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Abstract. This contribution deals with the inverse problem of indirect identification of moving loads. The identification 

is performed based on the recorded response of the loaded structure and its numerical model. A specific feature of such 

problems is a very large number of the degrees of freedom (DOFs) that can be excited and a limited number of available 

sensors. As a result, unless the solution space is significantly limited, the identification problem is underdetermined: it 

has an infinite number of exact, observationally indistinguishable solutions. We propose an approach based on the 

assumption of sparsity of the excitation, which can be expressed in the form of a requirement of a bounded l1 norm of the 

solution. As long as the loads are sparse, the approach allows them to be freely moving, without the usual assumption of 

a constant velocity. We first test the approach in a numerical example with 10% rms measurement noise. A good 

qualitative agreement of the numerical results allows to proceed with experimental investigations, and the moving load 

identification is then carried out based on the response measured experimentally on a lab test stand. 

The two main problems in the area of structural health monitoring (SHM) are monitoring for structural damages 

and indirect identification of structural loads. In general terms, these problems correspond respectively to the inverse 

problems of the first type (system identification) and the second type (input identification). 

This contribution is devoted to indirect identification of moving loads based on the recorded responses of the 

loaded structure. Such a problem has been intensively studied and there is a number of extensive reviews [1,2]. The 

problem is important in assessment of pavements and bridges, in traffic monitoring and control, as well as 

a prerequisite for structural control [3-6]. A specific feature of such problems is a very large number of the degrees 

of freedom (DOFs) that can be excited by the load and a limited number of sensors available to measure the 

response. As a result, unless the solution space is significantly limited, the identification problem is underposed: it 

has an infinite number of exact solutions. In most of the published research, the solution space is limited by the 

assumption of a single vehicle that moves at a constant velocity. Such approaches have led to very good results; 

however, they significantly restrict the generality of the load being identified and exclude, e.g., braking or 

accelerating vehicles, freely moving loads and multiple loads. 

We propose and test an approach based on the assumption of sparsity of the excitation, which is well-tailored to 

practice: even if there are multiple loads, at each time instant the excitation usually occurs in a very limited number 

of structural DOFs. Such an approach fits into the recent intense research stream on compressed sensing [7], which 

includes SHM-related application areas such as damage identification [8] or identification of impact load 

position [9]. To our best knowledge, the concept has not been applied for identification of transient moving loads. 

The assumption of sparsity is usually expressed as a requirement of a bounded l1 norm of the solution [10]. As long 

as the loads are sparse, the approach allows them to be identified even if they are multiple or freely moving, that is 

without the usual assumption of a constant velocity. 
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The Direct Problem 

The structure is modelled by means of the finite element (FE) method. It is assumed to satisfy the equation of 

motion in its standard form with zero initial conditions: 

 

     ,0    ,0    , 0x0xfKxxCxM    (1) 

 

where M, C and K are respectively the structural mass, damping and stiffness matrices, and f represents the 

excitation by the freely moving load(s). Since the model is linear, responses of linear sensors (such as strain gauges) 

can be stated in the convolution form, 

 

       ,d  
0

c 

t

tt  fBε  (2) 

 

where the matrix Bc collects the structural impulse response functions. After time discretization, Eqn (2) takes the 

following form: 

 

 ,Bfε   (3) 

 

where the vectors ε and f collect all the discretized responses and excitations (for all time instances), and B is 

a block Toeplitz matrix that represents the discretized form of the convolution operator. Each block row of 

B corresponds to a single sensor, while each block column corresponds to a single excitation point. 

 

 
FIGURE 1. Example of a block matrix B (4x16 blocks, each block is 100x100) 

 

The Inverse Problem 

A discrete set of points that can be crossed by the moving load is selected on the surface of the structure. The set 

needs to be dense enough to be able to model the load trajectory. Let the vector p collect force excitations in all 

these points and in all time instances, and let N be the allocation matrix which allocates the points to structural 

DOFs. Notice that the number of points might be smaller than the number of structural DOFs and that the points 

need not be aligned with specific DOFs (in such a case they are allocated to the DOFs of the involved finite 

elements using their shape functions). As a result, Eqn (3) takes the form  

 

 ,BNpε   (4) 

 

that is the vector f is approximated by assuming that the load interacts with the structure only in the considered set of 

points, fNp. In general, load identification is then equivalent to solving of Eqn (4). 
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Assumption of Sparsity and the l1Norm Minimization 

In practical cases, there are much more potential excitation points than sensors, so that the length of the 

excitation vector p is much larger than the length of the measurement vector ε, so that Eqn (4) has infinitely many 

exact solutions. To obtain a unique solution, an additional knowledge about the load has to be used to constrain the 

solution space. In literature, a single load is usually assumed with known trajectory and velocity. Here, we propose 

an assumption of sparsity, which can be expressed through the l1 norm as the task of minimization of the following 

weighted objective function [9]: 

 

   ,
1

2
pBNpεp F  (5) 

 

where the coefficient 𝛼 weights the importance of the criterion of sparsity. The fact that the regularization with 

respect to the l1norm promotes sparse solutions can be illustrated using the following intuitive example. The isolines 

of the l1 norm in the R
2
 space are presented in Fig. 2 in red colour. The subspace of all accurate solutions of a two 

dimensional counterpart of Eqn (4) is represented by a blue line. It can be noted that the minimum value of the l1 

norm within the subspace is attained when at least one component is zero. 

