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Abstract: The paper refers to the problem of Michell (1904) of
finding the lightest fully stressed structures, composed of possibly
infinite number of members, trasmitting a given load to a support
forming a circle. The point load can be located within or outside
the circle. The known analysis by Hemp (1973) is enhanced here
by disclosing the explicit formulae for the weights of the ribs and
the interior (fibrous domain). The optimal weight can be found by
two manners: by applying the primal integral formula involving the
density of the reinforcement or by computing the work of the load
on the adjoint displacement. One of the aims of the paper is to show
that both these formulae are equivalent. This identity is essential
since in the case of point loads the equivalence of the primal and
dual formulations has not been proved till now.

The analytically found layouts are confirmed by analysis of trusses
(of finite number of joints) approximating the exact Michell-like so-
lutions.

Keywords: Michell cantilevers, layout optimization, minimum
weight design.

1. Introduction

Plane Michell structures are exact global solutions to the layout problem of
plastic design: find the lightest statically admissible truss or fibrous structure
(in which normal stress σ is bounded from both sides by −σC and σT ) lying
within a given feasible plane domain Ω0 and supported on a given line.
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The problem was originated by Michell (1904). All known plane Michell
structures are reported by Hemp (1973), Chan (1967, 1975) and Lewiński et al.
(1994). Most of them concern the case of σC = σT = σpl. Michell structures
are important because of the following reasons

i) they refer to the case of the volume being small in the contemporary
relaxed formulation of the optimal shape design problem in plane, see
Allaire and Kohn (1993)

ii) they are both global and exact solutions
iii) the optimal designs are neither discrete nor continuous: they are fibrous

structures reinforced by ribs of finite cross sections.
The problem to be discussed refers to the oldest optimal cantilever problem,

see Michell (1904): the support line is of circular shape and σC = σT = σpl

The case of σT �= σC is difficult and has not been solved till now. For the
case of σC = σT the solution found by Michell is correct but not complete.
Hemp’s (1973) analysis is deeper as involving distribution of stress resultants
inside the cantilever. It turns out, however, that Hemp did not publish a proof
of equivalence of the kinematic and static formulae. One of the motivations of
the present paper is to fill up this gap in the literature.

To be more precise, let us recall that the problem considered can be put in
terms of stress resultants, as a minimization problem (see (44) below) or can be
reformulated to a dual form becoming then a maximization problem (see (46))
expressed in terms of adjoint displacements. In the case of a regular boundary
loading, equivalency of these problems was shown in Strang and Kohn (1983).
In the original Michell problem the loading is singular, as a point load. For
this case the analysis of Strang and Kohn does not apply. In the present paper
we put forward both the formulations concerning the point load case and show
briefly their equivalence. This theoretical result is confirmed by a direct proof
of equivalence of two analytical formulae expressing the volume of the optimal
design. This proof is not elementary, see Appendix.

The theoretical solution – composed of two ribs and a fibrous domain –
is compared with approximate designs of trusses of finite number of joints.
We construct sequences of trusses tending to the ideal design. The speed of
convergence of the sequences of the sub-optimal volumes is satisfactory.

Having found the solution discussed above one can solve a similar problem
in which the location of application of the point load is located within the
given circular domain. This problem is solved analytically and appropriately
illustrated.

The paper ends up with an example of optimal design of a wheel subject to
a twisting loading. Due to rotational symmetry the problem is fully solvable.
This problem should not be confounded up with the optimal design shown in
Sec. 17.4 of the book by Cherkaev (2000).

No special conventions are adopted. Before reading the text the reader is
asked to remind some formulae referring to orthogonal curvilinear systems. In
particular, the book by Novozhilov (1962, 1970) could be helpful. The paper
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can be treated as an extension of Sec. 4.6 of the book of Hemp (1973).
Selected results of the present paper were announced by Graczykowski and

Lewiński (2003).

2. A point load outside a given circle

The aim of this section is to re-consider the Michell cantilever problem, see
Michell (1904) and Hemp (1973, Sec. 4.6). We put an emphasis on the interac-
tion between the fibrous domain and the reinforcing ribs.

2.1. Analysis of equilibrium and computing the volume

We are given a circle of centre A and radius R and a point B outside the circle,
of application of the point load P . Direction of the force P is given by an angle
φp measured in a counterclockwise direction from the vertical line, see Fig. 1.

