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The effect of internal thermal structure on dynamic characteristics of  multilayer walls is 

analyzed. Mathematical basis constitute the integral formulae for the heat flow across the 

surfaces of the wall. The notion of structure factors is introduced and the conditions they 

impose on response factors are derived, using the Laplace transform method. Simple 

examples of walls, representing different types of thermal resistance and capacity distribution, 

are analyzed to illustrate general relations between the structure factors and the response 

factors. 

 

 

 

1.  INTRODUCTION 

 

The reason for consideration presented below was primarily the problem of taking into 

account thermal bridges in exterior walls of buildings, in energy simulation in building 

design, avoiding detailed simulation of three-dimensional heat transfer processes. The 

question was: How to modify response factors for plane walls used in programs such as 

DOE-2? 

The simplest method to be suggested here is of course just to calculate - solving the 

steady state heat transfer problem - the overall resistance of a wall with imperfections and 

simply multiply response factors by the resulting correction factor. This would be satisfactory 

for light walls, for which storage effects are insignificant. It is also possible to calculate 

separately response factors for wall elements with thermal bridges, but it would be 

troublesome to include them into existing programs for computerized energy calculations. 

The question posed reduces thus to the following: Is it possible to find another method, which 

would be relatively simple but at the same time accurate enough? 

Imperfections in plane walls not only change their resistance but also modify their 

thermal dynamics - the profiles of thermal impulses penetrating through them - represented 

by response factors. To have an idea of possible relationships between static and dynamic 

thermal characteristics of structures, in which three-dimensional heat flow occurs, one should 

analyze, with great attention, relationships of this kind for a plane multi-layer wall. The 

important mathematical tool, to be used here, are the integral formulae for the heat flow 

across the wall surfaces, in a finite time interval [1, 2, 3, 4]. 

Those formulae lead to the idea of thermal structure factors for a wall, which govern the 

storage effects in transient heat flow. They have their counterparts in three-dimensional heat 

transfer problems [2]. One should just find the conditions they impose on response factors 

and make use of analogies between one- and three-dimensional problems, and then try to 
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replace three-dimensional structure by an equivalent but much simpler - from the 

mathematical point of view - plane wall. 

These conditions - which represent the relationships between structure factors and 

response factors - are derived in this work. Similarly as the integral formulae for the heat 

flow, they have their three-dimensional counterparts; this will be presented in [5, 6]. They 

lead to the conclusion that structure factors themselves indicate whether a wall, of given 

resistance and capacity, is relatively penetrable to thermal impulses or whether it is delaying 

them.  

Although the occasion to study the relations between structure factors and response 

factors was the problem of thermal bridges, I realized that results for plane walls are so 

interesting that it is reasonable to prepare a separate paper devoted to this problem. This 

work is thus an introduction to the study on the effects of internal structure on the thermal 

dynamics of walls and possibilities to represent them by another, equivalent structures. 

Simple examples of structures, representing various types of thermal design, are analyzed 

to demonstrate general relations between their static /structural/ and dynamic thermal 

characteristics. 

 

 

2.  STORAGE EFFECTS IN TRANSIENT HEAT FLOW THROUGH A WALL 

 

Consider heat transfer through an exterior  building wall of thickness L, separating a room at 

temperature Ti from environment at temperature Te. Assume that thermophysical properties of 

the wall: thermal conductivity , specific heat c and density  are constant in time. 

Assume that one-dimensional heat transfer conditions are satisfied. The temperature in 

the wall is represented by the function T(x,t) of the spatial coordinate x and time t. The heat 

flux is represented by the function q(x,t) = -T/x . Let one-dimensional Fourier’s heat 

conduction equation be satisfied [8]: 
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In the case of a multilayer wall composed of materials with different thermal properties, 

Equation (2.1) has to be understood symbolically, as a set of heat conduction equations 

written for the separate layers and the conditions of continuity of temperatures and heat flow 

rates at the interfaces.   

The coordinate system is assumed in which the wall surface facing temperature Ti 

corresponds to the plane x=0 and the surface facing temperature Te to x=L; surface 

temperatures and heat fluxes are thus denoted by T(0), T(L), q(0) and q(L) respectively; 

surface fluxes in the directions of the outward normals are denoted by qni and qne: 

 

(2.2)       Lqqqq neni  ,0 . 

