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Disclination dynamics
E. KOSSECKA (WARSZAWA) and R. DEWIT (WASHINGTON)

A MATHEMATICAL theory of moving disclinations in a linearly elastic, infinitely extended, ho-
mogeneous body is developed. The theory is a generalization of disclination statics to dynamics
on the one hand, and of the dynamics of dislocations to disclinations on the other hand. As
expected, many quantities in the simpler theories correspond to pairs of quantities in the present
theory, revealing a completeness which is lacking in the simpler theories. The boundary value
problem for the infinite medium is completely solved. The state quantities, i.e. the elastic strain,
bend-twist and velocities, are expressed as closed integrals in terms of the defects in the body,
that is as volume integrals for a continuous distribution, and as line integrals for discrete lines.
These integrals are given in terms of Green’s tensor and an integral of Green’s tensor which
we have termed Green's potential tensor. The relation between disclination dynamics and the
incompatibility theory is given.

Przedstawiona jest matematyczna teoria ruchomych dysklinacji w ciele liniowo-sprezystym,
nieskoriczonym i jednorodnym. Teoria ta jest z jednej strony uogo6lnieniem statyki dysklinacji na
dynamike, z drugiej strony dynamiki dyslokacji na dynamike dysklinacji; w tym sensie jest
teorig kompletna w poréwnaniu z wymienionymi teoriami prostszymi. Odpowiednim wielko$ciom
z teorii prostszych odpowiadaja w obecnej teorii pary wielkosci. Podane sa rozwiazania dla
osrodka nieskonczonego. Zmienne stanu, jak odksztalcenie, skrecenie i predkosci, dane sa w po-
staci calek po defektach; dla rozkladu ciaglego sa to catki objetosciowe, dla dyskretnych de-
fektow calki po liniach defektow. Calki sa splotami z tensorem Greena i tzw. potencjalem
Green'’a. Rozwaza si¢ zwigzki dynamiki dysklinacji z teoria niezgodnosci.

ITpepcraBiiena maremMaTHUecKasi TEOPHs IOABMYKHBIX AMCKIMHALMII B OECKOHEYHOM H OJHO-
POIHOM, JIMHEIHO-YIPYroM Tese, DTa TeOPHs ABJIAETCH C OJHOM CTOPOHBI 0000IIeHIIEM CTATHKH
JUCKIHHAIMI HA AWHAMHKY, C JIPYLOH <€ CTOPOHBI AWHAMMKH MHCIOKAIMIT Ha IHHAMHKY
JUCKJIMHAIIMIL; B 3TOM CMBICIIE OHA SIBJISIETCS TTOJIHOI TeopHeil 10 CPABHEHHIO C VIIOMAHYTHIMH
Oosiee mpocTbIMK Teopusimi. COOTBETCTBYIOILMM BeJIMUMHAM H3 6oJice IPOCTBIX TEOPHil oTBe-
YaloT B HACTOAIICH TEOPHMH INapbl BenwunH. [IpnBeeHbl pelieHnsa 1isi DeCKOHEUHOI cpejbl.
ITepemensbie COCTOAHMA, TAKHE KaK Aedopmaryd, KpyuyeHHe M CKOPOCTH, JaHbI B BHJE HH-
TerpajioB no jederram; Ajfd HENPEPBIBHOTO PACHDPEEICHHA 3TO 0OBEMHBIE MHTErPAibl, LA
MHCKPETHBIX JedeKTOB MHTErpalibl 1Mo JuHUAM jedexkToB. HMHTerpass! ABIAIOTCA CBEPTKAMH
C TCH30pPOM I"pm-la M T. Ha3. IIOTEHIIHAJIOM Tprl}[a. PaCC;\i.’iTpHEﬂ[DTCH CBA3M JHHAMHKHA JHCKIIH-
HalHii C TeopHeil HeCOBMECTHOCTH.

1. Introduction

1.1. Background

THIs ARTICLE develops a general theory of moving disclinations and dislocations in a linearly
elastic, infinitely extended, homogeneous body.

This theory, together with Disclination Kinematics [31], may be regarded as the culmi-
nation of three different lines of work. First, it is an extension of dislocation dynamics,
[1,2,3,4,5,6,7,8,29], to include disclinations. Second, it is an extension of the general
theory of stationary disclinations [9, 10, 11, 12, 13, 14, 15] to include dynamics. Third,
it is an extension of the dynamic theory of incompatibility [16] by identifying the defects
that give rise to the incompatibility as dislocations and disclinations.
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Some general work in disclination dynamics has already been done by other workers.
ScHAEFER [17] has formulated a theory in the framework of the Cosserat-continuum and
we closely follow his kinematical development. GUNTHER [18, 19] has developed a four-
dimensional non-Riemannian formalism and we shall note points of correspondence
at the appropriate places in the present paper. The above two authors extend some earlier
work by KLuGe [20, 21] who considered his theory to apply to foreign atoms instead
of disclinations.

The results of [31] will be used throughout.

1.2. Outline of paper

In Sect. 2 we derive a general solution of the dynamic plastic strain problem which
can be posed without specifying the nature of the defects involved. This problem is a gener-
alization of Eshelby’s “transformation problem” [22]. We express the equation of motion
in terms of the total displacement and the basic plastic fields by using Hooke’s law. The
resulting partial differential equation is then solved for the displacement as a closed volume-
time integral by using the dynamic Green’s tensor function. This solution forms the basis
of all subsequent applications to dynamics.

Sect. 3 reviews classical dislocation dynamics to set the stage for the following sections.
It shows the basic approach that will be generalized to disclinations and will also serve
as a basis for comparison with the later sections.

In Sect. 4 we derive the fields for a continuous distribution of moving defects. By
“defects” we shall mean the combination of dislocations and disclinations. The constitutive
equations relate the stress only to the basic elastic fields which do not necessarily satisfy
the compatibility conditions. The difference between the total and elastic fields gives the
plastic or stress-free fields. We derive closed volume-time integrals for the basic elastic
fields in terms of the defect densities and their currents. For the strain formula it is necessary
to introduce an integral of Green’s tensor which we have termed Green’s potential tensor.