Figure 1. Data for the Michell problem (P0)

The exterior Ω0 of the given circle is the feasible domain. Let σpl repre-
sent the admissible stress, common for tension and compression. The Michell
problem is formulated as follows

(P0)

∣∣∣∣∣∣
Find the structure of the smallest volume lying within Ω0,
in which |σ| ≤ σpl, capable of transmitting the force P
to the boundary of the given circle.

The formulation above can be made more restrictive by putting |σ| = σpl,
since the solution should be sought among fully stressed designs.



230 C. GRACZYKOWSKI, T. LEWIŃSKI

The solution to (P0) has been already outlined in Michell (1904) and ana-
lyzed in Hemp (1973, Sec. 4.6). However, one can easily note that not all aspects
of the solution have been there published. They will be discussed in the sequel.

Let us introduce Cartesian coordinates (x, y) with origin at point A and
the polar coordinates (r, θ) such that x = r cos θ, y = r sin θ; θ is measured
counterclockwise, see Fig. 2.
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Figure 2. Curvilinear parametrization of the feasible domain

Let us consider a family of logarithmic spirals. The α-lines:

x = Re2β−θ cos θ , y = Re2β−θ sin θ , θ ∈ R (1)

where β is fixed and β-lines

x = Re2α+θ cos θ , y = Re2α+θ sin θ , θ ∈ R (2)

where α is fixed, see Fig. 2. The α- and β-lines form an orthogonal curvilinear
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system ξ1 = α, ξ2 = β such that

x = Reα+β cos(β − α) , y = Reα+β sin(β − α) (3)

and

r = Reα+β , θ = β − α mod (2π). (4)

The components of the metric tensor of the system (ξ1, ξ2) form the matrix
[gλµ], λ, µ = 1, 2, such that

g11 = A2(α, β) , g12 = 0 , g22 = A2(α, β) (5)

with

A(α, β) =
√

2Reα+β (6)

Thus, the parametrization (ξ1, ξ2) is not only orthogonal, but also isother-
mal, Vekua (1967, Sec. 57). The lines α and β cut the circles r = const at
angles ±π/4. It is known that the solution to the problem (P0) is described by
the parametric lines α and β. This solution is neither discrete nor continuous.
It is a certain plate reinforced by ribs transmitting longitudinal forces. The
construction of the optimal solution is explained in Fig. 3.
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Figure 3. a) Optimal solution, b) decomposition of the optimal solution

It should be done as follows. We find first the (αp, βp) coordinates of point
B. Then we cut out the domain Ω by the lines: β = βp, α = αp and the arc
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D1D2 with D1(−βp, βp), D2(αp,−αp) lying on the circle r = R. We imagine
that the boundary D1B is reinforced by a cable or a rib with vanishing bending
and transverse shear stiffness. This rib will work in tension, transmitting a
longitudinal force FT (α), −βp ≤ α ≤ αp. The rib D2B will be compressed by a
longitudinal force FC(β), −αp ≤ β ≤ βp. The conditions of equilibrium of the
node B imply

FT (αp) = P1 , FC(βp) = P2 (7)

where

P1 = P sin
(π

4
− θp + φp

)
P2 = −P cos

(π

4
− θp + φp

)
(8)

with P = |P |. Here θp is the polar coordinate of B. Let us note that

P1 − P2 =
√

2P cos(θp − φp) . (9)

The optimal structure is composed of three interacting parts: the tensioned
rib D1B, the compressed rib D2B and the fibrous domain Ω of points (α, β)
such that

−β ≤ α ≤ αp , −αp ≤ β ≤ βp , (10)

see Fig. 4. The radii of curvature of the lines β = βp and α = αp are given by

ρT (α) = A(α, βp) , ρC(β) = A(αp, β) . (11)

The continuous domain Ω is considered as filled up with fibres following the
lines ξ1 = α, ξ2 = β. This body has no shear stiffness, hence the tangent
stress resultants: N12 = N21 = 0. Other components N11, N22 represent stress
resultants in the ξ1 and ξ2 directions. Here (Nλµ) are physical components of
the stress resultant tensor, defined as in the plate theory, for plates loaded in
plane.