 
Heat transfer from the wall surfaces to the room and environment is expressed by the 

Newton’s law; the surface heat balance equations take the form: 
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where Ri and Re are the constant surface film resistances. 

Let R0-x and Rx-L denote the thermal resistances of the wall layers enclosed in the intervals 

[0, x] and [x, L] respectively,  and Ri-x, Rx-e the resistances for heat transmission from the 

point x in the wall to the internal and external environment, respectively. R is the total 

thermal resistance of the wall, surface to surface, Rk is the total resistance for heat 

transmission through the wall, environment to environment: 
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(2.5)  eikeLxexxixi RRRRRRRRRR   ,,0 . 

 

Ri-x, Rx-e and Rk  satisfy the identity: 
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Multiplying the heat conduction equation (2.1) by the functions Rx-e/Rk, Ri-x/Rk, and 

integrating the expressions appearing on its left and right side first with respect to x from 0 to 

L, taking into account the boundary conditions (2.3), and then with respect to time from t0 to 

t, with the assumption of constant resistances and heat capacities, we obtain the following 

integral relations between the total amounts of heat flow across the surfaces in the finite time 

interval [t0, t], Qni and Qne, 
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as well as the temperatures Ti(t) and Te(t) and temperature differences inside the wall between 

t and t0: 
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The relations (2.8), (2.9) may be rewritten as follows: 
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(2.10)   ceieneciieni QQQQQQ  , , 

 

where: 
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iT  and eT  are the time averages of the temperatures Ti and Te over the interval [t0,t]; Q
ie
 

represents the total heat flow through the wall due to the difference of the ambient 

temperatures. Summing up the expressions for Qni and Qne, and taking into account the 

identity (2.6), gives the heat balance equation for the wall: 

 

(2.14)     ccecineni QQQQQ  , 

 

where Qc is the difference in the amount of heat stored in the wall element of unit cross-

sectional area: 

 

(2.15)          
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Qci and Qce thus represent the components of the total heat flow across the wall surfaces 

contributing to Qc. Under the assumption made previousely, about the independence of the 

thermophysical parameters of the materials on time, the quantities Qci and Qce depend 

exclusively on the temperature difference between the final and the initial state; if there is no 

temperature difference, Qci and Qce vanish. For prescribed Ti and Te, they are the only 

unknown components of the heat flows across the wall surfaces. For equal Ti and Te 

(symmetric heating or cooling), they coincide with Qni and Qne. 

Formulae analogous to (2.8), (2.9) for wall elements of complex structure were derived 

by E.Kossecka in [2]. 

 

 

3.  THERMAL STRUCTURE FACTORS FOR PLANE WALLS 

 

Evaluation of Qci, Qce and Qc for prescribed temperatures Ti(t) and Te(t) necessitates, in 

general, the solution of the transient heat conduction problem. Explicit expressions, however, 

can be written down immediately for the heat conduction process, for which the initial and 

final temperature difference converges asymptotically to temperature difference between the 

two steady states of heat flow /see [1, 2, 3, 4]/: 



355 

THE EFFECT OF STRUCTURE ON DYNAMIC THERMAL … 
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For such a process, it follows from (2.8), (2.9), that Qni, Qne and Qc converge to: 
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(3.4)     eeiic TCTCttQ  ,0 , 

where the quantities ii, ie, ee, and i, e are given by: 
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C is the total thermal capacity of the wall element of unit cross sectional area: 

(3.8)    cdxC

L


0

. 

The following identities are satisfied - as a consequence of the identity (2.6): 

(3.9)    1 ei  , 

(3.10)    12  eeieii  . 

The dimensionless quantities ii, ie, ee, and i, e, in what follows, are called the 

thermal structure factors for a wall. They constitute, together with the total resistance Rk and 

capacity C, the basic wall thermal characteristics and have their counterparts for structures  in 

which three-dimensional heat flow occurs. They can be determined experimentally in the heat 

transfer processes with steady initial and final state of heat flow. 

The structure factors multiplied by C are called by B.R.Anderson the thermal mass 

factors /see [7]/. They have an essential influence on storage effects in a wall. Their 

magnitudes should be taken into account in data analysis of in situ measurements of thermal 

resistances and thermal transmittances /see also [3,4]/. 