Sect. 5 treats the moving discrete defect line. We find the displacement as a close
surface-time integral. Then the basic elastic fields are derived as closed line-time integrals
along the defect line. For the strain it is again necessary to use Green's potential.

In Sect. 6 we show the relations between the incompatibility theory and disclination
dynamics.

Throughout the development of this paper we find that many concepts or quantities
from dislocation dynamics generalize into pairs in disclination dynamics. The distortion
and velocity of dislocation dynamics generalize to the basic fields of disclination dynamics.
In a similar way we also find that many terms from disclination statics generalize into
pairs in disclination dynamics. The basic fields are enlarged from two to four quantities
by the addition of the velocities. The nomenclature that has developed in this field is
summarized here:

b, Burgers vector,

B, total Burgers vector,
Cij  elastic constants,

ey strain, !
F.  incompatibility current,
G;, Green's tensor function,
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H;, Green’s potential tensor function,

Ji  dislocation current,

K, contortion,
L(r) defect line,

P plastic (superscript),

r radius vector,

R relative radius vector,

Syq disclination current,
S(r) defect surface,

t time,

T relative time, total (superscript),

u}' total displacement,

o, linear velocity,
dislocation loop current,
wg rotational velocity,
oty dislocation density,
fu  distortion,

* dislocation loop density,
d;n  Kronecker delta,
d(r) Dirac delta function,
£ Permutation symbol,
7pe incompatibility tensor,
0, disclination density,
#mg bend-twist,
A(t) Burgers circuit,
o mass density,
Gy stress,
a(r) Burgers surface,
45,‘:‘1 disclination loop density,
tp;q disclination loop current,
w, Trotation,
£, Frank vector.

This paper basically addresses itself to solving boundary value problems. The important
subject of the forces on and the energy of the defects is not treated here. The solution
in the static case seems tractable; the dynamic solution is, however, still open. Moreover,
we shall not treat applications to special problems or geometries in the present paper.

These would be quite straightforward and could be useful in analyzing experimental data.

2. The dynamic plastic strain problem

2.1. The constitutive equation

In this section we state the dynamic plastic strain problem which can be posed without
specifying the nature of the defects involved.

Given an infinitely extended homogeneous anisotropic body with the plastic strain
ef; and the plastic velocity ©f prescribed as functions of space and time, we are to find the
resulting total displacement #% as a function of space and time.

This problem is a generalization of ESHELBY’s [22] “transformation problem” to an
anisotropic medium with a dynamic and inhomogeneous stress-free strain and velocity.
We remark here that for our purpose the concept of “stress-free” is identical with “plastic”.



752 E. KosseckA AND R. DEWIT

To formulate the problem mathematically, we shall also need the constitutive equations,
i.e. Hooke’s law and the equation of motion. Hooke’s law relates the stress o;; to the
elastic strain e;; as follows:

2.0 0ij = Cijueu,

where the Cy;, are the anisotropic elastic constants. We use the Einstein summation
convention over repeated indices. Since both ;; and e, are symmetric, the elastic constants
satisfy the symmetry conditions

2.2) Cijt = Cjiw = Cijux-

Note that Hooke’s law does not involve the plastic or stress free strain ef,. This is because
the plastic strain is not a state quantity, whereas constitutive equations must relate state
quantities. In terms of the discrete dislocation line discussed in Sect. 2.1 of [31], it means
that the stress in Hooke’s law does not depend on the location of the defect surface S(z).

We now assume that the equation of motion relates the stress divergence to the elastic
acceleration
(2.3) Gij,i = 09,
where g is the mass density. Note that this equation does not involve the plastic velocity
o} . This is because we wish to regard the plastic velocity as not being a state quantity.
Hence it should not appear in a constitutive equation. In terms of the discrete dislocation
line discussed in Sect. 2.1 of [31], this means that the stress divergence in the equation
of motion does not depend on the location of the defect surface S(¢). In other words,
the stress and elastic strain are not affected by the position and motion of the defect surface.
The defect surface is simply regarded as an artificial device that is useful for the development
of the theory. In the case of continuous distributions, it means that the elastic fields are
completely determined by the dislocation density and current.

We wish to point out, however, that another approach is also possible, namely that
the equation of motion relates the stress divergence to the fotal acceleration, o;,; = 09,
as would be suggested by Newton’s law of motion. In this case it would be possible to
have elastic fields without dislocation density and current, due to the plastic velocity. We
have not investigated this approach.

Next it is convenient to combine the relations (2.2)-(2.6) of [31] and (2.1)-(2.3)into
the following expression:

T T P <P
2.4 Cijuthii— 0l =Cipaey,i—07; -
J

This is the set of partial differential equations we wish to solve for #{ when the plastic
fields ef; and o} are given.

2.2. Definition and application of Green’s tensor

To solve Eq. (2.4) for »7 it is useful to introduce the dynamic Green’s tensor function
Gja(r, t), which represents the displacement in the x; direction at the field point r and
time 7 arising from a unit impulse in the x, direction applied at the origin of space and time.
Thus Gj, is defined for an infinitely extended body by

(2.5) Cijit G, (T, 1)+ 8, (1) 0(t) = 0Gia(x, 1)
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together with the boundary condition that Gj, vanish at infinity in space and time. Here
8,, is the Kronecker delta, while d(r) and &(¢) are Dirac delta functions. For convenience
we further define the relative radius vector and time:

(2.6) R=r-r,

2.7) T=r1—t.
Then we can conveniently derive the solution of Eq. (2.4) as follows:

28) ul(x,1) = [ 0,6 (T)uf (', 1)V dt’
= — [ [Cyu Gin.ie(®R, T)= 0GR, Tuf (', t)dV'dt’
= — [[CiuGn®R Dl (', 1) — 0GR, Tl (x', )] dV"dt’
= = [(CuGnR, T)ef o @, )= 0Gu(R, IS, )]V dt!

= — [ [ComGinis(R, T)efu(r', 1)~ Gun(R, T)of @', 1)]dV"d"
In these expressions the integrations are taken over all space and time. The first equality
in the derivation follows from the well-known properties of the Kronecker delta and the
Dirac delta function, the second equality from Eq. (2.5), the third by partial integrations
with respect to space and time where we assume that the integrated parts vanish at infinity,
the fourth from Eq. (2.4), and the fifth by additional partial integrations.