Let us recall the differential equilibrium equations of the rib in tension, see
Fig. 3b

dFT (α)
ds

= 0 ,
FT (α)
ρT (α)

+ N22(α, βp) = 0 . (12)

where ds = A(α, βp)dα. We have taken into account that the rib is not subject
to a tangent loading. Thus FT (α) = const and by (7) we find FT (α) = P1,
which gives the boundary condition

N22(α, βp) = −P1A
−1(α, βp) . (13)

Similar arguments lead to FC(β) = P2 and
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Figure 4. Parameterization of the domain

N11(αp, β) = −P2A
−1(αp, β) . (14)

Due to the specific form of tensor g and the assumption: N12 = 0 the differential
equilibrium equations for the domain Ω reduce to, see Novozhilov (1962, Ch.2),

−∂(AN11)
∂α

+
∂A

∂α
N22 = 0 , −∂(AN22)

∂β
+

∂A

∂β
N11 = 0 (15)

Due to conditions

∂A

∂α
= A ,

∂A

∂β
= A (16)

it is helpful to introduce new force unknowns

T1 = AN11 , T2 = AN22 (17)

and re-write (15), (14), (13) in the form

−∂T1

∂α
+ T2 = 0 , −∂T2

∂β
+ T1 = 0 (18)

T1(αp, β) = −P2 , T2(α, βp) = −P1 (19)

Let us note that T1 and T2 are of force dimension. Moreover, these fields are
fully determined by (18), (19), which discloses that our problem is statically
determinate.
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Remark 2.1 Problem (P0) can be posed in a discrete setting: find the lightest
truss (of finite number of members and joints) satisfying the given conditions.
One can prove that among the optimal designs at least one is statically deter-
minate, see Achtziger (1997). To find the smallest weight one could confine
optimization to the class of statically determinate trusses. Looking at (12)-(14),
(18), (19) we note that our problem is fully statically determinate. This property
holds here thus showing that our optimal structure could be viewed as a singular
truss of infinite number of members and joints.

To solve (18), (19) we use the Riemann method, see Hemp (1973, Sec. 4.6).
Let us introduce the family of functions

Gn(α, β) =
(

α

β

) n
2

In

(
2
√

αβ
)

(20)

n = 0, 1, 2; In(·) is the modified Bessel function, or

In

(
2
√

αβ
)

= (αβ)
n
2

∞∑
k=0

(αβ)k

k!(k + n)!
. (21)

The following identities hold, see Lewiński et al. (1994a, b),

∂Gn(α, β)
∂α

= Gn−1(α, β) ,
∂Gn(α, β)

∂β
= Gn+1(α, β) (22)

where G−1(α, β) = G1(β, α). Let us recall the Riemann result. If a function
w(α, β) is defined for

θ1 ≤ α ≤ λ ; θ2 ≤ β ≤ µ (23)

and satisfies

∂2w

∂α∂β
− w = 0 (24)

then w is given directly by the Riemann formula

w(λ, µ) = w(θ1, θ2)G0(λ − θ1, µ − θ2) +

+
∫ λ

θ1

G0(λ − α, µ − θ2)
∂w(α, θ2)

∂α
dα +

+
∫ µ

θ2

G0(λ − θ1, µ − β)
∂w(θ1, β)

∂β
dβ .

(25)

The formula above along with (22) make it possible to solve (18)-(19). The
results are

T1(α, β) = −P2G0(αp − α, βp − β) + P1G1(αp − α, βp − β)

T2(α, β) = −P1G0(αp − α, βp − β) + P2G1(βp − β, αp − α) .
(26)
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The volume of fibres within the elementary area dS = A2dα dβ is expressed
in terms of NI and NII (or principal values of tensor N) by, see Lewiński and
Telega (2000, Eq. 29.1.11) for a physical explanation,

dV =
1

σpl
(|NI | + |NII |) dS . (27)

Here NI = N11 and NII = N22. Thus, we have

dV =
1

σplA
(|T1| + |T2|) dS . (28)

The function

h(α, β) =
1

σpl
(|T1(α, β)| + |T2(α, β)|) A−1(α, β) (29)

measures the density of fibres. Following Hemp (1973) this function will be
called an effective thickness of the fibrous domain Ω. Substitution of (6), (26)
gives

h(α, β) =
1√

2σplR
e−(α+β) [(P1 − P2)G0(αp − α, βp − β) +

+ P1G1(αp − α, βp − β) − P2G1(βp − β, αp − α)]
(30)

since |T2| = −T2. The volume of the fibrous domain equals, see Fig. 4,

VF =
∫ βp

−αp

∫ αp

−β

h(α, β)A2(α, β)dα dβ . (31)

The integral identity (A1) makes it possible to express VF as follows

VF =
√

2R

σpl
(P1 − P2)J (αp, βp) (32)

where

J (αp, βp) =
∫ βp

−αp

∫ αp

−β

eα+β [G0(αp − α, βp − β) +

+ G1(αp − α, βp − β)] dα dβ .