356 

E. KOSSECKA 

4.  RELATIONSHIPS BETWEEN THERMAL STRUCTURE FACTORS AND 

RESPONSE FACTORS 

 

The response factors for multilayer walls, used in building energy modelling, may be 

calculated by applying the Laplace transform method [9, 10]. The Laplace transforms of the 

surface heat fluxes qni, qne, and ambient temperatures Ti, Te, denoted here as  sqni ,  sqne , 

 sTi ,  sTe  respectively, are related by: 
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where A(s), B(s) and D(s) are the elements of the transition matrix for the structure. 

The Laplace transform of a surface heat flux q(t), due to boundary temperature T(t), thus 

has the general form: 

(4.3)      
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For q = qni  p = 0,  N = 1  for T = Te  and  p = 1,  N = D  for  T = Ti,  whereas for  q = qne  

p = 0,  N = 1  for  T = Ti  and  p = 1,  N = A  for  T = Te. Therefore p = 0 for the (ie) and (ei) 

modes, whereas for the (ii) and (ee) modes p = 1. 

The Laplace transform of the heat flow Q(t), corresponding to (4.3), is of the form: 
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Consider now the heat transfer process with the function T(t), in the interval (0, n), 

linear in every interval [(m-1), m],  m = 1, 2, .....n, and equal to T(m) at t = m, with 

T(0) = 0, represented as the sum of triangular pulses /see [9, 10]/: 
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r(t) in (4.6) denotes the ramp function:  r(t) = t(t), where (t) is the Heaviside unit step 

function. 

The Laplace transform of T(t), given by (4.5), is the sum: 
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The expression for the Laplace transform of the shifted pulse function is to be obtained using 

the expression for the Laplace transform of the ramp function    21 ssr   and the general 

property of the Laplace transform of a shifted function /see [11]/: 
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The Laplace transform of the heat flux density corresponding to (4.7) is given as: 
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The responses of the structure to a temperature pulse, after time periods equal to the 

multiples of , are called the response factors [9, 10, 12]. The m-th response factor 

corresponding to a triangular pulse, denoted here as X(m), is defined as: 
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The representation of q(t) at  t = n  in terms of response factors X(m) is as follows: 
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For the compatibility of (4.12) with the steady state heat flow solution, it is necessary that 

response factors satisfy the condition: 
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Consider now the heat transfer process with temperature T(t) in the form of the unit step 

function: 
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For such a process the heat flow in time interval equal to the multiple of , Q(n), can be 

represented exactly in terms of response factors X(m) corresponding to triangular pulses. 

According to (4.4), (4.14), the Laplace transform of the heat flow corresponding to T(t) in the 

form of the unit step function is given as: 
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With the help of the identity: 

(4.16)  
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the Laplace transform of the ramp function, in the interval (0, n), may be represented as: 
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(4.17) combined with (4.15) gives the following expression for Q(n): 
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The last two terms in (4.17), by virtue of (4.8), give no contribution to (4.18). For sufficiently 

large number n, the sum of response factors in (4.18) may be, according to (4.13), replaced 

by 1/RT; thus the following asymptotic relationship takes place: 
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On the other hand, the asymptotic relationship between the heat flow due to the boundary 

temperature excitation in the form of a unit step, as follows from the asymptotic relations 

(3.2), (3.3) and definition of the thermal structure factors (3.11), has the form: 

(4.20)       1,0,1lim 
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p in (4.20) is the same as p in (4.3) and (4.4). If Q in (4.20) is to be identified with Qni  then 

p = 0,   = ie for T = Te,  p = 1,   = ii for T = Ti, whereas for Q = Qne p = 0,   = ei for 

T = Ti,  p = 0,   = ee for T = Te.  

Equating the right hand sides of  (4.19) and (4.20) gives the following relation between 

the response factors X(m),  m  1, for a given heat transfer mode, appropriate structure 

factor and thermal capacity of a wall: 
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Denote by Xii(m), Xie(m) and Xee(m) the response factors corresponding to the (ii), 

(ie) and (ei), and (ee) heat transfer modes respectively. In the usual notation /see[6, 7]/ 

Xii(m) =  X(m), Xie(m) = Y(m), Xee(m) = Z(m). The heat fluxes qni and qne, across the 

wall surfaces in the direction of the outside normal, are represented in terms of the response 

factors Xii(m), Xie(m) and  Xee(m) in the following way: 
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From (4.21),  we obtain thus the set of equations, which represent the relationships 

between the response factors Xii(m), Xie(m), Xee(m), thermal capacity of the wall C and 

structure factors ii, ie, ee: 
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The addition of the above equations gives: 
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The last equation, (4.28), could also be obtained directly from (4.22), (4.23), (4.21) and the 

heat balance equation (2.18). 