We remark that the plastic fields must satisfy certain conditions for the integral in
Eq. (2.8) to be finite: it is clear that it is sufficient for el and of to be finite in space and
time, though these restrictions may not be necessary.

Whether the results listed under kinematics [31] hold regardless of the behavior of the
fields at infinity, those under dynamics have to satisfy some restrictions as the above in
order to keep the integrals finite and to be able to perform the necessary partial integra-
tions in the various derivations.

Equation (2.8) gives the total displacement as a function of space and time in terms
of a volume-time integral and applies to any defect which can be described by the given
plastic strain and velocity. It forms the basis for all subsequent applications to dynamics.
A similar result was derived by MURA [4] but without the term containing the plastic
velocity of .

2.3. Compatible plastic strain and velocity

When no defects are present the plastic fields are compatible, i.e. they can be derived
from a plastic displacement:
(2.9) ey = ”f:,r.-),
(2.10) of = if.
We then find for the total displacement
@1)  ul@, 1) = ~[CijaGyu,i R, Dufar (', 1)~ 0CGu(R, A ', )1V dt’
= — [[CiGinaR, T) =G (R, D (', t)dV'dl’
= [ d®) S(DYUf (', t)aAV'dt’ = uf (v, 1).
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Here the first equality follows from Egs. (2.8) to (2.10), the second by partial integrations,
and the third by Eq. (2.5). It follows therefore that for a compatible plastic deformation
the elastic displacement vanishes:

(2.12) u, = ul—uf =0.

Hence, in this case all elastic fields vanish.

3. Review of dislocation dynamics

3.1. Continuous distribution of dislocations

In this section we derive the basic elastic fields for continuous dislocation dynamics,
namely the distortion and velocity, as volume-time integrals over the dislocation density

and its current.
From Egs. (2.8), (2.2) and (3.20), of [31], we find that the total displacement for a

moving dislocation distribution can be written as

(31) H,T(l', t) = _f[cijlejn.i(R: T)ﬁ;:l(r’: t’)—QG-[,.,(R, T)ﬂlp(r's t’)]dV’dt,'
From this relation and Eq. (3.1) of [31] we find the total distortion as follows:

(3’2) gn(rs t) = _f[cijkajn.im(Rs T)ﬁifl(r'; t')—QG:m,m(R, T),le(rr’ t')]dV'df’
= — [[Cipi G tR, T (€' 1)) = 0Gin (R T o', 1))V d”

= f{Cijkl Gjn,i(R: T) [epmk apl(rls ?')—ﬂ;:,k*(l": tr)]._' Qél'n(R: T) [Jmi(r':tf)

—iégz(r'a t'j} av'dt’ = f[Cijk!Gjn.i(R: T)E pmx U (t'5)

— 0GR, T) (', t]aV'dt’ + fra(r, 1).

Here the first equality follows simply by differentiating Eq. (3.1) under the integral sign
where Green’s tensor Gj, is the only function depending on r, the second equality follows
by partial integrations, the third frcm (3.7) and (3.8) of [31], and the fourth by partial

integration and Eq. (2.5). From Eq. (3.5) of [31] we then find the elastic distortion for
a moving dislocation distribution to be

(33) ﬂmn(r: f) = J.[Epmk Cijkl Gjn.i(Rs T)(Ip[(l", t,)_QG.Jn(Rs T)Jml'(r" tl)]dV,dtl'

This relation is also given by Eq. (2.30) of Ref. [7]. It was first obtained by MURA [4] with
the replacement (3.9)Vfor Joa. It is interesting to note that Eq. (3.3) can also be derived
unchanged when the plastic velocity terms in from (2.8) and (3.8) of [31] are suppressed.
This shows that ©¥ is not essential for the development of the theory, but we feel that its
introduction helps the interpretation.

We next find the total velocity from Egs. (3.2) of [31] and (3.1)

(3.4) oy(r,1) = —f[cijkldjn,i(Rs T) pa (', f’)'QG"m(R, T)of (v, t)]dV'dt’
= _f{cijkl Gjn,i(R, T) [ (', t)+ofp(r, t")]— 0GR, T)o[ (', t')}dV'dt’
= — [ CipaGin R, TV, t)dV'dt' +27(E, 1)
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Here the first equality follows because the Green’s tensor is the only function which depends
on t under the integral sign, the second equality by a partial integration and Eq. (3.8)
of [31], and the third by a partial integration and Eq. (2.5) From Egq. (3.6) of [31] we then
find the elastic velocity for a moving dislocation distribution to be

(3.5) ‘U,,(l', t) = —J‘CUH Gjn,i(Rv T)Jkr(l'f, tl) dv'dt’.

This relation corresponds to Eq. (3.6) in Ref. [7]. It was first obtained by MURA [4] with
the replacement (3.9)&01- Jis. Since Mura assumed of = 0, he made no distinction between
o, and u7, c.f. Egs. (3.2) and (3.6) of [31].

We note here that the dislocation density «,, and current Jj, are state quantities because
they can be measured in the present state of the body. Therefore, Eqgs. (3.3) and (3.5)
show that the elastic distortion f,, and velocity v, are also state quantities because they
can be expressed entirely as volume-time integrals in terms of other state quantities, o,
and Jy;. On the other hand, the plastic distortion f7, and velocity vy may not be state
quantities because we may have to know the prior history of the body to measure them.