(33)

The identity (A2) and (9) give the final result

VF =
2PR

σpl

{
[(αp + βp) − 1] eαp+βp + 1

}
cos(θp − φp) . (34)
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Let us compute now the volume of the tensioned rib. Its cross section is P1/σpl,
hence the volume is expressed by

VRT =
P1

σpl

∫ αp

−βp

A(α, βp)dα (35)

or

VRT =
√

2RP1

σpl

(
eαp+βp − 1

)
. (36)

In a similar way we find the volume of the compressed rib

VRC =
−√

2RP2

σpl

(
eαp+βp − 1

)
. (37)

The total volume of the ribs equals VR = VRT + VRC . By using (9), (36), (37)
we arrive at

VR =
2PR

σpl

(
eαp+βp − 1

)
cos(θp − φp) . (38)

By adding (34) and (38) we find the total volume of the optimal structure
V = VF + VR or

V =
2PR

σpl
(αp + βp)eαp+βp cos(θp − φp) . (39)

If (rp, θp) are polar coordinates of B we can rearrange (39) to the form

V =
2P

σpl
rp ln

(rp

R

)
cos(θp − φp) (40)

which directly links the volume with the data of the problem, see Fig. 1.
We note that the volume V can be expressed as a sum of the surface and

line integrals

σplV =
∫

Ω

(|NI | + |NII |) dS +
∫

∂Ω\Γ0

|F |ds (41)

where Γ0 ⊂ ∂Ω0 is a part of a boundary of the circle. Here F = F (s) represents
the longitudinal force in the rib reinforcing the free boundary. The force fields:
N = (Nλµ) within Ω and F along ∂Ω equilibrate the given point load at B.
We say that N and F are statically admissible. This condition can be put in
a variational form as follows. Let u = (ux, uy) be a sufficiently regular field
in Ω0, vanishing on Γ0. Then we say that u is kinematically admissible and
write u ∈ U . Let un, uτ be normal and tangent components of u along ∂Ω.
Let s parametrize ∂Ω and ρ(s) represent a radius of curvature of ∂Ω. Let
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ε(u) represent the strain field associated with u, defined as in linear elasticity
theory. We introduce a set Σ(Ω) of fields Ñ ∈ L2(Ω, E2

s), F̃ ∈ L2(∂Ω, R) such
that divÑ ∈ L2(Ω, R2), dF̃ /ds ∈ L2(∂Ω, R) and∫

Ω

Ñ : ε(u)dS +
∫

∂Ω\Γ0

F̃ λ(u)ds = P · u(B) ∀ u ∈ U (42)

where

λ(u) =
duτ

ds
+

un

ρ
(43)

represents a relative elongation of the boundary fibre. The set Σ(Ω) comprises
all statically admissible pairs (Ñ , F̃ ).

Let us treat the right-hand side of (41) as a value of a functional I
�Ω(Ñ , F̃ )

for Ω̃ = Ω, Ñ = N , F̃ = F . We state now the conjecture

σplV = inf
{

I
�Ω(Ñ , F̃ )

∣∣∣ (Ñ , F̃ ) ∈ Σ(Ω̃) , Ω̃ ⊂ Ω0

}
. (44)

Thus we claim that the structure found is the lightest among all which equili-
brate the load P and transmit this load to a given circular support.

The conjecture (44) will be justified by duality arguments put forward in
the sequel.

2.2. Dual formulation

Let us fix Ω̃. We combine (41)-(44) to find a saddle-point problem

σplV = inf
(�N , �F )∈Σ(�Ω)

sup
u∈U

{
I
�Ω(Ñ , F̃ ) + P · u(B) −

∫
�Ω

Ñ : ε(u)dS+

−
∫
�γ

F̃ λ(u)ds

} (45)

where γ̃ = ∂Ω̃\Γ0. The duality arguments by Strang and Kohn (1983) apply
here. Thus we can interchange the operators inf and sup and reduce the problem
to

σplV = sup {P · u(B) | u ∈ U , ε(u) ∈ B , |λ(u)| ≤ 1 on γ̃} , (46)

see also Lewiński and Telega (2001). Here B represents a locking locus:

B =
{

ε ∈ E
2
s

∣∣ |εI | ≤ 1 , |εII | ≤ 1
}

.

Note that the case of |εI | = 1, |εII | = 1 implies |λ(u)| = 1 along γ̃ and can only
be fulfilled if
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a) the boundary γ̃ follows one of trajectories of principal strain ε(u)
b) γ̃ is tangent to trajectories of ε(u).