Equations (4.24 - 4.28) represent the relationships between the structural and dynamic 

thermal characteristics of the wall: ii, ie, ee, i, e, capacity C and the response factors 

Xii(m), Xie(m) and  Xee(m) calculated for the given time interval . 

Equations (4.24), (4.25) for Xii(m), Xie(m) and Xee(m) must be satisfied 

simultaneousely with (4.13). Response factors X(m),  with m  1 , which appear in (4.24 - 

28), describe the storage effects - heat fluxes after the time of duration of the triangular 

temperature impulse. Their magnitudes increase with the product C. However, at the same 
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time, the sum of all response factors must be equal to 1/Rk , therefore the larger are the values 

of X(m) for m  1 , the smaller is the value X(0) and vice versa. 

All these equations do not determine the response factors in a unique way, but rather play 

the role of constraints conditions. One may expect however, that walls with the same total 

thermal resistance Rk, capacity C and structure factors have also similar dynamic 

characteristics - specifically response factors. This leads to the concept of the „equivalent 

wall” - a simple structure which has the same type of dynamic thermal behaviour as a more 

complex structure and may be used as its substitute in energy simulations in building design. 

This problem is discussed in [5, 6]. An example of a two-layer wall, equivalent to the four-

layer one, is presented in the next section. 

 

 

5.  RELATIONS BETWEEN STRUCTURE AND THERMAL DYNAMICS FOR 

MULTILAYER WALLS 

 

The form of the expressions under the integral signs in (3.5), (3.6) indicates that ii is 

comparatively large if most of the thermal mass is located near the interior surface x = 0, 

whereas most of the total resistance resides in the outer part of the wall, located near the 

surface x = L; the opposite holds for ee. The following estimates are obvious: 

 

(5.1)   10,10  eeii  . 

 

ie is comparatively large if most of the thermal mass is located in the centre of a wall 

and the resistance is symmetrically distributed on both sides of it. 

The thermal mass and structure factors of a wall with surface film resistances Ri and Re 

differ from the factors of a „naked” wall. For homogeneous walls, with Ri and Re neglected, 

ii = ee = 1/3 , ie = 1/6 , i = e = 1/2. For walls with internal symmetry planes (different 

values of Ri and Re upset the symmetry in general), ii = ee and thus i = e = 1/2. 

Structure factors for a wall composed of n plane homogeneous layers, numbered from 1 

to n with layer 1 at the interior surface, are given as: 
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where Rm and Cm denote the thermal resistance and capacity of the layer m, whereas Ri-m and 

Re-m denote the resistances for the heat transfer from its surfaces to inner and outer 

surroundings: 

(5.6)    
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Examining the above expressions, one can prove that for a two-layer wall the following 

estimate on ie holds:  0 < ie < 3/16. For a three-layer wall, and also for n-layer with n  3 , 

the estimate is different: 0 < ie < 1/4. The upper limit of ie for a two-layer wall is lower 

than for a three-layer one, because with two layers only, the internal symmetry, with thermal 

mass at the centre and resistance outside, cannot be realized. 

Structure factors of multilayer walls are affected by differentiation of thermal parameters 

of individual layers and their arrangement. 

To demonstrate the effect of arrangement on thermal structure factors ii, ie and ee, six 

simple examples are examined (rather „academic”), of walls with the same total thermal 

resistance and capacity, composed in six different ways of two layers of heavyweight 

concrete / = 1.73 W/(mK),  = 2240 kg/m3, c= 0.838 kJ/(kgK)/ and  two layers of insulation 

/ = 0.043 W/(mK),   = 91 kg/m3, c = 0.838 kJ/(kgK)/ of the same thickness 0.076 m. The 

arrangement of layers in structures of different types, numbered from 1 to 6, is presented in 

Figure 1. The structure factors are given in Table 1. In case (a) the surface film resistances Ri 

and Re are neglected, in (b) they are taken into account /Ri = 0.12 m2K/W,  Re = 0.05 m2K/W; 

see [11]/. Results for the homogeneous wall are added for comparison. 