3.2. The discrete dislocation line

In this section we find the basic elastic fields for discrete dislocation dynamics as line-
time integrals over the dislocation line. First we substitute Eqs. (3.25) and (3.26) of [31]
into Eq. (3.1) to find the displacement for a discrete moving dislocation line,

(3.:6) W@, 1) = [ [[CiuGmiR, T)+0Gu®R, )2, t)]bidS;dt,
50t
where we have performed the integration over all space. In this expression the first integral
sign refers to the integration over the complete range of time ¢'(— oo, o), and the second
to the integration over the surface S(¢) defined in Sect. 3.2 of [31]. A similar relation has
been given by MURA [4], but without the term involving the surface velocity v;. In other
words, Mura assumed that the surface S(z’) changes in time only by the motion of its
boundary, an alternative we discussed in Sect. 3.2 of [31]. The relation (3.6) corresponds
to Eq. (5.13) in Ref. [7] and Eq. (3.5) in Ref. [28].
Next we find the total distortion from Egs. (3.1) of [31] and (3.6),

(.7 Bon = jf [Cijur Gjn.im+Qéan,m'0;c]btdsidf'-

S’y
Now from Eq. (A2) of the Appendix in [31] it follows that

d : . it :
(3.8) e f GndS), = f €pmi GraVhdLy— f (GndSy + Gin,m ¥k dSk),
st L S
where we have used the relations

9 Gy D) = Ga® T,

-(]; -

G‘In,m’(Rs T) = _an.rn(R! T)'!

(3.9)

Vof [

-

2

1]
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which follow from Eq. (2.6) and (2.7). The result (3.8) can be used to do a partial integration
with respect to ¢’ on the second term in Eq. (3.7), while Stokes’ theorem can be applied
to the first term. Hence

(3.10) = fjcEpmkcijquu.sbdeLdf'+ ff Cijut Gjn, i b1 dSpdt’
105 %)

+ [f eoms0GunvibidLydi’~ [ [ 0GinbidSn

L(t") S@’

= [ f epnt[Cua Gin.i+ 0G0k brdLydt" + Frns
Lith
where the last expression follows from Egs. (2.5) and (3.25) of [31]. From Eg. (3.5) of [31]
we then obtain the elastic distortion for a moving discrete dislocation line

(3'11) ﬂmn(r’ f) = J‘fspmk [Cijkf Gjn.i(R: T)+QG'M(R’ T)‘U;c(rr’ I[')]bl dL;dt"
L(t")
where now o}, is the velocity of the dislocation line L(t"). This relation could of course also
be obtained more directly by a volume integration from Eq. (3.3), (3.28) and (3.29) of [31].
It was first obtained by MURA [4], and it corresponds to Eq. (2.27) in Ref. [7].
Finally we find the total velocity from Egs. (3.2) of [31] and (3.6),

(3.12) of = [ [ [CiaGin.i+ Gl brdSidr.
S

This time we have by Eq. (A2) of [31]:

G132 [Guudsi= = femGuitndly= | GouidSict GinuydS))-
S(t") Lt st

Thus by partial integration over ¢, Eq. (3.12) becomes

G14)  of = — [ § pmi Coa Gy ibr0p ALyt — [ [ it Gy, — G i dSy it -

L7y S@’)
The second line in this expression equals 7 by Egs. (2.5) and (3.26) of [31]. Therefore
we find from Eq. (3.6) of [31] the elastic velocity for a moving discrete dislocation line to be

(3'15) ‘U,,(l', t) =ve ffepmkcljkiGjn.i(R, T)b,?);,,(l' ’ t)dL;rdt :
L™y

This relation could of course also have been obtained directly from Egs. (3.5) and (3.29)
of [31]. It was also first obtained by Mura [4] and corresponds to Eq. (3.5) in Ref. [7].
We see that the state quantities §,, and v, can be written as line integrals along the
discrete moving dislocation, i.e. they are expressed entirely in terms of integrals over the
only regions of the body where the defect is localized, and the position of the surface S(t)
is immaterial. The defect is localized on the line L(t), and therefore any state quantity
associated with the dislocation must be a line integral along the dislocation line.
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4. Continuous distribution of moving defects

This section contains the main results of the present paper for a continuous distribution
of defects, namely closed volume-time integrals of the basic elastic fields in terms of the

defect densities and currents.
First, we find a useful expression for the total distortion:
G tim = —f(ciju Gjn'ime:'—gdl"""wr)dwdtr o _f(cijkl Gjﬂ.ie{!.m'_QG.InvEmr)dV'd[’

= f [Cijit Gin, 1(€pmi p1 — btk — Epmk #ip) — QG.lrl(JmI_ ér—epmwp)ldv'dt’

= I(S"mk C,-J'“Gj,-,_,-U.'p['—Qéanml)dVrdt’_'f‘gpmk(cr'jkl Gjn.ixﬂ_‘QG.knwg)dV’dt’+e£m-

Here the first equality follows by differentiating Eq. (2.8), the second by partial integrations,
the third from Egs. (4.13) and (4.15)‘;{_and the fourth by partial integration and Eq. (2.5).
From this relation we shall proceed to derive some of the basic elastic fields. However,
it is convenient first to introduce a new quantity, the Green’s potential tensor, which is

defined in the next section.
4.1. Green’s potential tensor

To find the desired expression for the elastic strain it is useful to introduce the dynamic
Green'’s potential tensor function Hj,. It is defined in terms of Green’s tensor G, as follows:

4.2) Hinlr, 1) = [ (4aR) ™' G’ 1)V

An explicit expression for Green’s potential in the isotropic case has been given by Kos-
SECKA [16]. The motivation for the name comes from the fact that Green’s potential satisfies
Poisson’s equation

(4'3) h{in.ss = b~ Gjn s

with Green’s tensor as the source function. From Eq. (2.5) we deduce that the Green’s
potential also satisfies the equation

(C) Cajea Hy (T, 1)+ (470r) ™ 01, 8(¢) = 0Hun(r, 1).

Green’s potential is closely related to the incompatibility source tensor introduced by
Smvmons and BULLOUGH [27] to solve the so-called incompatibility problem, i.e. to find
the elastic strain as a closed volume integral over the incompatibility tensor. The incompati-
bility source tensor was also found useful to express the elastic strain in terms of the defect
densities in the static case [14]. However, we could not find a generalization of the incom-

p&tibﬂity source tensor to dynamics. For that reason we have introduced the Green’s
potential as an alternative method.