In the present paper we confine our consideration to the case

εI = 1 , εII = −1 in Ω̃ (47)

and, consequently

|λ(u)| = 1 on γ̃ (48)

Let us note that formulation (46) becomes independent of Ω̃. Indeed, the con-
ditions (47) can be imposed within Ω0 while the boundary γ̃ should be chosen
as composed of trajectories of εI , εII having a cross section at point B. Thus
we rearrange (46) to the form

σplV = sup
u∈U

εI (u)=1 , εII (u)=−1

P · u(B) (49)

since the condition |λ(u)| = 1 is satisfied automatically, if the boundary γ̃ is
appropriately chosen. The power of the formulation (49) lies in its independence
of Ω̃. The virtual field u concerns the whole domain Ω0 and Ω will occur as
being cut out along trajectories εI = 1, εII = −1 intersecting at point B.

Let us try to satisfy the conditions (47) within the ξ1 = α, ξ2 = β parame-
terization introduced in Sec. 2.1. Due to their isothermal property the deforma-
tions (ελµ) are expressed in terms of displacements u (tangent to α-lines) and v
(tangent to β-lines) by the formulae, see Novozhilov (1970) and Mazurkiewicz
(1995),

ε11 =
1
A

(
∂u

∂α
+

1
A

∂A

∂α
v

)

2ε12 =
∂

∂α

( v

A

)
+

∂

∂β

( u

A

)
, ε22 =

1
A

(
∂v

∂β
+

1
A

∂A

∂β
u

)
.

(50)

Let us note that the deformations associated with the displacement fields

u(α, β) = (α + β)A(α, β) , v(α, β) = −u(α, β) (51)

where A(α, β) is given by (6), see (16), are homogeneous

ε11 = 1 , ε12 = 0 , ε22 = −1 (52)

and u = 0, v = 0 along the circular boundary of Ω0. Thus u = (u, v) ∈ U and
(47) are satisfied in Ω0. Here α and β lines are trajectories of principal strains.

The formulae (51) can be rewritten to the form

u/R =
√

2
r

R
ln

( r

R

)
, v = −u . (53)
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We see that (u, v) do not depend on θ = β − α. The radial and circumferential
components are

ur = 0 , uθ = −2r ln
( r

R

)
. (54)

Let us compute the virtual work of P

P · u(B) = P1u(B) + P2v(B) . (55)

By (51) we have

P · u(B) = (P1 − P2)u(B)

and by (9) we find

P · u(B) = 2P cos(θp − φp)rp ln
(rp

R

)
(56)

which, by (49), gives the previous result (40)
The above identity shows the equivalency of (44) and (46) and confirms

that the structure analyzed in Sec. 2.1 is one of optimal solutions. No other
structure, with stresses satisfying |σ| ≤ σpl, transmitting the force P to the
circular support can be lighter.

2.3. Structure of the optimal solution

The passage from (45) to (46) teaches us that the bars (fibres) must follow tra-
jectories of principal strains, see Strang and Kohn (1983) and Rozvany (1976).
Thus the fibres lie along the net of lines α and β and the boundary fibres be-
come ribs of finite cross sections. The net is orthogonal. The fibres are fully
stressed such that |σ| = σpl. The stresses should not be mixed up with the
stress resultants N11, N22 which are distributed non-homogeneously, according
to (17) and (26). The fibres do not sustain shear.

The ribs hinder the fibrous domain from being broken up. They equilibrate
the stress resultants normal to the edges. The boundary equilibrium is possible
due to curving of the ribs, see Eq. (12)2. If the ribs were straight and still
incapable of sustaining the transverse shear forces, the flux of normal stresses
could not be arrested. Thus, the lack of shear stiffness brings about appearance
of curved boundaries. The second role of the ribs is to carry a concentrated load
and change its action into normal loading applied along the curved boundaries
of the fibrous domain. Let us stress that the joint at B is safely equilibrated,
as would be a joint of a truss.

Let us add that this pseudo-truss is statically determinate. The static analy-
sis can be performed provided that it is done in an appropriate sequence. One
should start from the equilibrium equations of the node B, which gives the forces
in the ribs. Having their curvature we find the normal loading. This loading
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determines the force fields T1, T2, since they are governed by the hyperbolic
equation (24). Having found T1, T2 we compute reactions along the arc D1D2.

