp Ealp [sbm Vr‘xnp +Bbp_€pbrvr 5"t‘t"aa](is>
= Kij * Cjk!mvkvassmp[va ulp_'vl Cap +£a!bebp]
+Ki} * Cjklmvk V. [sals " pn‘cm —Egim Vs ’o‘aa]Us)

= Gij % Cjxim ViEsmpip+Kij % Cikim Vi Valsnipian Onp

o 1
—Eisava Yaa * = +£ispvaaap -*

4y Ay 5

(429) €is ='Gij 'X" Cjklmvkasmpafp""Kij * Cjklmvkvu asmpenlbebpﬁs}-

If for the rectilinear disclination its line L coincides with the rotation axis, @ = 0, and e
depends on 0 only.

5. Conclusions

We have demonstrated the transitions from the theory of surface defects in the displace-
ment description to the theories making use of the ideas of elastic and plastic deformations
and what is called the incompatibility problem. In every formulation the theory breaks
up into the conditions referring the form of elastic deformation (we call them here the geo-
metric conditions), which are the constraints equations for the elastic fields, and the con-
ditions of elastic equilibrium, together with the method of evaluating the elastic ficlds
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when the constraints are prescribed. Formal solutions of the equilibrium equations are
constructed by means of the Green tensor of the medium with a given symmetry. The phys-
ical quantities—the appropriate elastic fields—we express by means of physical source
functions, the densities of the appropriate defects. In the incompatibility problem, the
source quantity is the incompatibility of the initial strain.

In the second part of this work we shall discuss the dynamic problems of the medium
with defects.
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