4.2. The elastic strain

The elastic strain is obtained from Egs. (4.9), (4.1) of [31], and (4.1) as follows:
4.5)

Cmpy = f(epmk Cijk! Gjn,i (Zp,'— QG‘],'J,HI) dV'dt;mﬂ) -—fep,,,_.,(C,-j“ Gj",; Mﬁ,— QG.Im W;)dV’dr(’,,,,,, ,

Vof [31]
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where the symbol (m#n) implies symmetrization. We now wish to express thi‘s equation
also in terms of the disclination density and current by using Green’s potential. By Eq.
4.3) we rewrite the second line in Eq. (4.5) as follows:

fsp,,,k(C,-_,vk, I)ﬂ-n,;,szﬂ—-gﬁkn,ssh’:) av'dt imny = fapu.k(cijkt Hipy i5%0p,50
= QHkn,s “‘g.s') dV’dr(’mn) = —fspmk [Cijkl [_Ijn,is(eqsi aqp = xfp.l")
o= ngn..\'(Ssp = éé‘:u)] dV'dt(‘mn) = fé'pmk (qul Cijr Hpn, i oqp — QHku,s Ssp) (]V’dl(’mn)
+ fsp,.m (Cijxe Hyn,u— QHkn) 355,50 OVt iy -

Here the first equality follows by partial integrations, the second from Eq. (4.14) and
(4.16), of [31], and the third by partial integration. By Eq. (4.4) the second line in the
last expression above vanishes. Hence we find for Eq. (4.5)

(46) (’m,.,(l', t) = _J {[Spmk Ca'jkl Gjn.i(R2 T) 'Ipi(r’: t’)_QG.In(R> T)Jml(r,s IJ)}
1= Spmk [eqsl Ca'jkl hrjn.is(Rs T)gqp(r” t’)'_QHkrr.s(R H T)Ssp(r’: t’)]} dV'dr(’nm) s

This is the elastic strain due to a continuous distribution of moving defects and their
currents.

4.3. The elastic bend-twist

To find the elastic bend-twist we start with the derivative of the total distortion from
Eq. (4.1):

4.7) U s = f (epmk Cijit Gy, is %1 — QG s Jr) dV 't —
= fe,,,,,k(C,-‘,-k, Giin,is %1y —QG,“,,S wp)dV'dt’ +ek, ..
By partial integrations the second line in this expression becomes
— fap,,,k(C;j“ Gin,i #ip,sr — QG.;m wh ) dvV'de’
= J‘Epmk [Cijna Gin, i (g5t Ogp— 265p.1) — QG.'kn (Ssp—#5p)dV"dt’
= [ epmi(easi Cista Gy, 14y~ 0C1a S1p) AV d £ .

Here the first equality follows from Egs. (4.14) and (4.16) of [31], and the second by
partial integration and Eq. (2.5). Hence,

(48) ur{m.s = f(spmk Cl'jkl' Gjn, is C’-’pl T E’G.'i‘n.s']mf) {!V’dt,
5 fgpmk (sqsl Cr'jkl Gju.i oqp B Q(’:kn Ssp)dVrdt’ + e::m,s o+ spmn "‘st -
Now from Egs. (4.2) and (4.10) of [31] we have

(49) Hsp = Ilzgrnm”{ms_xz_-
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Thus the elastic bend-twist for a continuous distribution of defects and their currents is
4.10) %y = 1/2f€:mn[(8‘pmk Cijur Gin,is % p1— 0Gia, s Tui)

+ Epmi (8gst Cijit Gjn, i0gp — @G.'k,, Ssp)ldV'dt’.
4.4. The elastic velocities

We next wish to find expressions for the elastic velocities. From Eq. (2.8) we find the
total linear velocity

@10 4l = — [(CuGpn.iehi— oGueD)dV'dr’
= _f[CijkiGju,l‘(ka+7"r.k')_'96fuwr]d[/’d’r = —fcijktGju.iJkrdV'df"HJf-

Here the second equality follows by a partial integration and Eq. (4.15) of [31], and the
third by partial integration and Eq. (2.5). From Egs. (4.3) and (4.11) of [31] we then
find the linear elastic velocity for a moving distribution of defects to be

4.12) 0,0, 1) = — [ Cijut Gy iR, T (e, ") dV"d’,

which is identical with the corresponding equation for dislocations only, Eq. (3.5).
To find the elastic rotational velocity, we first take the time derivative of Eq. (4.1)

@13) il = [ (o CiaGin.sotps — G T AVt
£ fspmk (Cijua C;‘j,,.,- Apy— g&,m whYdV'dt' + én,.
Now the second line in this expression can be rewritten by partial integration
— fapmk(cijkz Gin,i%1y— gé,m whydv'dt' = — fs,,,,,k [Cijat Gin. i (Sip+Wh1) —Qék,, wpldv'dt’
= — [ ot Cijia Gy 1 S1p AVt + Epun W .

Here the first equality follows from Eq. (4.16) of [31], and the second from partial inte-
gration and Eq. (2.5). Hence we have for Eq. (4.13)

@18) 4%, = [ (epui CijusGin,s 2yt — 0Grudu) AV'dt’
— [ eomk Cut Gin,i Sip @V t’ + éhy + Epmn W .
Now fiom Egs. (4.4) and (4.12) of [31] we have
(4.15) Wy = 1{2 et —wr .-
Therefore we find the rotational velocity for a distribution of moving defects to be

(4.16) W = lfzfﬁmmfb‘pmk Cijxi Gjn, 1 %p1 = 0G1n Tt — €pmi Cijra Gy, SipdV'dt.
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It is possible to reduce this expression to a somewhat simpler form by partial integrations
and Eq. (4.19) of [31],

@417) w = 1/2f5:mn [Cisia Gin, i (Dot ke — Jit,me) — 9(.3'.1,, JoaldV'dt’

= ”28tmn[fc;'j“Gjn_,-m.fk,dV'dt"]'Jmn] 5
where we have used Eq. (2.5). This expression could alternatively have been obtained
directly from the linear elastic velocity, Eq. (4.12), since by Eq. (4.23) of [31]
(4.18) Wir= ]/zslanu(wrr.n:_'};nn)-

In conclusion, Sect. 4 has extended the results of dislocation dynamics of Sect. 3.1 to
the more general disclination dynamics, whereas on the other hand it has extended the
results of disclination statics (Sect. 4 of Ref. [14]) to the more general disclination dynamics.
The central results obtained are closed integral expressions for the basic elastic fields, the
strain (4.6), bend-twist (4.10), linear velocity (4.12), and rotational velocity (4.16) and
(4.17). The basic elastic fields are state quantities because they are given entirely as integrals
over the defect densities and currents. These expressions can form the basis for applications
to particular cases. For example, the case of the moving discrete defect line will be discussed
in Sect. 5.