 

 

FIGURE 2.The isolines of the l1 norm in the R2 space (red). The l1 minimum in a subspace (blue) is attained when at least one of 

the coordinates is zero 

 

NUMERICAL EXAMPLE 

For preliminary verification of the proposed approach, a numerical example is considered. The measuring 

section of the actual experimental stand, Fig. 6, is numerically modelled as a 2D FE beam, see Fig. 3. The material, 

geometric, constraint and excitation parameters are tuned to represent the experimental setup. The beam is divided 

into 22 finite elements (Euler-Bernoulli beams). In each time step of the forward simulation, the moving mass load 

is transferred to the DOFs of the involved finite element via its shape functions. Strain sensors are assumed to be 

placed in four points of the beam at 20%, 40%, 60% and 80% of the beam span. In these points the strain is 

simulated numerically, contaminated with a 10% rms uncorrelated Gaussian noise and used in the identification 

procedure as measurements. The number of unknowns in Eqn (5) is thus equal to 16nt, and they all have to be 

identified based on only 4nt measurements, where nt is the number of the time steps. 

Geometric and material parameters of the beam are as follows: the beam 0.55m long and its cross-section is 

0.03m x 0.0015m. The Young modulus is 205GPa and the density is 7800kg/m3, which corresponds to steel. 

Graphical time-space representation of the unknown (to-be-identified) load vector f is shown in Fig 4. For the 

purpose of identification, it is assumed that the load can occur vertically in 16 points equally spaced along the beam 

span (vertical axis in Fig. 4). The horizontal axis in Fig. 4 represents the time steps. For clarity of presentation, the 

first 100 time steps are shown: in such a case, the unknown vector p in Eqn (4) has a total of 16 x 100 = 1600 

components to be identified. 
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FIGURE 3. Scheme of the beam excited by a travelling mass. The load is identified in 16 equally spaced points, and the 

response is measured by 4 sensors 

 

 

FIGURE 4.Graphical representation of the unknown load f. The load can occur vertically in 16 points × 100 time steps 

 

Fig.5 presents three exemplary identification results obtained by means of the L1packv2 [11] and Wolfram 

Mathematica. The provided plots compare the actually simulated and identified trajectories. One and two moving 

mass loads are simulated. Their actual trajectories are marked by the orange curves, while the identification result is 

shown in background in the form of the density plots. A good qualitative agreement is evident. 

 

  

 

FIGURE5. Numerical example: identification of a single moving load and of two moving loads 
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EXPERIMENTAL STAND 

The experimental stand consists of two parts: a measuring section and a ramp used in order to accelerate the 

travelling load, see Fig. 6. The measuring section is built to measure strains in selected points of a simply supported 

beam loaded by a moving mass. The beam has the form of a steel plate (0.55m x 0.03m x .0015m) with a fixed 

support on the beginning and a rolling support on the end. The beam with supports is installed on thick wall steel 

profiles, see Fig. 6a. The moving mass is simulated by a steel roller. The roller has a groove on its diameter to 

provide guidance when travelling along the beam (Fig. 6b). The moving mass is accelerated on the ramp with an 

adjustable angle, which allows to get various speeds of the moving mass.  

The structural response due to the moving mass is measured in nine equally spaced points along the beam by 

strain gauges, see Fig. 6c. A half-bridge is used and active gauges are installed on the bottom surface of the beam. 

The compensated strain gauges are installed on the separate steel plate with the same geometry to eliminate the 

temperature influence. On the beginning and on the end of the measuring section photogates are installed in order to 

record the start and the end time points of the travelling mass, which is needed to properly determine the part of the 

measurement from the entire test when the travelling mass actually excited the beam. Additionally, these optical 

sensors are used to determine the speed of the travelling mass. 

The experimental stand allows to record the strain response for singular and multiple masses with different 

velocities. The strain gauge amplifier contains 8 independent channels. Seven of them are used to measure the strain 

response in chosen points, while one is used to identify the start and the end moment when the travelling mass enters 

and leaves the measuring section. The test starts when the travelling mass is located on the ramp and ends when the 

travelling mass is outside the measuring section. All 8 channels are synchronized and start recording signal in the 

same time. Strain response could be recorded with the max 2kHz frequency sampling.  

Figure 7 shows a comparison between numerical and experimental responses from 4 sensors located at 20%, 

40%, 60% and 70% of the beam length. The plots exhibit a satisfying correlation of 93.7% between the results. 