The shape of the optimal design depends on the ratio rp/R or on the values
αp and βp. If αp = βp = π/4 the interval D1D2 is orthogonal to AB. For
αp = βp = π/2 we have D1 = D2. For greater αp, βp the tensioned rib will
intersect with the compressed rib. For greater values of αp, βp these ribs wound
around the circle. This clears up why V tends to infinity if rp = const and
R → 0. In fact, the ribs have constant cross sections and their lengths increase
to infinity. We conclude that one cannot fix a cantilever at a point.

Distribution of the effective thickness h is symmetric if P is orthogonal
to AB. Then FT = −FC . The force P can be directed within the angle:
−π

4
+ θp < φp <

π

4
+ θp. In the limit cases FT = 0 or FC = 0.

Distribution of the function h(α, β) depends on the ratio rp/R and on φp,
see Figs. 5-7.

0
5

10
15

20 -8 -6 -4 -2
0

2

P0

2

4

6

8

10

12

Figure 5. Density of fibres h(α, β). Case: rp/R = 23.14, φp = 0◦

P0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

-1
0

1
2

3 -1
-0,5

0
0,5

1

Figure 6. Density h(α, β). Case: rp/R = 2.19, φp = 0◦
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Figure 7. Density h(α, β). Case: rp/R = 4.81, φp = 45◦

Let us consider the ratio VR/V . By (38)-(40) we have

VR/V =
eαp+βp − 1

eαp+βp(αp + βp)
. (57)

We note that VR/V → 1 if αp + βp → 0. Therefore, if B tends to the circular
boundary, the structure tends to a two-bar design, which is an exact design if
the supporting line is straight.

2.4. Approximations by trusses of finite number of joints

The discrete-continuous solutions found above can be compared with discrete
or truss designs with finite number of joints and bars. The bars will be placed
along trajectories of adjoint principal strains. All the trusses considered will be
statically determinate. The cross-sections are selected such that the stresses in
each bars are equal to the given limit value.

The greater number of bars the lighter the trusses. The decay of the truss
weight is the most clearly visible in the case of a cantilever truss supported on
a whole circle. For the considered sequence of sub-optimal designs (see Fig. 8)
the decay of the weight equals 37.4%. The external bars play the role of the
reinforcing ribs. The internal bars replace the fibrous domain. The weights
of the internal bars and boundary bars depend on the number of all bars, see
Figs. 8 and 9.

We observe that if the number of bars increases then the total weight de-
creases, the weight of both the external bars decreases and the weight of internal
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�
V = 161,66652

�
V = 147,82080

�
V = 145,42118

�
V = 152,29151

Figure 8. Sequence of trusses approximating the optimal Michell cantilever
supported on the whole circumference of the circular support. The first figure
shows the Hencky net for fixing the joints of the 10-joint truss. Other trusses
are constructed in a similar way. The non-dimensional volumes V = V σpl/PR
are given beside the trusses
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Figure 9. Non-dimensional truss volume V = V σpl/PR versus the number of
bars of trusses of Fig. 8

bars increases. The truss composed of 10100 bars looks similar to the optimum
design by Michell. Its volume equals 145.421PRρ/σpl, while the volume of the
Michell truss equals 145.397PRρ/σpl. The weight of external bars is equal to
68.7% of the total weight, while the corresponding ratio for the Michell solution
equals 69.5%. The longitudinal forces along the external bars have almost uni-
form distribution, which resembles the result for the exact solution where this
force is constant within the ribs.

If the truss is loaded by a force directed at angle 30◦ from the vertical line
the weight of the tensioned bars is greater than the weight of the compressed
bars. The division of bars into external and internal bars holds also in this case.

Consider the trusses supported on a half of a circle, see Fig. 10.
In this case the decrease of the weight with the increasing number of the

bars is not so visible. The simplest truss carrying the point load composed of
6 bars is 11.1% heavier than the optimal design. A greater change is seen as
regards division of the weight into the weight of external bars and internal bars
(Fig. 11).

In the simplest truss the weight of the internal part is 20.8% of the total
weight, in the case of the truss composed of 3660 bars this ratio is 48.52%,
while for the optimal design this ratio equals 49.57%. The weight of the truss
tends now very rapidly to the optimal value and the variation of the longitudinal
force in the external bars is smaller. This is due to a simpler geometry of this
truss.
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�
V = 16,80360

�
V = 15,50911

�
V = 15,15582

�
V = 15,11429

�
V = 15,82916

�
V = 15,28678

Figure 10. Sequence of trusses supported on one half of the circumference of
the support. The first figure shows the auxiliary Hencky net
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Figure 11. Non-dimensional truss volume for trusses of Fig. 10

Consider now the trusses supported on a quarter of a circle, see Fig. 12. The
simplest truss, composed of 6 bars, has the weight 2% greater than the weight
of the Michell design. Depending on the number of bars the weight of internal
bars varies from 14 to 31% of the total volume.