5. The moving discrete defect line

This section contains the main results of the present paper for a moving discrete defect
line, namely closed line-time integrals for the basic elastic fields.

First we find an expression for the total displacement due to a moving finite defect
loop from Egs. (2.8) and  (5.11), (5.13), (5.7), and (5.9) of [31]:

1) W)= [[ICuGn iR, T)+eGu(R, T)o', Db+ e Q(x,— )} dSiar,
St
where we have done the integration over all space. In this expression the first integral
sign refers to the integration over the complete range of time ¢'(—co, co), the second
to the integration over the surface S(¢) defined in Sect. 5 of [31] and vy is the velocity
of the surface S(¢').
Next we find the total distortion by differentiating:

(52) “g-,ru = f_f[cijkl Gjrr.im S Qdfn.mv;c] {bI = glqr -er'(xf" = \9)} dS}:.df’.
S(1)
Now by Eq. (A2) of [31] we have
63 o [oGulbrten2,0i-s0)ds,
St
= {emk 0G 1, {By+ &1 2y (x1 — x2) } v dLy, — ’ 0Gin {by+ &1 Q,(x.—x2)}ds;,
() )
— f QG.:’u.m {bl 35 Efr;r Qq(x:— _xl('))}w;t dSi: ) f Qélneiq;pl -Qq 'Ui ([S,: >
St S
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where we have used Egs. (3.9). This result can be used to do partial integration with
respect to ¢ in Eq. (5.2). Applying also Stokes’ theorem we find

64)  thm = [ eonk CissGini {br+ 1gr Q5= X0V} ALy’
L)

-+ ffcfjkl Gin, ix (b1 + €190 2o (X7 —x)}dS,dt’+ J f Cijit Gin, 1 E1qm L2, dSz.dt’
S(t") S

b [ § e oG (Bt 10 D5t~ X}k ALyt — [ [ 0Gi (b + 1 Qy(ovi— 39)} dSiudt’
L") Sty

+ f f 0G1 E1qm 2,03, S dt! = f f &pmi(Cijnt Gin.i + 0G1n V) {by + 10 2y (X — X0) Y dL, dt’
(D) L(t)

+ JfSpmk(Cijk:Gjn.i+Qéknwi)gpdsfd"“f‘ﬁ:*nm
S0

where the last equality follows from Egs. (2.5) and (5.7) of [31]. From this relation we
shall proceed to derive some of the basic elastic fields.
5.1. The elastic strain

The elastic strain is obtained from (4.9), (4.1), (5.11) of [31], and (5.4) as follows:

(5 5) €mn = ff spmk ( C:‘jk! Gjn W0 T+ QG.!,,?J;;) {bl + si’qr 'Qq (.Y:. [ Y?)} dL_:; dtzmn)

L")

=+ IJ o (Cijit Gjn, i+ 0Gn7) 2, AS] lt (-
)

We now wish to convert the surface integral also to a line integral, and for this we shall
use Green’s potential. Furthermore we note that by Eq. (A2) of [31]

(5.6) % f AdS! = f &g AV} AL, — f (AdS.+A v, dS))
S(@") L@t") S(t’)

for any tensor A that depends on R and 7. Thus by Eq. (4.3) the surface integral in Eq.
(5.5) becomes

= ff Epmk(cijkl I'-{jn.n'ss | QHku.squ;)Qp dS; dr(fnm) G ff EpmkEqst C:‘jkf brjn.is'gp dL:; dr;:nn)

() L)
g ff Spmk Cijk! I{jn,ilsgp dS.;dr(’mn) —% ‘rf Epmk Eqsl QHRn.s va; (]L::dt(fmn)
St L")
=+ ffepkaHRn.s-deS; d[(’nm) e f_'{ Epmksqsi(cijkl Hjn.is
) Lid?)

+9Hkn.s?);)9pd[':jdt£um)_ JJ Epmk(Cijkll-Ijn,iI_Qﬁkn),sgpdss:‘dt(rnm)'
S@’)

Here the first equality follows by Stokes’ theorem and Eq. (5.6) with 4 = Hi, s, and the
second by a rearrangement of terms. By Eq. (4.4) the second line in the last expression
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vanishes. Hence we find from Eq. (5.5) the elastic strain due to a moving discrete
defect line
(5'7) Coun = J f Spmk(cijkl Gjn ik QG.M?";:) {bi' o5 Eigr Qq('r:' _xr(-))] dL;) dt(’mn)
Lt
N ff € pmk aqSI(Cijkl Hjn. is +9ka:.sﬂ;)~(2p dL; dt;l"ll) ]
L(t’)

where now v, is the velocity of the defect line L(z’). This relation could of course also be
obtained more directly by a volume integration from Egs. (4.6) and (5.20) to (5.23) of [31].
This is the basic relation we sought in this section.

5.2. The elastic bend-twist

To find the elastic bend-twist we start with the derivative of the total distortion from
Eq. (5.4):

G8) Ul = [ § eomi(Ciiti Gy is+0Gin.s0) (b1 + €1 (5 — X} ALy dt”
L)
T J‘ Elimk(cl‘jkiGjn.i.v+gdkn.sv;)gp(]S;dtr+ﬁ:n.s-
S(r’)
By Stokes’ theorem and Eq. (5.6) with 4 = G;, the above surface integral becomes

ff Epmk gqsl ijkf Gjﬂ o Qp dL; dt’ I ff Epmk Cr'jkl Gjn,i! Qp dS; dt’

L(t") S@’)
uE f ff & pmk Eqs1 0G1n 2,0 dLydt’ — ff Epmk G 0,dSdt’
Lt!) S()
= ff Epmk eqsl(cr'jkl Gjr:.i + Qélm ‘UDQP dL; dt’ + Epmn ¢fp )
L7y

where we have used Egs. (2.5) and (5.8) of [31]. Hence we have for Eq. (5.8)