 

(1) (2) (3)

(4) (5) (6)

concrete insulation
 

 
Fig. 1  Different types of four-layer structures composed of concrete and insulation 

/structure factors represented in Table 1/ 

Rys. 1  Różne typy struktur czterowarstwowych utworzonych z betonu i izolacji 

/współczynniki strukturalne przedstawione w Tabeli 1/ 
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The structures of the type (1) and (2), which represent de facto two-layer walls, are 

highly asymmetric. The values of ii and ee are close  to 0 or to 1. For symmetric structures 

(3) and (4), without Ri and Re , they are equal.  

For the exterior walls of rooms with stabilized temperature Ti, the most interesting are the 

values of ie, which, as indicated by equation (4.25), determine the character of their thermal 

responses to variations of the ambient temperature Te. Here the structure of the type (3) - a 

heavy center covered with insulation on both sides - is expected to be the most delaying 

thermal impulses penetrating through it. For structures of the type (1), (2) or (4), the remote 

effects of the ambient temperature fluctuations on heat flux at the inner surface are small; 

either because the inner heavy layers are protected by the external insulation, or because the 

outer heavy layers of small resistance may comparatively quickly exchange heat with the 

surroundings. Structures of the type (5) and (6) behave rather as homogeneous. Surface 

resistances Ri and Re, corresponding to massless layers, increase the ie values. 

To demonstrate the effect of relative differentiation of thermal parameters on structure 

factors and response factors, two simple examples were analyzed of walls described below. 

They have the same total resistance R = 1 m2K/W and capacity C = 180 kJ/(m2K) per unit 

surface area, time constant RC = 50 h, are composed in the same way of layers with the same 

thermal diffusivity a = /c, but different resistances and capacities; the surface resistances 

Ri, Re being neglected. Transfer functions in both examples have a simple form; their poles 

may be found analytically. 

 

Table 1 
Thermal structure factors for different types of four-layer walls represented in Figure 1 

Surface film resistances neglected (a) or taken into account (b) 

Termiczne współczynniki strukturalne dla różnych typów ścian dwuwarstwowych przedstawionych na 

Rysunku 1. Powierzchniowe opory przejmowania ciepła pominięte (a) lub uwzględnione (b). 

Wall No i e ii ie ee 

1a 0,968 0,032 0,950 0,018 0,014 

2a 0,032 0,968 0,014 0,018 0,950 

3a 0,500 0,500 0,253 0,247 0,253 

4a 0,500 0,500 0,488 0,012 0,488 

5a 0,266 0,734 0,136 0,130 0,605 

6a 0,734 0,266 0,605 0,130 0,136 

homogen. 0,500 0,500 0,333 0,167 0,333 

1b 0,940 0,060 0,895 0,045 0,015 

2b 0,046 0,954 0,013 0,032 0,922 

3b 0,492 0,508 0,245 0,247 0,262 

4b 0,492 0,508 0,457 0,034 0,474 

5b 0,269 0,731 0,132 0,137 0,594 

6b 0,715 0,285 0,570 0,144 0,141 

homogen. 0,492 0,508 0,317 0,174 0,334 
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First one is the wall composed of two layers of the same thickness /structures of the type 

(1) and (2)/, with resistances, capacities, diffusivity and structure factors depending on the 

structural parameter  in the following way: 

(5.7)  2211
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Maximum differentiation is attained at  close to 0;  = 1/2 means homogeneity of the wall. 

The second one is the symmetric three-layer wall, with thicknesses in the proportion 

1:2:1 /structures of the type (3) and (4)/, with resistances and capacities depending on the 

structural parameter  in the following way: 
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Maximum differentiation is attained at  close to 0 and 1/2;   = 1/4  means homogeneity. 

Structure factors for different values of , together with values of the decrement factor df 

and time lag   of the heat flux for harmonic oscillations of time period 24 h, are collected in 

Tables 2, 3; normalized response factors Hie are represented in Figures 2, 3. /Decrement 

factor df is defined as the ratio of the amplitudes of the heat flux for the harmonic, of given 

frequency, and quasistationary oscillations/. The smallest value of  in Table 2 corresponds 

to structures close to (1) and (2) in Table 1 whereas the extreme values of  in Table 3 

correspond to structures close to (3) and (4) in Table 1. 