The examples above show that if the distance of the force to the boundary
of the circle diminishes the curvature of the Hencky net is smaller and smaller.
The concentrated load is then mainly transmitted by the external bars and the
role of internal bars becomes marginal. Thus the main part of the weight is the
weight of external bars. If the force is located very near the circular boundary
then the shape of the boundary is almost straight and the optimal design tends
to the two-bar design. A sequence of suboptimal designs is given in Fig. 13.

3. A point load inside a given circle

Let us assume that the interior of the circle is the feasible domain of the op-
timal design problem similar to that considered in the previous section. The
supporting line will be a part of the circumference of the circle. The point load
will be directed downwards, hence the fibres lying along the α-lines will be now
compressed and the fibres lying along the β-lines will be tensioned. As before
the optimal structure occurs to be fibrous, reinforced by two boundary ribs, one
in compression and one in tension. The values of the longitudinal forces in the
ribs can be found by the equilibrium conditions of point of application of the
force. The longitudinal forces in the ribs are given by the formulae

FT = P sin
(π

4
− θ + φp

)
, FC = −P cos

(π

4
− θ + φp

)
. (58)
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�
V = 3,53560

�
V = 3,48491

�
V = 3,45074

�
V = 3,44529

�
V = 3,45941

Figure 12. Sequence of trusses supported on one quarter of the circumference
of the support. The first two figures show the auxiliary Hencky nets
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a) b)

c) d) e)

Figure 13. Sequence of trusses corresponding to the diminishing value of the
ratio rp/R; αp = βp is equal to: a) π/16, b) π/32, c) π/64, d) π/128, e) π/256
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The angle φp is measured here in a clockwise direction. Next we proceed
as in Section 2. Having found the longitudinal internal forces in the ribs one
can compute the force fields T1(α, β) and T2(α, β) within the fibrous domain
by applying the Riemann formula (25). The volume of the structure can be
computed by (49) to find

V = −2PR

σpl
eαp+βp(αp + βp) cos(θ − φp) . (59)

Let us remind that the coordinates αp and βp are negative within the circle,
hence the formula (59) gives positive values of the volume. If the load is in the
vicinity of the circumference, the optimal structure assumes the form similar
to the elementary two-bar design. If the point of application of the load moves
towards the centre of the circle the optimal structure acquires more and more
bars and becomes supported on longer parts of the circumference, see Fig. 14.

a) b)

c) d)
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Figure 14. Optimal structure carrying a point load applied inside the circle:
a) αp = βp = −π/8, b) αp = βp = −π/4, c) αp = βp = −7π/16, d) αp = βp =
−π/2
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If the distance from the application of the point load to the centre of the circle
equals r = 0.043R (which corresponds to αp = βp = −π/2 in polar coordinates)
the optimal structure becomes supported along the whole circumference. If the
distance to the center is smaller, the ribs intersect within the circular domain and
the solution considered here ceases to hold. The structure of the greatest volume
corresponds to the point of application of the force of coordinates αp +βp = −1;
r = R/e. This volume is equal

V =
2PR

σple
cos(θ − φp) .

Although the geometry of the solution considered here differs from that corre-
sponding to the case of the force outside the circle, the formulae for the vol-
umes of the ribs and the fibrous domain hold here, i.e. the formulae (34)÷(39).
Moreover, the previously mentioned relations between the volumes of the fibrous
domain and the ribs hold good.

4. Optimal wheel

Consider the problem of finding the lightest structure transmitting a tangent
loading of intensity q, distributed along the circumference of the given circle of
radius l, to a circular support of radius R. To solve this problem the Hencky
net considered in Section 2 is helpful, see Fig. 2. The displacement field (54)
is valid here. This field is kinematically admissible since it vanishes along the
support. To find the stress resultants we assume that the only component is the
shear component Nrθ. It satisfies the following equilibrium equation

dNrθ

dr
+

2
r
Nrθ = 0 . (60)

Its solution, satisfying the given boundary condition: Nrθ(l) = q, is ex-
pressed by

Nrθ = q

(
l

r

)2

. (61)

Thus the principal values of N are: NI = Nrθ, NII = −Nrθ. Since the distrib-
ution of the function h is given by h = (|NI | + |NII |)/σpl we find

h(r) =
2Nrθ

σpl
. (62)

The total volume equals

V =
∫ l

R

∫ 2π

0

2
σpl

Nrθrdrdϕ =
4πl2q

σpl
ln

(
l

R

)
. (63)
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The same result follows from (49). Indeed, we compute the virtual work of
the loading by

σplV =
∫ 2π

0

q · 2l ln
(

l

R

)
ldϕ = 4πl2q ln

(
l

R

)
(64)

and arrive at the same result (63). The optimal wheel is shown in Fig. 15.