(59) M:T.rrrs = f_{ Epmk(Ciij Gjn.is =+ QG;,,'_,.‘U,") {bt + qur -Qq(x; = 39)} dL;; dt’

L(t")
+ ff Epmk sqsl(cijki Gjr!.i Gt QG.kn ‘U;)Qp dL:j dt' +ﬁ:u.s + Spmk qb:p .
L(t")
Now we find from Egs. (4.9) and (5.12) of [31] that
(5]0) Py = llzslmu(u;{ms_ﬁ:n.s)_qb:: s

Thus the elastic bend-twist of a moving discrete defect line is

(5 1 ]) st = I /2 ff Etmn Epmk(cijkl Gjn Vs +\le‘.n.ﬁ‘r‘?;¢) {bi' =t Eigr Qq(x:' == XE) } dL;z dar’

L{th
=+ 1/2 ff Epmn gpmk Eqs!(cijkl Gjn.i +Qlelv;)Qp st’i dt"
L(t")
This relation could also have been obtained directly by substituting expressions (5.20)
to (5.23) of [31] into Eq. (4.10).
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5.3. The elastic velocities

We next wish to find expressions for the elastic velocities. From Eq. (5.1) we find the
total linear velocity

.12) il = [ [(CipuGia.i+ 0G0 {brt e1gr 24 (xs— 32} dSp .
St

Now by Eq. (A2) of [31] we have

a . i
(5.13) TG fcl'j.ld Gjn,i{b1+£lquq(xr—x?)}dSk

S@t")
= — {epmk CijiGjn,i {bt + Eigr Qq(x:-- x?)}”:n dLL = f Ciju Gin.i {bH' siqr‘Qq(x:' —x7)dSy
L{t") 5(t")
- f C,'j'k; Gju,ik {br + e;q,Qq(x; = X,?)}‘U;,(]S; &
S(t')

Thus by a partial integration over ¢" Eq. (5.12) becomes

Gldy ul="— ffspmkcijmGjn.i{bl+8:quq(x;—x.?)}”;ndL;:dt'
L)

= _rf(cijlej:x.ik—len){bf"!'slqr Q,(x1—x))}v,dS,dt’ .
() :
The second line in this expression equals #¥ by Egs. (2.5) and (5.9) of [31]. Therefore
we find from Eqgs. (4.11), (4.3), and (5.13) of [31] the linear elastic velocity for a moving
discrete defect line

(515) 'Z),,(l', t) == ffspmkcijleju.i(R’ T){bi+51qrgq(x;_xt?)}v:n(r’} [’)dL;,dt’.
b 10%)
Again the same result could have been found directly from Eqgs. (4.12) and (5.22) of [31].
Note that it is not identical to the result (3.15) for dislocations only.
To find the elastic rotational velocity, we first take the time derivative of Eq. (5.4)

(5.16) !'fg;,m = ff Epmk(cijk: G:jn.i+ Q(-;..ln'v;c) {b,+£1,‘,_.Qq(x; =, x?)} dL;,dt’
L")

+ ff8pmk(cijktG.jn.i+QG"kn'vD'deS;dt,+ﬁ.fm'

S’
Now by Eq. (A2) of [31]
a .
(5.17) =7 fG_,"_!dS; = = fsqs,Gj,,,,-w;dL;— f(G_,-,,_,odS{+G,-,,‘“v;dS,;).
S’y T HTD S

Therefore the surface integral in Eq. (5.16) becomes

e J‘f Epmksqsf ijkl Gj,,,;.QP‘U;dL; dt’,

L(t")
= ff Epmk (ijm G+ QG.I:H)Qp v,dS,dt’.
(D)

2 Arch. Mech. Stos. 6/77
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The second line in this expression equals &,,, %} by Egs. (2.5) and (5.10) of [31]. Therefore
we have for Eq. (5.16)

(5.18) @, = ffs,,m,,(Cijk,G,-,,_ﬁgC};,,ﬂ;‘){b;+s,q,Qq(x,’.-—x?)}dL;,dn
Lt

= J'f Epmk quf Cij'kl Gju W Qp 'U_; dL:j dt’ + ﬁ:‘m 4 Spmn ';U: .

L)
Now from Egs. (4.15) and (5.14) of [31] it follows that
(5.19) We = 1/2 8omn G — Br) — ¥

Therefore the rotational velocity for a moving discrete defect line is

(520) Wy = 1 /2 ff Etmn spmk (Cijkl Gjn.i + Qé!n ‘Ui’c) {bl e slqr: Qq(x; T xl?)} dL;’ dr’
L")
= 1/2 J‘f Etmn Epmk Eqsi Cijki Gjr:.i 'va;‘ dL:] dt’.
L'y
The same result could have been found directly from Egs. (4.16) and (5.20) to (5.23) of [31].
By Egs. (2.3), (5.22) and (A3) of [31] this relation can be reduced to the relation

621 we = —1/2eomn| [ § £ouk Citi Gin.im (b1t 150 Q= X} 04 ALyt + T
L(t")
that can also be obtained directly from Eqs. (4.17) and (5.22) of [31] or (4.18) and (5.15).

We see that the basic elastic fields (i.e. the strain e,,, the bend-twist ., the linear
and rotational velocities v, and w;) can be written as line integrals along the discrete moving
defect line L(¢), i.e. they are expressed entirely in terms of integrals over the only regions
of the body where the defect is localized, and the position of the surface S(#) is immaterial.
Hence they are state quantities, because in this case the defect is localized on the line
L(t):

Section 5 has extended the results of a moving discrete dislocation line of Sect. 3.2
to a moving discrete defect line, whereas it has extended the results of a stationary discrete
defect line (Sect. 5 of Ref. [14]) to a moving discrete defect line. The central results obtained
are closed line integrals for the basic elastic fields, the strain (5.7), the bend-twist (5.11),
the linear velocity (5.15), and the rotational velocity (5.20) and (5.21). These expressions
are in a form that is directly applicable to special geometries.