 

Table 2 
Structure factors, decrement factors and time lags for two-layer walls of time 

constant RC = 50 h  and different values of the structural parameter  

Współczynniki strukturalne, współczynniki tłumienia i przesunięcia czasowe dla ścian 

dwuwarstwowych o tej samej stałej czasowej RC=50 h i różnych wartościach czynnika strukturalnego  

 ie ii df [h] 

0.026 0.017 0.958 0.991 0.832 

0.100 0.060 0.840 0.894 2.875 

0.300 0.140 0.560 0.636 5.921 

0.500 0.167 0.333 0.562 6.751 
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Table 3 
Structure factors, decrement factors and time lags for three-layer walls of time constant RC=50 h and 

different values of the structural parameter  

Współczynniki strukturalne, współczynniki tłumienia i przesunięcia czasowe dla ścian 

trójwarstwowych o tej samej stałej czasowej RC=50 h i różnych wartościach czynnika strukturalnego  

 ie ii df  [h] 

0.013 0.011 0.489 0.998 0.530 

0.050 0.040 0.460 0.972 1.989 

0.150 0.110 0.390 0.777 5.129 

0.250 0.167 0.333 0.562 6.751 

0.350 0.210 0.290 0.419 6.922 

0.487 0.248 0.252 0.301 5.143 
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Fig. 2. Response factors Xie(n) for two-layer walls of the same time constant 

RC=50h and different structure factors 

Rys. 2. Współczynniki odpowiedzi Xie(n) dla ścian dwuwarstwowych o tej samej stałej 

czasowej RC=50h i różnych współczynnikach strukturalnych 
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Fig. 3  Response factors Xie(n) for three-layer walls of the same time constant RC=50h 

 and different structure factors 

Rys. 3  Współczynniki odpowiedzi Xie(n) dla ścian trójwarstwowych o tej samej stałej 

czasowej RC=50h i róznych współczynnikach strukturalnych. 

 

The plots of response factors in Figures 2, and 3 clearly illustrate the fact that structure 

factors have an essential influence on dynamic thermal behavior of walls. They confirm the 

supposition that walls characterized by small values of the structure factor ie comparatively 

quickly transfer thermal responses, whereas those with larger values of ie delay thermal 

responses. The magnitudes of decrement factors and time lags of the heat flux for harmonic 

oscillations indicate the same. The response, in the form of the heat flux at the surface, to 

thermal impulse at the opposite surface, in the case of a wall with ie close to zero, is 

comparatively large, increases and disappears comparatively quickly. In the case of a wall 

with ie close to the maximum possible value of 1/4, such a response is smaller and slowly 

decreases - however it increases more quickly than for a homogeneous wall. 

Figure 4 gives the comparison between response factors Xie(n) of the four-layer wall, 

represented in Figure 1 as (5), and the equivalent two-layer wall. Four-layer wall is composed 

of the two layers of concrete / = 0.4 W/(mK),  = 1200 kg/m3, c= 0.840 kJ/(kgK)/ and two 

layers of mineral wool / = 0.04 W/(mK),  = 100 kg/m3, c= 0.750 kJ/(kgK)/, of the same 

thickness 0.04 m.  Total resistance  R = 2.2 m2K/W, capacity C = 86.64 kJ/(m2K), per unit 

cross sectional area; time constant RC = 52.9 h. Thermophysical characteristics of the layers 

of the two-layer wall, of thickness 0.08 m, are as follows: 1 = 0.123 W/(mK), 

1 = 922.3 kg/m3, c1 = 0.840 kJ/(kgK), 2 = 0.052 W/(mK), 2 = 367 kg/m3, 

c2 = 0.840 kJ/(kgK). Response factors of both structures do not differ much from response 

factors for the homogeneous wall, of the same resistance and capacity. 