R

q

l

Figure 15. The net of fibres forming an optimal wheel

5. Final remarks

The loading in the form of a point load brings about appearance of ribs in
the optimal solution. In the stress-based setting (44) we predict occurence
of longitudinal forces within the ribs; these stress resultants are measured in
newtons. Such an approach is exact, it assures equivalence of two formulations:
(44) and (46). One does not observe singularities of distribution of internal
forces T1, T2. There is no necessity of replacing the condition ε(u) ∈ B by an
integral formula, as has been proposed in Golay and Seppecher (2001, Sec. 3.1).
The numerical methods should be formulated such that they comprise plane
finite elements as well as bars, or one-dimensional elements.

In the problem of an optimal wheel (Sec. 4) the ribs do not occur, because
the loading is distributed along a line. A 3D counterpart of this problem leads
to Michells sphere (1904), see Hemp (1973) and Lewiński (2004). The discrete
solutions for the Michell sphere can be found in Czarnecki (2003). However,
finding a discrete solution close to the exact one is difficult, since the spatial
truss formed on a sphere loses its stability, if the number of bars increases.
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act solution. In: W. Szcześniak, ed., Theoretical Foundations of Civil
Engineering-XI. Oficyna Wydawnicza PW, Warszawa, 351-368.

Hemp, W.S. (1973) Optimum Structures. Oxford, Clarendon Press.
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Appendix

The following identities hold∫ βp

−αp

∫ αp

−βp

eα+β [G1(βp − β, αp − α) − G1(αp − α, βp − β)] dαdβ = 0 (A.1)

and

J (αp, βp) = [(αp + βp) − 1] eαp+βp + 1 , (A.2)

where J (αp, βp) is defined by (33).
Let us denote the l.h.s. of (A.1) by f(αp, βp). Let us introduce the change

of variables

βp − β = y , αp − α = x . (A.3)

Then

f(αp, βp) = eαp+βp

∫ αp+βp

0

∫ αp+βp−y

0

e−(x+y) [G1(y, x) − G1(x, y)] dxdy (A.4)

or

f(αp, βp) = eαp+βp

∫
Ω1

e−(x+y) [G1(y, x) − G1(x, y)] dΩ1 (A.5)

where Ω1 is a triangle, see Fig. 16. We note that the x = y axis is the symmetry
axis of Ω1. Therefore f(αp, βp) = 0.

Figure 16. Domain Ω1 of integration in (A.5)
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Let us proceed now to prove (A.2). We apply the change of variables (A.3)
and note that J (αp, βp) = j(αp + βp) and

e−sj(s) =
∫ s

0

e−yF (s, y)dy (A.6)

with

F (s, y) =
∫ s−y

0

e−x [G0(x, y) + G1(x, y)] dx . (A.7)

Note that

∂F

∂s
= e−(s−y) [G0(s − y, y) + G1(s − y, y)] . (A.8)

Let us differentiate both sides of (A.6) with respect to s, using (A.8) to find

es d

ds

[
e−sj(s)

]
= f1(s) (A.9)

where

f1(s) =
∫ s

0

[G0(s − y, y) + G1(s − y, y)] dy . (A.10)

We differentiate (A.9) using (22) and G0(0, s) = 1, G1(0, s) = 0 and arrive at

d

ds

{
es d

ds

(
e−sj(s)

)}
= f1(s) + 1 (A.11)

hence

df1(s)
ds

= f1(s) + 1 (A.12)

with f1(0) = 0. Thus the function f1(s) is defined by

f1(s) = es − 1 . (A.13)

We put this result into (A.9) to find

es d

ds

(
e−sj(s)

)
= es − 1 (A.14)

hence

j(s) = ses + 1 + C1e
s (A.15)

C1 being a constant. Since j(0) = 0 we have C1 = −1, which gives

j(s) = ses − es + 1 (A.16)

and this is equivalent to (A.2).