6. Relation to the incompatibility problem

6.1. The elastic fields

In this section we find the elastic strain and velocity for a given incompatibility and its
current. First we find an expression for the total distortion,

(6.1) ":];.m = "f(cijk:Gjn.imefz—thn.mvr)dwdt' = f(cijqun.isefx,mfs'
“Qﬁln.sﬂfmrs')dV'dt' = f[cfjkrmaa.is(spmk 845177pq+e:!l.k’s’+e.'fs.m’i"_erf:s.k’i’)

=5 QI{!n.s(Fsmi' + érp;ri,s' + él{:‘.m' = éfm.l')] av'dt’ = f(epmk Eqsl Cifkl Hjn.is Mpq
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— QH—M,S Fsml) dv'dt’ + f (Cijlejn.ik == ﬁln) (erp;:l,s’s' i efs‘,m's' = espm.l's’) dv'dt’
= J (Spml( Egst Cijkl' Hjn Jispg— Qan,s Fo) dv'dt’' + e:‘:m ”‘f(zﬂR)-lef[n,m']s’dV’-

Here the first equality follows from Eq. (2.8), the second from Eq. (4.3) and
partial integrations, the third from Egs. (6.7) and (6.8) of [31], the fourth by partial integra-
tions, and the fifth by Eq. (4.3) and (4.4). So by Egs. (6.5) and (6.1) of [31] we find

(62) emn(r’ t) = "- [Spmksqsr Cijkl H:r‘n.is(R: T)ﬂp;;("’: t’)"—QH';,,‘_‘(R, T)F:'-‘ml(r’a t’)] dV'd’(’mn)-

This is the elastic strain for a given distribution of incompatibility 7pq and its current F,,,;.
Next we find the total velocity,

6.3) uf = _f(CijklGjn.iefl—lgéiuvf)dyrdﬂ
= f[C:’jktG_fn(-F}m—wa'+érs.kf“éﬁc.p)+QG.M'U:P)]dV'df' =fcijkiGjnF}de'd!'+'0:-

Here the first equality follows from Eq. (2.8), the second from partial integration and
Eq. (6.8) of [31] and the third from partial integrations, Eq. (2.5), and a cancellation.
Hence by Eqgs. (6.6) and (6.2) of [31] we find

(6.4) 0,(r, 1) = [ Cyp Gru(R, T) Fya(r', t')dV"dlt".

This is the linear elastic velocity for a given incompatibility current.

Again, the elastic strain (6.2) and velocity (6.4) are state quantities because these
expressions are integrals taken entirely over the incompatibility 7,, and its current F,,
which are also state quantities.

6.2. Consistency with defect theory

In this section we wish to show that Eqgs. (6.2) and (6.4) are consistent with their counter-
parts in the defect theory, Eqs. (4.6) and (4.12). First consider the elastic strain, Eq. (6.2):

(65) €pn = f[spmk C:'jkl Hjn.is(Klp.s’" Ksp.!‘ T sqsteqp) + Qb}kn.s(‘]mk,s’
+€pmk (Ssp o3 ksp))]dyldr(’mn) = f[gpmk Ci}kl(l-‘{irr.i.';s Kl'p = Eqsr I{,jn, is eqp)
+Q(Hkn.ss-fmk+ Epmk Hkn.sssp)"' Epmk(Cijit Hj i1 — Qﬁk")ng.s']dV'df('mn)

= f [spnrh Cijkl(Gjrr.i apl == qul I{jn.iseqp) = Q(G.Iw Jmk = Epmk Hku ,5 Ssp)] dV’dt('m,,) .

Here the first equality follows from Egs. (6.15) and (6.16) of [31], the second by partial
integrations and rearrangements, and the third from Eq. (4.26) of [31], Egs. (4.3) and (4.4).
This relation is identical to Eq. (4.6), q.e.d.

Next we find the velocity from Egs. (6.4) and (6.14) of [31],

(6.6) 0, = = [ Cijut Gy JuaidV'dt! = = [ Cipui Gy i JudV"dt’,

by partial integration. This relation is identical to Eq. (4.12), g.e.d.
These results then show that the dynamic incompatibility theory is completely consistent
with disclination dynamics.

2
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7. Summary

‘We started this paper with the general solution of the dynamic plastic strain problem
which is a generalization of Eshelby’s transformation problem and very similar to Mura’s
plastic strain problem. It formed the basis for all dynamic defect fields. We then reviewed
dislocation dynamics, including the continuous distribution and the discrete line. This
introductory material formed the point of departure for the general theory of disclination
dynamics. The latter was renamed defect dynamics because it is a theory that combines
disclination and dislocation dynamics.

We derived closed volume-time integrals for the basic elastic fields in terms of the
defect densities and their currents. These integrals contain kernels with the dynamic Green’s
tensor. For the elastic strain we also used as kernel a newly introduced quantity, the dy-
namic Green's potential tensor. These integral expressions for the basic elastic fields will
form the basis for applications to special cases. '

We derived the basic elastic fields for a moving discrete defect line as closed line-time
integrals along the defect line. These integrals also contained Green’s tensor as kernels and,
in particular, for the elastic strain we also had to use the Green’s potential as a kernel.
These integral expressions for the basic elastic fields are in a form that is directly applicable
to special geometries.

Finally we compared disclination dynamics with the dynamic incompatibility problem.
We identified the relations between the defect densities and their currents and the incompati-
bility tensor and its current. We showed that the dynamics of the two theories was consist-
ent.

So we have presented a general theory of defect (disclination) dynamics for a linearly
elastic, infinitely extended, homogeneous body. The major shortcoming of the present
treatment might be the use of the linear theory. This means that in a real solid the resulting
fields close to discrete defects will deviate considerably from our formulas, but these
fields will become more realistic the further away we are from a defect. However, without
the linear assumption we certainly could not have pushed the theory as far as we did.
This is the price we paid for a fairly complete analytic treatment which we think might
have its usefulness.

Within its clearly prescribed limitations the present theory is completely self-consistent.
Aside from its possible intrinsic usefulness, it can be used as the starting point for further
generalizations, such as nonlinear effects, couple-stresses, a finite body, or inhomogeneities.
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