366 

E. KOSSECKA 

 

  Xie(n)

0 5 10 15 20 25 30

n

0.00

0.02

0.04

0.06

0.08

4 - layer wall

equivalent 2 - layer wall

homogeneous wall

 
 

Fig. 4   Response factors Xie(n) for the 4-layer and equivalent 2-layer wall, of RC = 52.9 h 

Rys. 4  Współczynniki odpowiedzi Xie(n) dla ściany 4-warstwowej i równoważnej 2-

warstwowej o stałej czasowej RC = 52.9 h 

 

 

 

6.  CONCLUSIONS 

 

Thermal structure factors, defined by the integrals (3.5 – 3.7) and for a multilayer wall given 

by the expressions (5.2 – 5.5), together with total resistance and capacity, determine the 

thermal dynamics of the wall - through the conditions they  impose on response factors. At 

the same time damping effects, for harmonic oscillations of heat flow, are strongly affected 

by structure factors. 

Structure factors of multilayer walls are affected by differentiation of thermal parameters 

of individual layers and their arrangement. 

Large value of the structure factor, corresponding to a given heat flux response mode, 

indicates that response factors with number m  1, representing storage effects, are 

comparatively large; on the contrary, small value of the structure factor indicates that they are 

comparatively small. 

Structures with thermal mass outside, on one or both sides, are characterized by small 

values of structure factor ie, what means that they allow for a quick transfer of the  thermal 
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response. The response factors Xie(m), which represent the surface heat flux due to a 

triangular temperature impulse at the opposite surface, decay relatively quickly, however 

those with smallest index m assume relatively great values. Structures with thermal mass 

inside, covered with light insulation, characterized by large values of structure factor ie  /up 

to 1/4/, delay thermal responses; the response factors Xie(m) are relatively small but decay 

relatively slowly. 

 

 

APPENDIX 

 

In what follows, the relationships between the thermal structure factors and the values of the 

residues and poles of transfer functions are derived. 

The Laplace transforms of the heat flux density q(t) and heat flow Q(t), across the 

surfaces of a plane, multilayer wall, in the directions of the outside normals, due to boundary 

temperature T(t), for zero initial conditions, have the general form /see [6,7] and (4.1), (4.2), 

(4.3)/: 
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where N(s), B(s) are the elements of the transition matrix for the structure, p=0 for the (ie) 

and (ei) modes of heat transfer and p=1 for (ii) and (ee) modes. 

Consider the heat transfer process with T(t) in the form of the unit step function 

T(t)=(t). The Laplace transform of T(t) is equal to 1/s. Inversion of the Laplace transforms, 

by applying the residue theorem, yields /see [6,7,8]: 
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where the quantities (-k ) are the poles of the transfer function N(s)/B(s), that is the negative 

real  roots of the equation B(s)=0, and k  the residues at the poles: 

 

(A4)    
 
 

ks

k
sB

sN
















 . 

 

The limit conditions at  t = 0: q(0)=0 and Q(0)=0 require that: 
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For t  the exponential terms in (A2), (A3) tend to zero, which gives the limit conditions: 
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On the other side, for this asymptotically steady heat transfer process, corresponding to unit 

boundary temperature jump, as follows from the general asymptotic relationships (3.2), (3.3) 

/see also (4.20)/: 

(A8)        C
R

t
tQ

k

p

t












1lim . 

Compatibility of the above asymptotic relationships at infinity requires the following 

equality: 

 

(A9)     
 
 

C
sB

sN

ds

d

s

p











0

1 . 

 

which, for multilayer walls,  may easily be verified by direct calculation. (A8) combined with 

(A6) gives the following condition for the poles (-k ) and residues k: 

(A10)     





1

2
1

k

p

k

k C



 

The above equality is nontrivial and may be verified by direct calculation only for simplest 

cases, as the homogeneous wall with Ri = 0 and Re = 0. 
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WPŁYW STRUKTURY NA DYNAMIKĘ CIEPLNĄ ŚCIAN WARSTWOWYCH 

 

S t r e s z c z e n i e 

 
Analizowany jest wpływ wewnętrznej struktury termicznej ścian warstwowych na ich charakterystyki 

dynamiczne. Podstawę matematyczną stanowią formuły całkowe dla przepływu ciepła przez 

powierzchnie ścian. Wprowadzone jest pojęcie czynników strukturalnych i wyprowadzone są warunki, 

przy wykorzystaniu metody transformacji Laplace’a, które nakładają one na współczynniki 

odpowiedzi. Zbadane są proste przykłady ścian, reprezentujących różne typy rozkładów oporności i 

pojemności, które ilustrują ogólne zależności między współczynnikami strukturalnymi i 

współczynnikami odpowiedzi. 
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