 

  
(a) (b) 

  

 
(c) 

FIGURE 6.The experimental stand: (a) front view, (b) top view with two different mass rollers, (c) schematic draft 
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FIGURE 7.Comparison of numerical and experimental beam responses in 4 points (20%, 40%, 60% and 70% of the beam 

length). The smooth lines represent numerical simulations and the oscillatory lines represent the experimental responses. The plot 

presents only the time section in which the travelling mass is on the measuring section 

 

EXPERIMENTAL RESULTS 

Single Moving Load 

The good qualitative agreement of the numerical results allows us to proceed with experimental verification 

using the experimental setup described above. The test was carried out with a single mass (156.3g) travelling with 

two different velocities (1.2m/s and 2.9m/s). Sensors are located at 20%, 40%, 60% and 70% of the beam span. The 

strain gauge response was recorded with 2kHz sampling frequency. The identification with this sampling frequency 

is computationally very time consuming. Due to this reason, a downsampling with different ratios was considered. 

Fig. 8 presents the density plot with the identified trajectory of a single mass with downsampling ratio 10 (200Hz). 

For the purpose of identification, as in the numerical example described above, the beam FE model is divided into 

22 elements and the unknown loads are identified in 16 equally spaced points. 

The qualitative agreement between the identified and actual trajectories is noticeably worse than in the case of 

the purely numerical results. The reason is that the experimental response includes measurement noise, as well as 

additional errors due to manufacturing tolerances and due to the measurement setup itself. In the numerical 

identification, only the 10% rms Gaussian noise is taken into account, but there is no variation of the beam geometry 

and the noise-free signals are assumed to be accurate. A numerically simulated strain gauge provides a pointwise 

response, while a real gauge averages the strain over its active length (3 mm in our setup). Manual installation of the 

gauges introduces also position and orientation errors. All these factors contribute to the worsening of the qualitative 

agreement between the identified and actual trajectories in the case of the lab experiment. 

 

  
(a) (b) 

 

FIGURE 8Trajectory identification of a single mass travelling with the average velocity of (a) 1.2m/s and (b) 2.9m/s. 

The sampling frequency is 200Hz (downsampling ratio 10) 
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Sensitivity Study 

The experimental setup and the measuring method have a significant impact on the quality of identification 

results. Modification of the experimental setup is relatively difficult. However, strain gauges are inexpensive and 

commonly used sensors in structural engineering. 

The quality of travelling load identification is also influenced by the software input configuration. The number of 

the sensors and their placement, the number of load excitation points and the downsampling ratio are assumed 

a priori. For comparison, Fig.9 shows the identification results with the downsampling ratio 2. In comparison to the 

results shown in Fig. 8 (downsampling ratio 10), the downsampling ratio has no visible qualitative effect on the 

identification results but the computational time is significantly increased. Also, increasing the number of the load 

excitation points from 16 to 40 does not improve the identification quality (see Fig.10). A better result is obtained 

for additional sensors (see Fig.11). In this configuration, five sensors are installed at 20%, 40%, 60%, 70% and 90% 

of the beam span. A significant impact of the sensor pattern can be also noticed. Fig 12 shows the identification 

results obtained with four sensors positioned at 10%, 30%, 70%, and 90% of the beam span. There is a significant 

decrease in the qualitative agreement in comparison to the original pattern of four sensors shown in Fig. 9.  

 

 

  
(a) (b) 

 

FIGURE 9.Trajectory identification of a single moving mass with 1kHz sampling frequency (downsampling ratio 2). 

Two different velocities considered: (a) 1.2m/s and (b) 2.9m/s 

 

 

  
(a) (b) 

 

FIGURE 10.Trajectory identification of a single moving mass with 40 load excitation points. Two different velocities 

considered: (a) 1.2m/s and (b) 2.9m/s 
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(a) (b) 

 

FIGURE 11.Trajectory identification of a single moving mass with five sensors installed at 20%, 40%, 60%, 70% and 90% of 

the beam span. Two different velocities considered: (a) 1.2m/s and (b) 2.9m/s 

 

  
(a) (b) 

 

FIGURE 12.Trajectory identification of a single moving mass with a different sensor pattern (four sensors placed at 10%, 30%, 

70%, and 90% of the beam span). Two different velocities considered: (a) 1.2m/s and (b) 2.9m/s 

 

CONCLUSIONS  

This contribution proposes a method for identification of freely moving loads. The method allows to evaluate 

underdetermined problems, in which a very large number of DOF scan be excited by the load, but a limited number 

of sensors are available to measure the response. The approach is based on the assumption of sparsity of the 

excitation which can be expressed through the l1 norm minimization.  

The identified trajectories show a good qualitative agreement with the actual trajectories at 0.31 data redundancy 

ratio (5 sensors and 16 load points) for experimental results and 0.25 for numerical results (4 sensors and 16 load 

points). It is confirmed that the sensor placement pattern has a significant impact on the quality of identification. 

Thus, sensor placement will be optimized in the future to improve the identification results. 

The current version of the approach does not consider any additional apriorical knowledge about the load except 

the sparsity. We plan to determine other specific characteristics of travelling loads in order to exploit them in the 

process of identification. 
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